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Abstract. An important unsolved problem in structural bioinformat-
ics is that of protein structure prediction (PSP), the reconstruction of
a biologically plausible three-dimensional structure for a given protein
given only its amino acid sequence. The PSP problem is of enormous
interest, because the function of proteins is a direct consequence of their
three-dimensional structure. Approaches to solve the PSP use protein
models that range from very realistic (all-atom) to very simple (on a lat-
tice). Finer representations usually generate better candidate structures,
but are computationally more costly than the simpler on-lattice ones. In
this work we propose a combined approach that makes use of a simple
and fast lattice protein structure prediction algorithm, REMC-HPPFP,
to compute a number of coarse candidate structures. These are later re-
fined by 3Distill, an off-lattice, residue-level protein structure predictor.
We prove that the lattice algorithm is able to bootstrap 3Distill, which
consequently converges much faster, allowing for shorter execution times
without noticeably degrading the quality of the predictions. This novel
method allows us to generate a large set of decoys of quality comparable
to those computed by the off-lattice method alone, but using a fraction
of the computations. As a result, our method could be used to build large
databases of predicted decoys for analysis, or for selecting the best candi-
date structures through reranking techniques. Furthermore our method
is generic, in that it can be applied to other algorithms than 3Distill.

Keywords: Protein Structure Prediction, HP model, Contact Maps,
Simulated Annealing, Replica Exchange Monte Carlo.

1 Introduction

Protein structure prediction (PSP) is the problem of inferring the tertiary struc-
ture of proteins given only information on their primary structure. This problem
is of the highest importance for several reasons: the function of a protein is
strictly tied to its three-dimensional structure, but the experimental determina-
tion of the tertiary structure is still a complex, time consuming and expensive
process. In addition, in some cases it is impossible to obtain structural infor-
mation with experimental techniques: many proteins are too large for NMR
analysis and some classes of proteins such as membrane ones are very difficult



to crystallize for X-ray diffraction [4]. As a matter of fact, most of the known
protein sequences are not yet assigned a corresponding structure: in spite of the
long-standing community-wide effort, most known proteins still lack a resolved
structure, and of the nearly two million protein sequences currently known, fewer
than 2% have an associated structure.

Following the idea that similar sequences are bound to represent similar
structures [6], at least at a local level, comparative modeling methods have been
developed which exploit local homology information to compute the structure
of novel query protein sequences. Remote homology techniques are employed for
fold recognition when sequence conservation is lacking. However, when no close
or remote homologues are available, these methods cannot be applied, and de
novo structure prediction must be performed.

The current methods for de novo PSP can be split in roughly three groups.
A first group accounts for all-atom molecular simulation methods, which try to
mimic the physical folding process starting from first principles. They have huge
computational requirements and have not been very successful for realistically
sized proteins. A second group includes all those methods that search the space
of atom- or residue-level conformations for a native-like fold using some more
or less empirical energy function to assess the quality of the candidate struc-
tures. Meta-heuristic optimization algorithms are usually employed to perform
the search. These methods have had much more success than the ones in the
previous class, but they are still very computationally expensive. Finally, a third
group includes methods that rely on residue-level (or coarser) structure represen-
tations and enforce them to lie on a regular lattice, embedded in purely synthetic
force fields. Methods in this group can find a native-like decoy with relatively
less computational effort than methods in the former groups, but the resulting
structures are not as realistic. They are typically used as tools to analyze the
statistical properties of the folding landscape, rather than to generate reliable
structures.

In this work we present a novel method that combines the complementary
strengths of off-lattice empirical models and on-lattice ones, and allows to gen-
erate a large number of comparatively good quality decoys with a fraction of
the computational power required by standard methods. The underlying idea is
to combine two existing de novo PSP algorithms: a modified version of REMC-
HPPFP [15], a fast prediction method based on a very coarse structure represen-
tation, which is used to compute a first set of rough decoys; 3Distill [1], a more
realistic method that uses a finer structure representation, which is employed to
refine the decoys generated by REMC-HPPFP. Albeit based on a simple idea,
we prove that our method is indeed able to combine the features of REMC-
HPPFP and 3Distill: it generates competitive structures with much less effort.
Furthermore, the idea underlying our method is generic, meaning that it is in
no way restricted to 3Distill, and may prove useful to improve the efficiency of
other fine-grained structure prediction algorithms.

This paper is structured as follows. In Section 2 we review some of the relevant
methods for the protein structure problem. In Section 3 we describe our combined



PSP approach and the two methods on which it is based. In Section 4 we describe
the experiments carried out to benchmark our method and compare it to the
baseline. In Section 5 we discuss the results of the experiments and show that our
method is ultimately successful in reducing the amount of computation required.
Finally, in Section 6 we draw the conclusions on this work and describe some
future research directions.

2 Related Work

De novo PSP methods include both off-lattice and on-lattice models and meth-
ods. In off-lattice models, the residues are free to be placed at arbitrary contin-
uous coordinates in the three-dimensional Euclidean space. The simplest way to
represent residues is as hard spheres of fixed radius centered on the Cα atom, but
other more complex representations are available as well. In other, intermediate
models, all the atoms of the backbone are modeled, but the side chain is repre-
sented as a hard sphere centered at the center of mass of the real side chain. It
has been noted however that the lower computational demands of coarse-grained
models does not necessarily come at the cost of inferior expressiveness [10].

In on-lattice models the protein conformation is restricted, such that each
residue occupies a different vertex on a lattice. Consecutive residues in the pri-
mary structure are placed at adjacent positions, and the protein chain becomes
itself a self-avoiding path on the lattice. Lattice models employ a variety of two-
and three-dimensional lattice: square, triangular, cubic, face-centered cubic, di-
amond, and others with very high degrees of freedom. For the representational
power of different common and less-common lattices, we refer the reader to [11].
On-lattice models have been chiefly used as tools for studying protein folding, be-
cause the simplified representation allows for an easier mathematical treatment
[10].

Common approaches to the PSP problem include the aggregation of short
structural fragments, for instance Rosetta [12], and the use of contact maps
[16,1]. We focus on the latter approach. The idea is to split the prediction task
into two simpler sub-tasks: first generate de novo an accurate, residue-by-residue
contact map from the protein sequence, and then reconstruct the protein struc-
ture from the contact map. This is a sound approach, as contact maps can be
shown to encode the same information as the structure they represent [16]. To
date, a few contact map predictors have been proposed: SVMcon [2], Xxstout [1],
and NNcon [14] among others. As for the reconstruction process itself, a popular
approach is to use some form of stochastic optimization, as in the seminal paper
by Vendruscolo et al. [16] and 3Distill [1].

3 Method

Our proposed method is based on two well known existing de novo PSP algo-
rithms: in the next couple of sections we will introduce them and explain their
pros and weaknesses.



3.1 3Distill

An often advocated approach to the PSP is to split the main de novo struc-
ture prediction problem into a set of simpler prediction tasks. Distill [1] is a
hierarchy of state-of-the-art prediction servers that follows this approach. The
Distill servers compute a number of one-dimensional features (such as secondary
structure, solvent accessibility, and contact density) and two-dimensional fea-
tures (such as fine and coarse contact maps, coarse protein topology). The main
idea is that all servers make use of features predicted in the lower levels of the
hierarchy, starting from the primary structure, to predict more complex features.

At the top of the hierarchy, the 3Distill server computes the protein tertiary
structure, as a residue-level Cα trace, given predicted features from all the other
servers. A preliminary implementation of 3Distill took part to the CASP 6 com-
petition [8] and was ranked among the best 20 predictors out of 181 on Novel
Fold hard targets and Near Novel Fold targets. 3Distill was chosen because it is
simple and relatively fast when compared to other de novo algorithms.

The main feature input into 3Distill is a predicted (multi-class) contact map,
which specifies a set of soft physical constraints for all pairwise inter-residue
distances. For a detailed description of contact maps, see [16]. Other input fea-
tures include a predicted per-residue secondary structure and a predicted coarse-
grained contact maps, which defines the appropriate distances between pairs of
secondary structure elements. To avoid the computational burden of all-atom
models, 3Distill relies on a reduced backbone-only protein model. Furthermore,
residues that are predicted to belong to an α-helix are modeled as rigid, ideal
helices. This solves the problem of folding the helices during the optimization
stage, and decreases the complexity of the conformational search. To mimic the
minimal observed distance between atoms of different amino acids, the volume
of each Cα is modeled as a hard sphere of radius 5.0 Å, and the distance between
consecutive residues is set to 3.8 Å. These values were rigorously inferred from
statistical analysis of real world data [1].

All candidate conformations have an associated pseudo-potential that is de-
fined in terms of the input contact maps and secondary structure. The energy
of a conformation estimates how much it violates the constraints imposed by
the given fine and coarse contact maps, while at the same time penalizing non-
physical configurations (i.e., overlapping or too far away residues). For an in
detph description, see [1].

The mechanism used by 3Distill to search for the native conformation is Sim-
ulated Annealing (SA) [7]. SA is an iterative procedure: starting from a random
candidate structure, at each iteration it perturbates the structure producing an-
other candidate configuration. The newly generated configuration replaces the
old one if it is better (has a lower energy), with probability one; or if it is worse
(higher energy) with a probability that depends on the magnitude of the en-
ergy difference. This second condition is controlled by a so called temperature
parameter: when the temperature is high, even very bad configurations have a
high probability of having accepted; when it is low, almost all worsening con-
figurations are rejected. In 3Distill the temperature decreases linearly with the



number of iterations, meaning that as the search proceeds the temperature moves
towards zero and the probability of accepting worsening moves goes to zero as
well. For further details, we refer the reader to [7].

In 3Distill, each iteration of SA traverses the whole structure, perturbating
each residue in the order in which it appears in the protein chain. A perturbation
amounts to displacing a residue according to the following rules: (1) If the residue
is neither an endpoint nor in a helix, it is rotated by a random angle around the
segment joining its two neighboring residues. (2) If the residue is an endpoint of
the chain and not part of a helix, it is rotated at random around its only neighbor.
(3) If the residue is part of a helix, the whole helix is rotated at random. This
set of moves guarantees 3Distill to efficiently explore the conformational space.
We note that each traversal of the protein structure amounts to h perturbations,
where h is the overall number of free residues (not in a helix) and helices. The
SA algorithm stops after a given amount of traversals.

3.2 REMC-HPPFP

The Hydrophobic-Polar model (HP model for short) [3] is a very basic model of
protein folding based on a reduced, residue-level representation of the tertiary
structure. In this model, proteins are represented as backbone-only configura-
tions and the residues are forced to lie on a regular, typically cubical lattice,
with no overlap. In the HP model, each residue is either hydrophobic (H) or
polar (P). The HP model is designed to capture the fact that folding is mainly
driven by hydrophobic interactions between the residues. Following this idea,
the energy of a configuration x is defined empirically in terms of neighboring
residues: two residues are called topological neighbors if they are not consecutive
in the protein sequence and share an edge of the lattice. The energy associated
to an HP configuration is the negated number of topological neighbors that are
both hydrophobic. In other words, this energy function favors those configura-
tions containing a densely packed core of hydrophobic residues. Solving an HP
problem instance involves finding the native conformation, that is, the structure
having the lowest possible associated energy.

Despite its simplicity, the HP model has been proven to be NP-complete
in both two and three dimensions on the cubic lattice [7, 14], and NP-hard on
a general lattice [21], including the face-centered cubic and triangular lattices.
For this reason, HP model solvers usually resort to heuristic optimization al-
gorithms to search the conformational space. REMC-HPPFP [15] is one of the
state-of-the-art solvers of square and cubic lattice HP instances. It makes use
of a very effective stochastic search procedure, named Replica Exchange Monte
Carlo (REMC for short) that is especially geared towards high-dimensional op-
timization problems. REMC-HPPFP has been shown to lead to superior results
with respect to competing methods, such as PERM [5] and ACO-HPPFP-3 [13]
in a set of synthetic and on biologically-derived benchmark instances [15]. The
core features are the REMC optimization heuristic and the set of moves used to
perform the search itself. We briefly discuss them in the following, see [15] for
details.



The REMC search heuristic is reminiscent of Simulated Annealing, in that a
candidate protein structure is perturbated at each iteration, by applying a ran-
dom move, and the resulting structure is accepted or rejected depending on the
energy delta with respect to the old configuration. However in this case, multi-
ple configurations, called replicas, are optimized concurrently. Each configuration
has its own fixed temperature, which does not decrease with time. Replicas are
indexed from 1 to m, and the temperature of each replica is a monotonically in-
creasing function of its index. Once every k iterations, with k a fixed parameter,
the energy of adjacent replicas is compared, and if certain energy conditions are
met, the two replicas are exchanged, meaning that the ith replica will become
the (i+ 1)th and vice versa. This way the replicas change temperature based on
their energy level. The set of moves used by REMC-HPPFP to perturbate the
candidate configurations comprises a set of standard residue by residue moves,
termed VHSD moves, and the non-standard pull move [9]. This set of moves is
the most complete and efficient set of moves available to date for the HP model
on the square and cubic lattices.

3.3 On/Off Lattice Cascade

The main issue with 3Distill is that, even being one of the simplest de novo pre-
dictors proposed, the conformational space is huge and requires a large amount
of computational power to find low energy configurations. This is a common
problem for all fine-grained structure predictors. On the other hand, the REMC-
HPPFP algorithm shows very good performances on HP instances. Our primary
aim in this work is to combine the efficiency of on-lattice methods with the ac-
curacy of off-lattice models. We do so by first using a suitably modified version
of REMC-HPPFP to quickly produce a candidate on-lattice structure that (par-
tially) satisfies a given residue-level contact map, and then refining the obtained
structure by using 3Distill with the same contact map. The intermediate lattice
structures generated by the modified REMC-HPPFP can be thought as boot-
strapping 3Distill, by making it start its search from more favorable regions of
the search space.

To obtain the best results from the cooperation of REMC-HPPFP and 3Dis-
till, we had to implement a new lattice energy function. The new function defines
the fitness of a configuration in terms of how much it satisfies a given multi-class
contact map. The formal definition is as follows:

E(x;C, p, k) =
∑
i,j

E(dij ; cij , p, k)

E(dij ; cij , p, k) =

 |dij − τc|
p if dij < τc

|dij − τc+1|p if dij > τc+1

−k otherwise

where x is a candidate protein structure, C = [cij ] is a multi-class contact map,
with each class c having range [τc, τc+1], and dij is the Euclidean distance be-
tween residues i and j. The pairwise energy potential is a polynomial of the



difference between the actual distance between residues i and j and the clos-
est threshold of the predicted contact class. The two constants p and k are
parameters used to adjust the energy function to the data at hand. In particu-
lar, k defines the net gain for a satisfied contact, and p controls the amount of
penalty for an unsatisfied contact. In this new model, structures lie on a cubic
three-dimensional lattice of fixed side 3.8 Å, the same as the default inter-residue
distance for 3Distill.

To summarize, our method consists of a modified REMC-HPPFP version
that, by virtue of a new energy function, is able to find on-lattice configurations
that best satisfy a given residue-level contact map. Aside from the new energy
function, the REMC-HPPFP algorithm is unchanged. This novel method is used
to generate one or more lattice configurations, which are then refined with 3Dis-
till; both algorithms use the same predicted contact map. All in all, the new
cascade method requires four additional parameters to be specified: p and k
shape the energy function, the other two are T1 and T2, the number of iterations
to run the on-lattice and off-lattice algorithms for, respectively.

To allow for a common measurement unit of computation, we define the con-
cept of big iteration as a complete traversal of the protein structure by the search
algorithm. For 3Distill a big iteration involves h structure perturbations, each
requiring to compute the value of the energy function for the newly generated
configuration, for a total of h = O(n) energy computations. For REMC-HPPFP,
a big iteration equates to n×m structure perturbations, where m is the number
of replicas, again amounting to O(mn) = O(n) energy updates. The computa-
tional complexity of the two algorithms is thus O(n2) per big iteration, as both
require O(n) pseudo-instructions for each energy function evaluation.

4 Experiments

The goal of the experiments is to assess the ability of our combined method to
generate decoys of quality comparable to that of the original 3Distill algorithm,
and to evaluate the amount of computation required to attain such decoys. The
quality of the decoys is defined in terms of the TM-score [17] to the experi-
mentally determined native fold. TM-score values range in [0, 1], with all values
larger than 0.4 suggesting a topologically correct prediction, and for all scores
above 0.7 a good structural superposition between the predicted and the native
folds.

The tests are based on a dataset of 171 proteins with no detected homology,
with length between 50 and 200 residues. The contact maps were predicted by
Xxstout [1] with threshold values τ1 = 8Å, τ2 = 13Å, and τ3 = 19Å using a
recursive neural network while exploiting evolutionary information in the form
of multiple alignment profiles, plus the contact map of the nearest template when
available. All template-matching qualities and all relevant SCOP classes (all α,
all β, α/β, α+β, coiled-coil, and small) are represented in this data set. The
data was kindly provided by the Distill team.



4.1 Selection of the Lattice Energy Function

The goal of the first batch of experiments was to tune the parameters p and k of
the new lattice energy function to maximize the TM-score of the resulting decoys
as expected. During previous experiments we observed that the quality of 3Distill
results is positively correlated to the TM-score of the inputs structures, and the
same holds for its convergence. The dataset is varied enough to guarantee that
the parameters p∗ and k∗ found are generalizable to other data sets. During these
experiments, for simplicity we kept the other parameters of the modified REMC-
HPPFP fixed to values used in the original paper for the three-dimensional lattice
[15]. In particular, the number of replicas is two.

For this set of experiments, we sampled the performance of the modified
REMC-HPPFP for (p, k) values taken from a grid in the (p, k) parameter space.
A preliminary set of runs was performed on a small subset of protein instances
to determine the extents of the grid, for a total of 10 structures for each pro-
teins, 100 iterations each. We found some reasonable values to be p ∈ [0.25, 2.25]
(at increments of 0.50) and k = {0, 10, 100, 1000}. Outside this range, the per-
formance of our method degraded quickly. The grid itself is uniform in the p
dimension and exponential in k: the reason is that p appears as an exponent
in the energy function, while k is an additive linear term. Next we performed
a thorough exhaustive search: for each (p, k) value in the grid, now with p in-
crements of 0.25, we ran our modified REMC-HPPFP on all proteins in the
dataset, 100 runs per protein, 100 iterations per run, and compared the average
TM-score of the generated decoys. Using this method, the best parameters were
found to be p∗ = 1.75 and k∗ = 0.

4.2 Behavior over Time

Given the optimal values p∗ and k∗, we evaluated the number of big iterations
(T1, T2) that our method needs to obtain results comparable to those of 3Distill
alone. To compare the performance of our combined approach to 3Distill, we
use the ratio between the TM-score reached by our algorithm and the best
TM-score obtained by 3Distill alone. We defined a uniform grid in the (T1, T2)
parameter space. The upper bound for T2 < 5000 was determined experimentally
by observing the number of big iterations needed to achieve pseudo-convergence
with 3Distill. For T1 we just used the same number of iterations defined in the
original paper, T1 < 100.

In all the runs, the lattice algorithm was run with the same parameters as
in the previous set of experiments, together with the newly found p and k. The
parameters of 3Distill were setup as in [1]. We ran the combined algorithm for
all proteins in the dataset, 100 runs for each protein, with T1 < 100 and T2 <
5000, recording the intermediate candidate structures during the optimization
procedures, so to properly fill in the (T1, T2) grid.

For every protein and (T1, T2) pair, we computed the average TM-score of
the predicted folds and normalized it with respect to the average TM-score of
the structures for the same protein found at (T1, T2) = (0, 5000). We call this



quantity the “quality ratio”, i.e., the ratio between the TM-score for proteins
found by our method using (T1, T2) iterations, and the TM-score of the structures
predicted by 3Distill. Then for each point in the (T1, T2) grid we computed the
average of the structure quality ratio over all decoys and over all proteins.

We note that the number of energy evaluations per big iteration in 3Distill is
equal to the number of control points h, whereas for REMC-HPPFP it is equal
to the number of residues n for each replica. Despite being both asymptotically
O(n), in practice these two quantities are not identical. This makes it difficult
to experimentally compare the values of T1 and T2, because h is a structural
property depending on the predicted protein secondary structure. Hence h may
be different between proteins of the same size. To account for this fact, we split
the results by protein length in 3 different classes, with ranges from 50 to 200: the
first class contains proteins of length from 50 to 99, the second those of length
from 100 to 149, the third those of length from 150 to 200. For each class we
computed the average number of hinges ĥ and the average number of residues
n̂, and rescaled the T2 axis by n̂/ĥ. This results in 3 grids, shown in Figure 1.

5 Discussion

The main result of this paper is that, in all the plots, the combined algorithm is
shown to be able to produce structures of quality comparable to that of 3Distill
alone, but with a far smaller number of energy evaluations. Multiple combina-
tions of T1, T2 show this behavior. Generally, it can be observed that: (a) To
obtain structures of quality ratio at least 0.7, that is, structures whose quality
is comparable to that of structures found by a full run (T2 = 5000) of the costly
off-lattice algorithm, it is sufficient to use T1 = 100 and T2 ≤ 500. This amounts
to one about tenth of the energy evaluations. (b) To obtain structures of quality
ratio at least 0.9, that is, structures whose quality is indistinguishable from that
of structures found with (T1 = 0, T2 = 5000), roughly 100 on-lattice iterations
followed by 2000 off-lattice iterations are sufficient. This amounts to less than
one half of the energy evaluations. Thus employing an on-lattice search strategy
to obtain initial candidate configurations actually improves the search speed of
the off-lattice algorithm.

One surprising result, implicit in the previous discussion, is that the on-
lattice algorithm can generate structures of good quality, with respect to those
found by the off-lattice method. This can be seen by observing the curves at all
grid points with T2 = 0. It follows that despite its simplicity, the cubic lattice,
when paired with our contact map driven energy function, is able to model
topologically correct, even if coarse, decoys. This seem to support the idea that
the on-lattice algorithm is able to bootstrap 3Distill in a region of the search
space that contains native-like folds.

Finally, the plots show that the quality ratios reported at the curves with
T1=fixed improve monotonically with respect to T1. This means that allowing
for increasing amounts of on-lattice search, and consequently for better initial
candidates to the off-lattice algorithm, helps the latter. This proves that it is



the on-lattice to be ultimately responsible for enhancing the convergence speed
of 3Distill, and not some random external factor such as a different distribution
of the initial configurations. The curves with T2=fixed instead appear to reach
convergence at T1 = 100. This validates our choice of T1 ≤ 100, and shows that
increasing its value would not improve the performance of the lattice algorithm
any further.

We note, however, that running the combined algorithm with both T1 and
T2 set to the maximum values does not significantly improve upon the solutions
found by the off-lattice algorithm alone. A possible explanation is that, simply,
3Distill has already reached convergence and that it would be unable to do better
than it actually is even when initialized with a good candidate structure.

Summarizing, the above results show that our novel combined on/off lat-
tice approach to protein structure prediction indeed requires potentially fewer
energy evaluations to generate good quality, low energy decoys for proteins of
length less than 200 residues. This enables for reduced execution time and an
increased throughput of structure prediction whenever a contact map is given.
The key point is that the resulting pool of structures will probably contain some
native-like folds. Ultimately, the higher throughput of our method can serve two
purposes: firstly, producing a large population of decoys for statistical analysis;
and secondly, to apply reranking techniques with an improved likelihood of find-
ing native-like structures. The ranking approach is very interesting, because it is
possible to tune our algorithm with small (T1, T2) values and be able to select
very good decoys with small computational effort.

6 Conclusions

In this work we presented a method that combines two existing state-of-the-
art approaches to the Protein Structure Prediction problem in a novel way by
exploiting the complementary strengths of the two. In particular, a lattice algo-
rithm is used to quickly construct a number of coarse, yet relatively good quality,
decoys from predicted contact maps; an off-lattice algorithm is later employed
to refine the search. Thanks to the lower number of degrees of freedom, the
on-lattice search effectively acts as a bootstrapping step for 3Distill, which con-
verges much faster since the starting candidate conformation is already located
in a favorable region of the search space. We proved experimentally that the
proposed method allows to generate structures of quality comparable to those
generated by 3Distill alone with a fraction of the computational effort. The im-
provement amounts to one order of magnitude less evaluations of the energy
potential, which is the most computationally intensive part of most search algo-
rithms. We stress that our approach is not restricted to 3Distill at all, and that
other fine-grained de novo algorithms could benefit from it as well. The proposed
method potentially allows to build large databases of decoys for analysis or for
the later application of reranking techniques to determine the most plausible
native folds.
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Fig. 1. Each plot represents the behavior over time of our combined method. The
axes represent T1 and T2 and the height of each point represents the average solution
quality ratio (over all decoys and all proteins in the dataset) described in Section 4.2.
The upper plot refers to proteins of length 50 to 99 residues; the middle plot to proteins
of length 100-149; the last one to proteins of length 150-200.


