
UNIVERSITÀ DEGLI STUDI DI FIRENZE
Dipartimento di Sistemi e Informatica

Dottorato di Ricerca in
Ingegneria Informatica e dell’Automazione

XVI Ciclo

Kernel Methods,

Multiclass Classification and

Applications to Computational

Molecular Biology

Andrea Passerini

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in Computer and Control Engineering

Ph.D. Coordinator
Prof. Edoardo Mosca

Advisors
Prof. Paolo Frasconi

Prof. Giovanni Soda

Anno Accademico 2003-2004

Abstract

Support Vector Machines for pattern recognition were initially conceived for the binary
classification case. A common approach to address multi-classification problems with bi-
nary classifiers is that of reducing the multiclass problem to a set of binary sub-problems,
and combine their predictions in order to obtain a multiclass prediction. Reduction schemes
can be represented by Error Correcting Output Codes, while binary predictions can be com-
bined using a decoding function which outputs a score for each possible class. We propose
a novel decoding function which computes the conditional probability of the class given
the binary predictions, and present an extensive set of experiments showing that it outper-
forms all the decoding functions commonly used in practice. An alternative approach for
solving multiclass problems is that of directly extending binary classification algorithms
to the multiclass case. Various multicategory extensions for SVM have been proposed so
far. We review most of them showing their similarities and differences, as well as the
connections to the ECOC schemes. We report a series of experiments comparing different
multiclass methods under various conditions, showing that while they perform similarly
at the optimum, interesting differences emerge when forced to produce degenerate solu-
tions. Moreover, we present a novel bound on the leave-one-out error of ECOC of kernel
machines, showing that it can be successfully employed for model selection.

In the second part of this thesis, we present applications of kernel machines to problems
in computational molecular biology. We address the problem of predicting disulphide
bridges between cysteines, which represent strong constraints on proteins 3D structure, and
whose correct location can significantly help the overall folding prediction. The problem
of disulphide bridges prediction can be divided in two successive steps: firstly, for each
cysteine in a given protein, predict whether it is involved or not in a disulphide bond;
secondly, given the subset of disulphide bonded cysteines in the protein, predict their
connectivity pattern, by coupling each cysteine with the correct partner. We focus on the
first step, and develop state-of-the-art learning algorithms combining kernel machines and
connectionist models. Disulphide bridges are not the only type of binding a cysteine can be
involved in, and many cysteines actually bind different types of ligands, usually including
metal ions, forming complexes which play very important roles in biological systems. We
employed kernel machine algorithms to learn to discriminate between ligand bound and
disulphide bound cysteines, in order to get deeper insights into the role of each cysteine
in a given protein. We developed ad-hoc kernels able to exploit information on residues
similarity, showing that they obtain performances similar to standard kernels with much
simpler models.

Contents

Acknowledgements xii

1 Introduction 1

1.1 Kernel Machines and Multiclass Classification 2
1.2 Applications to Bioinformatics . 3

I Kernel Machines and Multiclass Classification 5

2 Kernel Methods 6

2.1 Statistical Learning Theory . 7
2.1.1 Loss Function and Risk Minimization 7
2.1.2 VC Dimension and Bounds on Expected Risk 9
2.1.3 Structural Risk Minimization . 9
2.1.4 Empirical Estimates of the Expected Risk 9

2.2 Support Vector Machines . 11
2.2.1 Hard Margin Hyperplanes . 11
2.2.2 Soft Margin Hyperplanes . 15
2.2.3 Nonlinear Support Vector Machines 15
2.2.4 Bounds on the LOO Error of SVM 19

2.3 Other Support Vector Methods . 21
2.3.1 Support Vector Regression . 21
2.3.2 Support Vector Clustering . 24

2.4 Kernel Theory . 27
2.4.1 Positive Definite and Mercer Kernels 27
2.4.2 Regularization Theory . 31

2.5 Kernel Design . 33
2.5.1 Basic Kernels . 33
2.5.2 Kernel Combination . 34

CONTENTS ii

2.5.3 Kernels on Discrete Structures . 36
2.5.4 Kernels from Generative Models . 41

2.5.4.1 Dynamic Alignment Kernels 42
2.5.4.2 Fisher Kernel . 44

2.5.5 Hyper Parameter Tuning . 45

3 Multiclass Classification 47

3.1 Error Correcting Output Codes . 49
3.1.1 Decoding Functions Based on Conditional Probabilities 50

3.2 Multiclass Classification with Kernel Machines 53
3.2.1 ECOC of Kernel Machines . 53
3.2.2 Multicategory Support Vector Machines 54
3.2.3 Connections between ECOC and MSVM 59

3.3 Bounds on the LOO Error . 60
3.3.1 LOO Error Bounds for ECOC of Kernel Machines 61

3.4 Experiments . 66
3.4.1 Comparison between Different Decoding Functions 66
3.4.2 Comparison between Different Multiclass Methods 69
3.4.3 Hyperparameter Tuning . 71

3.5 Conclusions . 73

II Cysteine Bonding State Prediction 75

4 Protein Structure 76

4.1 Overview . 76
4.2 Protein Structure Determination . 79

4.2.1 X-Ray Crystallography . 80
4.2.2 NMR Spectroscopy . 80

4.3 Protein Structure Prediction . 81
4.3.1 Comparative Modeling . 81
4.3.2 Fold Recognition . 82
4.3.3 De Novo Protein Structure Prediction 83

4.3.3.1 Predictions in 1D . 84
4.3.3.2 Predictions in 2D . 87
4.3.3.3 Predictions in 3D . 87

5 Disulphide Bonding State Prediction 89

5.1 Disulphide Bonds Formation . 90
5.2 Cysteine Bonding State Prediction . 94

5.2.1 Overview of Current Methods . 95
5.2.2 Output-Local Predictor . 96

5.2.2.1 Implementation using probabilistic SVM 97

CONTENTS iii

5.2.2.2 A Fully-Observed Mixture of SVM Experts 98
5.2.2.3 Spectrum Kernel . 99

5.2.3 Output-Global Refiners . 100
5.2.3.1 Hidden Markov Models . 100
5.2.3.2 Bidirectional Recurrent Neural Networks 102

5.2.4 Data Preparation . 103
5.2.4.1 Input Encoding . 103
5.2.4.2 Cysteines Conservation . 104

5.2.5 Results . 104
5.2.5.1 Output-local experts . 104
5.2.5.2 Filtering with HMM . 105
5.2.5.3 Filtering with BRNN . 106
5.2.5.4 Combining BRNN and HMM Advantages 106

5.3 Connectivity Prediction . 108
5.4 Conclusions . 108

6 Cysteine Binding Types Prediction 110

6.1 Data Preparation . 111
6.2 PROSITE Patterns as a Baseline . 112
6.3 Prediction by Support Vector Machines . 113
6.4 Results and Discussion . 114
6.5 Conclusions . 121

Bibliography 123

CONTENTS iv

List of Figures

2.1 Confidence-based losses for binary classification (a) and regression (b). 8
2.2 Structural risk minimization (SRM) induction principle: the entire class of func-

tions is divided into nested subsets with decreasing VC dimension. Within each
subset, a trained function is obtained by minimizing the empirical risk only.
Finally, we choose the training function which minimizes the bound on the ex-
pected risk as given by the sum of the empirical risk and the VC confidence. . 10

2.3 Separable classification problem solved by support vector machines. The solid
line represents the separating hyperplane. Support vectors (in black) are the
points lying on the two closest hyperplanes on both sides of the separating one,
corresponding to a confidence margin of one. All other points (in white) do not
contribute to the decision function. 14

2.4 Non separable classification problem solved by support vector machines. The
solid line represents the separating hyperplane, while dotted lines are hyperplanes
with confidence margin equal to one. Grey points are unbound SVs, black points
are bound SVs and extra borders indicate bound SVs which are also training
errors. All other points do not contribute to the decision function. 16

2.5 (a) No linear decision function can separate black points from white ones. (b)
A non linear decision surface correctly separating points. (c) By nonlinearly
mapping points into a higher dimensional feature space we can find a separating
hyperplane, which corresponds to the nonlinear decision surface (b) in the input
space. 17

2.6 (a) ǫ-insensitive region around the target function. Points lying within the region
are considered as correctly predicted. (b) Large margin separation corresponds
in regression to flat estimation functions. Circles are training points, and dot-
ted lines enclose the ǫ-insensitive region. Solid lines are candidate regression
functions, the bold one being the flattest which still fits training data with an
approximation up to ǫ. 22

LIST OF FIGURES v

2.7 Regression problem solved by support vector machines. The dotted line is the
true function, and the dashed lines enclose the ǫ-insensitive region. The solid
line is the learned regression function. Grey points are unbound SVs, and black
points are bound SVs. All other points do not contribute to the estimation
function. Flatness in feature space implies smoothness of the regression function
in input space. 24

2.8 Support vector clustering. Lines represent cluster boundaries, formed by un-
bound SVs (grey points). Bound support vectors (black points) are outliers and
do not belong to any cluster. All other points stay within the boundaries of their
respective cluster. 26

2.9 Example of extraction of all valid subtrees of a given tree. 38
2.10 Examples of matching and non matching nodes between two trees, where the

nodes to be compared are the root nodes (shaded) of the respective trees. . . 38
2.11 State diagram for PHMM modeling pairs of sequences AB. The state AB emits

common or similar symbols for both sequences, while the states A and B model
insertions in sequence A and B respectively. 43

3.1 Bayesian network describing the probabilistic relationships amongst margins,
codewords, and class. 51

3.2 Multiclass classification problem solved by multicategory extension of support
vector machines. Solid lines represent separating hyperplanes, while dotted lines
are hyperplanes with confidence margin equal to one. Grey points are unbound
SVs, black points are bound SVs and extra borders indicate bound SVs which
are also training errors. All other points do not contribute to the decision function. 56

3.3 Multiclass classification problem solved by multicategory extension of support
vector machines. Solid lines represent separating hyperplanes, while dotted lines
are hyperplanes with confidence margin equal to one. Grey points are unbound
SVs. The multiclass geometric margin is given by the minimum of the biclass
geometric margins. 59

3.4 Test accuracy plotted against kernel hyperparameter γ. Data sets anneal, ecoli,
glass, soybean, yeast. 67

3.5 Test accuracy plotted against kernel hyperparameter γ. Data sets letter, opt-
digits, pendigits, satimage, segment. 68

3.6 Test accuracy plotted against kernel hyperparameter γ for different multiclass
methods and datasets. Regularization parameter C is optimized for each value
of γ and for each method independently by a validation procedure. All ECOC
schemes employ the likelihood decoding function. 70

3.7 Empirical comparison between test error (dashed line) and the leave-one-out
(solid line) bound of Corollary 4.1. The likelihood decoding function is used in
all the experiments. 72

LIST OF FIGURES vi

4.1 (a) All amino acids share a common part, containing a central carbon atom
known as carbon alpha (Cα), bonded to a hydrogen atom, an amino group and
a carboxyl group. The fourth valence of the Cα is involved in binding a side chain
which is peculiar to each amino acid. (b) Peptide bonds form by condensation
of the carboxyl and amino group of two successive amino acids, eliminating a
molecule of water. 77

4.2 Regular elements of secondary structure. (a) An alpha helix is a sequence of
residues with hydrogen bonds between C’=O of residue n and NH of residue
n + 4, forming an helix of 3.6 residues per turn. (b) A beta sheet is a planar
conformation made by two or more aligned beta strands connected by hydrogen
bonds. Beta sheets can be either parallel or antiparallel depending on the
direction of the aligned strands. Mixed sheets containing both parallel and
antiparallel strands also exist but are far less common. Figures are taken from
http://www.agsci.ubc.ca/courses/fnh/301/protein/protprin.htm. . 78

4.3 The primary structure (a) of a protein is the sequence of its residues. Local
regularities such as alpha helices and beta strands form the protein secondary

structure (b). The combination of such elements within a given polypeptide
chain determines its tertiary structure (c). Multimeric proteins made of several
chains also have a quaternary structure (d) given by the overall arrangement of
the chains. 79

4.4 Potential architecture for protein structure prediction by combination of predic-
tions for different subproblems. 84

4.5 (a) Finite state automata correcting inconsistencies in secondary structure pre-
dictions. Constraints imposed by the automata are: alpha helices at least four
residues long, beta strands at least two residues long, presence of a coil between
a beta strand and an alpha helix (and viceversa) as well as at the beginning and
end of a chain. (b) Example of errors corrected by the automata. Note that
such FSA is designed for a particular mapping from eight to three classes of
secondary structure. 86

5.1 Ball-&-stick representation of a disulphide bridge: the bridge is drawn as a
cylinder connecting the sulphur atoms of two oxidized cysteines. 90

5.2 Schematic reactions between enzyme oxidoreductase and chain in oxidation (a),
reduction (b) and isomerization (c), involving the formation of a temporary
mixed enzyme-protein disulphide bond. 91

5.3 Reducing systems in cytosol of E.coli : the thioredoxin system (a) employs thiore-
doxin enzymes (Trx) to reduce disulphide bonded cysteines in a chain, and
thioredoxin reductase to reduce the resulting oxidized enzyme, taking an elec-
tron from NADPH. The glutaredoxin system (b) employs the molecule glutathione
(Glu) to form a protein-Glu mixed disulphide, which is reduced by glutaredoxin
enzymes (Grx). The resulting Grx-Glu intermediate is in turn reduced by a
second molecule of glutathione, and the Glu-Glu complex is finally reduced by
glutathione reductase, again taking an electron from NADPH. 92

LIST OF FIGURES vii

5.4 Model for disulphide bridge formation in the periplasm of E.coli [FG03]. A solid
line indicates oxidation of the molecule originating the line, while a dashed line
stands for reduction. The dotted line indicates an isomerization reaction, which
does not involve a net change in redox state. Unfolded proteins are oxidized by
the enzyme DsbA, which is in turn reoxidized by transferring electrons to dsbB

within a respiratory chain. Misfolded proteins are either refolded by isomerization
or unfolded by reduction, both tasks being accomplished by DsbC,DsbG and
DsbE, which are in turn reduced by the thioredoxin-system dependent membrane
reductase DsbD. 93

5.5 Model for disulphide bridge formation in the endoplasmic reticulum of S.cerevisiae

[FG03]. A solid line indicates oxidation of the molecule originating the line, while
a dashed line stands for reduction. The dotted line indicates an isomerization
reaction, which does not involve a net change in redox state. Unfolded proteins
are oxidized by the enzyme PDI, which is in turn reoxidized by peripheral mem-
brane proteins ERO1α and ERO1β, whose recharging mechanism has not been
completely explained. PDI is also involved in correcting misfolded proteins, and
is supposed to be implied in their possible unfolding, but this last capacity has
not been proved. 94

5.6 The two-stage system. The protein classifier on the left uses a global descriptor
based on amino acid frequencies. The local context classifier is fed by profiles
derived from multiple alignments together with protein global descriptor. . . . 97

5.7 The four-state HMM constraining bonded cysteines in a sequence to an even
number. States on the left are non-bonding cysteine states, while states on the
right are bonded cysteine ones. The end state can only be reached by paths
containing an even number of bonded cysteines. 101

5.8 A BRNN architecture realizing a noncausal IO-isomorph transduction. 102

6.1 Disulphide bridge vs metal binding prediction by SVM with 3rd degree polynomial
kernel. Test and train accuracies with 95% confidence intervals are plotted,
together to the fraction of support vectors over the number of training examples,
for growing sizes of the window of 2k+1 residues profiles around the target
cysteine, with k going from 1 to 25. Results are averaged over a three fold cross
validation procedure. 115

6.2 Sequence logos [SS90] of context of cysteines involved in metal bindings (upper)
and disulphide bridges (lower) respectively, with a window of 17 residues on each
side of the bond cysteine. Hydrophobic residues are shown in black, positively
charged residues are blue and negatively charged are red, while uncharged polar
residues are green. 117

6.3 Sequence logos [SS90] of 17 aminos context of cysteines that don’t match any
PROSITE pattern, and are either truly predicted as MBS (upper) or mistakenly
predicted as DB (lower) by an SVM with 3rd degree polynomial kernel. Hy-
drophobic residues are shown in black, positively charged residues are blue and
negatively charged are red, while uncharged polar residues are green. 118

LIST OF FIGURES viii

6.4 Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 17 residues profiles on both sides of the target cysteine. Test
accuracies with 95% confidence intervals are plotted versus “C” regularization
parameter of SVM. Default regularization is computed as the inverse of the
average of K(x, x) with respect to the training set. 119

6.5 Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 17 residues profiles on both sides of the target cysteine. Pre-
cision/recall curves over the test set for different rejection rates for disulphide
bridge (a) and metal binding (b) prediction. 120

6.6 Disulphide bridge vs metal binding prediction by SVM with 3rd degree polynomial
kernel with McLachlan (a) or Blosum62 (b) similarity matrix. Test and train
accuracies with 95% confidence intervals are plotted, together to the fraction of
support vectors over the number of training examples, for growing sizes of the
window of 2k+1 residues profiles around the target cysteine, with k going from
1 to 25. Results are averaged over a three fold cross validation procedure. . . . 121

LIST OF FIGURES ix

List of Tables

3.1 Characteristics of the Data Sets used . 66

5.1 Summary of the experimental results. 105
5.2 Confusion matrices at protein class level (none/all/mix) for the ’BRNN S24+f’

architecture with k = 8 both before (a) and after (b) post-processing by FSA. 107

6.1 Non homologous sequences obtained by running uniqueprot [MR03] with hssp
distance set to zero. Sequences containing disulphide bridges were obtained
from resolved proteins in PDB [BBB+02], while those with metal bindings were
recovered from Swiss-Prot version 41.23 [BBA+03] by keyword matching. . . . 112

6.2 Disulphide bridge vs metal binding prediction by decision rules learned by c4.5
from patterns extracted from PROSITE. Precision and recall for both classes,
confusion matrix and overall accuracy. 114

6.3 Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 3 residues profiles on both sides of the target cysteine. Preci-
sion and recall for both classes, confusion matrix and overall accuracy. 115

6.4 Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 17 residues profiles on both sides of the target cysteine. Pre-
cision and recall for both classes, confusion matrix and overall accuracy. 116

6.5 Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 17 residues profiles on both sides of the target cysteine. Recall
and number of examples for cysteine (disulphide bridge) or metal ligand, and
details for different kinds of metal binding. 116

LIST OF TABLES x

6.6 Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 17 residues profiles on both sides of the target cysteine. Per-
formances for different rejection rates, where rejection percentage is computed
separately for examples predicted as disulphide bridges or metal bindings, in or-
der to consider the unbalanced distribution of examples between the two classes
(i.e. 5% rejection rate indicates that 5% of examples predicted as disulphide
bridges are to be rejected, as well as 5% of examples predicted as metal bind-
ings). Reported results include rejection thresholds, accuracies, precision and
recall, and percentage of rejected examples belonging to each of the two classes. 120

LIST OF TABLES xi

Acknowledgements

First of all, I would really like to thank my advisors Paolo Frasconi and Giovanni Soda
for encouraging me in the decision to undertake this rewarding path, and all people in the
Machine Learning and Neural Network Group for being good fellow travellers. Various
researchers contributed to the results in different parts of this thesis, like Alessio Ceroni,
Paolo Frasconi, Massimiliano Pontil and Alessandro Vullo, and I should also thank Fabrizio
Costa and Sauro Menchetti for fruitful discussions.

Huge thanks go to my family, my friends and especially my girlfriend, for bearing me
in the zombi condition I assumed while writing most of this thesis. Special thanks should
finally go to good old Chianti wine for its contribution in inspiring some of the ideas
contained in this thesis.

ACKNOWLEDGEMENTS xii

Chapter

1
Introduction

Learning from examples can be seen as the problem of approximating an unknown func-
tion given a finite number of possibly noisy input output pairs. A learning algorithm is
characterized by the set of candidate functions, also called the hypothesis space, and the
search strategy within this space. The sparseness and finiteness of training data poses
the problem of generalization to unseen cases, that is the capacity of the learned function
to predict the correct output for an unseen input. A learning algorithm which simply
outputs the function which best fits training data, choosing from the set of all possible
functions going from the input to the output space, would simply memorize training ex-
amples without really developing a model of the underlying target function, and fail to
generalize to unseen cases. Moreover, the problem is ill-posed, as there is no unique solu-
tion. The problem of avoiding overfitting [MP92] training data is typically addressed by
restricting the set of allowed candidate functions, either by directly reducing the hypothesis
space, by acting on the search strategy, or both, and is termed in different ways, such as
bias-variance dilemma [GBD92], inductive bias [Mit97] or capacity control [GVB+92]. In
regularization theory, turning an ill-posed problem into a well-posed one is done by adding
a regularization term to the objective function [Tik63], which corresponds in the learning
framework to modifying the search strategy by trading off between training data fitting
and complexity of the learned function. This concepts were investigated by Vapnik in the
late Seventies [Vap79] and led to the development of the Support Vector Machine [Vap95]
learning algorithm, later generalized to Kernel Machines. In the case of classification tasks,
kernel machine algorithms learn a decision function which separates examples with a large
margin, possibly accounting for training errors, thus actually trading off between function
complexity and fitting the training data. Versions of the algorithm have been developed for
tasks different from classification, such as regression [Vap95], clustering [BHHSV01] and

INTRODUCTION 1

Kernel Machines and Multiclass Classification

ranking [FSS98, CD02a], and have been successfully applied to a vast range of learning
tasks, from handwritten digit recognition [CV95] to text categorization [Joa98b].

This thesis is divided in two parts: the first one deals with kernel machines in a the-
oretical way, providing an extensive review of kernel methods, and presenting results for
multiclass classification learning. The second part deals with applications of kernel meth-
ods to protein structure predictions, presenting results of applications for prediction of
cysteine bonding state.

1.1 Kernel Machines and Multiclass Classification

Support Vector Machines for pattern recognition have been originally conceived for binary
classification tasks. A common approach to address multi-classification problems with bi-
nary classification algorithms is that of dividing the multiclass problem into several binary
subproblems, and combining the predictions for such subproblems into a multiclass pre-
diction. Common examples of this approach include the one-vs-all [Nil65] strategy and
the all-pairs [Fri96] one. A general framework for such approaches is represented by Error
Correcting Output Codes [DB95, ASS00]. They consist of a coding matrix of values in
{−1, 0, +1} with a number of rows equal to the number of classes. Each row is a codeword
for the corresponding class, while each column induces a binary classification task, which
consists of discriminating the subset of classes having +1 in the column from that of classes
having −1, while classes having 0 are not considered. In order to classify an unseen ex-
ample, the vector of predictions from all binary classifiers is computed, and the example is
assigned to the class whose codeword is closest to such vector, where closeness is measured
by a given decoding function. We propose a novel decoding function which computes the
conditional probability of the class given the vector of predictions, and present an extensive
set of experiments showing that it outperforms all the decoding functions commonly used
in practice.

An alternative approach to address multi-classification problems is that of directly ex-
tending binary classification algorithms to the multiclass case. Various multicategory ex-
tensions of support vector machines have been proposed in the literature [Vap98, WW98,
BB99, GEPM00, CS00]. We extensively review most of them, focusing on their simi-
larities and differences, and highlight the connections to ECOC schemes basing on the
works on continuous codes learning [CS00]. We present experimental results comparing
various methods for multiclass classification and discuss their performances, showing that
interesting differences emerge when methods are forced to produce a degenerate solution.

Finally, we propose a novel bound on the leave-one-out error of ECOC of kernel ma-
chines, which is valid for any monotonic non-increasing margin based decoding function,
and show that it can be successfully employed for model selection.

In chapter 2 we present an extensive introduction to kernel methods, while chapter 3
focuses on multiclass categorization. The proposed results on ECOC of kernel machines are
based on [PPF02, PPF04], while the section on multicategory SVM and the comparisons
between different multiclass methods are not published elsewhere.

INTRODUCTION 2

Applications to Bioinformatics

1.2 Applications to Bioinformatics

The explosion of genomic scale sequencing projects has provided us with a huge amount
of data from a wide variety of different organisms. However, in order to fully exploit the
information contained in such data, increasingly difficult analyses are necessary, identifying
single genes within a genome, proteins synthesized from such genes, and three dimensional
structure of proteins, which is crucial to derive information on their biological function.
The gap between available information at different steps is dramatically increasing, urging
for automatic algorithms to fill it up. The determination of a protein fold, that is its 3D-
structure, given the sequence of its residues is a challenging task in this context. No simple
rule, as those discovered for transcription and translation, is available to map sequences of
residues to three dimensional coordinates. Experimental methods such as X-Ray crystal-
lography [Dre94] and NMR spectroscopy [W8̈6] are highly expensive and time consuming,
and cannot be applied in all situations. However, resolved three dimensional structures
provide a valuable source of information which can be employed to predict the structure of
new proteins. Given a new protein, the problem of predicting its three dimensional struc-
ture depends how the target protein resembles already resolved ones. If resolved proteins
with enough sequence similarity with the target protein are available, its fold can be pre-
dicted by comparative modeling [KNV03] techniques, relying on the observation that the
3D structure of proteins is more conserved than their residue composition during evolution.
However, when such similar proteins are not available, different methods have to be used.
Difference in primary structure does not always imply difference in fold, as many exam-
ples of so called remote homologues exist.Threading techniques [God03] search for remote
homologues of a target protein by trying to fit its sequence into known folds. Machine
learning algorithms, included kernel machines, have been successfully employed for remote
homology modeling tasks [Nob04]. For proteins with new folds, however, these methods
fail, and a de novo protein structure prediction [CRBB03] is necessary. This complex
task is typically addressed by solving a number of simpler sub-problems and combining
their predictions in order to provide an overall fold prediction [Ros98]. Such sub-problems
include 1D predictions such as secondary structure and solvent accessibility as well as
2D predictions such as contact maps and disulphide bridges, and many machine learning
algorithms have been employed to address them.

In this thesis we address the problem of predicting the bonding state of cysteines, which
are the residues involved in the formation of disulphide bridges. Such residues are very reac-
tive, and under favorable conditions pairs of cysteines within a given protein bind together
forming a disulphide bridge, which helps stabilizing the three dimensional structure of the
protein [WWNS00, Pai00]. By correctly predicting the connectivity pattern of bridges in
a protein, strong constraints on the protein fold are obtained, which can be employed to
help the overall three dimensional structure prediction. The problem of disulphide bridges
prediction is usually divided in two successive steps: firstly, for each cysteine in a protein,
predict if it is in an oxidized state, and thus involved in a disulphide bond, or reduced;
secondly, given the subset of oxidized cysteines in a protein, their connectivity pattern is
predicted, by pairing each cysteine with its correct partner. We focused on the first task,

INTRODUCTION 3

Applications to Bioinformatics

and developed learning algorithms employing kernel machines combined with connectionist
models, while the second task was addressed in a parallel project within our lab [?].

Disulphide bridges are not the only type of bond a cysteine can be involved in, as they
can also bind different ligands, usually containing metal ions, forming complexes which
play very important roles in biological systems [GWG+03, KH04]. We employed kernel
machines to learn to discriminate between ligand bound and disulphide bound cysteines,
thus obtaining a finer prediction on the role of each cysteine in a given protein. We
developed ad-hoc kernels able to exploit information on residues similarity as contained in
substitution matrices [McL72, HH92], showing that they obtain performances similar to
standard kernels with much simpler models.

In chapter 4 we provide an overview of protein structure, describing both experimental
resolution methods and prediction methods. In chapter 5 we describe disulphide bridges
prediction, and present our methods for disulphide bonding state prediction described
in [FPV02, CFPV03b, CFPV04]. Finally, in chapter 6 we address the problem of discrim-
inating between ligand bound and disulphide bound cysteines, reporting results in [?].

INTRODUCTION 4

Part I

Kernel Machines and Multiclass
Classification

5

Chapter

2
Kernel Methods

The theory underlying kernel machines was developed by Vapnik [Vap79] in the late Sev-
enties, but it received increasing attention quite recently, with the introduction of Support
Vector Machines [Vap95, Vap98] for pattern recognition, at first in their hard margin imple-
mentation for linearly separable binary classification problems, and successively extended
to accommodate non-linear separations and the possibility of committing errors in the
training set. Support Vector Machines have been successfully applied to a wide range of
applications, from handwritten digit recognition [CV95] to text categorization [Joa98b].
Versions of the algorithm have been developed to manage learning tasks other than binary
classification, such as novelty detection [SWS+00], unsupervised clustering [BHHSV01],
regression [Vap95], feature extraction [SSM99, WMC+01, GWBV02] and multiclass clas-
sification, which will be discussed in detail in chapter 3. Many tutorials and books have
been written on kernel machines (see for example [Bur98a, SS02, CST00]).

In this chapter we will provide a general introduction to kernel machines. In section 2.1
we review the most important results in statistical learning theory justifying the effective-
ness of kernel machines in terms of generalization. In section 2.2 we introduce Support
Vector Machines, from the initial formulation for linearly separable binary classification
problems, to the non-separable and non-linear extensions, together to results aiming to effi-
ciently estimate the generalization performance of the algorithm. In section 2.3 we present
different machines for learning tasks other than binary classification, such as regression and
clustering. Section 2.4 more formally describes kernel functions, while section 2.5 addresses
the problem of designing appropriate kernels to treat different types of data.

KERNEL METHODS 6

Statistical Learning Theory

2.1 Statistical Learning Theory

The problem of generalization of learning algorithms has been addressed in many different
ways, from bias variance tradeoff [GBD92] to overfitting [MP92], and is crucial to the
problem of learning from examples. Given a learning task and a finite number of training
examples, a too complex machine will perfectly memorize all training data, without being
able to make predictions on unseen examples, while a too simple one won’t have the power
to learn the given task. A balance between machine capacity and performance on the
training set must be achieved in order to obtain good generalization [Vap79]. A detailed
discussion on statistical learning theory and its implications in kernel machines can be
found in [Vap95, Vap98, EPP00, CS01, HTF01].

2.1.1 Loss Function and Risk Minimization

Let Dm = {(xi, yi) ∈ X × Y}m
i=1 be a training set, whose data are independently drawn

and identically distributed with respect to an unknown probability distribution P (x, y).
Suppose we have a set of functions Fα with parameters α, that is for each value of α we
have a function fα : X → Y . Let us give a formal definition of the loss incurred by the
function fα at example (x, y).

Definition 2.1.1 (Loss Function) Given a triplet (x, y, fα(x)) containing a pattern x ,
its observation y and a prediction fα(x), we define loss function any map ℓ : X ×Y ×Y →
[0,∞] such that ℓ(x, y, y) = 0 for all x ∈ X and y ∈ Y.

Common examples of loss functions in the case of binary classification, where Y =
{−1, 1}, are the misclassification error:

ℓ(x, y, fα(x)) =

{

0 if y = fα(x)
1 otherwise

(2.1)

and the soft margin loss function [BM92] (see fig.2.1(a)):

ℓ(x, y, fα(x)) = |1 − yfα(x)|+ =

{

0 if yfα(x) ≥ 1
1 − yfα(x) otherwise

(2.2)

which takes into account the confidence of the prediction.
For regression tasks (Y = IR)), common losses are the square error:

ℓ(x, y, fα(x)) = (y − fα(x))2 (2.3)

and the extension of soft margin loss called ǫ-insensitive loss (see fig.2.1(b)):

ℓ(x, y, fα(x)) = |y − fα(x)|ǫ =

{

0 if |y − fα(x)| ≤ ǫ
|y − fα(x)| − ǫ otherwise

(2.4)

KERNEL METHODS 7

Statistical Learning Theory

1 yf(x)
j1� yf(x)j+

(a) Soft margin loss

jy � f(x)j�
��� y � f(x)

(b) Epsilon insensitive loss

Figure 2.1. Confidence-based losses for binary classification (a) and regression (b).

which doesn’t penalize deviations up to ǫ from the target value, and gives a linear penalty
to further deviations. Note that all these losses only depend on x by fα(x), while definition
2.1.1 is more general.

Given a loss function to weight errors on individual patterns, we can define the expec-
tation of the test error for a trained function on the entire set of possible patterns.

Definition 2.1.2 (Expected Risk) Given a probability distribution P (x, y) of patterns
and observations, a trained function fα : X → Y and a loss function ℓ : X×Y×Y → [0,∞),
the expected risk for fα is defined as

R[fα] =

∫

X×Y

ℓ(x, y, fα(x))dP (x, y). (2.5)

The expected risk is also known as generalization or true error. We cannot directly
minimize such risk, as the probability distribution P (x, y) is unknown. The only error we
can actually measure is the mean error rate on the training set Dl, called the empirical
risk.

Definition 2.1.3 (Empirical Risk) Given a training set Dm = {(xi, yi) ∈ X ×Y}m
i=1 of

patterns and observations a trained function fα : X → Y and a loss function ℓ : X×Y×Y →
[0,∞), the empirical risk for fα is defined as

Remp[fα] =
1

m

m
∑

i=1

ℓ(xi, yi, fα(xi)). (2.6)

Minimizing this risk alone, however, doesn’t give any guarantee on the value of the
expected risk itself. If we choose the set of functions Fα to be the set of all functions
from X to Y , we can always find a function which has zero empirical error, mapping each
training pattern xi to its observation yi, and maps each other pattern xj, j > m to a fixed
value, thus achieving no learning at all.

KERNEL METHODS 8

Statistical Learning Theory

In order to generalize to unseen patterns, we have to restrict the set of possible learning
functions, taking into account the complexity or capacity of such set with respect to the
learning task and the number of training examples available.

2.1.2 VC Dimension and Bounds on Expected Risk

A well known measure of complexity for a set of functions Fα is the Vapnik Chervonenkis
(VC) dimension [VC71]. In the case of binary classification, a set of points m is shattered
by the set of functions Fα if for each of the 2m possible labellings of the points, there exist
a function in Fα which correctly assigns all labels. The VC dimension of Fα is given by
the maximum m for which a set of m points shattered by Fα exists. If the maximum does
not exist, the VC dimension is said to be infinite. It can be proved [Bur98a] that the VC
dimension of a set of oriented hyperplanes in IRn is n + 1.

Vapnik [Vap95] derived a bound on the expected risk which holds with probability 1−η
for η ∈ [0, 1], and depends only on the empirical risk and the so called VC confidence:

R[fα] ≤ Remp[fα] +

√

(

h(log 2m/h + 1) − log η/4

m

)

(2.7)

Fixing the probability η and the training set size m, the VC confidence is a monotonic
increasing function of the VC dimension h. That is, given two learning functions with
equal empirical risk, the one associated to the set of functions with smaller VC dimension
will result in a better upper bound on the expected risk.

2.1.3 Structural Risk Minimization

The bound on the expected risk in equation 2.7 leads to the induction principle called
structural risk minimization [Vap79]. The VC confidence term of the bound depends on
the set of functions under investigation, while the empirical risk depends on the particular
function chosen by the training procedure. In order to minimize the bound with respect
to these two terms, we first divide the entire class of possible functions into nested subsets
with decreasing VC dimension. Within each subset, we obtain a trained function by
minimizing the empirical risk only. Finally we choose the trained machine for which the
sum of empirical risk and VC confidence is minimal (see fig. 2.2).

2.1.4 Empirical Estimates of the Expected Risk

The expected risk of a learned function can be empirically estimated by a hold out proce-
dure, which consists of training on a subset of the available data, and testing the learned
function on the remaining unseen cases. When available data are few, however, more com-
plex procedures are usually employed, in order to reduce the bias induced by the choice
of the train/test split. A very common procedure is the so called k-folds cross validation.

KERNEL METHODS 9

Statistical Learning Theory

h2h1 h3 h4

0

1

2

3

4

5

0 1 2 3 4 5 6

er
ro

r

h

Empirical risk
VC-confidence

Bound on expected risk

Figure 2.2. Structural risk minimization (SRM) induction principle: the entire class of functions
is divided into nested subsets with decreasing VC dimension. Within each subset, a trained
function is obtained by minimizing the empirical risk only. Finally, we choose the training
function which minimizes the bound on the expected risk as given by the sum of the empirical
risk and the VC confidence.

The training set Dm = {(xi, yi) ∈ X × Y}m
i=1 is randomly split into k mutually exclusive

subsets D1
m, . . . , Dk

m of approximately equal size. The learning function is trained k times,
each time t training on Dm\Dt

m and testing on Dt
m. The cross validation error estimate of

the function trained on the full dataset is given by the number of errors committed in all
the tests of the procedure, divided by the size of the dataset:

Rm
kcv[fα] =

1

m

k
∑

t=1

∑

i∈Dt
m

ℓ(xi, yi, f
Dt

m
α (xi)), (2.8)

where f
Dt

m
α is the function trained on the subset Dm\Dt

m, and ℓ is the loss function (see
section 2.1.1).

A similar approach is followed in the leave one out (LOO) procedure, where the learning
function f i

α is iteratively trained on Dm\{(xi, yi)} and tested on the remaining example
(xi, yi), for all i in [1,m]. The LOO error of the function fα trained over the entire set Dm

is defined as

Rm
loo[fα] =

1

m

m
∑

i=1

ℓ(xi, yi, f
i
α(xi)). (2.9)

The popularity of the LOO error estimate is mostly due to the fact that it is an almost

KERNEL METHODS 10

Support Vector Machines

unbiased estimate of the generalization error, as showed in the following theorem [LB67].

Theorem 2.1.1 (Bias of Leave One Out Estimator) The leave one out estimator is
almost unbiased, that is

E[Rm
loo[fα]] = E[Rm−1[fα]], (2.10)

where the expectation on the left hand site is over training sets of size m, while the one
on the right hand side is over training sets of size m − 1.

On the other hand, the variance of the LOO error estimator can be large [Bur89]. A
bound on the variability of such estimator, based on the VC dimension of the class of
learning functions, is presented in the following theorem [KR97].

Theorem 2.1.2 (Variability of Leave One Out Estimator) Let fα be a function learned
by empirical error minimization over a class of functions with VC dimension h. Then for
every ν > 0, with probability 1 − ν,

|Rm
loo[fα] − Rm[fα]| ≤

8
√

(h+1)(log(9m/h)+2)
m

ν
(2.11)

For a detailed review on estimators of generalization error see [Koh95], while [EP03]
studies the advantages of using the LOO error estimator in terms of stability of learning
algorithms.

2.2 Support Vector Machines

Support Vector Machines [CV95, Vap95, Vap98] (SVM) are the first effective application of
the principles of structural risk minimization, by providing a learning procedure which tries
to fit the training data while keeping the VC dimension of the class of candidate functions as
low as possible. While the simplest formulation of SVM deals with linearly separable data,
extensions have been developed [CV95] to allow violations of the separability constraint,
and to implement nonlinear separations [BGV92].

2.2.1 Hard Margin Hyperplanes

Let X be a space endowed with a dot product < ·, · >. Any hyperplane in such space can
be represented as

{x ∈ X | < w,x > + b = 0},w ∈ X , b ∈ IR, (2.12)

where w is normal to the hyperplane and |b|/||w|| is the distance of the hyperplane from
the origin. This formulation still allows to obtain an infinite number of equivalent hyper-
planes by multiplying both w and b by the same non-zero constant. We thus define the

KERNEL METHODS 11

Support Vector Machines

pair (w, b) ∈ X × IR a canonical form for the hyperplane (2.12) with respect to the set
x1, . . . ,xm ∈ X if it is scaled such that

min
i=1,...,m

| < w,xi > + b | = 1. (2.13)

This implies that the minimal distance from the hyperplane is equal to 1/||w||.
Let Dm = {(xi, yi) ∈ X × {±1}}m

i=1 be a training set. We want to find a hyperplane
which separates the positive from the negative examples, that is a decision function

fw,b(x) = sgn(< w,x > + b) (2.14)

satisfying
fw,b(xi) = yi ∀ (xi, yi) ∈ Dm.

Suppose such hyperplane exists, that is the training set Dm is linearly separable. The
canonical form (2.13) for the hyperplane implies

yi(< w,xi > + b) ≥ 1 ∀ (xi, yi) ∈ Dm.

The sum of the minimal distances on both sides of the separating hyperplane is called
the (geometric) margin and is equal to 2/||w||, while the hyperplane itself is called a
hard margin hyperplane. A slightly different definition of margin is that indicating the
confidence of the predictions of the decision function. We define the (confidence) margin
of fw,b on Dm as

min
Dm

yi(< w,xi > + b),

which is always equal to one for canonical hyperplanes and linearly separable sets.
Given an example (xi, yi), we also say it’s classified with confidence margin equal to

yi(< w,xi > + b),

which can be negative if the example is incorrectly classified. In the following, unless
otherwise specified, we will always write margin referring to the geometric margin.

It’s rather intuitive to see that, in order to generalize well, we should choose a separating
hyperplane with the largest possible margin. A more formal justification of large margin
algorithms is given in the following theorem [SS02, BST99].

Theorem 2.2.1 (Margin Error Bound) Consider the set of decision functions f(x) =
sign < w,x > with ||w|| ≤ Λ and ||x|| ≤ R, for some R,Λ > 0. Moreover, let ρ > 0 and
ν denote the fraction of training examples with margin smaller than ρ/||w||, referred to as
the margin error.

For all distributions P generating the data, with probability at least 1 − δ over the
drawing of the m training patterns, and for any ρ > 0 and δ ∈ (0, 1), the probability that a
test pattern drawn from P will be misclassified is bound from above by

ν +

√

c

m

(

R2Λ2

ρ2
ln2 m + ln(1/δ)

)

. (2.15)

KERNEL METHODS 12

Support Vector Machines

Here, c is a universal constant.

It’s interesting to note the similarity between this bound and the bound on the expected
risk of equation (2.7). The margin error bound is still the sum of a training error (the
margin error ν) and a capacity term. This second term tends to zero as m tends to
infinity, and is proportional to R and Λ. With such values fixed, the capacity term is
inversely proportional to ρ. However, increasing ρ leads to an increase of the margin error
ν, as there will be more training patterns with margin smaller than ρ/||w||. By finding a
balance between these two opposite behaviours we can minimize the test error probability
and achieve good generalization. Finally, note that maximizing ρ equals to minimizing
||w|| for a fixed value of ρ (i.e. ρ = 1 in canonical hyperplanes).

We can now construct a large margin separating hyperplane by solving the following
problem:

min
w∈X ,b∈IR

1

2
||w||2 (2.16)

subject to yi(< w,xi > + b) ≥ 1 ∀ (xi, yi) ∈ Dm. (2.17)

Note that this is a convex quadratic optimization problem, since the objective function
is convex, and the points satisfying the constraints form a convex set. Therefore it admits
a unique global minimum (w∗, b∗).

The constraints (2.17) can be included by means of a set of Lagrange multipliers αi ≥ 0,
giving the Lagrangian

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi(yi(< w,xi > + b) − 1), (2.18)

which must be maximized with respect to αi and minimized with respect to w and b
(the solution is termed a saddle point). According to the KKT theorem [Fle87], at the
saddle point either αi = 0 or αi > 0 and yi(< w,xi > + b)−1 = 0, the latter meaning that
pattern xi is at the minimal distance of the separating hyperplane. Such points are called
Support Vectors, and are the only critical points of the training set, staying on the two
closest hyperplanes H1 and H−1 on both sides of the separating one (see fig 2.3). Removing
all other points would lead to the same separating hyperplane.

The optimization problem can be turned to its dual formulation, called the Wolfe
dual [Fle87]. which has some interesting properties, both for efficiency and for subsequent
expansions to non linear cases. By vanishing the derivatives with respect to the primal
variables we obtain:

∂

∂b
L(w, b,α) = 0 ⇒

m
∑

i=1

αiyi = 0, (2.19)

∂

∂w
L(w, b,α) = 0 ⇒ w =

m
∑

i=1

αiyixi. (2.20)

KERNEL METHODS 13

Support Vector Machines

Figure 2.3. Separable classification problem solved by support vector machines. The solid line
represents the separating hyperplane. Support vectors (in black) are the points lying on the
two closest hyperplanes on both sides of the separating one, corresponding to a confidence
margin of one. All other points (in white) do not contribute to the decision function.

Substituting the conditions (2.19) and (2.20) in the Lagrangian (2.18), we obtain the
dual form of the optimization problem:

max
α∈IRm

m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyj < xi,xj >, (2.21)

subject to αi ≥ 0 i = 1, . . . ,m, (2.22)
m

∑

i=1

αiyi = 0. (2.23)

Note that the dual form (2.21) has a number of variables equal to the number of
training patterns m , while in the primal one (2.16) they are equal to the dimension of the
pattern space X . The proportion between these two numbers can suggest which of the two
optimization problems is the more efficient to solve.

Substituting the expansion of w (2.20) into the decision function (2.14) we obtain its
formulation in terms of the training patterns xi

fα,b(x) = sgn

(

m
∑

i=1

yiαi < x,xi > + b

)

, (2.24)

where it is clear that only support vectors, for which αi > 0, contribute to the decision
function.

KERNEL METHODS 14

Support Vector Machines

2.2.2 Soft Margin Hyperplanes

Hard margin hyperplanes can only be found for linearly separable problems. Moreover,
in order to have a robust classifier in terms of generalization, it is necessary to balance
performance on the training set with model complexity, thus tolerating a certain fraction
of outliers in the training patterns. This can be achieved [CV95] by introducing slack
variables relaxing the separation constraints (2.17):

yi(< w,xi > + b) ≥ 1 − ξi i = 1, . . . ,m, (2.25)

with
ξi ≥ 0 i = 1, . . . ,m. (2.26)

In order to penalize such relaxations we add an error penalty term to the objective function
(2.16), which becomes:

min
w∈X ,b∈IR,ξ∈IRm

1

2
||w||2 +

C

m

m
∑

i=1

ξi, (2.27)

subject to (2.25) and (2.26). Here C > 0 is a cost parameter balancing model com-
plexity versus margin errors, given by all nonzero ξ, and can be therefore used to achieve
a minimum of the margin error bound of theorem 2.2.1.

It can be shown [CV95] that the Wolfe dual problem has the same formulation as in
the separable case (2.21) except for an additional upper constraint C on the α values:

0 ≤ αi ≤ C/m, i = 1, . . . ,m. (2.28)

All the unbound support vectors (those with αi < C/m) are on the hyperplanes H1 and
H−1 closest to the separating one. Conversely, the bound ones (for αi = C/m) correspond
to violations ξi > 0 to the separation constraint, and have a distance ξi/||w|| from their
respective hyperplane. When ξi > 1 they are also training errors (see fig. 2.4).

2.2.3 Nonlinear Support Vector Machines

Linear support vector machines can deal with linearly separable data, possibly tolerating
a certain quantity of outliers in the training patterns. In order to learn decision functions
which are not linear in the data, a more general approach is required [BGV92].

The basic idea is that of transforming the input data x ∈ X into a higher dimensional
feature space H by a nonlinear map Φ : X → H, and find a separating hyperplane in such
space:

{Φ(x) ∈ H| < w, Φ(x) > + b = 0},w ∈ H, b ∈ IR, (2.29)

corresponding to a decision function

KERNEL METHODS 15

Support Vector Machines

Figure 2.4. Non separable classification problem solved by support vector machines. The solid
line represents the separating hyperplane, while dotted lines are hyperplanes with confidence
margin equal to one. Grey points are unbound SVs, black points are bound SVs and extra
borders indicate bound SVs which are also training errors. All other points do not contribute
to the decision function.

fw,b(Φ(x)) = sgn(< w, Φ(x) > + b). (2.30)

As an example, consider the problem in figure 2.5(a), for which no separating hyperplane
in IR2 exists. By the nonlinear map Φ : IR2 → IR3 such that

Φ

(

x1

x2

)

=

x2
1√

2 x1x2

x2
2

 (2.31)

KERNEL METHODS 16

Support Vector Machines

(a) (b)

 0 1 2 3 4 5 6 7 8 9 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70

(c)

Figure 2.5. (a) No linear decision function can separate black points from white ones.
(b) A non linear decision surface correctly separating points. (c) By nonlinearly
mapping points into a higher dimensional feature space we can find a separating
hyperplane, which corresponds to the nonlinear decision surface (b) in the input
space.

we can transform the input data into a higher dimensional feature space where a sepa-
rating hyperplane ((w1, w2, w3)

T , b) does exist (see fig 2.5(c)). Note that the linear decision

KERNEL METHODS 17

Support Vector Machines

function in IR3 corresponds to a nonlinear decision surface in IR2 (see fig 2.5(b)):

fw,b

(

x1

x2

)

= sgn(w1x
2
1 + w2

√
2x1x2 + w3x

2
2 + b). (2.32)

In terms of statistical learning theory it amounts to increasing the capacity of the class
of learning functions in order to account for the difficulty of the learning task. The feature
space H can have very high dimension, even infinite, thus apparently contradicting the
principle of structural risk minimization (see section 2.1.3). The trick is in the idea of large
margin hyperplanes, which can have VC dimension much smaller than that of the entire
class of hyperplanes. In the following theorem [Vap79], we employed x̂ instead of x in
order to stress their being in a possibly infinite dimensional space H.

Theorem 2.2.2 (VC Dimension of Margin Hyperplanes) Let < w, x̂ > be a set of
canonical hyperplanes with respect to a set of points H∗ = {x̂1, . . . , x̂m}.

Let R be the radius of the smallest sphere centered at the origin and containing H∗.
The set of decision functions fw(x̂) = sign < w, x̂ > defined on H∗, and satisfying the

constraint ||w|| ≤ Λ, has a VC dimension satisfying

h ≤ R2Λ2. (2.33)

The VC dimension can therefore be controlled by increasing the margin of the set of ad-
missible hyperplanes. Extensions of the theorem exist for hyperplanes with a nonzero offset
b [Vap98], and for the general case of functions defined on the entire domain H [BST99].

Considered that the feature space H can have very high, even infinite dimension, it
becomes difficult and computationally expensive to directly compute the transformation
Φ. However, this is all but necessary, as in both the dual objective function (2.21) and the
expanded decision function (2.24), the inputs x only appear in the form of dot products
< xi,xj >. We can therefore use the so-called kernel trick, by employing a kernel function
k : X × X → IR which satisfies

k(xi,xj) = < Φ(xi), Φ(xj) >, ∀xi,xj ∈ X , (2.34)

obtaining the following optimization problem:

max
α∈IRm

m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyjk(xi,xj) (2.35)

with constraints (2.23) and (2.28), which is still quadratic provided k is positive definite
(see section 2.4.1). The corresponding decision function is given by:

fα,b(x) = sgn

(

m
∑

i=1

yiαik(x,xi) + b

)

. (2.36)

KERNEL METHODS 18

Support Vector Machines

Note that we don’t even need to know the true mapping Φ in order to employ kernel
k, provided that such a mapping exists.

Generally speaking, the input space X can now be any set, we just need to find a suitable
positive definite kernel for it. This allows to treat non vectorial data such as strings or
graphs, as will be discussed in section 2.5.3. From now on, we will write a generic input
pattern as x, turning to x whenever we will need to stress its vectorial nature. Kernels
will be more formally defined in section 2.4, where we will also show how to verify if a
candidate function is actually a valid positive definite kernel.

2.2.4 Bounds on the LOO Error of SVM

In order to estimate the generalization performance of support vector machines, the LOO
error procedure is a desirable approach (see section 2.1.4). However, it is very time consum-
ing, especially if the number of training examples is high. To obtain an efficient estimate
of the generalization error, upper bounds on the LOO error have been proposed, which can
be computed with less or no effort given the learned machine. Let ℓ be the misclassification
loss (eq. (2.1)) for binary classification, which can be equivalently written as 1

ℓ(x, y, f(x)) = θ(−yf(x)), (2.37)

where θ is the Heavyside function. The LOO error of f can be written as

Rm
loo[f] =

1

m

m
∑

i=1

θ(−yif
i(xi)) =

1

m

m
∑

i=1

θ(−yif(xi) + yi(f(xi) − f i(xi))). (2.38)

Thus, by providing an upper bound Ui for yi(f(xi)−f i(xi)), we get the following upper
bound on the LOO error:

Rm
loo[f] ≤ 1

m

m
∑

i=1

θ(−yif(xi) + Ui), (2.39)

since θ is monotonically increasing.
The simplest bound [Vap95] arises from the fact that removing non support vectors

does not change the solution computed by the SVM. The number of support vectors NSV

is thus an upper bound for the number of possible errors (Ui = 2 if xi is a support vector),
giving the bound

Rm
loo[f] ≤ NSV

m
. (2.40)

A few bounds have been found for unbiased SVM. Jaakkola and Haussler [JH98] proved
the inequality

1to simplify notation from henceforth we will drop the explicit dependence of f on its parameters.

KERNEL METHODS 19

Support Vector Machines

yi(f(xi) − f i(xi)) ≤ αik(xi, xi) = Ui, (2.41)

leading to the upper bound

Rm
loo[f] ≤ 1

m

m
∑

i=1

θ(−yif(xi) + αik(xi, xi)). (2.42)

Let R be the radius of the smallest sphere in feature space containing all training points
xi for all i ∈ [1,m], computed as

R = min
o∈H,xi

||Φ(xi) + o||, (2.43)

where o is the center of this minimal enclosing sphere. Then Vapnik [Vap98] derived a
bound for unbiased hard margin SVM given by

Rm
loo[f] ≤ 1

m

R2

γ2
, (2.44)

where γ2 = 1/||w||2 is the margin of the separating hyperplane. Note that this bound
justifies the idea of constructing large margin hyperplanes, as maximizing the margin
corresponds to minimizing the bound, for fixed values of the sphere radius.

Assume that the set of support vectors remains unchanged during the LOO procedure.
Then Chapelle et al. [CVBM02] proved the following equality:

yi(f(xi) − f i(xi)) = αiS
2
i , (2.45)

where Si is called span of the point Φ(xi) and is its distance from the set Λi, where

Λi =

∑

j 6=i,αj>0

λjΦ(xj) |
∑

j 6=i

λj = 1

. (2.46)

We can thus compute the exact number of errors made by the LOO procedure, giving

Rm
loo[f] =

1

m

m
∑

i=1

θ(−yif(xi) + αiS
2
i). (2.47)

Finally, Joachims [Joa99, Joa00] derived a bound which is valid for general biased soft
margin SVM, provided they are stable, that is they have at least one unbound support
vector. The bound is given by

Rm
loo[f] ≤ |{i : (2αiR

2 + ξi) ≥ 1}|, (2.48)

where ξi are the slack variables (see eq. (2.26)) for the non separable case, R2 is an
upper bound on k(x, x) for all x.

KERNEL METHODS 20

Other Support Vector Methods

2.3 Other Support Vector Methods

The idea of large margin classifiers, as well as that of decision functions characterized by
a subset of the training patterns (the support vectors) have been successfully extended to
different learning tasks. In regression, large margins correspond to flat estimation func-
tions, while in clustering the task is to find the smallest sphere enclosing the data in
the feature space, which gives clusters boundaries when mapped back to the input space.
Other learning tasks for which support vector methods have been conceived include rank-
ing [FSS98, CD02a] and multiclass classification, which will be discussed in detail in chapter
3.

2.3.1 Support Vector Regression

The basic ideas of SVM have been later [Vap95] extended to regression estimation, where
the task is to learn a real valued function of the data given a finite number of examples
Dm = {(xi, yi) ∈ X × IR}m

i=1. In its first formulation, the SV regression algorithm seeks to
estimate a linear function of the data:

f(x) = < w,x > + b, (2.49)

where b ∈ IR and w ∈ X .
In order to trade off between function complexity and fitting of the training data, we will

introduce an ǫ− insensitive region [Vap95] around the target function, that is a tolerance
on the distance between the target output and the function estimation (see fig 2.6(a)),
below which the pattern is considered correctly assigned. Such patterns correspond to
those which are separated with a confidence margin greater than one in SVM, and the
introduction of the ǫ − insensitive region permits to obtain a sparse solution in a fashion
analogous to that of SVM. The notion of large margin is here replaced by that of flatness :
by minimizing ||w|| we search for the flattest estimation function which fits the training
data (see fig. 2.6(b)). For a detailed treatment on the connections between large margins
and the ǫ margin of regression estimation see [PRE98]. By further introducing a set of slack
variables ξi,ξ

∗
i to allow for errors in the training set, we obtain the following constrained

optimization problem:

min
w∈X ,b∈IR,ξ,ξ∗

∈IRm

1

2
||w||2 +

C

m

m
∑

i=1

(ξi + ξ∗i), (2.50)

subject to < w,xi > +b − yi ≤ ǫ + ξi, (2.51)

yi − (< w,xi > +b) ≤ ǫ + ξ∗i , (2.52)

ξi, ξ
∗
i ≥ 0, (2.53)

where i goes from 1 to m.
In a similar fashion as for SVM, we consider the Lagrangian

KERNEL METHODS 21

Other Support Vector Methods

Figure 2.6. (a) ǫ-insensitive region around the target function. Points lying within the region
are considered as correctly predicted. (b) Large margin separation corresponds in regression to
flat estimation functions. Circles are training points, and dotted lines enclose the ǫ-insensitive
region. Solid lines are candidate regression functions, the bold one being the flattest which
still fits training data with an approximation up to ǫ.

L =
1

2
||w||2 +

C

m

m
∑

i=1

(ξi + ξ∗i) −
m

∑

i=1

(ηiξi + η∗
i ξ

∗
i) (2.54)

−
m

∑

i=1

αi(ǫ + ξi + yi− < w,xi > −b)

−
m

∑

i=1

α∗
i (ǫ + ξ∗i − yi+ < w,xi > +b),

with αi, αi∗, ηi, η
∗
i ≥ 0, ∀i ∈ [1,m]. By vanishing the derivatives of L with respect to

the primal variables we obtain:

KERNEL METHODS 22

Other Support Vector Methods

∂L

∂b
=

m
∑

i=1

(αi − α∗
i) = 0, (2.55)

∂L

∂w
= w −

m
∑

i=1

(αi − α∗
i)xi = 0, (2.56)

∂L

∂ξi

= C/m − αi − ηi = 0, (2.57)

∂L

∂ξ∗i
= C/m − α∗

i − η∗
i = 0. (2.58)

Finally, substituting (2.55),(2.56),(2.57) and (2.58) into (2.54) we derive the dual prob-
lem

max
α∈IRm

−1

2

m
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj) < xi,xj >

−ǫ
m

∑

i=1

(α∗
i + αi) +

m
∑

i=1

yi(α
∗
i − αi), (2.59)

subject to
m

∑

i=1

(αi − α∗
i) = 0, (2.60)

αi, α
∗
i ∈ [0, C/m], ∀i ∈ [1,m]. (2.61)

Note that in virtue of (2.56), we can rewrite the estimated function (2.49) as a linear
combination of the training patterns:

f(x) =
m

∑

i=1

(α∗
i − αi) < xi,x > +b. (2.62)

Again, both the dual optimization problem (2.59) and the learned function (2.62) only
contain input patterns xi in the form of dot products < xi,xj >, thus allowing to use a
kernel k(xi, xj) corresponding to a dot product in a higher dimensional feature space.

It follows from the KKT theorem [Fle87] that at the saddle point of the Lagrangian we
have

αi(ǫ + ξi + yi− < w,xi > −b) = 0, (2.63)

α∗
i (ǫ + ξ∗i − yi+ < w,xi > +b) = 0, (2.64)

(C/m − αi)ξi = 0, (2.65)

(C/m − α∗
i)ξ

∗
i = 0. (2.66)

These last conditions enlighten some interesting analogies to the SVM case (see also
fig. 2.7). Let us define the ǫ − tube of f as {(x, y) ∈ X × IR : |f(x) − y| < ǫ}.

KERNEL METHODS 23

Other Support Vector Methods

x

y

Figure 2.7. Regression problem solved by support vector machines. The dotted line is the true
function, and the dashed lines enclose the ǫ-insensitive region. The solid line is the learned
regression function. Grey points are unbound SVs, and black points are bound SVs. All
other points do not contribute to the estimation function. Flatness in feature space implies
smoothness of the regression function in input space.

• All patterns within the ǫ-tube, for which |f(xi) − yi| < ǫ, have αi, α
∗
i = 0 and thus

don’t contribute to the estimated function f .

• Patterns for which either 0 < αi < C/m or 0 < α∗
i < C/m are on the border of the

ǫ-tube, that is |f(xi) − yi| = ǫ. They are the unbound support vectors.

• The remaining training patterns are margin errors (either ξi > 0 or ξ∗i > 0), and reside
out of the ǫ-insensitive region. They are bound support vectors, with corresponding
αi = C/m or α∗

i = C/m.

2.3.2 Support Vector Clustering

A support vector algorithm has been used in [TD99, SPST+01] in order to characterize
a set of data in terms of support vectors, thus allowing to compute a set of contours
which enclose the data points. These contours were interpreted as cluster boundaries
in [BHHSV01], resulting in the so called support vector clustering (SVC) algorithm.

In SVC, data are mapped to a high dimensional feature space using a Gaussian kernel
(see section 2.5.1). In such space, the smallest sphere containing the data is searched for.
When mapped back to the input space, the sphere forms a set of contours which enclose
the data points, thus determining a clustering of the input space. By decreasing the width
of the Gaussian kernel it is possible to increase the number of clusters in the solution.
Outliers can be dealt with by relaxing the enclosing constraint and allowing some points

KERNEL METHODS 24

Other Support Vector Methods

to stay out of the sphere in feature space. In the following, we will briefly describe the
algorithm, showing its connections to the general SVM case.

Given a set of m points xi ∈ X , i = 1, . . . ,m and a nonlinear transformation Φ from
X to some higher dimensional feature space H, we can define the problem of finding the
smallest enclosing sphere of radius R in the feature space as follows:

min
R∈IR,o∈H,Ξ∈IRm

R2 +
C

m

m
∑

i=1

ξi (2.67)

subject to ||Φ(xi) − o||2 ≤ R2 + ξi, ∀i ∈ [1,m] (2.68)

ξi ≥ 0, ∀i ∈ [1,m], (2.69)

where o is the center of the sphere, ξi are slack variables allowing for soft constraints
and C is a cost parameter balancing the radius of the sphere versus the number of outliers.
We consider the Lagrangian

L = R2 +
C

m

m
∑

i=1

ξi −
m

∑

i=1

αi(R
2 + ξi − ||Φ(xi) − o||2) −

m
∑

i=1

ηiξi, (2.70)

with αi ≥ 0 and ηi ≥ 0 for all i ∈ [1,m], and by vanishing the derivatives with respect
to the primal variables R, o and ξi we obtain

∂L

∂R
=

m
∑

i=1

αi − 1 = 0, (2.71)

∂L

∂o
= o −

m
∑

i=1

αiΦ(xi) = 0, (2.72)

∂L

∂ξi

= αi − C/m + ηi = 0, ∀i ∈ [1,m]. (2.73)

By substituting (2.71),(2.72) and (2.73) into (2.70) we derive the Wolf dual problem

max
α∈IRm

m
∑

i=1

αiΦ(xi)
2 −

m
∑

i,j=1

αiαjΦ(xi)Φ(xj), (2.74)

subject to 0 ≤ αi ≤ C/m, ∀i ∈ [1,m]. (2.75)

The distance of a given point x from the center of the sphere

R2(x) = ||Φ(x) − o||2 (2.76)

can be written using (2.72) as

KERNEL METHODS 25

Other Support Vector Methods

R2(x) = Φ(x)Φ(x) − 2
m

∑

i=1

αiΦ(x)Φ(xi) +
m

∑

i,j=1

αiαjΦ(xi)Φ(xj). (2.77)

As for the other SV algorithms, both (2.74) and (2.77) contain only dot products in the
feature space, which can be substituted by a kernel function k. It has been noted [TD99]
that polynomial kernels do not yield tight contours for clusters. Gaussian kernels (see
section 2.5)

k(xi, xj) = exp(−||xi − xj||2
2σ2

) (2.78)

with width parameter σ were successfully employed [BHHSV01] and are assumed in
the rest of the section.

The KKT conditions [Fle87] imply that at the saddle point of the Lagrangian

ηiξi = 0, (2.79)

αi(R
2 + ξi − ||Φ(xi) − o||2) = 0, (2.80)

showing the presence of (see fig. 2.8):

x_2

x_1

Figure 2.8. Support vector clustering. Lines represent cluster boundaries, formed by unbound
SVs (grey points). Bound support vectors (black points) are outliers and do not belong to any
cluster. All other points stay within the boundaries of their respective cluster.

• Unbound support vectors (0 < αi < C/m), whose images lie on the surface of the
enclosing sphere, corresponding to cluster boundaries in the input space.

KERNEL METHODS 26

Kernel Theory

• Bound support vectors (αi = C/m), whose images lie outside of the enclosing sphere,
which correspond to outliers, staying out of the clusters boundaries.

• All other points (α = 0) which stay within clusters boundaries, with images inside
the enclosing sphere.

The radius R of the enclosing sphere can be computed by (2.77) provided x is a bound
support vector.

In order to assign points to clusters, note that given a pair of points belonging to
different clusters, any path connecting them must exit from the sphere in feature space,
that is contain a segment of points x such that R(x) > R. We can therefore define an
adjacency matrix Aij,such that

Aij =

{

1 if, for all x in the segment connecting xi and xj, R(x) ≤ R
0 otherwise.

(2.81)

Clusters are defined as the connected components of the graph induced by A. Outliers
are not classified by this procedure, and can be possibly assigned to the cluster they
are closest to. In [BHHSV01], an iterative version of the algorithm is also proposed:
start by a Gaussian kernel with variance big enough to assure a single cluster solution.
Then systematically decrease it together to the cost parameter C along a direction that
guarantees a minimal number of unbound support vectors. This allows to find a range of
possible solutions of increasing complexity, stopping when the fraction of support vectors
exceeds a certain threshold.

2.4 Kernel Theory

The kernel trick introduced in section 2.2.3 allows to implicitly compute a dot product
between instances in a possibly infinite feature space. In this section we will treat in more
detail the theory underlying kernel functions, showing how to verify if a given function is
actually a valid kernel, and how to generate given a valid kernel a feature space such that
the kernel computes a dot product in that space. We will then highlight the connections
between kernel machines and regularization theory, showing how kernel machines can be
seen as instances of regularized empirical risk minimization.

2.4.1 Positive Definite and Mercer Kernels

We start by introducing the concept of positive definite kernels and showing how to build
a space where they act as a dot product. We will treat the case of real valued matrices and
functions, but results can be extended to complex matrices as well. Moreover, we will give
some necessary and sufficient condition for a function k to be a positive definite kernel.
Details and proofs of the reported results can be found in [Aro50, BCR84, Sai88, SS02].

KERNEL METHODS 27

Kernel Theory

Definition 2.4.1 (Gram Matrix) Given a function k : X × X → IR and patterns
x1, . . . , xm, the m × m matrix K such that

Kij = k(xi, xj) (2.82)

is called the Gram matrix of k with respect to x1, . . . , xm.

Definition 2.4.2 (Positive Definite Matrix) A symmetric m×m matrix K is positive
definite if

m
∑

i,j=1

cicjKij ≥ 0, ∀c ∈ IRm (2.83)

Definition 2.4.3 (Positive Definite Kernel) A function k : X × X → IR such that
∀m ∈ IN and ∀x1, . . . , xm ∈ X gives rise to a positive definite gram matrix is called a
positive definite kernel.

We will now build a so called reproducing kernel map for the positive definite kernel k,
that is a map from X into a space where k acts as a dot product. Let

Φ : X → IRX | Φ(x) = k(· , x) (2.84)

be a map from X to the space IRX of functions mapping X into IR. We need to turn
IRX into a vector space endowed with a dot product < ·, · > satisfying

k(x, x′) = < Φ(x), Φ(x′) > . (2.85)

In order to make it a vector space we just need to take the span of kernel k, that is all
functions

f(·) =
m

∑

i=1

αik(· , xi) (2.86)

for all m ∈ IN, αi ∈ IR, xi ∈ X . A dot product in such space between f and another
function

g(·) =
m′

∑

j=1

βjk(· , x′
j) (2.87)

can be defined as

< f, g > =
m

∑

i=1

m′

∑

j=1

αiβjk(xi, x
′
j). (2.88)

For each given function f , it holds that

KERNEL METHODS 28

Kernel Theory

< k(· , x), f(·) > = f(x). (2.89)

In particular, for f = k(· , x′) we have

< k(· , x), k(· , x′) > = k(x, x′). (2.90)

By satisfying equation (2.85) we showed that each positive definite kernel can be seen as
a dot product in another space. In order to show that the converse is also true, it suffices
to prove that given a map Φ from X to a product space, the corresponding function
k(x, x′) = < Φ(x), Φ(x′) > is a positive definite kernel. This can be proved by noting that
for all m ∈ IN, c ∈ IRm and x1, . . . , xm ∈ X we have

m
∑

i,j=1

cicjk(xi, xj) =

〈

m
∑

i=1

ciΦ(xi),
m

∑

j=1

cjΦ(xj)

〉

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

i=1

ciΦ(xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≥ 0. (2.91)

The existence of a map to a dot product space satisfying (2.85) is therefore an alter-
native definition for a positive definite kernel. The completion of the dot product space
IRX , obtained by adding all limit functions of Cauchy sequences in that space, is called a
reproducing kernel Hilbert space (RKHS).

Definition 2.4.4 (Reproducing Kernel Hilbert Space) Let X be a non empty set
and H a Hilbert space of functions f : X → IR with dot product < · , · >. H is called a
reproducing kernel Hilbert space if there exists a function k : X × X → IR such that:

1. k has the reproducing property

< k(· , x), f > = f(x), ∀f ∈ H, ∀x ∈ X . (2.92)

2. k spans H (· denotes completion)

H = span{k(· , x) |x ∈ X}. (2.93)

An alternative way to build a space with a dot product corresponding to k(x, x′) is
given by Mercer’s theorem [Mer09, Kon86].

Theorem 2.4.1 (Mercer’s Theorem) Let X be a compact set with Borel measure µ,
k : X × X → IR a symmetric real valued function determining an integral operator Tk :
L2(X) → L2(X), such that

(Tkf)(x) :=

∫

X

k(x, x′)f(x′)dµ(x′), (2.94)

which is positive definite; that is, for all f ∈ L2(X), we have

KERNEL METHODS 29

Kernel Theory

∫

X 2

k(x, x′)f(x)f(x′)dµ(x)µ(x′) ≥ 0. (2.95)

Let λk be the kth eigenvalue of Tk, with corresponding eigenfunction ψk. For all x, x′ ∈
X

k(x, x′) =
∞

∑

k=1

λkψk(x)ψk(x
′), (2.96)

where the convergence is absolute and uniform.

The Mercer kernel k in eq.(2.96) corresponds to a dot product in L∞
2 (X) thanks to the

map Φ : X → L∞
2 (X) such that

Φ(x) = (
√

(λk)ψk(x))∞k=1, (2.97)

proving that k is also a positive definite kernel. Mercer’s condition (eq. (2.95)) is
therefore an alternative way to verify if a given function k is actually a positive definite
kernel.

It can be shown [Bur98b, SSM98] that such condition is satisfied for any function k
which can be expressed as

k(x, x′) =
∞

∑

i=1

ci(xx′)i, (2.98)

where ci are positive real coefficients and the series converges uniformly.
It’s interesting to note how to find a reproducing kernel Hilbert space corresponding to

Mercer kernel k, with functions

f(x) =
∞

∑

i=1

αik(x, xi) =
∞

∑

i,j=1

αiλjψj(x)ψj(xi). (2.99)

Given a dot product < · , · >, by linearity we have

< f, k(· , x′) > =
∞

∑

i,j,k=1

αiλjψj(xi) < ψj, ψk > λkψk(x
′). (2.100)

Being the eigenfunctions ψi orthogonal in L2(X), we can choose < · , · > such that

< ψj, ψk > =
δjk

λj

(2.101)

with δjk the Kronecker symbol 2 , showing that (2.99) satisfies the reproducing kernel
property (2.92).

2

δjk =

{

1 if j = k

0 otherwise

KERNEL METHODS 30

Kernel Theory

2.4.2 Regularization Theory

Learning from examples can be seen as the problem of approximating a target function
with a finite number of training data. The problem of approximating a function from
sparse data is ill-posed, and regularization theory is a classical way to turn the problem
into a well-posed one. Recall the problem of empirical risk minimization (see section 2.1.1),
where we have a training set Dm = {(xi, yi) ∈ X × Y}m

i=1, a set of functions F from X to
Y , and a loss function ℓ : X ×Y×Y → [0,∞]. Assume for simplicity that Y ≡ IR. Assume
also that Remp[f] is continuous in f 3. Regularization theory deals with the problem of
restricting F in order to make it a compact set, thus obtaining a well-posed minimization
problem [Tik63, Vap98]. Instead of directly specifying a compact set for F , which would
cast the problem into a complex constrained optimization task, we add a regularization
term Ω[f] to the objective functional, such that Ω[f] ≥ 0 for all f , and the sets

Fc = {f : Ω[f] ≤ c}, c ≥ 0,

are all compact. This results in a regularized risk functional

Rreg[f] = Remp[f] + λΩ[f]. (2.102)

giving a well-posed minimization problem [Tik63, Vap98]. Here the regularization pa-
rameter λ > 0 trades the effect of training errors with the complexity of the function, thus
providing a mean to control overfitting. By choosing Ω to be convex, and provided Remp[f]
is also convex, the problem has a unique global minimum.

When F is a reproducing kernel Hilbert space H (see def. 2.4.4) associated to a kernel
k, the representer theorem [KW71] gives an explicit form of the minimizers of Rreg[f]. We
present a more general version [SHSW01, SS02] of the theorem with respect to the original
one.

Theorem 2.4.2 (Representer Theorem) Let Dm = {(xi, yi) ∈ X ×IR}m
i=1 be a training

set, ℓ : (X × IR × IR)m → IR ∪ {∞} a cumulative loss function, H a RKHS with norm
|| · ||H, and Ω : [0,∞] → IR a strictly monotonic increasing function. Then each minimizer
f ∈ H of the regularized risk

ℓ((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) + Ω(||f ||H) (2.103)

admits a representation of the form

f(x) =
m

∑

i=1

αik(xi, x). (2.104)

3This doesn’t hold for the misclassification loss (eq. (2.1)), which should be replaced by a continuous
approximation such as the soft margin loss (eq. (2.2)).

KERNEL METHODS 31

Kernel Theory

The theorem states that regardless of the dimension of the RKHS H, the solution lies
on the span of the m kernels centered on the training points. If both Ω and ℓ are also
convex, such solution is unique.

A semiparametric extension of the representer theorem is given by the following theo-
rem [SS02].

Theorem 2.4.3 (Semiparametric Representer Theorem) Lets add to the assump-
tions of the representer theorem a set of M functions {ψp}M

p=1 : X → IR such that the m

x M matrix (ψp(xi))ip has rank M. Then any f̃ := f + g, with f ∈ H and g ∈ span {ψp},
minimizing the functional

ℓ((x1, y1, f̃(x1)), . . . , (xm, ym, f̃(xm))) + Ω(||f ||H) (2.105)

admits a representation of the form

f̃(x) =
m

∑

i=1

αik(xi, x) +
M

∑

p=1

βpψp(x), (2.106)

with βp ∈ IR,∀p ∈ [1,M].

We are now able to enlighten the connections between regularization theory and kernel
machines. Given the regularized risk (2.105), different choices of the loss function ℓ, the
regularization function Ω and the real valued functions ψp give rise to different types of
kernel machines. Support vector machines for binary classification (see section 2.2), for
example, employ the soft margin loss function (eq. 2.2), which as a cumulative loss becomes

ℓ((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) =
1

m

m
∑

i=1

|1 − yif(xi)|+, (2.107)

and a regularizer of the form Ω(||f ||X) = λ
2
||f ||2, where the regularization parameter λ

corresponds to the inverse of the cost C. A single additional constant function ψ1(x) = 1
is used as an offset in biased support vector machines, those with hyperplanes not passing
for the origin (that is b 6= 0, see eq. (2.12)). For λ → 0 we have hard margin SVM where
all training patterns have to be correctly classified. Note that the decision function for
SVM is actually sign(f).

Support vector regression is obtained using the ǫ − insensitive loss (eq. 2.4)

ℓ((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) =
1

m

m
∑

i=1

|1 − yif(xi)|ǫ, (2.108)

with same regularization Ω and constant function ψ1 as for the SVM for binary classi-
fication.

KERNEL METHODS 32

Kernel Design

2.5 Kernel Design

Kernel design deals with the problem of choosing an appropriate kernel for the task at
hand, that is a similarity measure of the data capable of best capturing the available
information. We start by introducing a few basic kernels commonly used in practice, and
show how to realize complex kernels by combination of simpler kernels, allowing to treat
different parts or characteristics of the input data in different ways. We will introduce
the notion of kernels on discrete structures, providing examples of kernels for strings, trees
and graphs, and that of generative kernels, aiming at combining the expressive power of
generative models and the separation capabilities of discriminative models. Finally, we
will discuss the problem of choosing kernel hyperparameters, a task which is part of the
general problem of model selection. Unless diversely specified, in the rest of the chapter
we will refer to positive definite kernels simply with the term kernels.

2.5.1 Basic Kernels

A simple example of effective kernels commonly used in practice is that of the polynomial
kernels, both homogeneous

k(x, x′) = < x, x′ >d (2.109)

and inhomogeneous

k(x, x′) = (< x, x′ > + c)d, (2.110)

with d ∈ IN and c ∈ IR+
0 . They correspond respectively to the feature space of all

possible monomials of degree d (eq. (2.109)), and that of all possible monomials of degree
up to d (eq. (2.110)). Another interesting class of kernels is that of the Radial basis
function (RBF) ones, satisfying

k(x, x′) = f(d(x, x′)), (2.111)

where d is a metric in X and f a function on IR+
0 . Gaussian kernels [BGV92, GBV93]

k(x, x′) = exp

(

−||x − x′||2
2σ2

)

(2.112)

with σ > 0 are a popular example of these translation invariant kernels. Recalling the
decision function for support vector machines (eq. (2.36)), we can see that the smallest the
variance σ2, the least support vectors will be involved in decision on a test pattern, namely
those nearest to it according to the distance induced by the norm || · ||. Roughly speaking,
a smaller variance usually corresponds to a greater number of support vectors, and thus
to a more complex model. Tuning this hyperparameter according to the complexity of the
problem at hand is another mean to perform risk minimization and prevent overfitting (see
section 2.5.5).

KERNEL METHODS 33

Kernel Design

Finally, sigmoid kernels

k(x, x′) = tanh(κ < x, x′ > +ϑ), (2.113)

where κ > 0 and ϑ > 0, have been successfully used in practice, even if they are not
actually positive definite (see [Sch97] for details).

2.5.2 Kernel Combination

The class of kernels has a few interesting closure properties useful for combinations. It is
closed under addition, multiplication by a positive constant and pointwise limits [BCR84],
that is they form a convex cone. Moreover it’s close under product [PS72]: if k1(x, x′) and
k2(x, x′) are kernels, also k(x, x′) = k1(x, x′)k2(x, x′) is a kernel. Such properties are still
valid in the case that the two kernels are defined on different domains [Hau99]:

Proposition 2.5.1 (Direct Sum) If k1 and k2 are kernels defined respectively on X1×X1

and X2 ×X2, then their direct sum,

(k1 ⊕ k2)((x1, x2), (x
′
1, x

′
2)) = k1(x1, x

′
1) + k2(x2, x

′
2) (2.114)

is a kernel on (X1 ×X2) × (X1 ×X2), with x1, x
′
1 ∈ X1 and x2, x

′
2 ∈ X2.

Proposition 2.5.2 (Tensor Product) If k1 and k2 are kernels defined respectively on
X1 ×X1 and X2 ×X2, then their tensor product,

(k1 ⊗ k2)((x1, x2), (x
′
1, x

′
2)) = k1(x1, x

′
1)k2(x2, x

′
2) (2.115)

is a kernel on (X1 ×X2) × (X1 ×X2), with x1, x
′
1 ∈ X1 and x2, x

′
2 ∈ X2.

These combinations allow to treat in a diverse way parts of an individual which have
different meanings. A general extension of these concepts is at the basis of the so called
convolution kernels [Hau99, Wat00] for discrete structures. Suppose x ∈ X is a composite
structure made of “parts” x1, . . . , xD such that xd ∈ Xd for all i ∈ [1, D]. This can be
formally represented by a relation R on X1 × · · · × XD × X such that R(x1, . . . , xD, x) is
true iff x1, . . . , xD are the parts of x. For example if X1 = · · · = XD = X are sets containing
all finite strings over a finite alphabet A, we can define a relation R(x1, . . . , xD, x) which
is true iff x = x1 ◦ · · · ◦ xD, with ◦ denoting concatenation of strings. Note that in this
example x can be decomposed in multiple ways. If their number is finite, the relation is
said to be finite. Given a set of kernels kd : Xd × Xd → IR, one for each of the parts of x,
the R-convolution kernel is defined as

(k1 ⋆ · · · ⋆ kD)(x, x′) =
∑

R

D
∏

d=1

kd(xd, x
′
d), (2.116)

KERNEL METHODS 34

Kernel Design

where the sum runs over all the possible decompositions of x and x′. For finite relations
R, this can be shown to be a valid kernel [Hau99].

It’s easy to verify [Hau99] that Gaussian kernels are a particular case of R-convolution
kernels, as well as simple exponential kernels

(k1 ⋆ · · · ⋆ kD)(x, x′) = exp(
D

∑

d=1

fd(xd)fd(x
′
d)

σ2
d

) =
D

∏

d=1

kd(xd, x
′
d), (2.117)

where

kd(x, x′) = exp(
fd(x)fd(x

′)

σ2
d

) (2.118)

and fd : Xd → IR, σd > 0 for each d ∈ [1, D]. In both cases there is only one way to
decompose each x.

A more complex type of R-convolution kernel is the so called analysis of variance
(ANOVA) kernel [Wah90, SGV98, Vap98, SGV+99]. Let X = Sn for some set S, and
ki : S × S → IR, i ∈ [1, n] a set of kernels, which will typically be the same function. For
D ∈ [1, n], the ANOVA kernel of order D is defined by

k(x, y) =
∑

1≤i1<···<iD≤n

D
∑

d=1

kid(xid , x
′
id
). (2.119)

Note that for D = n, the sum consists only of the term for which (i1 = 1, . . . , iD = n),
and k becomes the tensor product k1 ⊗ · · · ⊗ kn. Conversely, for D = 1, each product
collapses to a single factor, while i1 ranges from 1 to n, giving the direct sum k1 ⊕· · ·⊕kn.
By varying D we can run between these two extremes. In order to reduce the computational
cost of kernel evaluations, recursive procedures are usually employed [Vap98].

Finally, note that whenever the kernel procedure k explicitly computes the mapping Φ :
X → H into the feature space, as for absolute convergent graph kernels (see section 2.5.3,
eq. 2.134) or Fisher kernels (see section 2.5.4, eq. 2.147), it’s always possible to apply a
new kernel

k′ : H×H → IR. (2.120)

This amounts to searching for a nonlinear separation in feature space or, equivalently,
to mapping data from the feature space H to an even higher dimensional feature space H′

by the feature map Φ′ : H → H′ corresponding to k′. The resulting kernel

k∗(x, y) = k′(Φ(x), Φ(y)) = < Φ′(Φ(x)), Φ′(Φ(y)) > = < Φ∗(x), Φ∗(y) > (2.121)

corresponds to a dot product in the feature space with map

Φ∗ : X → H′ | Φ∗ = Φ′ ◦ Φ (2.122)

given by the composition of Φ′ and Φ.

KERNEL METHODS 35

Kernel Design

2.5.3 Kernels on Discrete Structures

R-convolution kernels are a very general class of kernels, which can be used to model
similarity between objects with discrete structures, such as strings, trees and graphs. In
order for a kernel to be of practical utility, however, it must be computed in reasonable
time. Therefore, a kernel can also be thought of as a procedure efficiently implementing
a given dot product in feature space. In the following, we will report a series of kernels
developed for efficiently treating objects with discrete structure. A different problem is that
of treating objects that are related to each other by a graph structure. For a description
of kernels on structured domains see [KL02, GLF03, GFKS02, SW03].

Strings

The so called string subsequence kernel (SSK) [LSTCW00] is an interesting example of
kernel on strings. Consider a finite alphabet A. A string s is a finite sequence of (possibly
zero) characters from A. We define by |s| the length of string s, An the set of all strings
of length n, and

A∗ =
∞
⋃

n=0

An (2.123)

the set of all strings. Concatenation between strings s and t is simply represented as st.
A subsequence u of s is defined as u := s(i) := s(i1) . . . s(i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |n|
and s(i) the ith element of s. The length l(i) of the subsequence u in s is i|u|− i1 +1. Note

that if i is not contiguous, l(i) > |u|. We can now define the feature space Hn := IR(An)

as the space whose coordinates are all strings of length n. The feature map Φ for a given
string s and coordinate u ∈ An is defined as

[Φn(s)]u =
∑

i:s(i)=u

λl(i), (2.124)

where 0 < λ ≤ 1 is a weight decay penalizing gaps. Such feature measures the number
of occurrences of u in s, weighted according to their lengths. The inner product between
strings s and t according to such mapping is

kn(s, t) =
∑

u∈An

[Φn(s)]u[Φn(t)]u =
∑

u∈An

∑

i:s(i)=u

∑

j:t(j)=u

λl(i)+l(j). (2.125)

Note that kn is a valid kernel as it explicitly computes the inner product in feature
space. In order to make this product computationally efficient, we first introduce the
auxiliary function

k′
i(s, t) =

∑

u∈Ai

∑

i:s(i)=u

∑

j:t(j)=u

λ|s|+|t|−i1−j1+2 (2.126)

KERNEL METHODS 36

Kernel Design

for i = 1, . . . , n − 1, counting the length from the beginning of the substring match to
the end of s and t instead of l(i) and l(j). The SSK can now be computed by the following
recursive procedure, where a ∈ A:

k0(s, t) = 1 ∀ s, t ∈ A∗

k′
i(s, t) = 0 if min(|s|, |t|) < i

ki(s, t) = 0 if min(|s|, |t|) < i

k′
i(sa, t) = λk′

i(s, t) +
∑

j:t(j)=a

k′
i−1(s, t[1, . . . , j − 1])λ|t|−j+2,∀ i ∈ [1, n − 1]

kn(sa, t) = kn(s, t) +
∑

j:t(j)=a

k′
n−1(s, t[1, . . . , j − 1])λ2. (2.127)

To prove the correctness of the procedure note that kn(sa, t) is computed by adding to
kn(s, t) all the terms resulting by the occurrences of substrings terminated by a, matching
t anywhere and sa on its right terminal part. In fact, in the second term of the recursion
step for kn, k′

n−1 will count any matching substring found in s as if it finished at |s|, and
the missing λ for the last element a is added for both s and t.

This kernel can be readily expanded to consider substrings of different lengths, i.e. by
using a linear combination like

k(s, t) =
∑

n

cnkn(s, t), (2.128)

with cn ≥ 0. In such case, we simply compute k′
i for all i up to one less than the largest

n required, and then apply the last recursion in (2.127) for each n such that cn > 0, using
the stored values of k′

i.
Note that in order to remove the bias introduced by string length, it’s convenient to

employ a normalized version of the kernel:

k̂(s, t) =
k(s, t)

√

k(s, s)k(t, t)
(2.129)

Alternative types of string kernels will be discussed in sections 2.5.4 and 5.2.2.

Trees

A similar approach for trees was proposed in [CD02a, CD02b] in the field of natural lan-
guage processing. Here we present the procedure in a slightly mode general case, without
entering in details of computational linguistics. Let A be a set of labels, and T a set of
labelled trees, where each node is associated with a single label in A, and there is a total
order relation in the children of a node. Given t ∈ T , we consider a subtree t′ of t to be
valid if each node in it has either all or none of the children of the corresponding node in
t (see fig. 2.9) . We will refer to these valid subtrees as tree fragments or simply subtrees.

KERNEL METHODS 37

Kernel Design

Given two nodes n1 and n2, we say that they match if they have the same label, same
number of children if any, and each child of n1 has the same label of the corresponding
child of n2 in the total ordering (see fig. 2.10).

C D

A

RF

D

C D

A

RF A C D F R

C

A

RF

D

Figure 2.9. Example of extraction of all valid subtrees of a given tree.

C

A

RF

D

C

A

C

A

F

R

C D

A
C D

A

C D

A

G

Figure 2.10. Examples of matching and non matching nodes between two trees, where the
nodes to be compared are the root nodes (shaded) of the respective trees.

The feature space is built by fixing a coordinate for each possible tree fragment in T .
Given by M the number of these fragments, a tree t is mapped to a vector [Φ1(t), . . . , ΦM(t)],
where each element i counts the number of times the corresponding tree fragment is found
in t. The kernel k between two trees t1 and t2 is simply given by the inner product in such
space. We define the set of nodes in t1 and t2 as N1 and N2 respectively. We further define
an indicator function Ii(n) to be 1 if subtree i is seen rooted at node n and 0 otherwise.
The kernel between t1 and t2 can now be written as

k(t1, t2) =
M

∑

i=1

Φi(t1)Φi(t2) =
M

∑

i=1

∑

n1∈N1

Ii(n1)
∑

n2∈N2

Ii(n2) =
∑

n1∈N1

∑

n2∈N2

C(n1, n2) (2.130)

where we define C(n1, n2) =
∑M

i=1 Ii(n1)Ii(n2), that is the number of common subtrees
rooted at both n1 and n2. The following recursive definition permits to compute C(n1, n2)
in polynomial time:

• If n1 and n2 don’t match C(n1, n2) = 0.

KERNEL METHODS 38

Kernel Design

• if n1 and n2 match, and they are both leaves C(n1, n2) = 1.

• Else

C(n1, n2) =

nc(n1)
∏

j=1

(1 + C(ch(n1, j), ch(n2, j))), (2.131)

where nc(n1) is the number of children of n1 (equal to that of n2 for the definition
of match) and ch(n1, j) is the jth child of n1.

To prove the correctness of (2.131), note that each child of n1 contributes exactly
1 + C(ch(n1, j), ch(n2, j)) common subtrees for n1,n2, the first with the child alone, and
the other C(ch(n1, j), ch(n2, j)) with the common subtrees rooted at the child itself. The
product in (2.131) considers all possible combinations of subtrees contributed by different
children.

As for the string kernel described before, it’s usually convenient to employ a normalized
version of the kernel. Moreover, the kernel tends to produce extremely large values for very
similar trees, thus making the algorithm behave like a nearest neighbour rule. This effect
can be reduced by restricting the depth of the allowed subtrees to a fixed value d, or
by scaling their relative importance with their size. To this extent we can introduce a
parameter 0 < λ ≤ 1, turning the last two points of the definition of C into:

• if n1 and n2 match, and they are both leaves C(n1, n2) = λ.

• Else

C(n1, n2) = λ

nc(n1)
∏

j=1

(1 + C(ch(n1, j), ch(n2, j))). (2.132)

This corresponds to a modified inner product

k(t1, t2) =
M

∑

i=1

λsizeiΦi(t1)Φi(t2), (2.133)

where sizei is the number of nodes of the corresponding tree fragment.

Graphs

A class of kernels on labelled graphs has been introduced in [G0̈2], exploiting the idea of
common paths.

Let G be a set of labelled directed graphs, and L = {lr}r∈IN some enumeration of
all possible labels. A given graph g is represented by the tuple g = (V , E , L), where

V = {vi}|V|i=1 is the vertex set of the graph, E ⊆ V × V its edge set, (vi, vj) ∈ E iff there

KERNEL METHODS 39

Kernel Design

exists a (directed) edge from vi to vj, and L the |L| × |V| sparse matrix representing its
labels. That is [L]r,i = 1 if lr is the label of vi, and zero otherwise, where [M]i,j indicates
the element in the ith row and jth column of matrix M . Lets represent the neighbourhood
of a vertex v in g with δ+(v) = {(v, v′) ∈ E} and δ−(v) = {(v′, v) ∈ E}, and the maximum
in and out degree of a graph as ∆+(g) = maxv∈V(|δ+(v)|) and ∆−(g) = maxv∈V(|δ−(v)|).

We will equivalently represent a graph g with the matrices g = (A,L), where L is
the aforementioned label matrix, and A is the adjacency matrix of the graph, that is
[A]ij = 1 ⇔ (vi, vj) ∈ E , [A]ij = 0 otherwise. The adjacency matrix has the useful
property that its n power An extends the adjacency concept to paths of length n, that is
[An]i,j is the number of walks 4 of length n from vi to vj. Such structural properties can
be extended to labelled graphs using LAnLT . There exists a walk of length n between two
nodes labelled li, lj iff [LAnLT]ij ≥ 1.

We can now represent the similarity between two graphs g = (A,L), g′ = (A′, L′) with
the inner products {< LAnLT , L′A′nL′T >}n for different path lengths n, where the inner
product between two m × n matrices M,M ′ is defined as < M,M ′ >=

∑

i,j[M]i,j[M
′]i,j.

In order to account for insertions or deletions of vertices along a walk, we can consider
{< LAiLT , L′A′jL′T >}i,j.

The kernels kn between labelled directed graphs are defined as

kn(g, g′) =
n

∑

i,j=0

λiλj < LAiLT , L′A′jL′T >, (2.134)

with λi ≥ 0, ∀i ∈ [0, n]. The kernel k∞ is defined as

k∞(g, g′) = lim
n→∞

kn(g, g′) (2.135)

if such limit exists. It can be proved [G0̈2] that given a ∈ IN such that

a ≥ max
g∈G

min{∆+(g), ∆−(g)}, (2.136)

the following proposition holds, thus providing a sufficient condition for absolute con-
vergent graph kernels, while also proving they are valid positive definite kernels.

Proposition 2.5.3 (Absolute Convergent Graph Kernel) If
∑n

i=0 λia
i is absolute con-

vergent for n → ∞, and limi→∞ λii
2ai = 0 then kn is absolute convergent for n → ∞.

The feature map corresponding to such kernels is given by

Φ(g) = lim
n→∞

n
∑

i=0

λiLAiLT . (2.137)

In the following we report two examples of absolute convergent graph kernels.

4A walk is a sequence of vertices and edges v1, e1, v2, e2, . . . , en, vn+1, ei ∈ E , vi ∈ V, such that ei =
(vi, vi+1).

KERNEL METHODS 40

Kernel Design

Definition 2.5.1 (Exponential Graph Kernel) The exponential graph kernel kexp be-
tween labelled directed graphs is defined as

kexp(g, g′) =
〈

LeβALT , L′eβA′

L′T
〉

, (2.138)

where β ∈ IR is a parameter and the exponential of a matrix M is defined as

eβM = lim
n→∞

n
∑

i=0

(βM)i

i!
. (2.139)

Definition 2.5.2 (Geometric Graph Kernel) The geometric graph kernel kgeom between
labelled directed graphs in a set G is defined as

kgeom(g, g′) =

〈

L

(

lim
n→∞

n
∑

i=0

γiAi

)

LT , L′

(

lim
n→∞

n
∑

i=0

γiA′i

)

L′T

〉

(2.140)

for γ < 1/ maxg∈G min{∆+(g), ∆−(g)}.

It’s straightforward to extend these kernels to the case of unordered graphs, by treating
every undirected edge as consisting of two directed edges, and graphs with weighted edges,
by setting [A]i,j = weight(vi, vj).

Feasible matrix exponentiation usually requires diagonalizing the matrix. If we can
diagonalize A such that A = T−1DT , we can easily compute any power of A as An =
(T−1DT)n = T−1DnT , where the power of the diagonal matrix D is calculated component-
wise [Dn]i,j = [Di,j]

n. Therefore we have

eβA = T−1eβDT (2.141)

where eβD is calculated component-wise.

2.5.4 Kernels from Generative Models

Generative models such as Hidden Markov Models [Rab89] are a principled way to represent
the probability distribution underlying the generation of data, and allow to treat missing
information, uncertainty and variable length sequences. On the other hand, discrimina-
tive methods such as kernel machines are an effective way to build decision boundaries,
and often outperform generative models in prediction tasks. It would be thus desirable to
have a learning method able to combine these complementary approaches. In the following
we will present two different examples of kernels derived from generative models, either
by directly representing similarity between sequences by their joint probability distribu-
tion [Wat00, Hau99], or by defining a similarity measure between the models underlying
two examples [JH99, JH98].

KERNEL METHODS 41

Kernel Design

2.5.4.1 Dynamic Alignment Kernels

Joint probability distributions are a natural way of representing relationships between
objects. The similarity of two objects can be modeled as a joint probability distribution
that assigns high probabilities to pairs of related objects and low probabilities to pairs of
unrelated objects. These considerations have been used in [Wat00] to propose a kernel
based on joint probability distributions. An analogous kernel was independently presented
in [Hau99] as a special case of convolution kernel (see section 2.5.2).

Definition 2.5.3 A joint probability distribution is conditionally symmetrically indepen-
dent (CSI) if it is a mixture of a finite or countable number of symmetric conditionally
independent distributions.

In order to show that a CSI joint p.d. is a positive definite kernel, let’s write it as a
dot product. Let X,Z,C be three discrete random variables such that

p(x, z) = P (X = x, Z = z) = p(z, x) (2.142)

and

p(x, z|c) = P (X = x, Z = z|C = c) = p(x|c)p(z|c) (2.143)

for all possible realizations of X,Z,C. We can thus write

p(x, z) =
∑

c

p(x|c)p(z|c)p(c) =
∑

c

(

p(x|c)
√

p(c)
)(

p(z|c)
√

p(c)
)

(2.144)

where the sum is over all possible realizations c ∈ C of C. This corresponds to a dot
product with feature map

Φ(x) = {p(x|c)
√

p(c) | c ∈ C}. (2.145)

For a more general proof see [Wat00].
A joint p.d. for a finite symbol sequence can be defined with a pair Hidden Markov

Model. Such models generate two symbol sequences simultaneously, and are used in bioin-
formatics to align pairs of protein or DNA sequences [DEKM98]. A PHMM can be defined
as follows, where A,B represent the two sequences modeled.

• A finite set S of states, given by the disjoint union of:

SAB - states that emit one symbol for A and one for B,

SA - states that emit one symbol only for A,

SB - states that emit one symbol only for B,

a starting state START and an ending state END, which don’t emit symbols.

• An |S| × |S| state transition probability matrix T .

KERNEL METHODS 42

Kernel Design

• An alphabet A.

• For states emitting symbols:

– for s ∈ SAB a probability distribution over A×A,

– for s ∈ SA or s ∈ SB a probability distribution over A.

END

A AB B

START

Figure 2.11. State diagram for PHMM modeling pairs of sequences AB. The state AB emits
common or similar symbols for both sequences, while the states A and B model insertions in
sequence A and B respectively.

The state diagram for this PHMM is represented in figure 2.11. The state AB emits
matching or nearly matching symbols for both sequences, while states A an B model
insertions, that is symbols found in one sequence but not in the other. The joint p.d.
for two sequences is given by the combination of all possible paths from START to END,
weighted by their probabilities. This can be efficiently computed by well known dynamic
programming algorithms [Rab89].

We will now present sufficient conditions for a PHMM h to be CSI. Let TAB∗ be the
transition probability restricted to SAB∗ = SAB ∪ {START} ∪ {END}. That is, for
s, t ∈ SAB∗, [TAB∗]s,t is the probability that, starting from s, the next state in SAB∗ is t.
Let A(s, t) be the random variable denoting the possibly empty sequence of states in SA

passed, starting from s ∈ SAB∗, given that t is the next state in SAB∗ reached. Let B(s, t)
be the analogous random variable for SB.

Proposition 2.5.4 Let h be a PHMM such that:

1. The joint p.d. induced by h is unchanged if SA and SB are swapped.

KERNEL METHODS 43

Kernel Design

2. For all states s ∈ SAB, the symbol emission joint p.d. over A×A is CSI.

3. h has the independent insertion property, that is for all s, t ∈ SAB∗
A(s, t) and B(s, t)

are independent.

Then the joint p.d. induced by h over pairs of sequences of symbols is CSI.

The proof can be found in [Wat00].

2.5.4.2 Fisher Kernel

The basic idea of the Fisher Kernel [JH99, JH98] is that of representing the generative
processes underlying two examples into a metric space, and compute a similarity measure in
such space. Given a generative probability model P (X|θ) parametrized by θ = (θ1, . . . , θr),
the gradient of its loglikelihood with respect to θ, Vθ(X) := ∇θ log P (X|θ), is called Fisher
score. It indicates how much each parameter θi contributes to the generative process of a
particular example. The gradient is directly related to the expected sufficient statistics for
the parameters. In the case that the generative model is an HMM, such statistics come as
a by product of the forward backward algorithm [Rab89] used to compute P (X|θ), without
any additional cost. The derivation of the gradient for HMM and its relation to sufficient
statistics is described in [JDH00].

A class of models P (X|θ), θ ∈ Θ defines a Riemannian manifold MΘ (see [Ama90,
Ama98]), with metric tensor given by the covariance of the Fisher score, called Fisher
information matrix and computed as

F := Ep[Vθ(X)Vθ(X)T], (2.146)

where the expectation is over P (X|θ). The direction of steepest ascent of the loglikeli-
hood along the manifold is given by the natural gradient Ṽθ(X) = F−1Vθ(X) (see [Ama98]
for a proof). The inner product between such natural gradients relative to the Riemannian
metric,

k(X,X ′) = Ṽθ(X)T FṼθ(X) = Vθ(X)T F−1Vθ(X) (2.147)

is called Fisher kernel.
When the Fisher information matrix is too difficult to compute, it can be approximated

by F ≈ σ2I, where I is the identity matrix and σ a scaling parameter.
Moreover, as Vθ(X) maps X to a vectorial feature space, we can simply use the dot

product in such space, giving rise to the plain kernel

k(X,X ′) = Vθ(X)T Vθ(X). (2.148)

The Fisher kernel has been employed for detecting remote protein homologies [JDH00],
where the generative model is chosen to be an HMM representing a given protein family.
This approach will be described in section 4.3.2.

KERNEL METHODS 44

Kernel Design

2.5.5 Hyper Parameter Tuning

Many kernel functions depend on a few fixed hyperparameters, which are not optimized
by the training procedure, such as the degree of polynomial kernels (eq. 2.109) or the
width of Gaussian kernels (eq. 2.112). Even the regularization parameter C, trading off
between training data fitting and model complexity, can be seen as a kernel parameter, by
employing a modified kernel [CV95, CST00]

K ← K +
1

C
I, (2.149)

where I is the identity matrix.
Hyperparameter tuning is thus a critical step in order to obtain good generalization per-

formances. The problem is also known as model selection in statistics and machine learning,
where several early criteria have been proposed (see, e.g., [Aka73, CW79, Vap79]). Model
selection usually consists in determining the value of a very small set of hyperparameters.
In this case, it can be carried out by calling as a subroutine a learning algorithm that
receives hyperparameters as constant input arguments. Therefore, a typical approach for
model selection is that of sampling the space of possible hyperparameters, and for each
given sample, compute an estimate of the generalization error of the corresponding ma-
chine. Such estimate can be computed by a k-fold cross validation procedure as described
in section (2.1.4), but it can be very time consuming for high values of k. A more efficient
solution is that of using error bounds, such as those on the LOO error described in section
(2.2.4) for support vector machines. Note that loose bounds are not a problem for this
purpose, provided that their variation as a function of the hyperparameters is similar to
that of the generalization error itself. Furthermore, the sampling procedure can be op-
timized by exploiting dependencies of the bounds on the hyperparameters to tune. For
example, Cristianini et al [CCST99] proved that the radius margin bound (eq. 2.44) is
smooth in the width of Gaussian kernels, thus deriving an optimized procedure for width
tuning in such kernels. Yoshua Bengio [Ben00] proposed a more general method which
consists in choosing a differentiable model selection criterion and searching a global opti-
mum in the joint space of parameters and hyperparameters. This approach was applied
in [CVBM02] to the case of support vector machines, giving a procedure that alternates
the SVM optimization with a gradient step towards the minimization of the generalization
error estimate. Let θ = (θ1, . . . , θn) be the vector of hyperparameters of a given kernel
k, and α be the set of parameters of the decision function f . Let E(θ,α) be the chosen
generalization error estimate, and W (θ,α) the dual optimization problem of the SVM (eq.
2.35). The optimization procedure is defined as:

1. Initialize θ.

2. Keeping θ fixed, find the maximum of the dual optimization problem:

argmaxαW (θ,α)

KERNEL METHODS 45

Kernel Design

3. Update θ by a gradient step ǫ > 0 towards the minimization of E:

θ = θ − ǫ∇θE(θ,α).

4. If the minimum of E is reached STOP, else goto 2.

The (approximate) gradient of the radius margin (eq. 2.44) and the span (eq. 2.47) error
bounds were derived in [CVBM02], provided that the kernel function itself is derivable
with respect to the hyperparameters.

KERNEL METHODS 46

Chapter

3
Multiclass Classification

Many machine learning algorithms are intrinsically conceived for binary classification.
However, in general, real world learning problems require that inputs are mapped into
one of several possible categories. The extension of a binary algorithm to its multiclass
counterpart is not always possible or easy to conceive (examples where this is straightfor-
ward are decision trees or prototypes methods such as k−nearest neighbours). A common
alternative consists in reducing a multiclass problem into several binary sub-problems. A
general reduction scheme is the information theoretic method based on error correcting
output codes (ECOC), introduced by Dietterich and Bakiri [DB95] and more recently
extended in [ASS00]. The simplest coding strategy, sometimes called “one-hot” or “one-
vs-all”, consists in defining as many dichotomies of the instance space as the number of
classes, where each class is considered as “positive” in one and only one dichotomy. For
example, one-hot encoding is the method of choice when using neural networks trained to
predict conditional probabilities of the class given the input [Bis95].

Dichotomies can be learned in different ways. Here we are interested in the case of
margin-based binary classifiers, as induced by a fairly large class of algorithms that in-
clude most kernel machines (see previous chapter), but also classic methods such as the
perceptron [Ros58] and its variants [FS98], or boosting algorithms such as AdaBoost [FS97].
They all learn a real-valued function f(x) of an instance x, called the margin of x, and
then take the sign of f(x) to obtain classification.

When using margin-based classifiers to implement a set of dichotomies for multiclass
problems, the input instance is first mapped to a real vector of margins formed by the
outputs of the binary classifiers. A target class is then computed from this vector by
means of a decoding function [DB95]. Different strategies have been proposed to choose
the decoding function. A simple approach is that of using the Hamming distance, treating

MULTICLASS CLASSIFICATION 47

the output of each binary classifier as a Boolean variable. However, in the case that the
binary learners are margin-based classifiers, Allwein et al. [ASS00] shown the advantage of
using the same loss-based function of the margin used to train the binary classifiers. In
this chapter, we suggest a different approach which is based on decoding via conditional
probabilities of the outputs of the classifiers. The advantages offered by our approach
are twofold. Firstly, the use of conditional probabilities allows to combine the margins
of each classifier in a principled way. Secondly, the decoding function is itself a class
conditional probability which can give an estimate of multiclassification confidence. We
report experiments using support vector machines as the base binary classifiers, showing the
advantage of the proposed decoding function over other functions of the margin commonly
used in practice.

In the case of support vector machine algorithms, a number of recent works [Vap98,
WW98, BB99, GEPM00, CS00] addressed the problem of directly extending the algorithm
to the multiclass case. Resulting optimization problems have the advantage of simultane-
ously learning all decision functions, but are computationally very intensive. The first wide
comparison of these methods and simple ECOC schemes showed no significant difference
for optimal values of the hyperparameters [HL02a] when using Gaussian kernels, while a
simple all-pairs scheme achieved the best performances with linear kernels. In this chapter
we review the different multiclass methods developed, focusing on their similarities and dif-
ferences, and show how they can be viewed in the framework of ECOC, basing on the work
on continuous codes by Crammer and Singer [CS02b]. Moreover, we run a set of exper-
iments comparing different multiclass methods under various conditions. While agreeing
with [HL02a] regarding performances at the optimum, our experiments highlight some
interesting differences emerging when methods are forced to produce degenerate solutions.

Finally, we show how to study the generalization error of ECOC and use the results
to estimate kernel hyperparameters. Concerning this aspect, we begin by recalling that
the problem of estimating the generalization performances of a learning algorithm can be
efficiently addressed by mean of a bound on the expected risk, such as a LOO error bound
(see section 2.2.4). Moreover, such estimate can be employed for model selection, that is
tuning of the hyperparameters of the learning function (see section 2.5.5), provided that
its behaviour is similar to that of the expected risk itself, and they are minimized for close
values of the hyperparameters. In this chapter we present a general bound on the LOO
error for ECOC of kernel machines. The novelty of this analysis is that it allows multiclass
parameters optimization even though the binary classifiers are trained independently. We
report experiments showing that the bound leads to good estimates of kernel parameters.

The rest of the chapter is organized as follows. In section 3.1 we shortly review the
theory of ECOC and the associated loss-based decoding methods. In section 3.1.1 we
introduce a new decoding function based on conditional probabilities and give a theoretical
justification of its validity. In section 3.2 we review the different approaches to multiclass
classification with kernel machines, highlighting their similarities and differences. In section
3.3 we present the bound on the LOO error for general ECOC of kernel machines. Finally,
in section 3.4 we empirically validate the usefulness of the theoretical results presented.

The probabilistic decoding function and the LOO error bound are based on the works

MULTICLASS CLASSIFICATION 48

Error Correcting Output Codes

in [PPF02, PPF04], while the section and results on different multiclass methods are not
published elsewhere.

3.1 Error Correcting Output Codes

ECOC work in two steps: training and classification. During the first step, S binary
classifiers are trained on S dichotomies of the instance space, formed by joining non
overlapping subsets of classes. Assuming Q classes, let us introduce a “coding matrix”
M ∈ {−1, 0, 1}Q×S which specifies a relation between classes and dichotomies. mqs = 1
(mqs = −1) means that points belonging to class q are used as positive (negative) ex-
amples to train the s−th classifier fs. When mqs = 0, points in class q are not used to
train the s−th classifier. Thus each class q is encoded by the q−th row of matrix M
which we denoted by mq. During prediction a new input x is classified by computing the
vector formed by the outputs of the classifiers, f(x) = (f1(x), . . . , fS(x)) and choosing the
class whose corresponding row is closest to f(x). This process is the same as the decoding
step for error correcting codes (ECC) in communication [BRC60]. We can therefore see
a learning task as the problem of transmitting the correct class of a new example over a
noisy channel, given by input features, training data and learning algorithm. In order to
recover possible errors in the transmission, the class is encoded in an ECC and each bit
is transmitted separately (via a separate run of the learning algorithm). Error recovering
depends on the quality of the ECC, which can be measured by the minimum Hamming
distance between any pair of code words. A minimum distance of d allows to correct at
least d−1

2
bit errors, as the nearest codeword would still be the correct one. However, error

correction is possible only if bits are independent one another, which is usually not true
in the learning context as classifiers are trained on overlapping data. In order to reduce
dependence between classifiers, a good ECC should have also a high column separation,
both for columns and their complements. Different approaches for ECOC generation have
been proposed in [DB95], depending on the number of classes.

Once the matrix is chosen and the binary learners are trained, classification can be seen
as a decoding operation, and the class of input x is computed as

arg
Q

min
q=1

d(mq, f(x)) (3.1)

where d is the decoding function. A simple choice for d is given by the Hamming
decoding [ASS00]:

d(mq, f) =
S

∑

s=1

|mqs − sign(fs)|
2

, (3.2)

which is equal to the Hamming distance for binary valued matrices M, while in the
general case zero entries contribute 1/2 to the sum. When the binary learners are margin-
based classifiers, [ASS00] shown the advantage of using a loss-based function of the margin

MULTICLASS CLASSIFICATION 49

Error Correcting Output Codes

dL(mq, f) =
S

∑

s=1

L(mqsfs)

where L is a loss function (see section 2.1.1) which depends on the confidence margin
(see section 2.2.1). L is typically a non-decreasing function of the margin and, thus, weights
the confidence of each classifier according to the margin. The simplest loss function one
can use is the linear loss for which L(mqsfs) = −mqsfs. When all binary classifiers are
computed by the same learning algorithm, Allwein et al. [ASS00] proposed to set L to be
the same loss function used by that algorithm.

It is worthwhile noting that the ECOC framework includes two multiclass classification
approaches often used in practice: one-vs-all [Nil65] and all-pairs [Fri96]. In the former
approach there is one classifier per class, which separates it from all the others. A new
input is assigned to the class whose associated classifier has the maximum output. In the
ECOC framework one-vs-all is equivalent to linear decoding with a Q × Q coding matrix
whose entries are always −1 except diagonal entries which are equal to 1. Note that one-
vs-all is not actually a correcting code, as its minimum Hamming distance is two, and thus
cannot correct any error. Nevertheless, it turns out to be often quite effective with SVM
as binary learners, as showed in section 3.4, where we will also present some reasons for
this behaviour. In the all-pairs approach, also known as round robin classification [F0̈2],
there are Q(Q− 1)/2 classifiers, each separating a pair of classes. Classification is decided
by majority voting. This scheme is equivalent to Hamming decoding with the appropriate
coding matrix.

In the next section we propose a new probabilistic approach, which is based on decoding
via conditional probabilities of the outputs of the classifiers.

3.1.1 Decoding Functions Based on Conditional Probabilities

We mentioned before that a loss function of the margin may have some advantages over
the standard Hamming distance because it can encode the confidence of each classifier in
the ECOC. This confidence is, however, a relative quantity, i.e. the range of the values
of the margin may vary with the classifier used. Thus, just using a linear loss function
may introduce some bias in the final classification in the sense that classifiers with a larger
output range will receive a higher weight. Not surprisingly, we will see in the experiments
in section 3.4 that the Hamming decoding usually works better than the linear one in the
case of pairwise schemes. A straightforward normalization in some interval, e.g. [−1, 1],
can also introduce bias since it does not fully take into account the margin distribution. A
more principled approach is to estimate the conditional probability of each class q given the
input x. Given the S trained classifiers, we assume that all the information about x that
is relevant for determining the class is contained in the margin vector f(x) (or f for short),
i.e. P (Y = q|x) = P (Y = q|f). Let us now introduce the set of all possible codewords ok,
k = 1, . . . , 2S and let O be a random vector of binary variables. A realization of O will
be a codeword. For simplicity, we shall use the symbols −1 and +1 to denote codebits.

MULTICLASS CLASSIFICATION 50

Error Correcting Output Codes

The probability of Y given the margin vector can thus be rewritten by marginalizing out
codewords and decomposing using the chain rule:

P (Y = q|f) =
2S
∑

k=1

P (Y = q|O = ok, f)P (O = ok|f).

The above model can be simplified by assuming the class to be independent of f given
the codeword ok. This assumption essentially means that f has a direct causal impact on
O, and in turn O has a direct causal impact on Y . As a result:

P (Y = q|f) =
2S
∑

k=1

P (Y = q|O = ok)P (O = ok|f).

We choose a simple model for the probability of class q given the codeword ok by looking
at the corresponding row mq in the coding matrix. A zero entry in the row is treated
as “don’t care”, i.e. replacing it with a a value of 1 or -1 results in an equally correct
codeword for the class. Thus each class q has a number of valid codes Cq given by all
possible substitutions of 1 or −1 in the zero entries of mq. Invalid codes C̄ are those which
are not valid for any class q ∈ Q. We then define

P (Y = q|O = ok) =

1 if ok ∈ Cq

0 if ok ∈ Cq′ with q′ 6= q
1
Q otherwise (i.e. ok ∈ C̄ is not a valid class code)

f1 fS

OSO1 Os

fs

Y

Figure 3.1. Bayesian network describing the probabilistic relationships amongst margins, code-
words, and class.

Under this model,

P (Y = q|f) =
∑

ok∈Cq

P (O = ok|f) + α

MULTICLASS CLASSIFICATION 51

Error Correcting Output Codes

where

α =
1

Q

∑

ok∈C̄

P (O = ok|f)

collects the probability mass dispersed on the invalid codes. We further assume that each
individual codebit Os is conditionally independent of the others given f , and that it is also
independent of the other outputs fs′ given fs (in other words, we are assuming that the
only cause for Os is fs). Our conditional independence assumptions can be graphically
described by the Bayesian network depicted in figure 3.1. As a result, we can write the
conditional probability of the class q as

P (Y = q |f) =
∑

ok∈Cq

S
∏

s=1

P (Os = oks |fs) + α. (3.3)

We further note that the probability of a bit corresponding to a zero value in the coding
matrix is independent of the output of the classifier (it is a “don’t care” bit). Moreover,
it should be equally distributed between the possible realizations {−1, 1}. All valid codes
ok ∈ Cq for a given class q have then the same probability

S
∏

s=1

P (Os = oks |fs) =
1

2Z

∏

s∈S:mqs 6=0

P (Os = mqs |fs)

where Z is the number of zero entries in the row corresponding to the class. By noting
that there are exactly 2Z of such valid codes, we can simplify equation (3.3) to

P (Y = q |f) =
∏

s∈S:mqs 6=0

P (Os = mqs |fs) + α. (3.4)

In this case the decoding function will be:

d(mq, f) = − log P (Y = q |f). (3.5)

The problem boils down to estimating the individual conditional probabilities in eq. (3.4),
a problem that has been addressed also in [Kwo99, Pla00]. Our solution consists of fitting
the following set of parametric models:

P (Os = mqs |fs) =
1

1 + exp(mqs(Asfs + Bs))

where As and Bs are adjustable real parameters that reflect the slope and the offset of
the cumulative distribution of the margins. As and Bs can be estimated independently by
maximizing the following set of Bernoulli log-likelihoods:

∑

i:myis 6=0

log

(

1

1 + exp(myis(Asfs(xi) + Bs))

)

. (3.6)

MULTICLASS CLASSIFICATION 52

Multiclass Classification with Kernel Machines

The index i in equation (3.6) runs over the training examples (xi, yi). It must be observed
that fitting the sigmoid parameters using the same examples used to train the margin
classifiers would unavoidably lead to poor estimates since the distribution of fs(xi) is very
different for training and for testing instances (for example, in the case of separable SVM,
all the support vectors contribute a confidence margin that is exactly +1 or -1). To address
this, in our experiments we used a 3-fold cross validation procedure to fit As and Bs, as
suggested in [Pla00].

We remark that an additional advantage of the proposed decoding algorithm is that
the multiclass classifier outputs a conditional probability rather than a mere class decision.

3.2 Multiclass Classification with Kernel Machines

In this section we will discuss the most common methods for extending kernel machines
for binary classification to the multiclass case. A first approach is that of employing
ECOC as those described in the previous section, using kernel machines as the underlying
binary classifier. However, different approaches have been proposed [Vap98, WW98, BB99,
GEPM00, CS00], which directly extend the optimization problem of SVM to the multiclass
case. Basing on the work of Crammer and Singer [CS00] on continuous codes, we will show
how these approaches are related to the encoding/decoding process of ECOC algorithms.

3.2.1 ECOC of Kernel Machines

Margin based kernel machines for binary classification can be defined according to regu-
larization theory (see section 2.4.2) as the minimizers of functionals of the form

F [f ; Dn] =
1

n

n
∑

i=1

ℓ(yif(xi)) + λ||f ||2K (3.7)

where Dn = {(xi, yi) ∈ X ×{−1, 1}}n
i=1 is a training set, ℓ : IR → IR is a monotonic non

decreasing margin based loss, and λ a regularization parameter. Assuming ℓ is convex, the
minimizer of the functional in (3.7) is unique (see theorem 2.4.2) and has the form 1

f(x) =
n

∑

i=1

αiyik(xi, x). (3.8)

ECOC of kernel machines are obtained by combining such binary classifiers as described
in section 3.1. The decoding function can be made the same as the binary loss ℓ as suggested
in [ASS00], but different choices are possible. In the case of support vector machines as
binary classifiers, our experimental results (see section 3.4.1) show that the probabilistic
decoding function we introduced in section (3.1.1) is often better than other common loss-
based schemes, especially for non optimal choices of the hyperparameters.

1We assume that the bias term is incorporated into the kernel k (see [MM99, FCC98, HL02b]).

MULTICLASS CLASSIFICATION 53

Multiclass Classification with Kernel Machines

An advantage of ECOC over other multiclassification methods such as those described
in the following section, is that it allows to employ different learning functions for different
bits of the codewords, thus giving great flexibility in adapting the learning algorithm.

3.2.2 Multicategory Support Vector Machines

The first extensions of support vector machines to the multiclass case were independently
developed by Vapnik [Vap98] and Weston and Watkins [WW98]. As they differ in the
choice of the loss function, we will briefly review both methods, starting with the one by
Vapnik and pointing out the differences.

Given a training set Dm = {{(xi, yi) ∈ X × [1, Q]}m
i=1 of examples belonging to one of

Q possible classes, the optimization problem is

min
w∈XQ, b∈ IRQ,ξ∈ IRm

1

2

Q
∑

q=1

||wq||2 + C
m

∑

i=1

ξi (3.9)

subject to

< wyi
,xi > +byi

− < wp,xi > −bp ≥ 1 − ξi,

i ∈ [1,m], p ∈ [1, Q]\{yi} (3.10)

ξi ≥ 0, i ∈ [1,m]. (3.11)

The constraints (3.10) amount to stating that each example must be correctly classified
with a gap of at least one with respect to the highest other possible assignment, suffering a
linear loss for any violation. The left hand side of such inequality is the multiclass extension
of the concept of confidence margin for binary classification (see sec. 2.2.1), and is negative
in case of errors. If the point is correctly classified, such value is equivalent to the confidence
measure of the class with highest activity in one-per-class neural networks [LBD+89]. The
loss induced by these constraints gives a linear penalty to examples classified with multiclass
confidence margin less than one. The corresponding decision function is given by

f(x) = argmaxq∈Q (< wq,x > +bq) . (3.12)

The optimization problem can be solved by finding the saddle point of the Lagrangian

L =
1

2

Q
∑

q=1

||wq||2+C
m

∑

i=1

ξi−
m

∑

i=1

∑

p 6=yi

αp
i [< (wyi

−wp),xi > +byi
−bp−1+ξi]−

m
∑

i=1

βiξi (3.13)

with constraints

αp
i ≥ 0, βi ≥ 0, ξi ≥ 0, i ∈ [1,m], p ∈ [1, Q]\{yi}. (3.14)

By vanishing the derivatives of the primal variables we obtain

MULTICLASS CLASSIFICATION 54

Multiclass Classification with Kernel Machines

∂L

∂wq

= 0 ⇒ wq =
∑

i:yi=q

∑

p 6=q

αp
i xi −

∑

i:yi 6=q

αq
ixi (3.15)

∂L

∂bq

= 0 ⇒
∑

i:yi=q

∑

p 6=q

αp
i =

∑

i:yi 6=q

αq
i (3.16)

∂L

∂ξi

= 0 ⇒ βi +
∑

p 6=yi

αp
i = C and 0 ≤

∑

p 6=yi

αp
i ≤ C. (3.17)

By substituting (3.15), (3.16) and (3.17) into the Lagrangian (3.13) and rearranging we
obtain the dual formulation, quadratic in α, where both the slack variables and the bias
terms cancel:

max
αq∈ IRm, q∈[1,Q]

m
∑

i=1

∑

p 6=yi

αp
i −

1

2

Q
∑

q=1

∑

i:yi=q,j:yj=q

∑

p 6=q,r 6=q

αp
i α

q
j < xi,xj >

−1

2

Q
∑

q=1

∑

i:yi 6=q,j:yj 6=q

αq
i α

q
j < xi,xj >

+

Q
∑

q=1

∑

i:yi=q

∑

p 6=q

∑

j:yj 6=p

αp
i α

p
j < xi,xj > (3.18)

with constraints (3.16) and (3.17). The corresponding decision function is given by:

f(x) = argmaxq∈Q

(

∑

i:yi=q

∑

p 6=q

αp
i < xi,x > −

∑

i:yi 6=q

αq
i < xi,x > +bq

)

. (3.19)

As for the binary case, both in the dual optimization problem and in the resulting
decision function the examples only appear in inner products, thus allowing to apply the
kernel trick and replace < xi,xj > with k(xi, xj), being k a valid kernel function.

In this formulation, each training example (xi, yi) is associated with a vector of Q − 1
alphas αi. By the KKT conditions [Fle87], we can enlighten the connections between the
values of the alphas and role of the example in the learned model (see fig. 3.2).

• If all alphas are zero, the multiclass confidence margin of xi is greater than one, and
the example is not a support vector.

• if
∑

q 6=y αq
i < C, the example is an unbound support vector, it has multiclass confi-

dence margin equal to one, and the corresponding slack variable is zero.

• if
∑

q 6=y αq
i = C, the example is a bound support vector, with confidence margin less

than one and positive slack variable. If ξi > 1, the example is also a training error.

MULTICLASS CLASSIFICATION 55

Multiclass Classification with Kernel Machines

Figure 3.2. Multiclass classification problem solved by multicategory extension of support vector
machines. Solid lines represent separating hyperplanes, while dotted lines are hyperplanes with
confidence margin equal to one. Grey points are unbound SVs, black points are bound SVs
and extra borders indicate bound SVs which are also training errors. All other points do not
contribute to the decision function.

A slightly different formulation was developed in [WW98], where they suggest the
following constrained minimization problem:

min
w∈XQ, b∈ IRQ, ξq

i ∈IR,i∈[1,m],q∈[1,Q]\{yi}

1

2

Q
∑

q=1

||wq||2 + C

m
∑

i=1

∑

q 6=yi

ξq
i (3.20)

subject to < wyi
,xi > +byi

≥< wq,xi > +bq + 1 − ξq
i ,(3.21)

ξq
i ≥ 0, (3.22)

i ∈ [1,m], q ∈ [1, Q]\{yi}.

The constraints amount to stating that each example must be correctly classified with
a confidence of at least one more than each other possible assignment, suffering a linear
loss for any violation. Here we have a distinct penalty for each assignment different from
the correct one, increasing the number of variables in the optimization problem.

The Lagrangian is given by

L =
1

2

Q
∑

q=1

||wq||2+C

m
∑

i=1

Q
∑

q=1

ξq
i −

m
∑

i=1

Q
∑

q=1

αq
i [< (wyi

−wq),xi > +byi
−bq−1+ξq

i]−
m

∑

i=1

Q
∑

q=1

βq
i ξ

q
i

(3.23)
with constraints

MULTICLASS CLASSIFICATION 56

Multiclass Classification with Kernel Machines

αq
i ≥ 0, βq

i ≥ 0, ξq
i ≥ 0, i ∈ [1,m], q ∈ [1, Q]\{yi}. (3.24)

and dummy variables

αyi

i = 0, ξyi

i = 1, βyi

i = 0, i ∈ [1,m]. (3.25)

We can reach a more compact form using the following notation

cn
i =

{

1 if yi = n
0 if yi 6= n

(3.26)

and

Ai =

Q
∑

q=1

αq
i . (3.27)

By vanishing the derivatives of the primal variables we obtain

∂L

∂wq

= 0 ⇒ wq =
m

∑

i=1

(cq
i Ai − αq

i)xi (3.28)

∂L

∂bq

= 0 ⇒
m

∑

i=1

αq
i =

m
∑

i=1

cq
i Ai (3.29)

∂L

∂ξq
i

= 0 ⇒ βq
i + αq

i = C and 0 ≤ αq
i ≤ C. (3.30)

Substituting (3.28) (3.29) (3.30) into the Lagrangian (3.23) and rearranging we obtain
the dual formulation

max
αq∈ IRm, q∈[1,Q]

∑

i,q

αq
i +

∑

i,j,q

(−1

2
cyi

j AiAj + αq
i α

yi

j − 1

2
αq

i α
q
j) < xi,xj > (3.31)

which is a quadratic function of α with linear constraints (3.29), (3.30) and αyi

i = 0 for
all i ∈ [1,m].

The resulting decision function is

f(x) = argmaxq∈Q

(

m
∑

i=1

(cq
i Ai − αq

i) < xi,x > +bq

)

. (3.32)

Again, we can substitute < xi,xj > with k(xi, xj), being k a valid kernel function.
Using the definitions of cq

i and Ai and the constraints αyi

i = 0 for all i ∈ [1,m], it’s
easy to show that (3.32) can be rewritten as (3.19). However, the role of a support vector
in terms of its alpha values is different. By the KKT conditions [Fle87], for a training
example (xi, yi) with Q − 1 alpha values αi (recall that αyi

i = 0 for all i) we have the
following situations.

MULTICLASS CLASSIFICATION 57

Multiclass Classification with Kernel Machines

• If αq
i = 0, the confidence with which the correct class yi is preferred over class q

is greater than one. If this holds for each q, the example has multiclass confidence
margin greater than one, and is not a support vector.

• If 0 < αq
i < C the confidence with which the correct class yi is preferred over class q

is equal to one and the corresponding slack variable ξq
i is zero. If this holds for all q

for which the corresponding alpha is greater than zero, the example is an unbound
support vector, with multiclass confidence margin equal to one.

• if αq
i = C, the confidence of yi versus q is less that one, and the corresponding slack

variable ξq
i is greater than zero. Thus, the example is a bound support vector. If for

some q ξq
i > 1, the example is also a training error.

Other kinds of multiclass support vector machines were proposed in [BB99] and [GEPM00],
with constraints (3.21) and (3.22), but different regularization term, given by

1

2

Q
∑

q<p

||wp − wq||2 +

Q
∑

q=1

||wq||2 (3.33)

and

1

2

Q
∑

q<p

||wp − wq||2, (3.34)

respectively, where for the latter an additional sum to zero constraint
∑Q

q=1 wq = 0
is necessary in order to have a unique global minimum. However, it was soon proved
[CS02b, Gue02] that all these objective functions are equivalent modulo a multiplicative
factor, as it holds

Q
∑

q<p

||wp − wq||2 = Q

Q
∑

q=1

||wq||2 (3.35)

and the sum to zero constraint is always satisfied at the optimum. This equivalence
also shows that multiclass support vector machines (MSVM) actually search separating
hyperplanes with large geometric margins. Consider for simplicity the case of linearly
separable MSVM. Given two classes p and q, the separating hyperplane between them is
given by < wq − wp,x > +bq − bp = 0 (see fig. 3.3), and the hyperplanes for a confidence
margin equal to one are < wq − wp,x > +bq − bp = 1 and < wq − wp,x > +bq − bp = −1
for class q and class p respectively. The distance between the last two hyperplanes is the
geometric margin of the separation between q and p, given by

2

||wq − wp||
.

MULTICLASS CLASSIFICATION 58

Multiclass Classification with Kernel Machines

Therefore, by minimizing (3.35), we actually maximize the sum of all the (squared)
biclass geometric margins. The multiclass geometric margin for the MSVM is given by
the minimum of its biclass geometric margins. Soft margin MSVM relax the separability
condition by introducing slack variables to penalize violations. For a study on bounds on
the generalization capabilities of MSVM see [EGPM99, GEZ02].

Class 1

Class 2

Class 3

< w2 �w2;x > +b1 � b2 = 1< w2 �w2;x > +b1 � b2 = 0
< w2 �w2;x > +b1 � b2 = �1
2jjw1�w2jj

Figure 3.3. Multiclass classification problem solved by multicategory extension of support vector
machines. Solid lines represent separating hyperplanes, while dotted lines are hyperplanes with
confidence margin equal to one. Grey points are unbound SVs. The multiclass geometric
margin is given by the minimum of the biclass geometric margins.

3.2.3 Connections between ECOC and MSVM

Training ECOC algorithms amounts to training each binary function associated with each
single bit of the code, according to the dichotomy induced by the corresponding column.
A complementary approach investigated by Crammer and Singer [CS00] consists of fixing
the binary functions, and learning the ECOC matrix. However, they proved that optimal
learning of discrete coding matrices is NP-complete. Therefore, they turned to continuous
codes learning, and formulated the task as a constrained optimization problem.

min
M∈ IRQ×L,ξ∈ IRm

||(M1, . . . ,MQ)||p + C

m
∑

i=1

ξi (3.36)

subject to Ψ(g(xi),Myi
) − Ψ(g(xi),Mr) ≥ 1 − δyir − ξi ∀i, r.

MULTICLASS CLASSIFICATION 59

Bounds on the LOO Error

Here, M is a Q × L real coding matrix, Mr denotes the rth row of M, g = [g1, . . . , gL]
is a vector of real encoding functions (gi : X → IR), Ψ : IRL × IRL → IR computes the
similarity between output vectors and codewords, and δij is the Kronecker symbol (δij = 1
if i = j, 0 otherwise). Note that for r = yi we obtain the non negativity constraints on ξi.

A problem analogous to MSVM can be obtain as a special case of (3.36), by setting
L = m, p = 2 (and using the square norm), gi(x) = x for all gi and x, and the similarity
S to be the dot product Ψ(x,Mr) :=< x,Mr >. The resulting optimization problem is:

min
M∈ IRQ×m,ξ∈ IRm

Q
∑

q=1

||Mq||2 + C

m
∑

i=1

ξi (3.37)

subject to < xi,Myi
> − < xi,Mr >≥ 1 − δyir − ξi ∀i, r. (3.38)

The only difference with respect to Vapnik’s MSVM formulation (3.9) is the absence of
the bias terms, leading to fewer constraints on the dual problem, which can be decomposed
more easily. A compact representation of the dual problem and an efficient algorithm for
solving it are developed in [CS00, CS02a]. Note that the use of the Kronecker symbol results
in a Lagrangian where multipliers βi (see eq.(3.13)) are replaced by αyi

i , and the inequality
constraint on the alphas (see eq.(3.17)) present in the dual formulation is replaced by an
equality one, while the decision function can be written

f(x) = argmaxq∈Q

(

∑

i:yi=q

(C − αq
i) < xi,x > −

∑

i:yi 6=q

αq
i < xi,x >

)

. (3.39)

By looking directly at the general formulation (3.36), and simply setting p = 2 (and
using the square norm) and Ψ as the dot product, we can more clearly enlighten the con-
nections between the encoding/decoding process of ECOC algorithms and MSVM. It turns
out that the encoding function g is actually the feature map Φ induced by the kernel, L is
the dimension of the feature space, Ψ is the inner product in such space, and the codeword
Mr is the vector of parameters of the hyperplane separating r from the other classes in
feature space. Therefore, the encoding process consists in mapping the input into a (pos-
sibly) higher dimensional feature/codeword space, and code learning consists in searching
hyperplanes/class-codewords in the code space which give the maximum separation be-
tween codewords corresponding to examples of different classes. The encoding process can
be done only implicitly, as the kernel function directly computes the similarity between
inputs corresponding to the inner product of their encodings. Moreover, by choosing the
kernel we implicitly choose the encoding function, and by tuning kernel hyperparameters
we can actually combine encoding function and class codewords learning.

3.3 Bounds on the LOO Error

The LOO error is an almost unbiased estimate of the expected generalization error (see
section 2.1.4), but it can be very expensive to compute if the training set is large. In order

MULTICLASS CLASSIFICATION 60

Bounds on the LOO Error

to make algorithm evaluation feasible, upper bounds on the LOO error have been pro-
posed for different learning tasks, included SVM for binary classification (see section 2.2.4).
Moreover, such estimates can be employed for model selection, that is tuning of the hyper-
parameters of the learning function (see section 2.5.5). It suffices that the bound behaviour
is similar to that of the expected risk, and that they are minimized for close values of the
hyperparameters. In the following section we present a general bound on the LOO error
for ECOC of kernel machines. The novelty of this analysis is that it allows multiclass
parameters optimization even though the binary classifiers are trained independently. We
report experiments (see sec. 3.4.3) showing that the bound leads to good estimates of kernel
parameters.

3.3.1 LOO Error Bounds for ECOC of Kernel Machines

We will now derive a general bound on the LOO error of error correcting output codes, in
the case that the binary classifiers are kernel machines. We start by defining the multiclass
confidence margin [ASS00] of point (x, y) ∈ X × {1, . . . , Q} as

g(x, y) = dL(mp, f(x)) − dL(my, f(x))

with
p = argminq 6=ydL(mq, f(x)).

Considered that the predicted class for x is the one whose row is closest to f(x) (see
eq. (3.1)), this margin represents the confidence of the correct prediction. If g(x, y) is
negative, point x is misclassified. When L is the linear loss, g(x, y) reduces to the definition
of multiclass confidence margin for unbiased MSVM. In the following we will always refer
to the confidence margin simply with margin.

The empirical misclassification error can be written in terms of the multiclass margin
as:

1

n

n
∑

i=1

θ (−g(xi, yi))

where θ(·) is the Heavyside function: θ(x) = 1 if x > 0 and zero otherwise. Similarly, the
LOO error can be written as

1

n

n
∑

i=1

θ
(

−gi(xi, yi)
)

(3.40)

where we have denoted by gi(xi, yi) the margin of example xi when the ECOC is
trained on the data set Dn\{(xi, yi)}. As described in section 2.1.4, the LOO error is
an almost unbiased estimator for the generalization error. Unfortunately, computing the
LOO error is time demanding when n is large. Moreover, if the purpose is to use it for
model selection (see section 2.5.5), the estimate has to be computed for several values of
the hyperparameters to tune. In the case of binary SVM, bounds on the LOO error have

MULTICLASS CLASSIFICATION 61

Bounds on the LOO Error

been proposed (see section 2.2.4), which can be computed with little or no additional effort
once the machine is trained. In the following we will derive a bound on the LOO error
of general ECOC of kernel machines, which only depends on the solution of the machines
trained on the full data set (so training the machines once will suffice). To this end we
first need the following lemma.

Lemma 3.3.1 Let f be the kernel machine as defined in equations (3.8) obtained by solving
(3.7). Let f i be the solution of (3.7) found when the data point (xi, yi) is removed from the
training set. We have

yif(xi) − αiGii ≤ yif
i(xi) ≤ yif(xi). (3.41)

Proof: The l.h.s part of Inequality (3.41) was proved in [JH98]. Let’s prove the r.h.s
part. Note that, if xi is not a support vector, αi = 0 and f = f i, so both inequali-
ties are trivial in this case. Thus suppose that xi is a support vector. We observe that
F [f ; Dn] ≤ F [f i; Dn], because otherwise f would not be the minimizer of F [f ; Dn]. Sim-
ilarly F [f i; Di

n] ≤ F [f ; Di
n], as f i is the minimizer of F [f i; Di

n]. By combining these two
inequalities we have

F [f ; Dn] − F [f ; Di
n] ≤ F [f i; Dn] − F [f i; Di

n].

By substituting the definition of F (eq. 3.7) and simplifying we obtain

ℓ(yif(xi)) ≤ ℓ(yif
i(xi)).

Then, the result follows from the fact that ℓ is monotonic non increasing. 2

We are now able to present the LOO bound, starting from the case of linear de-
coding. Below we denote by fs the s−machine, fs(x) =

∑n
i=1 αs

imyisk
s(xi, x), and let

Gs
ij = ks(xi, xj).

Theorem 3.3.1 Suppose the linear decoding function dL(mq, f) = −mq · f is used, where ·
denotes the inner product. Then, the LOO error of the ECOC of kernel machines is bound
by

1

n

n
∑

i=1

θ

(

−g(xi, yi) + max
q 6=yi

Uq(xi)

)

(3.42)

where we have defined the function

Uq(xi) = (mq − mp) · f(xi) +
S

∑

s=1

myis(myis − mqs)α
s
iG

s
ii (3.43)

with p = argmaxq 6=yi
mq · f(xi).

MULTICLASS CLASSIFICATION 62

Bounds on the LOO Error

Proof: Note first that the LOO error can be equally written as

1

n

n
∑

i=1

θ
(

−gi(xi, yi)
)

=
1

n

n
∑

i=1

θ
(

−g(xi, yi) + g(xi, yi) − gi(xi, yi)
)

.

Therefore we have to prove that

max
q 6=yi

Uq(xi) ≥ g(xi, yi) − gi(xi, yi).

By definition of the multiclass margin we have

gi(xi, yi) = myi
· f i(xi) − mpi · f i(xi)

where we have defined
pi = argmaxq 6=yi

mq · f i(xi).

By applying Lemma 3.3.1 simultaneously to each kernel machine used in the ECOC
procedure, inequality (3.41) can be rewritten as

f i
s(xi) = fs(xi) − λsmyis, s ∈ {1, . . . , S} (3.44)

where λs is a parameter in [0, αs
iG

s
ii]

2. Using the above equation we have:

gi(xi, yi) =
S

∑

s=1

(myis − mpis)f
i(xi)

=
S

∑

s=1

[(myis − mpis)fs(xi) − myis(myis − mpis)λs]

≥
S

∑

s=1

[(myis − mpis)fs(xi) − myis(myis − mpis)α
s
iG

s
ii].

Last inequality follows from the observation that myis(myis − mpis) is always non-
negative. From the same inequality, and applying the definition of margin for g(xi, yi), we
have

g(xi, yi) − gi(xi, yi) ≤
S

∑

s=1

[(mpis − mps)fs(xi) + myis(myis − mpis)α
s
iG

s
ii].

Finally, as we cannot obtain pi without explicitly training f i, we choose it to be the
one maximizing the right hand side of the inequality, thus proving the result. 2

2Note that for (xi, yi) and s such that myis = 0 it simply holds f i
s(xi) = fs(xi), as (xi, yi) is not used

as a training example.

MULTICLASS CLASSIFICATION 63

Bounds on the LOO Error

The theorem says that point xi is counted as a leave-one-out error when its multiclass
margin is smaller than maxq 6=yi

Uq(xi). This function is always larger or equal than the
positive value

S
∑

s=1

myis(myis − mps)α
s
iG

s
ii

Roughly speaking, this value is controlled by two factors: the parameters αs
i , s =

1, . . . , S (where each parameter indicates if point xi is a support vector for the s−th kernel
machine) and the Hamming distance between the correct codeword, myi

, and the closest
codeword to it, mp. Moreover, the final part of the theorem proof shows that such value is
actually an upper bound on g(xi, yi)− gi(xi, yi), if we assume that the incorrect codeword
nearest to f i(xi) is the same as the one nearest to f(xi) for all i. We could therefore derive
a tighter approximated upper bound on the LOO error, given by

1

n

n
∑

i=1

θ

(

−g(xi, yi) +
S

∑

s=1

myis(myis − mps)α
s
iG

s
ii

)

(3.45)

which could occasionally slightly underestimate the LOO error, whenever the assump-
tion is violated.

Theorem 4.1 also enlightens some interesting properties of the ECOC of kernel machines
which we briefly summarized in the following.

• Stability of the ECOC schemes

One-vs-all schemes are more stable than other ECOC schemes, meaning that their
multiclass margin is less affected by removing one point in that case. In fact, note
that in the one-vs-all scheme each pair of rows has only two different elements, so
when one point is removed, the bound in Theorem 3.3.1 implies that the margin
will not change of more than 2C. For pairwise schemes, instead, the worst change is
(Q − 1)C. For dense codes the situation is even worse: the worst case is (S − 1)C.
This observation provides some insights on why the simple one-vs-all SVM works
well in practice.

• One-vs-all schemes

For one-vs-all schemes we easily see that the multiclass margin gi(xi, yi) can be
rewritten as

gi(xi, yi) ≥ 2

[

(fyi
(xi) − αyi

i Gyi

ii) − max
q 6=yi

(fq(xi) + αq
i G

q
ii)

]

.

This has a simple interpretation: when xi is removed from the training set, its margin
is bound by the margin obtained if the classifier of that point, fyi

, was penalized by
αyi

i Gyi

ii while the remaining classifiers fq, q 6= yi, increased their margin of αq
i G

q
ii).

Theorem 3.3.1 can be extended to deal with other decoding functions provided that
they are monotonic non-increasing. This is formalized in the next corollary.

MULTICLASS CLASSIFICATION 64

Bounds on the LOO Error

Corollary 3.3.1 Suppose the loss function L is monotonic non increasing. Then, the
LOO error of the ECOC of kernel machines is bound by

1

n

n
∑

i=1

θ

[

L
(

myisfs(xi) − αs
iG

s
iim

2
yis

)

− min
q 6=yi

S
∑

s=1

L (mqsfs(xi) − αs
iG

s
iimyismqs)

]

. (3.46)

Proof: Following the main argument in the proof of Theorem 3.3.1, the multiclass margin
of point xi when this is removed from the training set is defined as

gi(xi, yi) =
S

∑

s=1

L(mpisf
i
s(xi)) −

S
∑

s=1

L(myisf
i
s(xi)),

where

pi = argminq 6=yi
L(mq, f

i(xi)).

By substituting equations (3.44) for each learning function fs we obtain

gi(xi, yi) =
S

∑

s=1

L
(

mpisfs(xi) − λsmyismpis

)

− L
(

myisfs(xi) − λsm
2
yis

)

with λs ∈ [0, αs
iG

s
ii] for all s. If L is monotonic non increasing, the right hand side of

the equation is minimized when all λs are at their right border. To see this, note that if
mpis = myis, the two loss functions get identical values, and the term is zero regardless
of the value of λs. On the other hand, if mpis 6= myis, the loss on the left hand side is
minimized for maximal value of λs, while the loss on the right hand side has the opposite
behaviour but contributes with a minus sign to the sum. The multiclass margin is thus
bound by

gi(xi, yi) ≥
S

∑

s=1

L
(

mpisfs(xi) − αs
iG

s
iimyismpis

)

− L
(

myisfs(xi) − αs
iG

s
iim

2
yis

)

We finally approximate the unknown value pi with the one that minimizes the l.h.s. of
the inequality, giving

gi(xi, yi) ≥ min
q 6=yi

S
∑

s=1

L (mqsfs(xi) − αs
iG

s
iimyismqs) − L

(

myisfs(xi) − αs
iG

s
iim

2
yis

)

.

which plugged into the definition of the LOO error (3.40) gives the result. 2

Note that the corollary applies to all decoding functions used in this chapter. Moreover,
as for the linear decoding case, we can approximate the LOO bound, by assuming that for

MULTICLASS CLASSIFICATION 65

Experiments

any point xi, the incorrect codeword nearest to f(xi) does not change when removing the
point from the training set, giving

1

n

n
∑

i=1

θ

[

L
(

myisfs(xi) − αs
iG

s
iim

2
yis

)

−
S

∑

s=1

L (mpsfs(xi) − αs
iG

s
iimyismps)

]

, (3.47)

where

p = argminq 6=yi
L(mq, f(xi)). (3.48)

3.4 Experiments

The proposed methods are validated on ten data sets from the UCI repository [BM98].
Their characteristics are shortly summarized in Table 3.1. Continuous attributes were
linearly normalized between zero and one, while categorical attributes where “one-hot” en-
coded, i.e. if there are D categories, the d−th category is represented by a D−dimensional
binary vector having the d−th coordinate equal to 1 and all remaining coordinates equal
to zero.

Name Classes Train Test Inputs

Anneal 5 898 - 38
Ecoli 8 336 - 7
Glass 6 214 - 9
Letter 26 15000 5000 16
Optdigits 10 3823 1797 64
Pendigits 10 7494 3498 16
Satimage 6 4435 2000 36
Segment 7 1540 770 19
Soybean 19 683 - 35
Yeast 10 1484 - 8

Table 3.1. Characteristics of the Data Sets used

3.4.1 Comparison between Different Decoding Functions

We trained ECOC using SVM as the base binary classifier3 with a fixed value for the
regularization parameter given by the inverse of the training set average of k(x, x). In our
experiments we compared our decoding strategy to Hamming and other common loss-based

3Our experiments were carried out using SVMLight [Joa98a].

MULTICLASS CLASSIFICATION 66

Experiments

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

one-vs-all

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

all-pairs

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

an
ne

al

dense-3n

 65

 70

 75

 80

 85

 90

 95

 0.01 0.1 1 10 100
 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 0.01 0.1 1 10 100
 76

 78

 80

 82

 84

 86

 88

 90

 92

 0.01 0.1 1 10 100

ec
ol

i

 10

 20

 30

 40

 50

 60

 70

 80

 0.01 0.1 1 10 100
 40

 45

 50

 55

 60

 65

 70

 75

 80

 0.01 0.1 1 10 100
 35

 40

 45

 50

 55

 60

 65

 70

 75

 0.01 0.1 1 10 100

gl
as

s

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

so
yb

ea
n

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.01 0.1 1 10 100
 52

 54

 56

 58

 60

 62

 64

 0.01 0.1 1 10 100
 48

 50

 52

 54

 56

 58

 60

 62

 64

 0.01 0.1 1 10 100

ye
as

t

Figure 3.4. Test accuracy plotted against kernel hyperparameter γ. Data sets anneal, ecoli,
glass, soybean, yeast. MULTICLASS CLASSIFICATION 67

Experiments

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

one-vs-all

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0.01 0.1 1 10 100

all-pairs

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

le
tte

r

dense-3n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

op
td

ig
its

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0.01 0.1 1 10 100
 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100
 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

pe
nd

ig
its

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.01 0.1 1 10 100
 70

 75

 80

 85

 90

 95

 0.01 0.1 1 10 100
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92
 94

 0.01 0.1 1 10 100

sa
tim

ag
e

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100
 65

 70

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100
 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

se
gm

en
t

Figure 3.5. Test accuracy plotted against kernel hyperparameter γ. Data sets letter, optdigits,
pendigits, satimage, segment. MULTICLASS CLASSIFICATION 68

Experiments

decoding schemes (linear, and the soft-margin loss used to train SVM) for three different
types of ECOC schemes: one-vs-all, all-pairs, and dense matrices consisting of 3Q columns
of {−1, 1} entries4. SVM were trained on a Gaussian kernel, k(x, t) = exp{−γ‖x − t‖2}.
In order to avoid the possibility that a fortuitous choice of the parameter γ could affect
our results we carried out an extensive series of experiments where we compared the test
error of the four decoding schemes considered for 11 different values of γ.

Results are summarized in figures 3.4 and 3.5. For data sets with less than 2,000
instances (figure 3.4) we estimated prediction accuracy by a twenty-fold cross-validation
procedure. For the larger data sets (figure 3.5) we used the original split defined in the
UCI repository except in the case of letter, where we used the split of 15000–5000. All
accuracies are reported together to error bars for 95% confidence intervals.

Our likelihood decoding works better for all ECOC schemes and for most values of γ,
and is often less sensitive to the choice of the kernel hyperparameter.

Another interesting observation is that the Hamming distance works well in the case of
pairwise classification, while it performs poorly with one-vs-all classifiers. Both results are
not surprising: the Hamming distance corresponds to the majority vote, which is known
to work well for pairwise classifiers [Fri96] but does not make much sense for one-vs-all
because in this case ties may occur often.

3.4.2 Comparison between Different Multiclass Methods

We ran a series of experiments in order to compare the performances of different multiclass
methods, choosing a subset of the datasets in table 3.1, namely anneal, ecoli, optdigits,
satimage, segment and yeast. We compared the ECOC schemes discussed in the previous
section (one-vs-all, all-pairs and dense codes) using our probabilistic decoding function
and the two types of direct multiclass methods discussed in section 3.2.2: the one by
Vapnik [Vap98], in the formulation by Crammer and Singer [CS02a] (indicated as “C&S”),
and the one independently developed in [WW98, BB99, GEPM00] (indicated as “msvm”).

We employed SVMLight [Joa98a] for the binary SVM in ECOC schemes, and bsvm5 [HL02a]
for the two direct multiclass methods.

In this setting, the regularization parameter C cannot be kept fixed as in the previous
section, as it has a different effect for different methods. Therefore, for each multiclass
method independently and for each value of γ, we employed a validation procedure in
order to choose the best regularization parameter in a uniformly distributed set of values
ranging from 0.00001 to 1000. For datasets with more than 2,000 instances, we divided the
training set in 2/3 for train and 1/3 for validation, and chose the regularization parameter
which gave the best results on the validation set, retraining the algorithm on the full
training set for such value. The test set was then employed to compute accuracy as in
the previous section. For datasets with less than 2,000 instances, we run a 20-fold cross

4Dense matrices were generated using a variant of the BCH algorithm [BRC60] realized by T. G. Diet-
terich [DB95].

5http://www.csie.ntu.edu.tw/~cjlin/bsvm

MULTICLASS CLASSIFICATION 69

Experiments

validation procedure for each value of the regularization parameter, and reported the best
cross-validation accuracy obtained. Results are shown in figure 3.6, with γ values versus
accuracy and error bars for 95% confidence intervals. Note that for ECOC schemes we
employed the same γ for all binary classifiers, while a more accurate optimization would
require to search the best value for each of them, resulting in a much more complex
hyperparameter tuning problem.

 75

 80

 85

 90

 95

 100

 0.01 0.1 1 10 100

anneal

one-vs-all
all-pairs

dense_3n
msvm

c&s
 70

 75

 80

 85

 90

 95

 0.01 0.1 1 10 100

ecoli

one-vs-all
all-pairs

dense_3n
msvm

c&s

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 0.01 0.1 1 10 100

yeast

one-vs-all
all-pairs

dense_3n
msvm

c&s
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

optdigits

one-vs-all
all-pairs

dense_3n
msvm

c&s

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.01 0.1 1 10 100

satimage

one-vs-all
all-pairs

dense_3n
msvm

c&s
 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 0.01 0.1 1 10 100

segment

one-vs-all
all-pairs

dense_3n
msvm

c&s

Figure 3.6. Test accuracy plotted against kernel hyperparameter γ for different
multiclass methods and datasets. Regularization parameter C is optimized for each
value of γ and for each method independently by a validation procedure. All ECOC
schemes employ the likelihood decoding function.

MULTICLASS CLASSIFICATION 70

Experiments

At the optimum, all methods perform equally well, a result also noted in other works [RR01,
HL02a]. However, for different values of γ, the methods have a different sensibility to
overfitting. Between different ECOC, no significant difference can be observed, except for
an overall tendency of dense codes for performing at least as well as the better of the other
two ECOC. The most significant result of the experiments however, is the performance of
the “C&S” method for very high values of the γ parameter, corresponding to small values
of the Gaussian variance, a condition which produces a severe overfitting with possible
degenerate solutions in all other methods. Conversely, the solution discovered by the
“C&S” method achieves results similar to the ones obtained for the best value of the
parameter. A deeper investigation of the models learned by the method for high values of
γ provided some insights on the reason for this behaviour. The “C&S” method actually
outputs a degenerate model in such situations, where all training examples are support
vectors, and all alphas assume the same value given by C/Q. Thus the decision function
simply reduces to

f(x) = argmaxq∈[1,Q]

(

(Q − 1)
∑

i:yi=q

k(xi, x) −
∑

i:yi 6=q

k(xi, x)

)

.

Each support vector thus contributes to the confidence margin for a given class simply
by its similarity with the example to classify (as measured by the kernel value k(xi, x)),
where this contribution is positive if the SV belongs to the class under investigation, and
negative otherwise. The multiplicative term for positive contributions (Q− 1) tends to re-
balance the number of positive and negative contributions, assuming a uniform distribution
of support vectors between the classes.

Note that the “msvm” method actually achieves the same degenerate solution, but in
the bsvm implementation [HL02a] the bias term is included in the kernel, producing the
following decision function

f(x) = argmaxq∈[1,Q]

(

(Q − 1)
∑

i:yi=q

[k(xi, x) + 1] −
∑

i:yi 6=q

[k(xi, x) + 1]

)

.

In the above equation, k(xi, x) is neglectable compared to 1 for very small values of the
Gaussian variance, thus the decision function always outputs a default class independently
of the input pattern. By eliminating the bias term from the kernel, we obtain the same
results as for the “C&S” method.

3.4.3 Hyperparameter Tuning

We now show experiments where we use the bound presented in section 3.3 to select
optimal kernel parameters. We focused on the datasets with more than 2,000 instances,
and searched for the best value of the γ hyperparameter of the Gaussian kernel. To simplify
the problem we searched for a common value for all binary classifiers among a set of possible
values, as discussed in the previous section.

MULTICLASS CLASSIFICATION 71

Experiments

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100

one-vs-all

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01 0.1 1 10 100

all-pairs

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100

le
tte

r

dense-3n

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01 0.1 1 10 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01 0.1 1 10 100

op
td

ig
its

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.01 0.1 1 10 100
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.01 0.1 1 10 100
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.01 0.1 1 10 100

pe
nd

ig
its

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.01 0.1 1 10 100
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.01 0.1 1 10 100
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.01 0.1 1 10 100

sa
tim

ag
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.01 0.1 1 10 100
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.01 0.1 1 10 100
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 0.01 0.1 1 10 100

se
gm

en
t

Figure 3.7. Empirical comparison between test error (dashed line) and the leave-one-out (solid
line) bound of Corollary 4.1. The likelihood decoding function is used in all the experiments.

MULTICLASS CLASSIFICATION 72

Conclusions

Plots in figure 3.7 show the test error and our LOO estimate for different values of γ
for the three ECOC schemes one-vs-all, all-pairs and dense codes. Note that the minimum
of the LOO estimate is very close to the minimum of the test error, although we often
observed a slight bias towards smaller values of the variance. Note also that the test error
is itself an approximation of the LOO error, computed on the test set of each dataset. This
explains why the bound sometimes underestimates the test error, as can be seen in the
graphs for the pendigits dataset (second row in fig. 3.7). Finally, we observed that in all
experiments the approximate version of the bound (see eq. (3.47)) was always identical to
the true bound (eq. (3.46)). Thus, the assumption that the incorrect codeword nearest
to the predicted output for a point does not change when removing the point from the
training set was never violated.

3.5 Conclusions

Multiclass categorization problems have been typically addressed in two complementary
ways, either by reducing the multiclass problem in several binary subproblems, or by
directly extending binary algorithms to the multiclass case when such extension is possible.
Concerning the first approach, we proposed a novel decoding function to combine output
of the binary classifiers in the general framework of Error Correcting Output Codes. Such
function outputs the conditional probability of a codeword given the outputs of the binary
classifiers. Our experiments, using SVM as the underlying binary classifiers, showed that
the function actually helps recalibrating the outputs of the classifiers, thus improving
the overall multiclass classification accuracy in comparison to other loss-based decoding
schemes. This is particularly evident for non-optimal values of kernel hyperparameters,
making the corresponding algorithm less sensitive to their choice.

Individual conditional probabilities for each bit of the codeword where estimated using
a simple logistic function, with slope and offset learned from examples. However, margin
distributions do not necessarily have a symmetric behaviour around zero, especially for
unbalanced classification tasks. Thus, a more complex function could be possibly employed
to better approximate the margin distributions.

Concerning direct extensions of SVM to the multiclass case, we extensively reviewed
most of the methods proposed so far, focusing on similarities and differences between them,
and highlighted the connections between multiclass SVM and ECOC of kernel machines,
basing on the works of Crammer and Singer [CS00] on continuous codes.

We conducted an extensive set of experiments aimed at comparing the different ap-
proaches to multiclass classification. While results agreed with previous findings [RR01,
HL02a] in showing analogous performances for the different methods at their optimum,
differences emerged for non-optimal values of kernel parameters. Between different ECOC
schemes, no significant difference could be observed, except for an overall tendency of dense
codes for performing at least as well as the better of the other two ECOC. The most sig-
nificant finding of this set of experiments was the strong resistance to overfitting of the
multiclass method proposed by Vapnik [Vap98] in the implementation by Crammer and

MULTICLASS CLASSIFICATION 73

Conclusions

Singer [CS00]. For small values of the Gaussian variance, such method actually learns
a degenerate solution, where all examples are support vectors and all alphas share the
same value, but it still achieves results similar to those obtained for optimal values of γ.
Same results were obtained with an unbiased version of the other direct multiclass method
[WW98, BB99, GEPM00].

Finally, we derived a novel bound on the leave-one-out error of ECOC of kernel ma-
chines, which is valid for generic monotonic non increasing decoding functions. We run a
set of experiments aimed at verifying the effectiveness of the bound for choosing kernel hy-
perparameters, focusing on the γ of Gaussian kernels. Bound curves and test error curves
for different values of γ actually showed a similar behaviour, being minimized for very close
values of the hyperparameter.

The leave-one-out bound we presented could be smoothed into a differentiable function,
enabling the application to the optimization of several hyperparameters simultaneously.
An interesting future study in this sense is to use the derived leave-one-out bound to
perform feature selection. From a theoretical viewpoint it will be also interesting to study
generalization error bounds of the ECOC of kernel machines. It should be possible to use
our result within the framework of stability and generalization introduced in [BE02].

MULTICLASS CLASSIFICATION 74

Part II

Cysteine Bonding State Prediction

75

Chapter

4
Protein Structure

Shortly after synthesis, proteins fold into a stable three-dimensional structure which is
strongly tied to their function within an organism. Knowing the three-dimensional struc-
ture of a given protein is thus an important step in understanding its biological function.
Genomic scale sequencing projects are dramatically widening the gap between available nu-
cleotide sequences, annotated proteins, and proteins with known three dimensional struc-
ture, urging for automatic algorithms to fill it up. No simple rule, as those discovered for
transcription and translation, is available to map sequences of residues to three dimensional
coordinates. Experimental methods for structure determination, such as X-Ray crystal-
lography [Dre94] and NMR spectroscopy [W8̈6], are highly expensive and time consuming,
and cannot be applied in all situations. Developing methods for the prediction of a protein
three dimensional structure given the sequence of its residues is thus one of the greatest
challenges in computational molecular biology.

4.1 Overview

The basic units of proteins are amino acids, which are made of a main common part, and
a side chain which characterizes each of the twenty different amino acids (see fig.4.1(a)).
Amino acids are often grouped, according to the chemical nature of their side chain, into
hydrophobic (A,V,L,I,F,P,M), charged (D,E,K,R) and polar (S,T,C,N,Q,H,Y,W). During
protein synthesis, amino acids are joined by peptide bonds, where the carboxyl group of
an amino condenses with the amino group of the next eliminating water (fig. 4.1(b)), and
form polypeptide chains of so called residues.

Proteins are composed of one or more of these polypeptide chains. The sequence of

PROTEIN STRUCTURE 76

Overview

Carboxyl
group

Amino
group

Side chain

OHOCC�NH HH R

(a)

Amino
group

Carboxyl
group

Amino
group

Side chain
Carboxyl
group

Peptide bond

Side chain

NH
R1
HH C�

H
R1C�H HN OHCO

OHCOOH H

C NH H
R2

NH H
R2C�

H2O

O C�

OC

(b)

Figure 4.1. (a) All amino acids share a common part, containing a central carbon atom known
as carbon alpha (Cα), bonded to a hydrogen atom, an amino group and a carboxyl group. The
fourth valence of the Cα is involved in binding a side chain which is peculiar to each amino acid.
(b) Peptide bonds form by condensation of the carboxyl and amino group of two successive
amino acids, eliminating a molecule of water.

amino acids forming a polypeptide chain is the protein primary structure (fig. 4.3(a)). The
function of a given protein is determined by its three dimensional structure, which arises
from the folding of its polypeptide chains (fig. 4.3). The experimental determination of the
structure of a wide range of proteins (see section 4.2) allowed to discover common patterns
in proteins structure. Local regularities involving segments of adjacent residues represent
the secondary structure (fig. 4.3(b)) of a protein, and are determined by hydrogen bonds
between C’=O parts of residues, which have a slight negative charge, and NH parts which
are slightly positively charged.

Alpha helices (H) are sequences of residues with hydrogen bonds between C’=O of residue
n and NH of residue n+4, forming helices with 3.6 residues per turn (see fig. 4.2(a)). A beta
strand is a sequence of residues which form hydrogen bonds with the residues of another
aligned beta strand, giving a planar conformation called beta sheet (see fig. 4.2(b)). Beta
sheets are made of two or more aligned beta strands, and can be parallel if the strands
share the same direction (i.e. from the C-terminus to the N-terminus), or antiparallel if
they are made of pairs of strands with alternate direction (see fig. 4.2(b)). Mixed beta

PROTEIN STRUCTURE 77

Overview

(a) Alpha helix (b) Beta sheet

Figure 4.2. Regular elements of secondary structure. (a) An alpha helix is a sequence of
residues with hydrogen bonds between C’=O of residue n and NH of residue n + 4, forming
an helix of 3.6 residues per turn. (b) A beta sheet is a planar conformation made by two or
more aligned beta strands connected by hydrogen bonds. Beta sheets can be either parallel or
antiparallel depending on the direction of the aligned strands. Mixed sheets containing both
parallel and antiparallel strands also exist but are far less common. Figures are taken from
http://www.agsci.ubc.ca/courses/fnh/301/protein/protprin.htm.

sheets containing both parallel and antiparallel strands also exist but are far less common.
Alpha helices and beta sheets usually form the hydrofobic core of the protein structure,
and are connected by irregular loop regions called coil (C), that primarily reside on the
surface of the protein.

The protein tertiary structure is the way a single chain folds into its three-dimensional
structure. Such structure is usually composed of common combinations of elements of
secondary structure, such as alpha or beta hairpins, called motifs, and more complex
arrangements of motifs into domains, which also represent functional units within the
chain. In order to offer a comprehensive view of a chain in terms of its secondary structure
elements, schematic pictures are often employed, where alpha helices are represented as
cylinders or helices, beta sheets as arrows oriented from the amino to the carboxyl end,
and the remaining coil as ribbons (see fig. 4.3(c)). Multimeric proteins composed of several
polypeptide chains also have a quaternary structure given by the overall arrangement of the
chains (see fig. 4.3(d)). A different constraint on protein structure is given by a particular
amino acid, the cysteine (C), which can be oxidized to form a bond with another cysteine
residue, called a disulphide bridge. Such bonds form in oxidative environments, and are
thus common in extracellular proteins, and help stabilizing the protein structure. We will
treat cysteines and disulphide bridges in detail in chapter 5. For a comprehensive treatment
of protein structure see [BT99] and [Les01].

PROTEIN STRUCTURE 78

Protein Structure Determination

CPLMVKVLDAVRGSPAINVAVHVFRKAADDTWEPFASGKTSESGELHG

(a) primary structure

(b) secondary structure (c) tertiary structure (d) quaternary structure

Figure 4.3. The primary structure (a) of a protein is the sequence of its residues. Local
regularities such as alpha helices and beta strands form the protein secondary structure (b).
The combination of such elements within a given polypeptide chain determines its tertiary
structure (c). Multimeric proteins made of several chains also have a quaternary structure (d)
given by the overall arrangement of the chains.

4.2 Protein Structure Determination

Experimental protein structure determination has been a major step in structural genomics.
The first and most widely employed experimental procedure is X-Ray crystallography,
pioneered by W.L Bragg, and led to the structural resolution of the first globular protein
in 1958. Nuclear magnetic resonance (NMR) spectroscopy, studied by K. Wüthrich since
the Sixties, led to the first de novo globular protein structure determination in 1984, and
is assuming increasing importance as a resolution method, even if it is still limited to
proteins of around 300 residues. The Protein Data Bank [BBB+02], which collects all
resolved structures, around the end of March 2004 contained 21,111 sequences resolved
by X-Ray crystallography, and 3,674 sequences resolved by NMR spectroscopy 1. In the
following we give a brief overview of the two resolution methods, focusing on the reliability
of their results and their limitations. Details on X-Ray crystallography can be found in
[Dre94], and NMR spectroscopy is extensively treated in [W8̈6].

1PDB Holdings List: 23-Mar-2004, current holdings list available at http://www.rcsb.org/pdb/

holdings.html

PROTEIN STRUCTURE 79

Protein Structure Determination

4.2.1 X-Ray Crystallography

The first step to resolve a protein structure by X-Ray crystallography is that of growing a
crystal from a pure and homogeneous sample of the protein to determine. Crystallization
is a complex and very long step, which can take months in order to achieve a crystal of
the necessary size and resolution. Moreover, certain proteins such as the integral mem-
brane ones are very difficult to crystallize. Once the crystal is obtained, it is hit by a
beam of x-rays, a part of which is diffracted by the electrons inside the crystal giving a
set of diffraction spots. In order to determine which atom gives rise to each individual
spot, different techniques are employed, either by comparing the resulting spots with those
obtained with other crystals previously embedded with heavy metal complexes, or by em-
ploying polychromatic x-rays, which are partially absorbed by heavy atoms (still they have
to be plugged into the protein if it lacks them, usually by substituting methionine with
selenomethionine). The procedure results in an electron-density map, whose resolution,
measured in Å, depends on the quality of the crystals. The polypeptide chain is thus fit-
ted into the electron-density map with a trial-and-error process, aiming at minimizing the
so called R-factor, that is the residual disagreement between the experimentally observed
diffraction amplitudes, and those that would be obtained with an hypothetical crystal cor-
responding to the fitted model. At low resolution (5.0 Å), only the most evident features
can be detected. At medium resolution (3.0 Å) it’s still possible to make serious errors,
especially in the irregular coil regions, which can be refined by a proper minimization of
the R-factor (between 0.15 and 0.20 for well-determined structures). An unbiased estimate
of the agreement between the model and the experimental data, called free R-factor, can
be calculated by comparing the model with a subset of the experimental data withheld
during the refinement.

4.2.2 NMR Spectroscopy

The nuclei of atoms like 1H, 13C and 15N have a magnetic momentum which can be measured
by nuclear magnetic resonance. The protein is placed into a strong magnetic field, which
forces the spins of the nuclei to align along it. The nuclei are then excited by applying radio
frequency pulses, and when returning to the equilibrium condition, each nucleus emits a
radiation whose frequency depends on the type of atom and its molecular environment.
The values of these frequencies relative to a reference signal are called chemical shifts, and
each of them has to be assigned to the corresponding nucleus. 1H nuclei, which are naturally
abundant in proteins, have a fairly limited range of chemical shifts, and overlapping signals
make the assignment task difficult. This problem have been addressed by Wüthrich with a
strategy based upon homonuclear two dimensional experiments. Correlation spectroscopy
(COSY) experiments give peaks among hydrogen atoms covalently connected through at
most two other atoms, while nuclear Overhauser effect spectra give peaks of pairs of hydro-
gen atoms close in space, regardless of their position in the primary sequence. More recent
extensions include three and four dimensional spectra, obtained by producing proteins in
environments enriched with 13C and 15N isotopes. A sequential assignment is conducted

PROTEIN STRUCTURE 80

Protein Structure Prediction

using the available spectra, where each single assignment determines a set of constraints
on the subsequent possible assignments. The result of the procedure is a set of distance
constraints, which are processed to obtain a set of protein structure models which satisfy
the constraints. Several algorithms have been developed to iterate this procedure and au-
tomate the whole process (see e.g. [HGW02]), but a lot of manual work is still usually
necessary. Common measures of quality of an NMR experiment are the number of violated
distance constraints, and the root mean square deviation (RMSD) of the set of derived
models, which has been recently revisited in [SNB+03]. The greatest current limitation of
NMR spectroscopy is given by the size of the proteins that can be processed, which is of
around 300 residues.

4.3 Protein Structure Prediction

The explosion of large scale genome sequencing projects allowed to obtain the entire
genomes of several organisms in all three terrestrial kingdoms, included the first draft
of the human genome [Con01, Gen01]. This led to an exponential growth of sequence
databases such as GenBank [BKML+04], widening the gap with the number of annotated
sequences as recorded in SwissProt [BBA+03], and that of the sequences with resolved three
dimensional structure, stored in PDB [BBB+02]. Automatic methods for protein structure
prediction are thus becoming increasingly important in order to exploit the amount of
biological information being accumulated. Predictive methods can be roughly divided in
three groups, depending on the amount of similarity of the target protein to proteins with
known structure.

4.3.1 Comparative Modeling

Comparative or homology modeling relies on the observation that structure is more con-
served than sequence. That is, in order for a protein to maintain its biological function
during evolution, various changes in its residues composition are possible, provided they
don’t imply a significant modification of its three dimensional structure. Levels of 25%-
30% of pairwise sequence identity (percentage of identical residues between the aligned
sequences) are sufficient to assure that the two proteins have similar folds [SS91], that is
regular secondary structure elements are identical, while irregular loop regions may vary.
Given a target protein, homology modeling thus essentially consists of finding out the
best aligning protein with known 3D structure, if any with sufficient similarity exists, and
correctly modeling irregular loop regions and residues side chains given the conserved struc-
tural core of the protein. The alignment problem is addressed by dynamic programming
algorithms like the Smith-Waterman algorithm [SW81], or less accurate but faster heuristic
algorithms such as BLAST [AGM+90] and FASTA [Pea85]. These algorithms deal with
the problem of allowing gaps in alignments by adding gap open penalties to the alignment
score, and that of scoring residues similarity based on amino acid biochemical properties,

PROTEIN STRUCTURE 81

Protein Structure Prediction

employing substitution matrices such as the BLOSUM [HH92] ones. Loop regions modeling
is usually done using databases of loop regions from proteins with known structure. Exam-
ples with similar residues length, and which connect the same type of secondary structure
elements (α-α, β-β, α-β, β-α) as for the target region, are attached to the model, trying
to obtain a structure similar to that of the homologous protein. Side chains conformation
is predicted by free energy minimization over the set of naturally observed conformations,
called rotamers. Even if loop region prediction can be far from accurate for decreasing
levels of pairwise sequence identity, biologically important regions in proteins are usually
well conserved, and therefore often accurately predicted by comparative modeling.

4.3.2 Fold Recognition

Comparative modeling algorithms are limited to the case when proteins with known struc-
ture homologous to the target protein can be found. However, most similar protein struc-
tures found in PDB are remote homologous, with pairwise sequence identity less than
25% [Ros97]. This remote homology modeling task is also addressed as fold recognition, as
it amounts at identifying the most reasonable fold for a given protein having low sequence
similarity to known proteins with such fold. The first threading techniques employed
mean-force potentials [Sip95, SW92] to evaluate the fitness of the target sequence to a
given known structure. More recent approaches [RSS97, KKB+01, MJ03] employ a 1D
prediction (see section (4.3.3.1)) of the target sequence, which is aligned to that of known
structures.

Substantial improvements in the detection of remote homologues have been obtained
by new generations of sequence based methods like PSI-BLAST [AMS+97], and hidden
Markov model (HMM) based models [DEKM98]. Starting from a BLAST alignment, PSI-
Blast iteratively builds a position specific scoring matrix based on the currently aligned
sequences, and repeats the search for homologues with the updated matrix. Profile and
motif HMM are models especially conceived for representing multiple alignments of se-
quences. They allow probabilistic modeling of residues at each match in the alignment,
and the presence of gaps either all along the alignment or between given motifs. For a
review on profile and motif HMM see [Edd98].

The SCOP database [HMBC97] is a database of structural classification of proteins.
It contains proteins structures hierarchically grouped into domains, families, superfamilies
and folds. Such database can be used to assess performances of remote homology detec-
tion algorithms, as proteins into different families of the same superfamily are likely to
be remote homologues. Therefore, a method able to detect a protein of a given family
when trained on proteins of the other families of its superfamily is actually recognizing
a remote homologue. This framework have been cast into a discriminative problem by
Jaakkola et al. [JDH00], who paved the way for the use of kernel methods with excellent
results. They employed state-of-art HMM methods [KBH98] to generate models of a given
protein superfamily, and used them to train a Fisher kernel (see section 2.5.4.2) in order to
discriminate between examples belonging to the given superfamily and examples belonging

PROTEIN STRUCTURE 82

Protein Structure Prediction

to all other superfamilies. A wide range of kernels have been developed to the scope after
their work. The spectrum kernel [LEN02] (see section 5.2.2.3) compares two sequences
by counting the occurrences of all common substrings of size k. Later variants included
allowing mismatches in the common substrings [LEWN03] as well as deletions [LKE04].
Weight matrix [HH91] or regular expression [SSB03] motif databases derived from multiple
alignments have been employed in [LMS+01, BHB03]: a sequence is mapped to the feature
space of all the comparisons with a motif of the database, and the inner product is com-
puted in such space. Most of these methods employ efficient data structures such as suffix
trees [Ukk95] or tries in order to be computationally feasible. A natural way to represent
an object belonging to a given set is by its similarity to other elements of the set. This
idea is implemented in the kernel framework by the empirical feature map [Tsu99], where
each example is mapped to the vector of the similarities with all other reference exam-
ples. Liao and Noble [LN03] employed pairwise sequence similarity scores obtained by the
Smith-Waterman algorithm [SW81]. The feature map for a sequence is thus represented
by a vector of pairwise sequence similarities with positive examples (from the superfamily
to be modeled) and negative examples (from the other superfamilies), and the size of this
vectorization set heavily affects the efficiency of the algorithm. For a detailed treatment of
kernel methods for remote protein homology, as well as for other tasks in computational
biology, see [Nob04].

4.3.3 De Novo Protein Structure Prediction

When no remote homologue for a target protein can be identified, and no existing fold
is found to be compatible with the protein sequence, similarity methods fail and a de
novo prediction has to be made. The experiments conducted by Anfinsen forty years
ago [AHSW61, Anf73] led him to formulate the so-called thermodynamic hypothesis, which
states that a protein three dimensional structure is determined solely by its residue se-
quence and the environmental conditions. While it’s now known that particular proteins
(the so-called chaperones) are often involved in the correct folding of proteins, it’s still gen-
erally assumed that the protein final folding is at a free energy minimum. However, finding
such a minimum is computationally infeasible, and molecular dynamics methods with full
atom representations are thus of no practical utility. Considered the difficulty of the pre-
diction task, the problem is usually divided into smaller subproblems, whose approximate
solutions give inter-atomic distance constraints that can be exploited by distance geometry
algorithms. A potential architecture of such a method is shown in figure 4.4. In the follow-
ing we give an overview of the proposed methods for specific 1D and 2D prediction tasks,
and for the ultimate 3D prediction. For a general review of protein structure prediction
see [Ros98].

PROTEIN STRUCTURE 83

Protein Structure Prediction

SECONDARY SOLVENT COORDINATION DISULPHIDE FINE GRAINED

STRUCTURE ACCESSIBILITY NUMBER BRIDGES CONTACT MAP

COARSE GRAINED
CONTACT MAP

GEOMETRY
DISTANCE

SEQUENCE

Figure 4.4. Potential architecture for protein structure prediction by combination of predictions
for different subproblems.

4.3.3.1 Predictions in 1D

Protein structure prediction in 1D involves tasks like secondary structure and solvent
accessibility prediction. Such predictions are often employed in threading methods for
fold recognition as described in section 4.3.2, making the distinction between prediction
by similarity and de novo approaches less clear. Moreover, they can give insights into
the protein folding family [HMBC97, OMJ+97] and consequently its biological function.
Finally, 1D predictions can be employed for 2D prediction tasks such as coarse contact
maps (see fig. 4.4), as described in section 4.3.3.2.

Secondary Structure Secondary structure (SS) prediction amounts at predicting for each
residue of a target protein its secondary structure category. Training data can be extracted
from experimentally resolved protein structures, using programs like DSSP [KS83a]. DSSP
assigns each residue to one of eight classes, which are typically collapsed into three standard
classes associated with helices, beta strands and coils. Different associations lead to tasks

PROTEIN STRUCTURE 84

Protein Structure Prediction

of different complexity [CB99].
The first machine learning algorithm for SS prediction [QS88] employed a multi-layer

perceptron (MLP) taking as input a window of residues centered around the residue to be
predicted, with one-hot encoding for residues. The first major improvement [RS93] resulted
from using multiple alignment profiles. The multiple alignment is obtained aligning the
target sequence with other sequences from a large database of proteins, using programs such
as the Smith-Waterman [SW81] algorithm or PSI-BLAST [AMS+97]. For each position
in the sequence, the profile is then computed as the frequency of each residue in the
corresponding column of the alignment, and replaces the one-hot encoding as input to the
learning algorithm. Multiple alignment profiles allow to plug evolutionary information into
the input, and have become a standard ingredient of most algorithms for SS prediction,
as well as for other prediction tasks such as coordination number (see next paragraph)
or disulphide bridge prediction (see chapter 5). For a study of the effect of increasing
powerful alignment algorithms (such as PSI-BLAST with respect to BLAST) on prediction
performances see [PR02]. In order to obtain stronger correlations between SS predictions
of close residues within the sequence, a filtering stage has been often added [RS93, Jon99],
taking as input the predictions of the algorithm for a window of residues, and refining them
in a structure to structure mapping. A different approach was proposed in [BBF+99] and
refined in [PPRB02], employing bidirectional recurrent neural networks (BRNN) to handle
non-causal dependencies within the sequence, and developing ensembles of networks in
order to increase performances.

Kernel machines have entered quite recently [HS01] the arena of secondary struc-
ture prediction, and the necessary multiclass extension was either realized with combi-
nations of binary classifiers [HS01, WMBJ03, CFPV03a] or multiclass support vector ma-
chines [NR03b, GPE+04] (see section 3.2.2). No clear evidence emerged in favour of SVM
compared to NN, taking into account the much higher computational time required. This
can be partially explained by the fact the both are local classifiers fed with the same inputs,
and the great amount of data available make the usual SVM advantages less evident. How-
ever, a few recent works [NR03b, GPE+04] underlined the effectiveness of multiclass SVM
as a filtering stage, to be fed with the output of other predictive methods (which can be
MSVM themselves). A simple and effective refinement stage was proposed in [CFPV03a]
in order to remove inconsistencies in the predicted sequences, that is violations of the con-
straints that can be imposed on consecutive secondary structure labels (see fig. 4.5). The
method builds a finite state automata (FSA) representing all allowed sequences, and turns
a predicted labelling sequence into the maximum likelihood sequence given the grammar
and the predictions.

All the SVM approaches proposed so far employ standard kernels, such as polynomial
or Gaussian ones. The first attempt to develop a kernel especially modeled for secondary
structure prediction is presented in [GLV04]. Firstly, it employs a dot product between
residues (or profiles) mediated by a substitution matrix, which compares residues according
to their biochemical similarity. The substitution matrix was derived from [LRG86] and is
especially designed for secondary structure prediction tasks (a similar approach will be
discussed in section 6.3 for binding site prediction). Secondly, it introduces an adaptive

PROTEIN STRUCTURE 85

Protein Structure Prediction

endstart

H H H HC
E E

HH2H1 H3 H4
E2

C1
E1

C CCE C Target ..CEEEEECHHHHC.. ..CHHHHHC
Predicted ..CEHEEEHHCHHC.. ..CHCCHHH
Corrected ..CEEEEECHHHHC.. ..CHHHHHC

(a) (b)

Figure 4.5. (a) Finite state automata correcting inconsistencies in secondary structure predic-
tions. Constraints imposed by the automata are: alpha helices at least four residues long, beta
strands at least two residues long, presence of a coil between a beta strand and an alpha helix
(and viceversa) as well as at the beginning and end of a chain. (b) Example of errors corrected
by the automata. Note that such FSA is designed for a particular mapping from eight to three
classes of secondary structure.

weighting of the window around the target residue, with weights learned by a version of
kernel target alignment [CSTEK02] extended to the multiclass case [Ver02]. The proposed
kernel is proved superior to a standard MLP, but given its computational overhead, its
usage as a module in big architectures, such as those currently employed for secondary
structure prediction [Jon99, PPRB02, PLN+00], is not straightforward.

Coordination Number and Solvent Accessibility The coordination number of a residue inside
a sequence represents the number of its contacts, computed as the number of residues
falling within a sphere of a certain radius centered on the residue [FBL+95]. Different
radii (measured in Å) give correlated but different pictures of the residue local environ-
ment [PBFC02].

Solvent accessibility measures the degree with which a given residue inside a sequence
interacts with the solvent molecules. Such measure is usually given relative to the maximum
exposed surface area obtainable for a particular amino acid type. Solvent accessibility is
highly (inversely) correlated to coordination number, but the two measures show different
distributions [FC00], and individual predictors have been often developed.

Both regression tasks are usually cast into a simpler binary classification problem,
by thresholding on the average coordination number (for a given radius) and the rela-
tive solvent accessibility respectively. Common predictors for both tasks employ neural
networks fed by a window of profiles (see i.e. [RB99, FC00, RS94]), but also Bayesian
methods [TG96] and algorithms based on information theory [Mov01]. State-of-art perfor-
mances were obtained with ensembles of BRNN [PBFC02] similar to those employed for
secondary structure prediction (see previous paragraph).

PROTEIN STRUCTURE 86

Protein Structure Prediction

4.3.3.2 Predictions in 2D

Predictions in 2D consist in predicting structural interactions between pairs of residues
within a protein sequence. Common examples of 2D prediction tasks are contact maps
(described below) and disulphide bridges, which will be discussed in detail in chapter 5

Contact Maps A distance map for a sequence of n residues is an n×n matrix of distances be-
tween pairs of residues. The distance between two residues can be computed as the distance
between their Cα atoms [MD96], that between their Cβ atoms [TCS96] or as the minimal
distance between atoms in the backbone or side chain of the residues [FC99]. Distance maps
are the result of NMR spectroscopy experiments (see sec. 4.2.2), and distance geometry
algorithms are employed in order to compute the three-dimensional structure [Nil96].

A contact map is a matrix of 0,1 entries obtained from a distance matrix using a
threshold on the distance values, and it represents the adjacency matrix of the contact
graph at the given resolution. Distance geometry or stochastic optimization algorithms
can be employed to reconstruct the 3D atom coordinates from even partial or corrupted
contact maps [VKD97]. Recent methods for contact maps predictions include neural net-
works [FOVC01] and HMM combined with mining techniques [ZJB00], which are trained
to predict if a given pair of residues in a sequence is actually in contact. Useful inputs for
the task include multiple alignment profiles, 1D predictions such as secondary structure
and solvent accessibility, and correlated mutations [ALBK87]. Correlated mutations are
co-variations of residues in different positions of a given sequence, that can occur during
evolution and can be detected by sequence alignments. The rationale behind their usage
in contact maps prediction is that correlated mutations should involve pairs of residues
which are close in space in the folded protein.

In order to exploit the information contained in the graph structure of contact maps,
specific algorithms for discrete structured data [FGS98] have been recently proposed. A
GIOHMM [PB02] is a generalization of IOHMM (or recurrent neural networks) which
allows to propagate information from all four cardinal corners. It’s employed to model
the spatial context of the pair of residues under investigation. A bi-recursive neural net-
work [VF03] is a generalization of recursive neural networks able to treat undirected graphs,
such as those induced by contact maps. The network is trained to learn a scoring function
for candidate maps, and used to guide a search in the space of possible contact maps.
Given the computational overhead of this last method, it has been currently applied to a
reduced 2D prediction task, namely coarse contact map prediction [VF03]. Coarse con-
tact maps are maps between segments of secondary structure, representing their 3D spatial
proximity. Such maps are by far smaller than fine grained contact maps, and more complex
algorithms can thus be employed on them.

4.3.3.3 Predictions in 3D

Ab initio protein structure prediction by free energy minimization at atomic level is compu-
tationally not feasible, and several simplification techniques have been proposed to address

PROTEIN STRUCTURE 87

Protein Structure Prediction

the problem.
Firstly, reduced representations both of the protein to be modeled and the conforma-

tional space to be searched are employed. For example, side chains can be collapsed in
either their centroid or their beta carbon [SKHB97], and a limited set of naturally observed
conformations (the rotamers [JK94]) are searched. 1D and 2D predictions can be employed
to obtain restraints on tertiary structure [OKR+99], as well as sets of possible representa-
tions of sequence segments, inducing a reduced search space given by the combinations of
such segments [SKHB97, BSB01].

Secondly, in order to assign a score to candidate representations of the protein structure,
approximations of their free energy have to be computed. Molecular mechanics potentials
are based on physical and chemical interactions [vG93], while mean force potentials [Sip95,
SW92] are empirically derived from known structures. Energy functions combining both
kinds of potentials have been also developed [ON97], providing an interesting research
direction for the improvement of free energy function approximations.

Finally, different search methods have been developed in order to allow a broad and
fast search of the conformational space. Search moves involving large perturbations of the
candidate structure were implemented with Monte Carlo simulated annealing [SKHB97]
as well as genetic algorithms [PM97]. Rosetta [SKHB97, BSB01] employs a simulated
annealing procedure to assembly structures from fragments, thus moving between different
local structures by inserting different fragments.

For a review of current ab initio methods and their prospects in protein structure
prediction see [SSB01, CRBB03].

PROTEIN STRUCTURE 88

Chapter

5
Disulphide Bonding State Prediction

Cysteine is the most reactive of all natural amino-acids, and it performs a wide variety
of roles in biological systems, mostly related to its capacity to covalently bind another
cysteine residue forming a disulphide bridge. Recent researches enlightened the role of
this residue in determining both prokaryotes and eukaryotes response to oxidative stress
(see [LJ03] for a review), which is a major factor of ageing [FH00] as well as of various
diseases including cancer [KJ01]. However, the best-known property of cysteines is that
of stabilizing protein structure [WWNS00, Pai00, Bet93, ea89] by forming intra or inter
chain disulphide bridges which lower the free energy of folded proteins. Therefore, by
correctly predicting the pattern of disulphide bridges in a protein with unknown structure,
strong constraints over its three dimensional structure are obtained, which can significantly
help the overall folding prediction. Disulphide bridges prediction can be divided in two
steps. Firstly, the bonding state of each cysteine in a given sequence is predicted, as
either reduced or oxidized, the latter meaning that it is involved in a disulphide bridge.
Secondly, the connectivity pattern between oxidized cysteines is predicted, pairing each
bonded cysteine with its correct partner. We will see in chapter 6 that some cysteines
not forming disulphide bridges actually are non-free, and bind different ligands usually
containing metals. While this particular situation will be addressed there, in the present
chapter we are only interested in disulphide bonded cysteines, and will include ligand
bonded cysteines within the class of free ones.

DISULPHIDE BONDING STATE PREDICTION 89

Disulphide Bonds Formation

Figure 5.1. Ball-&-stick representation of a disulphide bridge: the bridge is drawn as a cylinder
connecting the sulphur atoms of two oxidized cysteines.

5.1 Disulphide Bonds Formation

Disulphide bridges are covalent bonds formed between pairs of oxidized cysteines (see
fig 5.1), according to the following hypothetical reaction scheme

2CH2SH + 1/2 O2 ⇀↽ CH2SSCH2 + H2O (5.1)

Such reaction requires an oxidative environment, and Anfinsen and his group actually
observed [AHSW61] in vitro disulphide bond formation in presence of oxygen. However,
such reaction requires hours or days of incubation, while in vivo disulphide bridge formation
takes seconds or minutes. More recent researches (see [FG03, RB98, KKB03, RB01] for
reviews) have showed that such reactions occur within pathways involving enzymes acting
as catalysts for oxidation, reduction and isomerization reactions (see fig. 5.2). Most of these
enzymes share a conserved CXXC motif (two cysteines separated by two other residues) and
a common three dimensional fold called thioredoxin fold. The proportion between the
reduced and oxidized forms of such oxidoreductases in a particular location of the cell
determines its environmental conditions.

Cytosolic proteins usually do not have disulphide bridges, suggesting that the cytosol
should have a reducing environment. Two reducing systems have been actually detected
in the cytosol of E.coli [RB01]: the thioredoxin system, composed of two thioredoxins with
their thioredoxin reductase, and the glutaredoxin system, composed of three glutaredoxins,
a glutathione and the glutathione reductase (see fig. 5.3). Thioredoxins reduce disulphide
bridges in cytosolic proteins, and are in turn reduced by thioredoxin reductase, which
gets the necessary electron from NADPH (see fig 5.3(a)). In a similar but slightly more
complex fashion (see fig. 5.3(b)), glutathione attacks a protein disulphide bond forming a
protein-Glu mixed disulphide, which is in turn reduced by glutaredoxins forming a Grx-Glu

intermediate, subsequently reduced by a second molecule of glutathione. The resulting
Glu-Glu complex is finally reduced by glutathione reductase. The ratio of reduced to
oxidized glutathione in the cytosol is about 200 to 1.

DISULPHIDE BONDING STATE PREDICTION 90

Disulphide Bonds Formation

S

S

Enzime

SH

SH

S S

SH

HS

Enzime

S

S

HS

HS
Enzime

(a) Oxidation

S

S

HS

HS
Enzime

S S

SH

HS

Enzime

SH

SH

S

S

Enzime

(b) Reduction

HS

Enzime

HS

HS
Enzime

S

S
S

S

HS

HS
Enzime

S

S

S

S
S

S
S

S S

(c) Isomerization

Figure 5.2. Schematic reactions between enzyme oxidoreductase and chain in oxida-
tion (a), reduction (b) and isomerization (c), involving the formation of a temporary
mixed enzyme-protein disulphide bond.

DISULPHIDE BONDING STATE PREDICTION 91

Disulphide Bonds Formation

S
S

SH

SH

S S

HS

SH

S

S

NADP+NADPH

HS

HS

HS

HS

Reductase

Trx

Trx

TrxTrx

Thioredoxin

(a) Thioredoxin System

Glu

SHSH

Grx

S
S

GluHS

Glu

Glu
SH

SH
SH

Grx

S S

SH

GluHSGlu

Glu GluS S

SHSH

Grx

S S

S

SH

NADP+

NADPH

Glutathione
Reductase

(b) Glutaredoxin System

Figure 5.3. Reducing systems in cytosol of E.coli : the thioredoxin system (a) employs
thioredoxin enzymes (Trx) to reduce disulphide bonded cysteines in a chain, and
thioredoxin reductase to reduce the resulting oxidized enzyme, taking an electron
from NADPH. The glutaredoxin system (b) employs the molecule glutathione (Glu)
to form a protein-Glu mixed disulphide, which is reduced by glutaredoxin enzymes
(Grx). The resulting Grx-Glu intermediate is in turn reduced by a second molecule
of glutathione, and the Glu-Glu complex is finally reduced by glutathione reductase,
again taking an electron from NADPH.

Conversely to cytosol, disulphide bridge formation usually takes place in the periplasm
of prokaryotes and in the endoplasmic reticulum (ER) of eukaryotes. While the process has
been roughly determined in the former case for E.coli (see fig. 5.4), some missing steps have
to be discovered in the latter (see fig. 5.5). Both processes involve protein disulphide bond
formation catalysed by an oxidoreductase (DsbA in periplasm and PDI in ER) which is in
turn re-oxidized by a recharging mechanism, which has not yet been entirely determined in
the case of eukaryotes. Moreover, both processes contain a mechanism to correct misfolded
proteins, either by rearranging the incorrect bridge (the so-called isomerization) or by
reducing it, a step which again has not been completely explained in the ER case.

As a consequence of the environment dependent mechanisms of disulphide bridge for-
mation, cytosolic and nuclear proteins usually do not contain disulphide bridges, while
prokaryotic periplasmic proteins as well as eukaryotic proteins belonging to the secretory
pathway (passing through the ER) are typically stabilized by disulphide bridges.

DISULPHIDE BONDING STATE PREDICTION 92

Disulphide Bonds Formation

Reductase
Thioredoxin

NADPHNADP+

SH SH

DsbC/G/E

S

DsbC/G/E

S

S S SH SH

DsbA DsbA

protein
Unfolded

protein
Native

protein
Misfolded

DsbDDsbBUbiquinone Menaquinone

S S

S S

SH SH

CYTOSOL

PERIPLASM

2e−

2e−

2e−2e−

Trx Trx

S S SH SH

2e−

Figure 5.4. Model for disulphide bridge formation in the periplasm of E.coli [FG03].
A solid line indicates oxidation of the molecule originating the line, while a dashed
line stands for reduction. The dotted line indicates an isomerization reaction, which
does not involve a net change in redox state. Unfolded proteins are oxidized by the
enzyme DsbA, which is in turn reoxidized by transferring electrons to dsbB within a
respiratory chain. Misfolded proteins are either refolded by isomerization or unfolded
by reduction, both tasks being accomplished by DsbC,DsbG and DsbE, which are in
turn reduced by the thioredoxin-system dependent membrane reductase DsbD.

DISULPHIDE BONDING STATE PREDICTION 93

Cysteine Bonding State Prediction

Figure 5.5. Model for disulphide bridge formation in the endoplasmic reticulum
of S.cerevisiae [FG03]. A solid line indicates oxidation of the molecule originating
the line, while a dashed line stands for reduction. The dotted line indicates an
isomerization reaction, which does not involve a net change in redox state. Unfolded
proteins are oxidized by the enzyme PDI, which is in turn reoxidized by peripheral
membrane proteins ERO1α and ERO1β, whose recharging mechanism has not been
completely explained. PDI is also involved in correcting misfolded proteins, and is
supposed to be implied in their possible unfolding, but this last capacity has not
been proved.

5.2 Cysteine Bonding State Prediction

The first step in predicting disulphide bridges in a given protein is that of identifying
oxidized cysteines which are involved in disulphide bridge formation. Due to the environ-
mental conditions discussed in the previous section, most cysteines within a given protein
usually share the same redox state, either reduced (ab. 64%) or oxidized (ab. 26%), while
only a small fraction (ab. 10%) of known protein structures contain both cases together.
In the following paragraph we will give an overview of the different approaches proposed
for bonding state prediction, while the rest of the section will discuss the algorithms we
developed for the task (see [FPV02, CFPV03b, CFPV04]).

DISULPHIDE BONDING STATE PREDICTION 94

Cysteine Bonding State Prediction

5.2.1 Overview of Current Methods

The program CYSPRED developed by Fariselli et al. [FRC99] (accessible at http://gpcr.
biocomp.unibo.it/predictors/cyspred/), uses a neural network with no hidden units,
fed by a window of 2k + 1 residues centered around the target cysteine. Each element
of the window is a vector of 20 components (one for each amino acid) obtained from
multiple alignment profiles. This method achieved 79% accuracy (correct assignment of
the bonding state) measured by 20-fold cross validation and using a non-redundant set of
640 high quality proteins from PDB Select [HS94] of October 1997. Accuracy was boosted
to 81% using a jury of six networks. Still, the bonding state of each cysteine is assigned
independently.

Fiser & Simon [FS00] later proposed an improvement based on the observation that
cysteines and half cystines 1 rarely co-occur in the same protein. In their algorithm, if a
larger fraction of cysteines are classified as belonging to one class, then all the remaining
cysteines are predicted in the same state. The accuracy of this method is as high as
82%, measured by a jack-knife procedure (leave-one-out applied at the level of proteins)
on a set of 81 protein alignments. This result suggests that a good method for classifying
proteins in two classes is also a good method for predicting the bonding state of each
cysteine, even though in this way the accuracy for proteins containing both cysteines
and half cystines is sacrificed. The program, called CYSREDOX, is accessible at http:

//pipe.rockefeller.edu/cysredox/cysredox.html.
Later, Mucchielli-Giorgi et al. [MGHT02] have proposed a predictor that exploits both

local context (a window centered around the target cysteine) and global protein descriptors.
Interestingly, they found that in absence of evolutionary information, prediction of covalent
state based on global descriptors was more accurate (77.7%) than prediction based on
local descriptors alone (67.3%). Their best predictor, based on a multiple classifier reaches
almost 84% accuracy measured by 5-fold cross-validation on a set of 559 proteins from
Culled PDB.

We developed a different approach [FPV02, CFPV03b] for exploiting the key fact that
cysteines and half cystines rarely co-occur. Prediction in this case is achieved by using
two cascaded classifiers. The first classifier predicts the type of protein based on the whole
sequence. Classes in this case are “all”, “none”, or “mix”, depending whether all, none, or
some of the cysteines in the protein are involved in disulphide bridges. The second binary
classifier is then trained to selectively predict the state of cysteines for proteins assigned to
class “mix”, using as input a local window with multiple alignment profiles. The method
achieves an accuracy of 85% as measured by 5-fold cross validation, on a set of 716 proteins
from the September 2001 PDB Select dataset [CFPV03b].

Shortly after, Malaguti et al. [MFMC02] have proposed yet another approach where
the disulphide bonding state is predicted as in CYSPRED but predictions are then refined
using a Hidden Markov Model [Rab89] trained to recognize the stochastic language that
describes the alternate presence of bonding and non-bonding cysteines along the sequence.
This improved method achieved the performance level of 88% correct prediction measured

1a cystine is the dimer formed by a pair of disulphide-bonded cysteines.

DISULPHIDE BONDING STATE PREDICTION 95

Cysteine Bonding State Prediction

by 20-fold cross validation on a non redundant dataset.
In the following we describe the architecture we developed in [FPV02, CFPV03b] to-

gether to a global refinement stage [CFPV04], either by BRNN or by the HMM employed
in [MFMC02] 2. In the case of BRNN refinement, a final stage with a finite state automata
(FSA) was also employed to force consistent predictions, reaching the best performances
to date.

5.2.2 Output-Local Predictor

We denote by Yi,t a binary random variable associated with the bonding state of cysteine
at position t in protein i. For each protein, the available features consist of:

• a vector W k
t representing the input-local context of cysteine t; this is a window of

size 2k + 1 centered around position t, enriched with evolutionary information in the
form of multiple alignment profiles;

• a vector Di representing a global set of attributes (or descriptors) for protein i; in the
simplest case this may consist of amino acid frequencies but more complex descriptors
will be used in the following (see section 5.2.2.3);

By comparison, note that traditional feedforward neural network approaches predict
the bonding state using input-local information W k

t only [FRC99].
We are interested in building a model for P (Yi,t = 1|Di,W

k
t). For each protein, let Ci

be a three-state variable that represents the propensity of the protein to form disulphide
bridges. The possible states for Ci are “all”, “none”, and “mix”, depending whether all,
none, or some of the cysteines in the protein are involved in disulphide bridges. After
introducing Ci, the model can be decomposed as follows:

P (Yi,t|Di,W
k
t) =

∑

Ci

P (Yi,t|Di,W
k
t , Ci)P (Ci|Di,W

k
t). (5.2)

We can simplify the above model by introducing some conditional independence as-
sumptions. First, we assume that the type of protein Ci depends only on its descriptor:
P (Ci|Di,W

k
t) = P (Ci|Di). Second, we simplify equation (5.2) by remembering the seman-

tics of Ci:

P (Yi,t = 1|Di,W
k
t , Ci = all) = 1

P (Yi,t = 1|Di,W
k
t , Ci = none) = 0

(5.3)

(this can be seen as a particular form of context-specific independence [BFGK96]). As
a result, the model in equation (5.2) can be implemented by a cascade of two classifiers.
Intuitively, we start with a multiclass classifier for computing P (Ci|Di). If this classifier

2Results for HMM filtering are obtained in collaboration with the laboratory of biocomputing, CIRB,
University of Bologna, Italy

DISULPHIDE BONDING STATE PREDICTION 96

Cysteine Bonding State Prediction

predicts one of the classes “all” or “none”, then all the cysteines of the protein should
be classified as disulphide-bonded or non-disulphide-bonded, respectively. If instead the
protein is in class “mix”, we refine the prediction using a second (binary) classifier for
computing P (Yi,t|Di,W

k
t , Ci = mix). Thus the prediction is obtained as follows (see also

fig. 5.6):

P (Yi,t = 1|Di,W
k
t) = P (Yi,t = 1|Di,W

k
t , Ci = mix)P (Ci = mix|Di)

+P (Ci = all|Di) (5.4)

By comparison, note that the method in [FS00] cannot assign different bonding states
to cysteine residues in the same sequence.

k

k

Di
Wit

Yit Wit Di iC =mix

Yit Wit DiP(| ,)

...KKRCLQATLTQDSTYGNEDCLYLNIWVPQGRKEVSHD...

...K RC+Q L Q T G EDCLYLNIWVPQG VS ...

...

...KKRCLQAT+TQDSTYG+EDCLYLNIWVPQGRK+VS D...

Ci Di mix
none
all

1 0 P(| , ,)

P(|)

Figure 5.6. The two-stage system. The protein classifier on the left uses a global descriptor
based on amino acid frequencies. The local context classifier is fed by profiles derived from
multiple alignments together with protein global descriptor.

5.2.2.1 Implementation using probabilistic SVM

The architecture in fig. 5.6 is implemented using combinations of support vector machines.
In their standard formulation SVM output hard decisions rather than conditional prob-
abilities. However, margins can be converted into conditional probabilities in different
ways both in the case of binary classification [Kwo99, Pla00] and in the case of multiclass
classification [PPF02] (see section 3.1.1). The method used here extends the algorithm
presented in [Pla00], where svm margins are mapped into conditional probabilities using a
logistic function, parameterized by an offset B and a slope A:

P (Ci = 1|x) =
1

1 + exp(−Af(x) − B)
(5.5)

DISULPHIDE BONDING STATE PREDICTION 97

Cysteine Bonding State Prediction

In [Pla00], parameters A and B are adjusted according to the maximum likelihood
principle, assuming a Bernoulli model for the class variable. This is extended here to the
multiclass case by assuming a multinomial model and replacing the logistic function by a
softmax function [Bri89]. More precisely, assuming Q classes, we train Q binary classifiers,
according to the one-against-all output coding strategy. In this way, for each point x, we
obtain a vector [f1(x), · · · , fQ(x)] of margins, that can be transformed into a vector of
probabilities using the softmax function as follows:

gq(x) = P (C = q|x) =
eAqfq(x)+Bq

∑Q
r=1 eArfr(x)+Br

(5.6)

The softmax parameters Aq, Bq are determined as follows. First, we introduce a new
dataset {(f1(xi), . . . , fQ(xi), zi), i = 1, . . . ,m} of examples whose input portion is a vector
of Q margins and output portion is a vector z of indicator variables encoding (in one hot)
one of Q classes. As suggested in [Pla00] for the two classes case, this dataset should be
obtained either using a hold-out strategy, or a k-fold cross validation procedure. Second, we
derive the (log) likelihood function under a multinomial model, and search the parameters
Aq and Bq that maximize

ℓ =
∑

i

Q
∑

q=1

zq,i log gq(xi) (5.7)

where zq,i = 1 if the i-th training example belongs to class q and zq,i = 0 otherwise.

5.2.2.2 A Fully-Observed Mixture of SVM Experts

While the above method yields multiclass conditional probabilities it does not yet imple-
ment the model specified by equation (5.4). We now discuss the following general model,
that can be seen as a variant of the mixture-of-experts architecture [JJNH91]:

P (Y = 1|x) =

Q
∑

q=1

P (C = q|x)P (Y = 1|C = q, x) (5.8)

In the above equation, P (C = q|x) is the probability that q is the expert for data
point x, and P (Y = 1|C = q, x) is the probability that x is a positive instance, according
to the q-th expert. Collobert et al. [CBB02] have recently proposed a different SVM
embodiment of the mixture-of-experts architecture, the main focus in their case being on
the computational efficiency gained by problem decomposition. Our present proposal for
cysteines is actually a simplified case since the discrete variable C associated with the gating
network is not hidden3. Under this assumption there is no credit assignment problem and
a simplified training procedure for the model in equation (5.8) can be derived as follows.

3Actually the architecture in fig. 5.6 for cysteines is even simpler since two of the experts output a
constant prediction.

DISULPHIDE BONDING STATE PREDICTION 98

Cysteine Bonding State Prediction

Let f ′
q(x) denote the margin associated with the q-th expert. We may obtain estimates

of P (Y = 1|C = q, x) using a logistic function as follows:

pq(x) = P (Y = 1|C = q, x) =
1

1 + exp(A′
qf

′
q(x) + B′

q)
. (5.9)

Plugging equations (5.6) and (5.9) into equation (5.8), we obtain the overall output
probability as a function of 4Q parameters: Aq, Bq, A

′
q, and B′

q. These parameters can be
estimated by maximizing the following likelihood function

ℓ =
m

∑

i=1

1 − yi

2
log

(

Q
∑

q=1

gq(xi)pq(xi)

)

(5.10)

The margins to be used for maximum likelihood estimation are collected by partitioning
the training set into k subsets. On each iteration all the 2Q SVMs are trained on k − 1
subsets and the margins computed on the held-out subset. Repeating k times we obtain
as many margins vectors (f1(x), · · · , fQ(x), f ′

1(x), · · · , f ′
Q(x)) as training examples. These

vectors are used to fit the parameters Aq, Bq, A
′
q, and B′

q. Finally, the 2Q machines are
re-trained on the whole training set.

5.2.2.3 Spectrum Kernel

The ultimate goal of predicting the bonding state of cysteines is the location of disulphide
bonds, a structural feature which depends on the properties of possibly very distant por-
tions of the sequence. Therefore, it might be useful to adopt computational approaches
which can exploit the whole sequence as input. Besides standard kernels, which are nat-
urally limited to process fixed sized numerical inputs, convolution kernels (see sec. 2.5.2)
allow to process structured data. The spectrum kernel [LEN02] is a convolution kernel spe-
cialized for string comparison problems, which has been successfully employed in remote
homology detection (see sec. 4.3.2).

Given all the possible strings of size k in a certain alphabet A, the k-spectrum of a
sequence s is the vector Φk(s) of the number of times each string of length k is contained
in the sequence. The k-spectrum kernel is then defined as the scalar product of the feature
vectors Φk corresponding to the two sequences. While the feature space has a very large
dimension these feature vectors are extremely sparse. In effect there exists a very efficient
method to compute the kernel that makes use of suffix trees.

Suffix trees [Gus97] are particular data structures that can be extremely useful and
efficient in solving various problems of string matching. A suffix tree for a given string
s of size m is a tree with exactly m leaves, where each path from the root to a leaf is a
suffix of the string s. The suffix tree for the string s can be constructed in O(m) time
using Ukkonen’s algorithm [Ukk95]. In our case, a suffix tree can be used to identify all
the substrings of size k contained in the given sequence, simply following all the possible
paths of size k starting from the root of the tree. Moreover, the problem of calculating the
number of occurrences of each substring can be solved just counting the number of leaves

DISULPHIDE BONDING STATE PREDICTION 99

Cysteine Bonding State Prediction

in the subtree that starts at the end of the corresponding path. Given that the number of
leaves of the tree is simply the size of the represented string, we have a linear-time method
to calculate the k-spectrum of a string.

Further modifications are needed to avoid the need of directly calculating the scalar
product of the two feature vectors for the computation of the kernel. A generalized suffix
tree is a suffix tree constructed using more than one string [Gus97]. Given a set of strings
there exists a variant of Ukkonen’s algorithm that can build the corresponding generalized
suffix tree in a time linear in the sum of the sizes of all the strings. A generalized suffix
tree can be used to calculate the k-spectrum kernel at once, just traveling the tree in a
depth first manner and counting the number of occurrences of every substring of size k in
all the strings.

Interestingly, descriptors based on amino acid frequencies as defined in [MGHT02],
basically correspond to the use of a spectrum with k = 1. Augmenting the feature space
by incorporating short subsequences increases the expressive power of the model and may
improve prediction accuracy, if k is carefully chosen and enough training sequences are
available. A more general form of the spectrum kernel can also be constructed summing
the values of some k-spectrum kernels for certain values of k. No modifications of the
presented algorithm are needed, given that all the k-spectrum kernels with different k can
be calculated at once with a single visit of the tree.

5.2.3 Output-Global Refiners

Local predictions were refined by a global stage, taking as input the vector of probabilistic
predictions for all cysteines of a given sequence. Global refinement has been success-
fully employed in protein structure prediction tasks such as secondary structure prediction
(see section 4.3.3.1), and proved to be very effective in bonding state predictions refine-
ment [MFMC02]. The problem can be seen as that of translating an input vector (the
vector of local predictions) into an equal size output one (that of globally refined predic-
tions). Such task is rather hard to address by kernel machines, and no general approach has
been developed so far. However, connectionist models [FGS98] offer a powerful method-
ology to treat both discrete structured data and input output isomorph problems. We
implemented different refinement architectures, either by bi-recurrent neural networks or
by hidden Markov models as proposed in [MFMC02].

5.2.3.1 Hidden Markov Models

The HMM proposed in [MFMC02] is a modified version of HMM able to handle probability
vectors as those provided by the local output architecture. Consider a sequence of T vectors
of size A. We refer to this sequence vector with the notation:

I(1), . . . , I(T) = (I1(1), . . . , IA(1)), . . . , (I1(T), . . . , IA(T))). (5.11)

DISULPHIDE BONDING STATE PREDICTION 100

Cysteine Bonding State Prediction

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

END

BEGIN

Cysteine

Free

States

Cysteine

Bonded

States

Figure 5.7. The four-state HMM constraining bonded cysteines in a sequence to an even
number. States on the left are non-bonding cysteine states, while states on the right are
bonded cysteine ones. The end state can only be reached by paths containing an even number
of bonded cysteines.

The components of each vector I(t) are positive and sum to a constant value M (indepen-
dent of the position t). A sequence vector based HMM is composed of S states connected
by means of the transition probabilities aij, where each state emits a vector of size A. The
probability density function for the emission of a vector from each state is determined by
a number A of parameters that are peculiar for each state k and are indicated with the
symbols ek,h (with h = 1, . . . , A):

P (I(t)|s(t) = k) =
1

Z

∑

h

Ih(t)ek,h (5.12)

where s(t) is the t-th state in the path, and the normalization parameter Z is indepen-
dent of the state and of the values of the sequence vector (see [MFKC02a] for a proof).

In our refinement task, the sequence vector is the vector of local predictions for a
given protein chain, T is the number of cysteines in the chain, and each vector has two
components (A=2) corresponding to the predicted probabilities of free and bonding state,
respectively. The HMM is composed of a Markov model with four states connected as
shown in figure 5.7. The four states are the minimum number of states required to constrain
to an even number the paired cysteines in a chain, and the model actually allows to reach
an end state only if the path contains an even number of bonded states/cysteines.

Training the HMM parameters is accomplished by using a modified Expectation-Maximi-
zation algorithm [MFKC02a]. Globally refined predictions for all cysteines within a given
chain are obtained by the maximum likelihood path in the HMM as computed by the
Viterbi algorithm [Rab89].

DISULPHIDE BONDING STATE PREDICTION 101

Cysteine Bonding State Prediction

5.2.3.2 Bidirectional Recurrent Neural Networks

A bidirectional recurrent neural network (BRNN) is a noncausal dynamical system with a
factorized hidden state space. The model was first proposed in the context of prediction
of protein secondary structure [BBF+99] and is described by the following set of equations

F (t) = φ(F (t − 1), I(t), θφ)
B(t) = β(B(t + 1), I(t), θβ)
O(t) = η(F (t), B(t), I(t), θη)

(5.13)

where F (t) ∈ IRn and B(t) ∈ IRm are two real vectors, φ(·) and β(·) are nonlinear
transition functions (realized by two feedforward neural networks with shared weights θφ

and θβ, respectively) and I(t) is a real vector that encodes the input at sequence position
t. O(t), the output at position t is an adaptive function η(·) of the state variables and the
current input, realized by a feedforward neural network with weights θη.

opy opy
q�1

Ft Bt

Bt+1Ft�1

�(:) �(:)
�(:)

q+1

Ot

It
Figure 5.8. A BRNN architecture realizing a noncausal IO-isomorph transduction.

An example of architecture implementing such equations is shown in figure 5.8, where
all feed forward neural networks have a single hidden layer, and the output at position
t is represented by a single value Ot. The forward hidden state F (t) is copied back to
the input of φ(·), as graphically represented by the causal shift operator q−1. Therefore,
F (t) can be interpreted as an adaptive memory that summarizes information about the
inputs I(1), . . . , I(t). Similarly, the backward hidden state B(t) is copied to the input of
β(·), as shown by the noncausal shift operator q+1, and it summarizes information about
I(t), . . . , I(T), being T the total length of the input sequence. As a result, each output
O(t) depends on the entire input sequence. The above equations are completed by the two
boundary conditions F (0) = B(T + 1) = 0. In the same way as traditional feedforward
neural networks can be interpreted as a model of the conditional distribution of outputs

DISULPHIDE BONDING STATE PREDICTION 102

Cysteine Bonding State Prediction

given the inputs (both real vectors), BRNN can be interpreted as a model of the conditional
distribution of output sequences given input sequences. Under this interpretation, the
network is trained by a maximum likelihood procedure. The optimization problem can be
solved by gradient descent where the gradient of the likelihood with respect to all the free
parameters θφ, θβ, and θη is computed by a generalization of the backpropagation through
time algorithm.

In our application to global refinement of cysteine bonding state predictions, sequence
positions t correspond to the ordinal numbers assigned to each cysteine in a given chain,
starting from its C-terminus, and T is the total number of cysteines in the chain. The
input vector I(t) for the t-th cysteine is represented by the local prediction for the cysteine,
possibly enriched with contextual information.

5.2.4 Data Preparation

All the experiments were performed using 4136 protein segments containing cysteines (free
and disulphide-bonded, or half cystines). Sequences were taken from the crystallographic
data of the Brookhaven Protein Data Bank [BBB+02]. Disulphide bond assignment was
based on the Define Secondary Structure of Proteins (DSSP) program [KS83b]. Non-
homologous proteins (with an identity value < 25 % and without chain breaks) were
selected using the PAPIA system (www.cbrc.jp/papia/papia.html). Cysteines forming
inter-chain disulphide bonds are included as ’free’ cysteines in the database (30 cysteines
extracted from 23 monomeric chains and amounting to 0.76% of the total number of cys-
teines), in order to obtain an even number of bonded cysteines for chain and also simplify
the subsequent connectivity prediction stage (see section 5.3). After this filtering proce-
dure, and after removing trivial segments containing a single cysteine, the total number of
proteins is 780, with 3935 cysteines, 1446 of which were in the disulphide-bonded state and
2489 of which were in the non disulphide-bonded state. For each protein in our database, a
profile based on a multiple sequence alignment was created using the PSIBLAST [AMS+97]
program on the non-redundant Swiss-Prot+TrEMBL dataset of sequences.

5.2.4.1 Input Encoding

The descriptor Di described in [FPV02] is a real vector with 24 components, similar to the
one used in [MGHT02]. The first 20 components are log(N j

i /N
j), where N j

i is the number
of occurrences of amino acid type j in protein i and N j is the number of occurrences of
amino acid type j in the whole training set. The 21st component is log(Ni/Navg) where
Ni is the length in residues of sequence i and Navg is the average length of the proteins in
the training set. The next two components are N cys

i /N cys
max and N cys

i /Ni where N cys
i and

N cys
max are respectively the number of cysteines in protein i and the maximum number of

observed cysteines in the training set. The last component is a flag indicating whether the
cysteine count is odd.

The local input window W k
t is represented as the set of multiple sequence profile vectors

DISULPHIDE BONDING STATE PREDICTION 103

Cysteine Bonding State Prediction

of the residues flanking cysteine at position t. In the experiments, we used a symmetrical
window centered at each cysteine varying the window size parameter k from 7 to 9. Note
that although the central residue is always a cysteine, the corresponding feature is still
taken into account since the profile in this case indicates the degree of conservation of the
cysteine. For each of the 2k + 1 positions we used a vector of 22 components, enriching
the 20-components profile with relative entropy and conservation weight.

5.2.4.2 Cysteines Conservation

Cysteines tends to be conserved in multiple alignments when they form disulphide bridges.
In the experiments reported below, we made available this information to the output-local
stage in two ways. First, we defined an extended descriptor with H additional components
related to the conservation of cysteines. For h = 0, . . . , H − 1, the h-th extra component is
the fraction of cysteines in the sequence whose multiple alignment conservation falls in the
bin [h/H, (h + 1)/H]. This global descriptor is fed to the binary classifier together with
the local window. Second, we defined a special sequential representation of the proteins
that incorporates evolutionary information. In this representation a protein is a string
in an extended alphabet having 19+Z symbols, where occurrences of C (cysteine) are
replaced by a special symbol that indicates the degree of conservation of the cysteines
in the corresponding positions of multiple alignments. For example if Z = 2, one symbol
encodes highly (> 50%) conserved cysteines and another one encodes lowly conserved ones.
We employed such extended alphabet for the none-all-mix classifier implemented with the
Spectrum kernel.

5.2.5 Results

Table 5.1 shows comparative experimental results for the various implementations. In all
the experiments we estimated prediction accuracy by a 20-fold cross-validation procedure.
The quantities of interest for measuring the performance of the classifier are:

• Q2 the classification accuracy measured as the fraction of cysteines correctly assigned
to their disulphide bonding state

• Qp the fraction of sequences for which each cysteine is assigned to the correct disul-
phide bonding state.

Results are reported for different sizes of the local input window k, ranging from 7 to
9. All the values are enriched by the 95% confidence interval computed on the results of
the 20-fold cross-validation.

5.2.5.1 Output-local experts

A preliminary model selection phase was conducted in order to choose the appropriate
kernel type (for the binary classifier) and hyperparameters.

DISULPHIDE BONDING STATE PREDICTION 104

Cysteine Bonding State Prediction

Table 5.1. Summary of the experimental results.
k = 7 k = 8 k = 9

Method Q2 Qp Q2 Qp Q2 Qp

Loc29 86±1 69±3 87±1 70±3 86±1 70±3
S24 86.5±1 71±3 87±1 72±3 86.5±1 71±3

HMM Loc29 88±1 82±3 88±1 82±3 88±1 82±3
HMM S24 88±1 83±3 88±1 82.5±3 88±1 83±3
BRNN Loc29 86±1 73±3 86.5±1 73±3 87±1 73±3
BRNN S24 87±1 75±3 87±1 75±3 87±1 74±3
BRNN Loc29+f 89±1 79±3 89±1 80±3 89±1 79±3
BRNN S24+f 89±1 80±3 89±1 80±3.1 89±1 78±3

BRNN S24+f FSA 89±1 82±3 89±1 83±3 89±1 82±3

We first report the results obtained by using only a single stage method, named Loc29
(first row in Table 1), constituted by the SVM classifier with third degree polynomial
kernel, taking as input the window and the 29 symbols protein descriptors.

In S24 we added the second stage classifier which uses the spectrum kernel operating
on sequences. The spectrum kernel is calculated summing over all the subsequence lengths
from 2 to 5. Softmax parameters (see equations (5.6) and (5.9)) were estimated by 3-
fold cross validation (inside each fold of the outer 20-fold cross-validation), after kernel
parameter estimation.

The accuracy of these methods at the single cysteine level, Q2, is encouragingly high.
In particular, SVM with a spectrum kernel outperforms all previously published methods,
with the exception of the one reported in [MFMC02], which uses HMM to refine neural
network predictions. Not surprisingly, however, accuracy at the whole protein level, Qp is
not particularly high since SVM predict each cysteine independently. The following exper-
iments show that HMM and BRNN used to refine SVM prediction produce a significant
improvement of Qp and also improve Q2.

5.2.5.2 Filtering with HMM

The vector-based HMM described in section 5.2.3 analyses the local outputs, constraining
the overall system to predict an even number of cysteines in the bonding state in each given
chain, independently of the number of cysteines in the protein. The HMM thus outputs the
most probable sequence of cysteine labels consistent with the regular grammar induced by
the trained model, given the local predictions. The advantage of this refinement procedure
is particularly evident when comparing performance at the protein level, where accuracy is
increased of more than 10 percentage points regardless of the type of algorithm employed
for local predictions (see rows three and four in table 5.1).

DISULPHIDE BONDING STATE PREDICTION 105

Cysteine Bonding State Prediction

5.2.5.3 Filtering with BRNN

BRNN can develop complex nonlinear and noncausal dynamics that can be used to correct
output-local prediction by trying to capture globally valid sequences of cysteine bonding
states. Input sequences I(t) are relatively short (from 2 to 20 elements) since they are
obtained by looking at cysteines only. In this setting, vanishing gradients do not represent
a problem for training.

In a preliminary tuning phase, we ran the model varying the architectural parameters.
The results showed in table 5.1 are for a BRNN having forward and backward state vectors
of dimension n = m = 2. The feedforward neural networks implementing transition
functions φ(·) and β(·) and the output function η(·) have no hidden units. In order to
control overfitting and to stop the learning process, we added a penalty (regularization)
term to the cross-entropy function used for binary classification problems. Rows labeled
as ‘BRNN Loc29’ and ‘BRNN S24’ in table 5.1 show prediction accuracies obtained using
the prediction of the corresponding SVM as a single scalar input I(t) to the BRNN.

In a second set of experiments, we provided the BRNN with a richer input I(t) com-
prising SVM prediction and a vector of local features encoding cysteine conservation in
multiple alignments (encoded in a 5-dimensional vector whose positions correspond to five
degrees of conservation). Results (reported in rows labeled as ‘BRNN Loc29+f’ and ‘BRNN
S24+f’) show a significant improvement of accuracy at the protein level. Using this setting
we obtained the best accuracy (89%) at the cysteine level.

5.2.5.4 Combining BRNN and HMM Advantages

The two refinement methods proposed obtain significant improvements over local pre-
dictions. However, they provide different advantages, as the HMM results in the best
predictions at a protein level (Qp), while the BRNN obtains the best performances at a
cysteine level (Q2). Moreover, the architecture employing BRNN can still produce incon-
sistent labelling, that is chains containing an odd number of bonded cysteines. In order to
combine the advantages of the two filtering procedures, we could add the HMM filter to
the output of the BRNN one. However, in order to control the parameters of the overall
architecture and avoid overfitting, and considered that the BRNN already implements a
global refinement, an easier filter can be realized, which does not need to be trained, and
simply ensures the consistence of the final output. Such finite state automaton (FSA) has
the same states and allowed transitions of the HMM in figure 5.7, but all transitions have
the same probability, and emission probabilities for a given state are a delta Dirac over
the bonding/non-bonding emission for bonding and non-bonding states respectively (see
fig. 5.7). The most probable path for a given vector of predictions can then be computed by
the Viterbi algorithm [Rab89]. A similar approach for ensuring consistencies in secondary
structure predictions was proposed in [CFPV03a] (see section 4.3.3.1). Results for such
postprocessing applied to the output of the best BRNN architecture are reported in the
last row of table 5.1, and obtain the best performances both in cysteine (Q2) and protein
(Qp) accuracy. The best overall results are obtained for k = 8, and confusion matrices

DISULPHIDE BONDING STATE PREDICTION 106

Cysteine Bonding State Prediction

at protein class level (none/all/mix) for the architecture both before (BRNN S24+f) and
after (BRNN S24+f FSA) the post-processing are reported in tables 5.2(a) and 5.2(b)
respectively.

None All Mix
None 463 21 18

TrueAll 25 160 18
Mix 40 22 13

Predicted

None All Mix
None 471 24 7

TrueAll 32 164 7
Mix 42 6 27

Predicted

(a) (b)

Table 5.2. Confusion matrices at protein class level (none/all/mix) for the ’BRNN S24+f’
architecture with k = 8 both before (a) and after (b) post-processing by FSA.

The effect of the FSA post-processing is entirely related to mix predictions: it allows to
turn part of the false mix proteins into none or all, and to correct inconsistent all predic-
tions (with an odd number of bonded cysteines) into mix by swapping the least confident
prediction. Note that while a correct all/none assignment implies correct prediction for all
the cysteines in the chain, a correct mix assignment gives no information on predictions
at cysteine level for the chain. Actually, only two of the true mix predicted by ’BRNN
S24+f FSA’ also have correct assignments at cysteine level, and thus contribute to the
overall protein accuracy (Qp). On the other hand, the post-processing allows to correctly
predict cysteines in eleven mix chains, all of them being chains with an odd number of
cysteines and just one free cysteine. A detailed inspection of such cases shows two main
reasons explaining why the error is actually the least confident prediction of the BRNN
(thus allowing the FSA to correct it):

• The cysteine was predicted as bonded with the smallest confidence already by the
local-output stage, and most of the times it is actually poorly conserved.

• For long chains, there is a preference in swapping the label of one of the two extreme
cysteines, that is the ones nearest to the N or the C terminus.

Finally, by looking at the prediction of the BRNN over the 30 cysteines involved in
interchain bonds (here treated as ’free’ cysteines), we note that 16 of them are actually
predicted as bonded, showing that they often share the same characteristics of intrachain
bonded ones. The advantages of forcing an even number of bonded cysteines in a chain,
both in allowing constraint application and in simplifying the subsequent connectivity
prediction stage, amply compensate such systematic errors. However, a finer architecture
would be required in order to take into consideration this additional degree of complexity.

DISULPHIDE BONDING STATE PREDICTION 107

Connectivity Prediction

5.3 Connectivity Prediction

Once the set of disulphide bonded cysteines within a chain has been identified, the correct
connectivity pattern has to be predicted, by pairing each oxidized cysteine with its bonded
counterpart.

The problem has been addressed in [FC01] by representing a given chain by a fully
connected weighted graph G = (V,E), with a number of vertices |V | equal to the number
of oxidized cysteines in the chain. The weight on the edge Eij connecting two oxidized
cysteines i and j represents their interaction potential. The task is that of finding the
maximum weight perfect matching in G, that is the subset of edges E∗ ⊂ E such that each
pair of vertices in G is connected by one and only one edge, and which maximizes the sum
of the weights of the edges. The perfect matching problem can be solved in polynomial time
using linear programming, while the computation of the interaction potentials has been
initially addressed by simulated annealing [FC01] and subsequently improved by using
neural networks [FMC02].

State-of-art performances have been obtained in [?], with an algorithm analogous to
the one employed for coarse contact maps prediction (see sec. 4.3.3.2). The problem is cast
into the task of learning a scoring function computing the similarity between the correct
connectivity graph and all possible candidate graphs, and using it to recover the maximal
score graph for a given chain. The scoring function is represented by a bi-recursive neural
network, taking as input for each vertex the context of the corresponding cysteine in the
form of a multiple alignment profile, and information on the length of the chain and the
relative position of the cysteine within it.

The available methods for connectivity prediction are limited to chains containing a
number of bridges B not greater than five, as the search space dimension, given by (2B −
1)!!, is too huge for a higher number of bridges. However, the vast majority of the chains
respect this limitation, as less then 10% of the disulphide-bonded chains in Swiss-Prot have
more than five bridges.

5.4 Conclusions

Prediction of disulphide bridges is an important step towards overall protein structure
prediction, as disulphide bridges impose strong constraints on the chains three-dimensional
structure. The task has been typically divided into two subsequent steps. Firstly, predict
the bonding state of each cysteine within a given chain as either reduced or oxidized.
Secondly, given the subset of oxidized cysteines, predict their connectivity pattern, that
is the correct pairing between a cysteine and its disulphide bonded partner. Concerning
bonding state prediction, we have presented state-of-art algorithms reaching an accuracy
as high as 89% at a cysteine level, and 83% at a protein level, where a protein is considered
correctly predicted if all its cysteines have been predicted in the correct bonding state.
Such methods consist of a local prediction stage, and a global refinement stage. The
former takes as input a window of multiple alignment profiles around a target cysteine, as

DISULPHIDE BONDING STATE PREDICTION 108

Conclusions

well as a global descriptor containing information on the entire sequence, and outputs a
probability estimate for the cysteine being in a bonding state. The latter takes as inputs
the local predictions for all cysteines in a given chain and outputs refined predictions by
propagating information all along the chain. The number of bonded cysteines in a chain can
be constrained to be even, either directly in the refinement stage or by post-processing the
outputs with a finite state automata, the latter method resulting in slightly better overall
performances. However, systematic errors on small but important sets of proteins are still
committed. The only cases in which the architecture is able to correctly predict a mix
protein, that is a protein with both bonded and free cysteines, are proteins containing an
odd number of cysteines, only one of which being non-bonded. Such correct mix predictions
are typically obtained thanks to the constraints which force an even number of bonded
cysteines in the predictions, as the non-bonded cysteine is usually predicted as the one with
the lowest probability of being bonded. However such constraints, together to the necessity
to simplify the successive connectivity prediction task, force the method to consider the
rare interchain bonded cysteines as free, even if they contribute to overall protein structure
stability, and often share similar characteristics with intrachain bonded ones, as highlighted
by the fact that they are often predicted as bonded by the unconstrained algorithm.

Anyway, it seems that no significant further improvement is possible using the same
type and quantity of inputs as those employed so far. More sources of information have to
be sought and more accurate biological knowledge of cysteine function should be plugged
into the models, in order to obtain a significant improvement over the state-of-art. Recent
researches enlightened the variety of roles that cysteines play in biological systems (see
[GWG+03] for a review), the most important being driven by disulphide bridge formation
and ligand binding, that is formation of bonds between cysteines and various ligands typ-
ically containing metal groups, such as heme groups and iron-sulfur clusters. In the next
chapter, we will address the problem of discriminating between disulphide bond and ligand
bond cysteines, in order to provide additional and more accurate information useful to help
protein structure prediction as well as experimental structure determination methods.

Concerning disulphide connectivity prediction, recent analyses seem to suggest that the
most important features for the task are the position of the cysteines within the sequence,
their relative distance as well as the overall length of the chain, which tend to be more
informative with respect to cysteine context and evolutionary information. We are investi-
gating the possibility to develop ad hoc kernels able to fully exploit this kind of information
in order to improve predictive performances in this task.

DISULPHIDE BONDING STATE PREDICTION 109

Chapter

6
Cysteine Binding Types Prediction

Non-free cysteines that are not involved in the formation of disulphide bridges usually bind
prosthetic groups that include a metal ion and that play an important role in the function
of the protein. The discrimination between the presence of a disulphide bridge (DB) or a
metal binding site (MBS) in correspondence of a bound cysteine is often a necessary step
during the NMR structural determination process of metalloproteins, and its automation
may significantly help toward speeding up the overall process. Several proteins are known
where both situations are in principle plausible and it is not always possible to assign a
precise function to each cysteine. For example the mitochondrial copper metallochaperone
Cox17 contains six cysteines but it is not precisely known which ones are actually involved
in metal binding [HGGW01]. Another example is the inner mitochondrial membrane
protein sco1p that contains a CXXXC motif and experimental evidence that leads us to
believe it is involved in copper transport, but whose fold similarity to a thioredoxin fold
would conversely suggest a catalytic activity [Chi00, BBB+03].

In addition to the above motivations, the discrimination between DB and MBS may
help toward a more accurate prediction of the disulphide bonding state of cysteines (see
chapter 5). A potential direction that we are currently investigating is that of firstly
predicting the subcellular location [NBvH99, ENBvH00, NR03a] of a given protein. For
proteins (or parts of proteins in the case in integral membrane ones [RCFS95, CE99,
MFKC02b, CR02]) staying in an oxidizing environment, well conserved cysteines are mostly
involved in some type of binding, and the problem can be cast into that of discriminating
between disulphide bond and ligand bond cysteines.

Many different post-translational modifications have been observed or supposed for
cysteines [GWG+03], and various biological mechanisms exist in order to incorporate metal-
containing groups in proteins [KH04]. Metallochaperones are metal-binding proteins which

CYSTEINE BINDING TYPES PREDICTION 110

Data Preparation

deliver the appropriate metal cofactor to the target ligand. They often contain flexible
metal-bindings, which can possibly form disulphide bonds in the oxidized apo (metal-free)
form, as has been observed in vitro for Atx1 [RHH+99]. Cytochrome c in E.coli binds
a heme group by covalent bonds between two cysteine residues in a CXXCH motif (where
X stands for any residue) and two vinyl groups in the heme. However, when the early
synthesized apoprotein emerges into the oxidizing environment of the periplasm, dsbA
oxidizes the two cysteines which form a disulphide bridge (see fig. 5.4), successively reduced
in order to allow them to react with the heme. Therefore, the presence of a metal group
binding site involving a cysteine does not imply that the cysteine cannot be involved in a
disulphide bridge in the apo form of the protein.

In some well known cases, the presence of a binding site for a prosthetic groups can
be detected by inspecting the consensus pattern that matches the portion of the protein
sequence containing the target cysteine. For example the 4Fe-4S ferredoxin group is asso-
ciated with the pattern C-X(2)-C-X(2)-C-X(3)-C-[PEG] [OO87]. Many of these patterns
are highly specific but there are well known examples of false positives. For example, the
C-{CPWHF}-{CPWR}-C-H-{CFYW} consensus pattern is often correctly associated with a cy-
tochrome c family heme binding site [Mat85], but the rate of false positives for this pattern
is very high. In addition, there are cases of cysteines involved in a MBS and having no
associated pattern.

To our knowledge, no predictive method has been proposed to directly address the
problem of discriminating between ligand bonded and disulphide bonded cysteines. The
methods and results presented in this chapter are based on [?]. We formulate the prediction
task as a binary classification problem: given a non-free cysteine and information about
flanking residues, predict whether the cysteine can bind to a prosthetic group containing
a metal ion (positive class) or it is always bound to another cysteine forming a disulphide
bridge (negative class).

Firstly, we suggest a nontrivial baseline predictor based on PROSITE [FPB+02] pat-
tern hits and the induction of decision trees using the program C4.5 [Qui93]. Secondly,
we introduce a classifier fed by multiple alignment profiles and based on support vector
machines. We show that the latter classifier is capable of discovering the large majority of
the relevant PROSITE patterns, but is also sensitive to signal in the profile sequence that
cannot be detected by regular expressions and therefore outperforms the baseline predictor.

6.1 Data Preparation

The data for cysteines involved in disulphide bridge formation were extracted from PDB
[BBB+02]. We excluded chains if:

• the protein was shorter than 30 residues;

• it had less than two cysteines;

• it had cysteines marked as unresolved residues in the PDB file;

CYSTEINE BINDING TYPES PREDICTION 111

PROSITE Patterns as a Baseline

The data for metal binding sites were extracted from Swiss-Prot version 41.23 [BBA+03],
since PDB does not contain enough examples of metal ligands. In this case we included
all entries containing at least one cysteine involved in a metal binding, regardless of
the annotation confidence. In this way examples of bindings with iron-sulfur clusters
(2FE2S,3FE4S,4FE4S), copper, heme groups, iron, manganese, mercury, nickel and zinc
were obtained.

Intra-set redundancy due to sequence similarity was avoided by running the UniqueProt
program [MR03] with hssp distance set to zero. Inter-set redundancy however was kept
in order to handle proteins with both disulphide bridges and metal bindings. It must be
remarked that while inter-set redundancy can help the learning algorithm by providing
additional data for training, it cannot favorably bias accuracy estimation since redundant
cases should be assigned to opposite classes. The number of non-homologous sequences
remaining in the datasets are shown in table 6.1, together with the number of cysteines
involved in disulphide bridges or metal bindings. Free cysteines were ignored.

Sequences # Cysteines
Disulphide Bridges 529 2860
Metal Bindings 202 758

Table 6.1. Non homologous sequences obtained by running uniqueprot [MR03] with hssp
distance set to zero. Sequences containing disulphide bridges were obtained from resolved
proteins in PDB [BBB+02], while those with metal bindings were recovered from Swiss-Prot
version 41.23 [BBA+03] by keyword matching.

6.2 PROSITE Patterns as a Baseline

In this section we establish a procedure to compute a baseline accuracy for the addressed
prediction task. In general, the base accuracy of a binary classifier is the frequency of
the most common class. For the data set described above the base accuracy is 84.4%. In
total absence of prior knowledge a predictor that performs better than the base accuracy
is generally considered as successful. However:

• it must be remarked that, especially for highly unbalanced datasets, precision/recall
rates are also needed in order to have a correct view of the classifier performance.

• for the specific task under investigation, several well known consensus patterns exist
that are associated with disulphide bridges and with metal binding sites. These
patterns partially encode expert knowledge and it seems reasonable, when possible,
to make use of them as a rudimentary prediction tool.

Thus, in order to compare our prediction method with respect to a more interesting
baseline than the mere base accuracy, we extracted features that consist of PROSITE
[FPB+02] pattern hits.

CYSTEINE BINDING TYPES PREDICTION 112

Prediction by Support Vector Machines

A PROSITE pattern is an annotated regular expression that describes a relatively
short portion of a protein sequence that has a biological meaning. We run the program
ScanProsite [GGB02] on the data set described above searching for patterns listed in the
release 18.18 (December 2003) of PROSITE. In this way we found 199 patterns whose
matches with the sequences in our data set contain the position of at least one bound
cysteine. About 56% of the cysteines bound to a metal group and about 41% of the
cysteines forming disulphide bridges matched at least one PROSITE pattern. Many of the
patterns associated with DB have perfect (100%) specificity but each one only covers a very
small set of cases. Overall, the fraction of disulphide-bond cysteines matched by a perfectly
specific pattern is about 26%. Patterns associated with MBS have a significantly higher
coverage, although their specificity is perfect only about 18% of the times and sometimes
is low. We remark that in our context a metal binding pattern is perfectly specific if
every match is actually a metal binding site, regardless of the metal group involved in
the bond. Thus, examples of perfectly specific patterns associated with MBS include
PS00198 (4Fe-4S ferredoxins iron-sulfur binding region), PS00190 (Cytochrome c family
heme-binding site), and PS00463 (Fungal Zn(2)-Cys(6) binuclear cluster domain). To
further complicate the scenario, 12% of the bound cysteines match more than one pattern.
For these reasons, a prediction rule based on pattern matches is difficult to craft by hand
and we used the program C4.5 to create rules automatically from data. C4.5 induces a
decision trees from labeled examples by recursively partitioning the instance space, using
a greedy heuristic driven by information theoretic considerations [Qui86]. Rules are then
obtained by visiting the tree from the root to a leaf. When using C4.5, each bound cysteine
was simply represented by the bag of its matching patterns.

6.3 Prediction by Support Vector Machines

The SVM algorithm is capable of handling extremely numerous and sparse features, thus
allowing us to exploit a wide local context surrounding the cysteine under investigation. In
particular, we provided information in the form of a symmetric window of 2k+1 residues,
centered around the target cysteine, with k varying from 1 to 25. In order to include
evolutionary information, we coded each element of the window by its multiple alignment
profile computed with PSIBLAST [AMS+97].

Preliminary model selection experiments were conducted in order to choose the appro-
priate kernel, together with its hyperparameters. In subsequent experiments we employed
third degree polynomial kernels, with offset equal to one, fixed regularization parameter
given by the inverse of the average of K(x, x) with respect to the training set, and distinct
penalties [Joa98a] for errors on positive or negative examples, in order to rebalance the
different proportion of examples in the two classes (see table 6.1).

Different amino acid exchanges within sequences are more or less neutral in terms of
structural and functional preservation. This observation led to the creation of various
exchange matrices which are commonly employed in sequence alignment algorithms. Such
matrices can be directly derived from chemico-physical properties of the amino acids, as

CYSTEINE BINDING TYPES PREDICTION 113

Results and Discussion

for the McLachlan similarity matrix [McL72], or extracted from sequence databases, as for
the Blosum substitution matrices [HH92]. These are based on log odds ratios of observed
to expected alignment probabilities between pairs of residues, and are derived from blocks
of aligned sequence segments. Different identity percentages in clustering sequences within
a block produce different matrices, and the Blosum62 matrix showed the best results in
sequence alignment [HH93].

In order to include this similarity information in the learning algorithm, we implemented
a new kernel in which the dot product between xi and xj is mediated by a matrix M :

K(xi, xj) = (xT
i Mxj + 1)3. (6.1)

Note that the standard polynomial kernel amounts at choosing M to be the identity
matrix. In order for equation (6.1) to be a valid kernel, matrix M has to be symmetric
positive definite (see section 2.4.1). We tried the McLachlan matrix, , which already
satisfies such condition, and the Blosum62 one, that turned out to be positive definite
after normalizing each element as (Mrc − min)/(max − min) where max and min are
computed over the entire matrix. A similar approach [GLV04] was recently applied to
secondary structure prediction (see section 4.3.3.1).

6.4 Results and Discussion

Test performances were calculated by three fold cross validation: proteins were divided in
three groups, maintaining in each group approximately the same distribution of disulphide
bridges and different kinds of metal binding sites.

Precision (%) Recall (%) Bridge Metal
Bridge 84 99 2845 15

True
Metal 93 27 556 202
Accuracy 84.2 Predicted

Table 6.2. Disulphide bridge vs metal binding prediction by decision rules learned by c4.5 from
patterns extracted from PROSITE. Precision and recall for both classes, confusion matrix and
overall accuracy.

The confusion matrix for PROSITE induced rules is shown in table 6.2. It must be
observed that the accuracy in table 6.2 is an optimistic upper bound of the true predictive
power of this method with respect to future sequences. This is because PROSITE patterns
have been designed to minimize the number of false hits and missed hits by actually
inspecting the available sequence databases.

Results for the polynomial kernel are reported in figure 6.1. Train and test accuracies
are plotted for growing size of the context window, with error bars for 95% confidence
intervals, together to the fraction of support vectors over the train examples in the learned

CYSTEINE BINDING TYPES PREDICTION 114

Results and Discussion

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 10 15 20 25

Test accuracy
Train accuracy

support vectors / # train examples

Figure 6.1. Disulphide bridge vs metal binding prediction by SVM with 3rd degree polynomial
kernel. Test and train accuracies with 95% confidence intervals are plotted, together to the
fraction of support vectors over the number of training examples, for growing sizes of the
window of 2k+1 residues profiles around the target cysteine, with k going from 1 to 25.
Results are averaged over a three fold cross validation procedure.

Precision (%) Recall (%) Bridge Metal
Bridge 91 90 2588 272

True
Metal 65 67 247 511
Accuracy 86 Predicted

Table 6.3. Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel SVM.
Window of 3 residues profiles on both sides of the target cysteine. Precision and recall for both
classes, confusion matrix and overall accuracy.

models, which roughly indicates the complexity of the learned models and is a loose upper
bound on the leave one out error (see sec. 2.2.4). The most evident improvement in test
accuracy is obtained for a window of size k=3, and corresponds to the global minimum
in the model complexity curve with about 56% of training examples as support vectors.
Detailed results for such window are reported in table 6.3, showing they are obtained for an
approximate break-even point in the precision recall curve. A deeper analysis of individual
predictions showed that the vast majority of predictions were driven by the presence of
a well conserved CXXC pattern, taken as the indicator of a metal binding. This explains
the high rate of false MBS compared to the total number of MBS examples, being most
of them cysteines containing the pattern but involved in disulphide bridges, while most of
the false DB are metal bindings missing it. The learned pattern is actually very common
for most bindings involving iron-sulfur, iron-nickel and heme groups, and these kinds of
metal binding are actually predicted with the highest recall.

The best accuracy is obtained for a window of size k=17, corresponding to about 87%
of examples as support vectors. Detailed results are reported in tables 6.4 and 6.5, showing
a strong reduction of false MBS at the cost of a slight increase in the number of metal

CYSTEINE BINDING TYPES PREDICTION 115

Results and Discussion

Precision (%) Recall (%) Bridge Metal
Bridge 91 97 2788 72

True
Metal 87 61 292 466
Accuracy 90 Predicted

Table 6.4. Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel SVM.
Window of 17 residues profiles on both sides of the target cysteine. Precision and recall for
both classes, confusion matrix and overall accuracy.

Ligand # examples Recall (%)
Cysteine 2860 97.5
Metal 758 61.4

4FE4S 250 71.6
Zinc 156 38.5
Heme 139 87.8
2FE2S 91 58.2
Copper 50 38.0
Iron 26 42.3
3FE4S 25 48.0
Nickel 13 76.9
Mercury 7 00.0
Manganese 1 00.0

Table 6.5. Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel SVM.
Window of 17 residues profiles on both sides of the target cysteine. Recall and number of
examples for cysteine (disulphide bridge) or metal ligand, and details for different kinds of
metal binding.

bindings predicted as disulphide bridges. Sequence logos [SS90] for cysteine context in the
case of metal bindings (figure 6.2(upper)) show a well conserved CXXCXXC pattern, which
is common in 4FE4S clusters, and the CXXCH pattern typical of heme groups, but also the
presence of CG patterns in positions as distant as nine residues from the target cysteine.
Disulphide bridge contexts are much more uniform (see figure 6.2(lower)), but show a strong
tendency for polar aminos, especially glycine, cysteine and serine all along the window. This
finding agrees with previous observations for smaller sizes of the cysteine context [FRC99],
as well as with observations relating bridges to secondary structure [FS00], showing that
bridges tend to connect coil regions together or a coil region to a more regular region such
as an alpha helix or a beta strand.

CYSTEINE BINDING TYPES PREDICTION 116

Results and Discussion

Metal Binding Sites

0

1

2

3

4

bi
ts

N -1
7WMYHF

Q
C
P
N
R
D
S
L
I

G
V
T
K
A
E

-1
6WHMC

F
P
Q
Y
T
N
I

D
R
V
S
E
K
L
G
A

-1
5WMHYF

C
N
P
Q
T
S
R
I
V
E
L
G
D
K
A

-1
4XWHMP

C
F
Q
Y
N
R
T
V
S
L
K
I

D
G
A
E

-1
3MWH

C
Y
F
N
Q
T
I
S
G
R
P
D
V
K
E
A
L

-1
2WMYQ

H
C
P
F
T
R
N
I
S
V
K
L
G
A
D
E

-1
1XWHMN

Q
Y
C
P
F
T
R
D
I
L
S
E
V
G
K
A

-1
0MWFQ

I
N
H
R
T
Y
V
S
P
D
G
K
E
C
A
L

-9

WMCH
N
Y
Q
R
F
P
T
S
V
I
A
G
D
K
E
L

-8

XWMFT
H
R
Q
N
C
Y
S
P
I

D
L
V
K
E
A
G

-7

WMH
N
I

Q
P
Y
F
R
T
V
S
K
D
A
E
C
L
G

-6

WMHF
Y
N
Q
T
P
S
D
I

R
A
L
E
V
K
C
G

-5

WHFMQ
Y
R
C
T
N
D
P
S
E
I

K
L
A
G
V

-4

WMH
P
Q
F
I
Y
N
R
E
S
V
D
A
T
K
L
C
G

-3

XWF
M
H
Q
Y
N
D
L
E
I

R
P
T
A
K
V
S
G
C

-2

XHWFM
Y
C
Q
R
N
I
T
E
P
L
V
K
D
S
A
G

-1

WCMP
H
Y
F
I

Q
D
E
L
N
R
K
T
V
S
A
G

0

C
1WCYFM

E
D
L
Q
N
R
K
V
S
I
T
A
P
G
H

2WMFP
H
C
Q
Y
I

R
L
D
V
E
K
N
T
S
A
G

3WQ
M
Y
H
L
I
F
D
N
E
K
R
P
T
V
S
A
G
C

4WMFYQ
E
D
P
S
T
R
N
L
K
I
V
A
C
H
G

5WMFQHY
T
D
C
I

N
R
V
K
S
E
L
A
P
G

6WMHYQ
F
I
P
R
L
N
D
V
T
S
G
A
E
K
C

7WMYF
H
P
Q
R
T
N
E
D
I

K
S
L
V
C
A
G

8XWYMHQI
N
F
C
R
T
V
K
G
S
D
E
L
P
A

9WMHF
Q
Y
C
P
R
S
L
T
N
I

K
V
A
D
E
G

10

XWFHMYT
R
Q
N
P
L
I

D
V
E
S
A
K
C
G

11

XWHYNM
Q
F
R
C
T
I

D
S
V
E
K
G
L
A
P

12

MWHQC
F
S
R
N
Y
T
P
E
A
I

G
L
D
V
K

13

XWMHFC
Y
Q
V
R
I

N
S
P
T
L
D
E
A
K
G

14

XMHWQ
Y
F
C
N
R
T
P
G
S
D
V
I

K
E
A
L

15

WMHQCY
F
T
N
R
P
I
S
D
V
A
L
G
K
E

16

WMHFC
Y
Q
V
N
S
D
I

R
L
P
T
E
G
A
K

17

MWQHC
Y
R
F
D
N
I
P
V
K
G
T
S
E
A
L

C

Disulfide Bridge

0

1

2

3

4

bi
ts

N -1
7XWMHYF

I
R
Q
K
P
N
V
A
D
T
L
C
E
S
G

-1
6XWMHFI

Y
Q
R
K
D
N
V
P
T
E
L
A
S
G
C

-1
5XWMHY

F
Q
R
I

D
K
N
T
P
V
E
L
A
S
C
G

-1
4XMWHY

Q
F
E
I

N
V
P
R
D
L
K
A
S
T
C
G

-1
3XMWHF

Q
I
Y
R
D
P
N
K
T
V
S
E
A
L
C
G

-1
2XMWHF

Y
I

Q
N
R
E
D
V
P
K
L
A
T
S
C
G

-1
1XMWHF

Y
Q
R
I

K
N
E
D
P
T
S
A
V
L
C
G

-1
0XMWHY

F
Q
I

R
D
N
E
T
V
P
K
A
L
S
C
G

-9

XMWHF
I
Y
Q
P
R
N
E
V
D
T
C
K
L
A
S
G

-8

XWMHQ
F
I

R
Y
V
E
N
D
P
K
C
T
A
L
S
G

-7

XMHWF
Q
Y
R
I

N
V
K
D
A
P
E
L
T
S
C
G

-6

XWMHY
F
I

Q
V
R
E
P
N
L
A
T
K
S
D
C
G

-5

MWHF
Y
Q
I

D
R
L
K
N
E
V
T
P
C
A
G
S

-4

XWMHQ
F
Y
I

R
P
D
E
N
K
V
L
T
C
A
S
G

-3

XMWHI
F
Y
C
Q
P
E
L
R
D
N
V
A
K
T
S
G

-2

XWMHIF
Y
Q
R
C
E
V
N
P
D
T
K
L
A
S
G

-1

XMWHF
I
Y
C
Q
N
P
E
V
L
R
D
A
K
G
S
T

0

C
1XWMHF

Y
I
C
Q
N
V
D
L
E
A
R
T
K
P
G
S

2XMWHF
Q
Y
I
V
C
R
D
T
L
E
N
K
A
P
S
G

3XMWHF
Q
Y
I
C
R
E
V
D
K
N
T
L
P
A
S
G

4XMWHI
Q
F
Y
R
V
N
P
E
D
L
C
T
K
A
S
G

5XWMHFY
I

Q
V
R
E
D
N
L
P
T
A
C
S
K
G

6XMWHF
Q
I
Y
V
N
D
R
E
A
P
L
K
T
S
C
G

7XMWHQ
F
E
I
Y
N
R
V
K
D
P
T
A
L
S
G
C

8XMWHQ
F
Y
R
I
L
D
E
A
P
N
T
C
V
K
S
G

9XMWHF
Q
I
Y
N
R
E
P
D
V
C
A
K
T
L
S
G

10

MHWF
Y
Q
R
I

D
N
V
E
P
K
A
L
T
S
C
G

11

XMWHF
Q
Y
N
I

R
E
P
V
D
K
T
A
L
C
G
S

12

XMWHFQ
Y
I

P
D
R
N
E
V
T
L
A
K
C
S
G

13

XMWHQ
F
I
Y
P
E
N
R
V
A
L
T
D
K
G
S
C

14

XMHWQ
F
Y
I

R
P
D
N
A
K
E
V
T
C
L
S
G

15

XWMHQ
F
Y
N
I

R
D
E
P
V
K
L
T
S
A
C
G

16

XMWHYF
I

Q
N
E
V
P
D
A
K
R
L
T
S
G
C

17

XMWHF
Q
I
Y
N
R
V
E
D
P
K
T
A
C
L
S
G

C

Figure 6.2. Sequence logos [SS90] of context of cysteines involved in metal bindings
(upper) and disulphide bridges (lower) respectively, with a window of 17 residues on
each side of the bond cysteine. Hydrophobic residues are shown in black, positively
charged residues are blue and negatively charged are red, while uncharged polar
residues are green.

CYSTEINE BINDING TYPES PREDICTION 117

Results and Discussion

True Positive MBS

0

1

2

3

4

bi
ts

N -1
7WCMYHIFQNSRLPGTDKE

A
V

-1
6WHMCNYFSQIPDRVTGELKA

-1
5CWYMHFNQRPITSKGV

E
D
L
A

-1
4WHMCYFNPQTRISVKGE

D
L
A

-1
3MWHNYCPISFTDQVRKGELA

-1
2CWMYHQPFRNGTISLKV

E
D
A

-1
1WCMHQFNPYSIDTRK

E
L
V
G
A

-1
0MWFIVYPHNQTLSGCKERDA

-9

CWMYQFHIPLTNVRSK
G
D
E
A

-8

WFCMQYPHSINTLDVR
A
E
K
G

-7

MNWQFTHCRIYDPGSKLEAV

-6

WMFCYTRPISHNLDGQVAEK

-5

CWMQFYRNSHTDEPG
K
A
I
L
V

-4

WMPQTCHSRNELAVIGKFYD

-3

WYIMHFNTSGQ
L
D
V
R
K
P
E
A
C

-2

WCMHRFYNTIPQSV
K
A
E
L
D
G

-1

WCMFPHYQGID
L
E
S
N
R
T
K
V
A

0QMHIREYWNKPGFDVTA
L
S

C
1FWYCMDNHREL

K
V
Q
S
T
P
G
I
A

2WPMFCYRIHVQKE
L
D
N
T
S
A
G

3WMP
Q
N
D
S
I
E
L
Y
K
H
T
V
G
A
F
R
C

4WYFRD
M
N
T
P
Q
E
I
S
K
C
V
L
A
G
H

5WFMYHCQDINPEKVRT
L
S
A
G

6WMYHIRFNL
Q
D
K
T
V
S
P
E
G
A
C

7WCHFMQRPYKTNSI
E
L
A
G
D
V

8WHQMIYFRVCNTPKDAESL
G 9WYHMFQRNLSIPCDTKG
E
V
A

10

WFYNMQHDT
P
R
S
I
L
K
E
V
A
G
C

11

WHNQRYCIFT
K
M
E
S
D
G
V
L
A
P

12

WMHCQNYRFSIKPLEDTVA
G

13

WMHCQRYIFTSNELKV
D
P
A
G

14

HWMCQYFNSTPREDKLIGVA

15

WMHQCYFNVTPKRSIADL
E
G

16

WHCMFYQNRVISADTP
K
L
E
G

17

MCYFWQHINKTPRVGSDEAL

C

False Negative MBS

0

1

2

3

4

bi
ts

N -1
7WMYHQNPFDSCRTEIKAG

V
L

-1
6WHPMNYCFTSVDQIRLKEAG

-1
5WMHQPYINTCRFDVSLEKGA

-1
4WHMNQCRFYGSKTVPDIEAL

-1
3HWMYFNTCIRSPQGDVKEAL

-1
2MWQYHPIFCNTSRDLKGVEA

-1
1WYQFMHNPRTDICKSGEVLA

-1
0MWCNQHYFDIRTSPVEKAGL

-9

WHMYQCTRFKNISDVPLAGE

-8

WFHMYRQTNPICSKLVDEAG

-7

WMYHQCFNKITRDSEVPLG
A

-6

WMHNYQRFDPETACSIGKVL

-5

WHNMFSQPYKDCRITELGAV

-4

WHQMEYNFDCKRTPIGLVSA

-3

WHDMFYQEPNKSTGALIVR
C

-2

WHMFNIQCYRVEKDTASLGP

-1

WMYHQCEIPDRKNTFGSLAV 0WKHMQEPY
R
G
F
N
I
L
T
V
D
A
S

C

1WFCMYNDQEHIRS
K
V
T
L
A
G
P

2WFMYNHIRPQEDSKCVTLAG 3WQMYDIKNFHEVTSARLPCG 4WFMDYQIHNRVSECKTLP
A
G

5WHMQYNFRPTIKDAVSECLG 6WMQHYFPDNRIVEACTSKGL 7CWMYHRNQFDPKTILVESGA 8WMFYHCQRNTKISPGAVELD 9WFMHQYNRTSCPIVKDGALE

10

WMCHFYTQPRNIVGKDESLA

11

WMYHQNSRFKDTICPGVELA

12

MQHNWYFPCTRSKGVAEILD

13

WMCQHYFPDNIETRKVSGL
A

14

MYWHCNQFISDTRVPGAEKL

15

WMHQNIYTFVCRSAPGKDLE

16

MWHYFCPQDTVRSINAELKG

17

MWNQFCHRYIDTSEGVPAKL

C

Figure 6.3. Sequence logos [SS90] of 17 aminos context of cysteines that don’t
match any PROSITE pattern, and are either truly predicted as MBS (upper) or
mistakenly predicted as DB (lower) by an SVM with 3rd degree polynomial kernel.
Hydrophobic residues are shown in black, positively charged residues are blue and
negatively charged are red, while uncharged polar residues are green.

The model seems capable of exploiting very distant information, and it discovers almost

CYSTEINE BINDING TYPES PREDICTION 118

Results and Discussion

all rules induced by PROSITE patterns (see table 6.2), as only 13 over 202 metal bindings
are lost, while it also corrects 8 over 15 false metal bindings. Moreover, the SVM is capable
of discovering metal bindings sites where no pattern is available. In order to get some
insights on the reasons for these predictions, we collected all the MBS that do not contain
any pattern, and divided them into examples actually predicted as MBS by the SVM (true
positives) and examples wrongly predicted as DB (false negatives). Figures 6.3(upper)
and 6.3(lower) represent sequence logos for true positives and false negatives respectively,
where the logos are computed using the average of the PSI-BLAST profiles of all the
examples. Part of the correct predictions could be explained by the ability of the SVM
to actually recover continuous-valued patterns in the profiles. We conjecture that in some
other cases the predictor could have discovered potential consensus patterns that are still
not known.

Reported results are quite robust with respect to model regularization, controlled by
the cost parameter “C” in SVM. Figure 6.4 shows a test accuracy maximization obtained
by varying the regularization parameter: accuracies remain mostly within the confidence
interval from the maximum.

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.0001 0.001 0.01 0.1 1 10

T
es

t A
cc

ur
ac

y

Regularization Parameter

default regularization

Figure 6.4. Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel
SVM. Window of 17 residues profiles on both sides of the target cysteine. Test accuracies with
95% confidence intervals are plotted versus “C” regularization parameter of SVM. Default
regularization is computed as the inverse of the average of K(x, x) with respect to the training
set.

Table 6.6 shows test accuracies for different rejection rates, when predictions are to be
made only if they are over a certain confidence. A rejection of 15% of both positive and
negative test examples results in about 94% test accuracy, and predictions on disulphide
bridges tend to be much more confident than those on metal bindings, having a higher
threshold for equal rejection rate. Furthermore, metal bindings are rejected more frequently
with respect to their total number in the test set. A finer analysis shows that rejected metal
bindings are mostly those for which the model has low recall (see table 6.5), such as 3FE4S,
iron, mercury and zinc, while 4FE4S, heme and nickel are seldom rejected.

Figures 6.5(a) and 6.5(b) show precision/recall curves for disulphide bridges and metal

CYSTEINE BINDING TYPES PREDICTION 119

Results and Discussion

Threshold Bridge Metal Rejected (%)
Rejection (%) Bridge Metal Acc Pre Rec Pre Rec Bridge Metal

00 0 0 89.9 90.5 97.5 86.6 61.5 0.0 0.0
05 0.20845 0.0470436 91.8 92.7 97.6 86.9 67.4 02.8 12.9
10 0.340927 0.113824 93.0 93.8 97.9 88.5 71.5 07.1 20.8
15 0.436391 0.159688 94.0 94.8 98.1 89.3 75.2 11.4 28.2
20 0.506477 0.225416 94.4 95.2 98.2 90.3 76.6 16.5 33.0
25 0.56122 0.267722 95.2 95.9 98.4 91.1 79.5 21.3 38.8
30 0.609002 0.337221 95.7 96.1 98.8 93.4 80.8 26.6 42.3

Table 6.6. Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel SVM.
Window of 17 residues profiles on both sides of the target cysteine. Performances for different
rejection rates, where rejection percentage is computed separately for examples predicted as
disulphide bridges or metal bindings, in order to consider the unbalanced distribution of exam-
ples between the two classes (i.e. 5% rejection rate indicates that 5% of examples predicted as
disulphide bridges are to be rejected, as well as 5% of examples predicted as metal bindings).
Reported results include rejection thresholds, accuracies, precision and recall, and percentage
of rejected examples belonging to each of the two classes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

no rejection
rejection 5%

rejection 10%
rejection 15%

(a) Disulphide bridge prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R

ec
al

l

Precision

no rejection
rejection 5%

rejection 10%
rejection 15%

(b) Metal binding prediction

Figure 6.5. Disulphide bridge vs metal binding prediction by 3rd degree polynomial kernel SVM.
Window of 17 residues profiles on both sides of the target cysteine. Precision/recall curves
over the test set for different rejection rates for disulphide bridge (a) and metal binding (b)
prediction.

bindings respectively, for different rejection rates. The former tends slightly towards the
optimal curve at growing rejection rates, while the latter has a complementary behaviour
with respect to the break-even point: at higher precisions growing rejection rates result
in better performance, while at lower precisions performance for growing rejection rates
is affected by the greater quantity of metal bindings rejected with respect to disulphide
bridges.

Figure 6.6(a) shows results for growing size of the context window, for a third de-

CYSTEINE BINDING TYPES PREDICTION 120

Conclusions

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

Test accuracy
Train accuracy

support vectors / # train examples

(a) Polynomial Kernel with McLachlan Matrix

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

Test accuracy
Train accuracy

support vectors / # train examples

(b) Polynomial Kernel with Blosum62 Matrix

Figure 6.6. Disulphide bridge vs metal binding prediction by SVM with 3rd degree polynomial
kernel with McLachlan (a) or Blosum62 (b) similarity matrix. Test and train accuracies with
95% confidence intervals are plotted, together to the fraction of support vectors over the
number of training examples, for growing sizes of the window of 2k+1 residues profiles around
the target cysteine, with k going from 1 to 25. Results are averaged over a three fold cross
validation procedure.

gree polynomial kernel with McLachlan similarity matrix (eq. 6.1). While train and test
accuracies are similar to those obtained without the similarity matrix (figure 6.1), the cor-
responding models have less support vectors, with reductions up to 11% of the training set.
This behaviour is even more evident for the Blosum62 substitution matrix (figure 6.6(b))
where a slight decrease in test accuracy, still within the confidence interval, corresponds to
a reduction up to 30% of the training set. Note that the fraction of support vectors over
training examples is a loose upper bound on the leave one out error (see sec. 2.2.4), which
is an almost unbiased estimate of the true generalization error of the learning algorithm
(see sec. 2.1.4) . These kernels are able to better exploit information on residue similarity,
thus obtaining similar performances with simpler models. Moreover, the precision/recall
rate of the kernel with the Blosum62 matrix is much more balanced with respect to the
other two, meaning that it suffers less from the unbalancing in the training set.

6.5 Conclusions

Recent researches have shown that cysteines can undergo numerous post-translational mod-
ifications, apart from the most common thiol and disulfide oxidation states (see [GWG+03]
for a review). In particular, cysteines are well suited to bind various types of ligands, usu-
ally containing metal ions [KH04]. Learning to discriminate between ligand bond and
disulfide bond cysteines is an important step in understanding the function and struc-
ture of a given protein, and can help NMR structural determination of metalloproteins as
well as disulfide bridges prediction, when combined with algorithms predicting subcellular
localization of proteins.

CYSTEINE BINDING TYPES PREDICTION 121

Conclusions

We have proposed learning algorithms for predicting the type of binding in which non-
free cysteines are involved. The experimental results indicate that learning from multiple
alignment profiles data outperforms even non-trivial approaches based on pattern match-
ing, suggesting that relevant information is contained not only in the residues flanking
the cysteine but also in their conservation. In some cases the learning algorithm could be
actually exploiting in a probabilistic way patterns that are not yet listed in PROSITE,
although detecting them with few data points is difficult. In addition, we found that using
ad hoc kernels exploiting residue similarity matrices effectively reduces the complexity of
the model, measured by the number of support vectors, which is also an indication of the
expected generalization error. We expect that similar kernel functions could be also useful
for other predictive tasks both in 1D (e.g. solvent accessibility) and in 2D (e.g. contact
maps), especially if task-dependent similarity matrices could be devised.

CYSTEINE BINDING TYPES PREDICTION 122

Bibliography

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A basic
local alignment search tool. J Mol. Biol., 215:403–410, 1990.

[AHSW61] C.B. Anfinsen, E. Haber, M. Sela, and F.W Jr White. The kinetics of the
formation of native ribonuclease during oxidation of the reduced polypeptide
domain. Proc. Natl. Acad. Sci. USA, 47:1309–1314, 1961.

[Aka73] H. Akaike. Information theory and an extension of the maximum likelihood
principle. In Proc. Second International Symposium on Information Theory,
pages 267–281, 1973.

[ALBK87] D. Altschuh, A.M. Lesk, A.C. Bloomer, and A. Klug. Correlation of co-
ordinated amino acid substitutions with function in viruses related to tobacco
mosaic virus. J Mol. Biol., 193:693–707, 1987.

[Ama90] S.I. Amari. Mathematical foundations of neurocomputing. Proceedings of the
IEEE, 78(9):1443–1463, 1990.

[Ama98] S.I. Amari. Natural gradient works efficiently in learning. Neural Computa-
tion, 10:251–276, 1998.

[AMS+97] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D.J. Lipman. Gapped blast and psi-blast: a new generation of protein
database search programs. Nucleic Acids Res, 25(17):3389–3402, 1997.

[Anf73] C.B. Anfinsen. Principles that govern the folding of protein chains. Science,
181:223–230, 1973.

[Aro50] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc.,
686:337–404, 1950.

[ASS00] E. L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers. In Proc. 17th International Conf. on
Machine Learning, pages 9–16. Morgan Kaufmann, San Francisco, CA, 2000.

BIBLIOGRAPHY 123

[BB99] E.J. Bredensteiner and K.P. Bennet. Multicategory classification by support
vector machines. Computational Optimizations and Applications, 12:53–79,
1999.

[BBA+03] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher,
E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout,
and M. Schneider. The swiss-prot protein knowledgebase and its supplement
trembl in 2003. Nucleic Acids Res, 31(1):365–370, 2003.

[BBB+02] H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne,
K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin,
D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. D. West-
brook, and C. Zardecki. The protein data bank. Acta Cryst., D58:899–907,
2002.

[BBB+03] E. Balatri, L. Banci, I. Bertini, F. Cantini, and S. Ciofi-Baffoni. Solution
structure of sco1: a thioredoxin-like protein involved in cytochrome c oxidase
assembly. Structure, 11(11):1431–1443, November 2003.

[BBF+99] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. Exploiting the
past and the future in protein secondary structure prediction. Bioinformatics,
15(11):937–946, 1999.

[BCR84] C. Berg, J.P.R. Christensen, and P. Ressel. Harmonic Analysis on Semi-
groups. Springer-Verlag, New York, 1984.

[BE02] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

[Ben00] Y. Bengio. Gradient-based optimization of hyper-parameters. Neural Com-
putation, 12(8):1889–1900, 2000.

[Bet93] S.F. Betz. Disulfide bonds and the stability of globular proteins. Protein Sci.,
1993.

[BFGK96] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in bayesian networks. In Prof. 12th Conf. on Uncertainty in
Artificial Intelligence, pages 115–123. Morgan Kaufmann, 1996.

[BGV92] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal
margin classifier. In Proc. 5th ACM Workshop on Computational Learning
Theory, pages 144–152, Pittsburgh, PA, July 1992.

[BHB03] A. Ben-Hur and D. Brutlag. Remote homology detection: a motif based
approach. Bioinformatics, 19:26–33, 2003.

BIBLIOGRAPHY 124

[BHHSV01] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V.N. Vapnik. Support vector
clustering. Journal of Machine Learning Research, 2:125–137, 2001.

[Bis95] C.M. Bishop. Neural networks for pattern recognition. Oxford University
Press, Oxford, 1995.

[BKML+04] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and D.L. Wheele.
Genbank: update. Nucleic Acids Res., 32(Database issue):D23–D26, 2004.

[BM92] K.P. Bennett and O.L. Mangasarian. Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software,
1:23–34, 1992.

[BM98] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[BRC60] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Information and Control, 3:68–79, March 1960.

[Bri89] J. Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In F. Fogelman-
Soulie and J. Hérault, editors, Neuro-computing: Algorithms, Architectures,
and Applications. Springer-Verlag, 1989.

[BSB01] R. Bonneau, C.E. Strauss, and D. Baker. Improving the performance of
rosetta using multiple sequence alignment information and global measures
of hydrophobic core formation. Proteins, 43(1):1–1, 2001.

[BST99] P.L. Bartlett and J. Shawe-Taylor. Generalization performance of support
vector machines and other pattern classifiers. In B. Schölkopf, C Burges, and
A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning,
pages 43–54. MIT Press, Cambridge, MA, 1999.

[BT99] C. Branden and J. Tooze. Introduction to Protein Structure. Garland Pub-
lishing, New York, 1999.

[Bur89] P. Burman. A comparative study of ordinary cross validation, 5-fold cross
validation, and the repeated learning testing methods. Biometrica, 76(3):503–
514, 1989.

[Bur98a] C. Burges. A tutorial on support vector machines for pattern recognition. In
Data Mining and Knowledge Discovery. Kluwer Academic Publishers, Boston,
1998. (Volume 2).

[Bur98b] C. Burges. A tutorial on support vector machines for pattern recognition. In
Data Mining and Knowledge Discovery. Kluwer Academic Publishers, Boston,
1998. (Volume 2).

BIBLIOGRAPHY 125

[CB99] J.A. Cuff and G.J. Barton. valuation and improvement of multiple sequence
methods for protein secondary structure prediction. Proteins, 34(4):508–519,
1999.

[CBB02] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very
large scale problems. Neural Computation, 14(5), 2002.

[CCST99] N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynamically adapting ker-
nels in support vector machines. In M. Kearns, S. Solla, and D. Cohn, editors,
Advances in Neural Information Processing Systems (NIPS), volume 11. MIT
Press, 1999.

[CD02a] M. Collins and N. Duffy. Convolution kernels for natural language. In T.G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Infor-
mation Processing Systems 14. MIT Press, 2002.

[CD02b] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging:
Kernels over discrete structures, and the voted perceptron. In Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL 2002), pages 263–270, Philadelphia, PA, USA, 2002.

[CE99] K.-C. Chou and D.W. Elrod. Prediction of membrane protein types and
subcellular locations. Proteins, 34:137–153, 1999.

[CFPV03a] A. Ceroni, P. Frasconi, A. Passerini, and A. Vullo. A combination of sup-
port vector machines and bidirectional recurrent neural networks for protein
secondary structure prediction. In A. Cappelli and F. Turini, editors, AI*IA
2003: Advances in Artificial Intelligence, pages 142–153, 2003.

[CFPV03b] A. Ceroni, P. Frasconi, A. Passerini, and A. Vullo. Predicting the disulfide
bonding state of cysteines with combinations of kernel machines. Journal of
VLSI Signal Processing, 35(3):287–295, 2003.

[CFPV04] A. Ceroni, P. Frasconi, A. Passerini, and A. Vullo. Cysteine bonding state:
Local prediction and global refinment using a combination of kernel machines
and bi-directional recurrent neural networks. In preparation, 2004.

[Chi00] Y.V. Chinenov. Cytochrome c oxidase assembly factors with a thioredoxin
fold are conserved among prokaryotes and eukaryotes. J. Mol. Med., pages
239–242, 2000.

[Con01] International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature, 409:860–921, 15 February 2001.

[CR02] C.P. Chen and B. Rost. State-of-the-art in membrane protein prediction.
Applied Bioinformatics, 1(1):21–35, 2002.

BIBLIOGRAPHY 126

[CRBB03] D. Chivian, T. Robertson, R. Bonneau, and D. Baker. Ab initio methods. In
Structural Bioinformatics, pages 547–557. Wiley-Liss, 2003.

[CS00] K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. In Computational Learning Theory, pages 35–46, 2000.

[CS01] F. Cucker and S. Smale. On the mathematical foundations of learning. Bul-
letin (New Series) of the American Mathematical Society, 39(1):1–49, 2001.

[CS02a] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. J. Mach. Learn. Res., 2:265–292, 2002.

[CS02b] K. Crammer and Y. Singer. On the learnability and design of output codes
for multiclass problems. Machine Learning, 47(2–3):201–233, 2002.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, 2000.

[CSTEK02] N. Cristianini, J. Shawe-Taylor, A. Elisseef, and J. Kandola. On kernel-target
alignment. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Ad-
vances in Neural Information Processing Systems 14. MIT Press, Cambridge,
MA, 2002.

[CV95] C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning,
20:1–25, 1995.

[CVBM02] O. Chapelle, V.N. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46(1–3):131–159,
2002.

[CW79] P. Craven and G. Wahba. Smoothing noisy data with spline functions: es-
timating the correct degree of smoothing by the method of generalized cross
validation. Numer. Math, 31:377–403, 1979.

[DB95] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,
1995.

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

[Dre94] J. Drenth. Principles of protein x-ray cristallography. Springer-Verlag, Berlin,
1994.

[ea89] M. Matsumura et al. Substantial increase in protein stability by multiple
disulfide bonds. Nature, 342:291–293, 1989.

BIBLIOGRAPHY 127

[Edd98] S.R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763,
1998.

[EGPM99] A. Elisseeff, Y. Guermeur, and H. Paugam-Mousy. Margin error and gener-
alization capabilities of multi-class discriminant systems. Technical Report
NC2-TR-1999-051, NeuroCOLT2 Technical Report, 1999.

[ENBvH00] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne. Predicting subcel-
lular localization of proteins based on their n-terminal amino acid sequence.
J Mol. Biol., 300:1005–1016, 2000.

[EP03] A. Elisseeff and M. Pontil. Leave-one-out error and stability of learning algo-
rithms with applications. In J.A.K. Suykens, G. Horvath, S. Basu, C. Mic-
chelli, and J. Vandewalle, editors, Advances in Learning Theory: Methods,
Models and Applications, volume 190 of NATO Science Series III: Computer
& Systems Sciences, pages 111–130. IOS Press Amsterdam, 2003.

[EPP00] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support
vector machines. Advances in Computational Mathematics, 13:1–50, 2000.

[F0̈2] J. Fürnkranz. Round robin classification. Journal of Machine Learning Re-
search, 2:721–747, 2002.

[FBL+95] H. Flöckner, M. Braxenthaler, P. Lackner, M. Jaritz, M. Ortner, and M.J.
Sippl. Progress in fold recognition. Proteins, 23(3):376–386, 1995.

[FC99] P. Fariselli and R. Casadio. A neural network based predictor of residue
contacts in proteins. Protein Eng., 12(1):15–21, 1999.

[FC00] P. Fariselli and R. Casadio. Prediction of the number of residue contacts in
proteins. In Proc. Int. Conf. Intell. Syst. Mol. Biol. (ISMB00), volume 8,
pages 146–151, La Jolla, CA, 2000. AAAI Press.

[FC01] P. Fariselli and R. Casadio. Prediction of disulfide connectivity in proteins.
Bioinformatics, 17:957–964, 2001.

[FCC98] T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel-adatron algorithm:
a fast and simple learning procedure for support vector machines. In Proc. of
the 15th Int. Conf. on Machine Learning. Morgan Kaufmann, 1998.

[FG03] D.E. Fomenko and V.M. Gladyshev. Genomics perspective on disulfide bond
formation. Antioxid. Redox Signal., 5(4):397–402, 2003.

[FGS98] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE TNN, 9(5):768–786, 1998.

BIBLIOGRAPHY 128

[FH00] T. Finkel and N.J. Holbrook. Oxidants, oxidative stress and the biology of
ageing. Nature, 408(6809):239–247, 2000.

[Fle87] R. Fletcher. Practical Methods of Optimization, Second Edition. John Wiley
& Sons, 1987.

[FMC02] P. Fariselli, P. Martelli, and R. Casadio. A neural network based method
for predicting the disulfide connectivity in proteins. In E. Damiani et al.,
editor, Knowledge based intelligent information engineering systems and allied
technologies (KES 2002), volume 1, pages 464–468. IOS Press, 2002.

[FOVC01] P. Fariselli, O. Olmea, A. Valencia, and R. Casadio. Prediction of con-
tact maps with neural networks and correlated mutations. Protein Eng.,
14(11):835–843, 2001.

[FPB+02] L. Falquet, M. Pagni, P. Bucher, N. Hulo, C.J.A. Sigrist, K. Hofmann, and
A. Bairoch. The PROSITE database, its status in 2002. Nucleic Acids Res.,
30(1):235–238, 2002.

[FPV02] P. Frasconi, A. Passerini, and A. Vullo. A two-stage SVM architecture for
predicting the disulfide bonding state of cysteines. In Proc. of the IEEE
Workshop on Neural Networks for Signal Processing, 2002.

[FRC99] P. Fariselli, P. Riccobelli, and R. Casadio. Role of evolutionary information
in predicting the disulfide-bonding state of cysteine in proteins. Proteins, 36,
340–346 1999.

[Fri96] J.H. Friedman. Another approach to polychotomous classification. Technical
report, Department of Statistics, Stanford University, 1996.

[FS97] Y. Freund and R. Shapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[FS98] Y. Freund and R. E. Schapire. Large margin classification using the percep-
tron algorithm. In Computational Learning Theory, pages 209–217, 1998.

[FS00] A. Fiser and I. Simon. Predicting the oxidation state of cysteines by multiple
sequence alignment. Bioinformatics, 16(3):251–256, 2000.

[FSS98] Y. Freund, R.E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. In Proc. of the 15th International Conference on
Machine Learning, San Francisco, 1998. Morgan Kaufmann.

[G0̈2] T. Gärtner. Exponential and geometric kernels for graphs. In NIPS Workshop
on Unreal Data: Principles of Modeling Nonvectorial Data, 2002.

BIBLIOGRAPHY 129

[GBD92] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4:1–58, 1992.

[GBV93] I. Guyon, B. Boser, and V.N. Vapnik. Automatic capacity tuning of very
large VC-dimension classifiers. In Stephen José Hanson, Jack D. Cowan, and
C. Lee Giles, editors, Advances in Neural Information Processing Systems,
volume 5, pages 147–155. Morgan Kaufmann, San Mateo, CA, 1993.

[Gen01] Celera Genomics. The human genome. Science, 291(5507), 16 February 2001.

[GEPM00] Y. Guermeur, A. Elisseeff, and H. Paugam-Mousy. A new multi-class svm
based on a uniform convergence result. In Proceedings of IJCNN - Inter-
national Joint Conference on Neural Networks, volume IV, pages 183–188.
IEEE, 2000.

[GEZ02] Y. Guermeur, A. Elisseeff, and D. Zelus. Bounding the capacity measure of
multi-class discriminant models. Technical Report NC2-TR-2002-123, Neuro-
COLT2 Technical Report, 2002.

[GFKS02] T. Gärtner, P. Flach, A. Kowalczyk, and A.J. Smola. Multi-instance kernels.
In C.Sammut and A. Hoffmann, editors, Proceedings of the 19th International
Conference on Machine Learning, pages 179–186. Morgan Kaufmann, 2002.

[GGB02] A. Gattiker, E. Gasteiger, and A Bairoch. ScanProsite: a reference imple-
mentation of a PROSITE scanning tool. Applied Bioinformatics, 1:107–108,
2002.

[GLF03] T. Gärtner, J.W. Lloyd, and P.A. Flach. Kernels for structured data. In
S. Matwin and C. Sammut, editors, Proceedings of the 12th International
Conference on Inductive Logic Programming, volume 2583 of Lecture Notes
in Artificial Intelligence, pages 66–83. Springer-Verlag, 2003.

[GLV04] Y. Guermeur, A. Lifchitz, and R. Vert. A kernel for protein secondary struc-
ture prediction. In B. Schölkopf, K. Tsuda, and J. P. Vert, editors, Kernel
Methods in Computational Biology. The MIT Press, Cambridge, MA, 2004.
In press.

[God03] A. Godzik. Fold recognition methods. In Structural Bioinformatics, pages
525–546. Wiley-Liss, 2003.

[GPE+04] Y. Guermeur, G. Pollastri, A. Elisseeff, D. Zelus, H. Paugam-Moisy, and
P. Baldi. Combining protein secondary structure prediction models with en-
semble methods of optimal complexity. Neurocomputing, 56C:305–327, 2004.

[Gue02] Y. Guermeur. Combining discriminant models with new multi-class svms.
Pattern Analysis and Applications (PAA), 5(2):168–179, 2002.

BIBLIOGRAPHY 130

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[GVB+92] I. Guyon, V.N. Vapnik, B. Boser, L. Bottou, and S. Solla. Structural risk
minimization for character recognition. In D. S. Touretzky, editor, Advances
in Neural Information Processing Systems IV, San Mateo, CA, 1992. Morgan
Kaufmann Publishers.

[GWBV02] I. Guyon, J. Weston, S. Barnhill, and V.N. Vapnik. Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1–3):389–
422, 2002.

[GWG+03] N.M. Giles, A.B. Watts, G.I. Giles, F.H. Fry, J.A. Littlechild, and C. Ja-
cob. Metal and redox modulation of cysteine protein function. Chemistry &
Biology, 10:677–693, 2003.

[Hau99] D. Haussler. Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, University of California, Santa Cruz, 1999.

[HGGW01] D.N. Heaton, G.N. George, G. Garrison, and D.R. Winge. The mitochondrial
copper metallochaperone cox17 exists as an oligomeric, polycopper complex.
Biochemistry, 40(3):743–751, 2001.

[HGW02] T. Herrmann, P. Güntert, and K. Wüthrich. Protein nmr structure deter-
mination with automated noe assignment using the new software candid and
the torsion angle dynamics algorithm dyana. J Mol. Biol., 319:209–227, 2002.

[HH91] S. Henikoff and J.G. Henikoff. Automated assembly of proteins blocks for
database searching. Nucleic Acids Res., 19(23):6565–6572, 1991.

[HH92] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.

[HH93] S. Henikoff and J.G. Henikoff. Performance evaluation of amino acid substi-
tution matrices. Proteins, 17(1):49–61, 1993.

[HL02a] C. W. Hsu and C. J. Lin. A comparison of methods for multi-class support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, Mar
2002.

[HL02b] C.-W. Hsu and C.-J. Lin. A simple decomposition method for support vector
machines. Machine Learning, 46:291–314, 2002.

[HMBC97] T. Hubbard, A. Murzin, S. Brenner, and C. Chothia. Scop: a structural
classification of proteins database. Nucleic Acids Res., 25(1):236–9, January
1997.

BIBLIOGRAPHY 131

[HS94] U. Hobohm and C. Sander. Enlarged representative set of protein structures.
Protein Science, 3:522–524, 1994.

[HS01] S. Hua and Z. Sun. A novel method of protein secondary structure prediction
with high segment overlap measure: Support vector machine approach. J
Mol. Biol., 308(2):397–407, 2001.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

[JDH00] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework
for detecting remote protein homologies. Journal of Computational Biology,
7(1–2):95–114, 2000.

[JH98] T. Jaakkola and D. Haussler. Probabilistic kernel regression models. In Proc.
of Neural Information Processing Conference, 1998.

[JH99] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In Proceedings of the 1998 conference on Advances in neural in-
formation processing systems II, pages 487–493, Cambridge, MA, USA, 1999.
MIT Press.

[JJNH91] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

[JK94] R.L. Dunbrack Jr. and M. Karplus. Conformational analysis of the backbone-
dependent rotamer preferences of protein sidechains. Nature Struct. Biol.,
1:334–340, 1994.

[Joa98a] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods – Support
Vector Learning, chapter 11, pages 169–185. MIT Press, 1998.

[Joa98b] T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of the European Conference on
Machine Learning, 1998.

[Joa99] T. Joachims. Estimating the generalization performance of a svm efficiently.
Technical Report LS VIII Report 25, Universität Dortmund, 1999.

[Joa00] T. Joachims. Estimating the generalization performance of a SVM efficiently.
In Pat Langley, editor, Proceedings of the 17th International Conference on
Machine Learning (ICML00), pages 431–438, Stanford, US, 2000. Morgan
Kaufmann Publishers, San Francisco, US.

[Jon99] D.T. Jones. Protein secondary structure prediction based on position-specific
scoring matrices. J Mol. Biol., 292:195–202, 1999.

BIBLIOGRAPHY 132

[KBH98] K. Karplus, C. Barrett, and R. Hughey. Hidden markov models for detecting
remote protein homologies. Bioinformatics, 14(10):846–856, 1998.

[KH04] J. Kuchar and R.P. Hausinger. Biosynthesis of metal sites. Chem. Rev.,
104:509–525, 2004.

[KJ01] P. Kovacic and J.D. Jacintho. Mechanisms of carcinogenesis: focus on oxida-
tive stress and electron transfer. Curr Med Chem 2001; 8: 773, 8:773–796,
2001.

[KKB+01] K. Karplus, R. Karchin, C.Tu S. Barnett, M. Cline, M. Diekhans, L. Grate,
J. Casper, and R. Hughey. What is the value added by human intervention
in protein structure prediction? Proteins, 45(suppl 5):86–91, 2001.

[KKB03] H. Kadokura, F. Katzen, and J. Beckwith. Protein disulfide bond formation
in prokaryotes. Annu Rev Biochem., 72:111–135, 2003.

[KL02] R.I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete in-
put spaces. In C.Sammut and A. Hoffmann, editors, Proc. of the 19th Interna-
tional Conference on Machine Learning, pages 315–322. Morgan Kaufmann,
2002.

[KNV03] E. Krieger, S.B. Nabuurs, and G. Vriend. Homology modeling. In Structural
Bioinformatics, pages 509–524. Wiley-Liss, 2003.

[Koh95] R. Kohavi. Wrappers for Performance Enhancement and Oblivious Deci-
sion Graphs. PhD thesis, Computer Science department, Stanford University,
1995.

[Kon86] H. Konig. Eigenvalue Distributions of Compact Operators. Birkhauser, Basel,
1986.

[KR97] M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for
leave-one-out cross validation. In Proceedings of the 10th Annual Conference
on Computational Learning Theory, pages 152–162, 1997.

[KS83a] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22:2577–2637, 1983.

[KS83b] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22:2577–2637, 1983.

[KW71] G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

BIBLIOGRAPHY 133

[Kwo99] J. Kwok. Moderating the outputs of support vector machine classifiers. IEEE
Transactions on Neural Networks, 10(5):1018–1031, 1999.

[LB67] A. Lunts and V. Brailovskiy. Evaluation of attributes obtained in statistical
decision rules. Engineering Cybernetics, 3:98–109, 1967.

[LBD+89] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L.J. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

[LEN02] C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: a string kernel for
svm protein classification. In Proc. of the Pacific Symposium on Biocomput-
ing, pages 564–575, 2002.

[Les01] A.M. Lesk. Introduction to Protein Architecture. Oxford University Press,
New York, 2001.

[LEWN03] C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels
for svm protein classification. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages 1417–
1424. MIT Press, Cambridge, MA, 2003.

[LJ03] K. Linke and U. Jakob. Not every disulfide lasts forever: Disulfide bond
formation as a redox switch. Antioxid. Redox Signal., 5(4):425–434, 2003.

[LKE04] C. Leslie, R. Kuang, and E. Eskin. Inexact matching string kernels for pro-
tein classificatio. In B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, Kernel
Methods in Computational Biology. MIT Press, 2004. In press.

[LMS+01] B. Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif. A study of remote
homology detection. Technical report, Cambridge Research Laboratory, June
2001.

[LN03] L. Liao and W.S. Noble. Combining pairwise sequence similarity and support
vector machines for detecting remote protein evolutionary and structural re-
lationships. Journal of Computational Biology, 10(6):857–868, 2003.

[LRG86] J.M. Levin, B. Robson, and J. Garnier. An algorithm for secondary structure
determination in proteins based on sequence similarity. FEBS, 205(2):303–
308, 1986.

[LSTCW00] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. In Advances in Neural Information Processing Systems,
pages 563–569, 2000.

[Mat85] F.S. Mathews. The structure, function and evolution of cytochromes. Prog.
Biophys. Mol. Biol., 45(1):1–56, 1985.

BIBLIOGRAPHY 134

[McL72] A.D. McLachlan. Repeating sequences and gene duplication in proteins. J
Mol. Biol., 64:417–437, 1972.

[MD96] L. Mirny and E. Domany. Protein fold recognition and dynamics in the space
of contact maps. Proteins, 26(4):391–410, 1996.

[Mer09] J. Mercer. Functions of positive and negative type and their connection with
the theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415–
446, 1909.

[MFKC02a] P.L. Martelli, P. Fariselli, A. Krogh, and R. Casadio. A sequence-profile-
based hmm for predicting and discriminating β barrel membrane proteins.
Bioinformatics, 18:S46–S53, 2002.

[MFKC02b] P.L. Martelli, P. Fariselli, A. Krogh, and R. Casadio. A sequence-profile-
based hmm for predicting and discriminating β barrel membrane proteins.
Bioinformatics, 18:S46–S53, 2002.

[MFMC02] P.L. Martelli, P. Fariselli, L. Malaguti, and R. Casadio. Prediction of the
disulfide-bonding state of cysteines in proteins at 88% accuracy. Protein Sci.,
11(2735–2739), 2002.

[MGHT02] M.H. Mucchielli-Giorgi, S. Hazout, and P. Tuffèry. Predicting the disulfide
bonding state of cysteines using protein descriptors. Proteins, 46:243–249,
2002.

[Mit97] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[MJ03] L.J. McGuffin and D.T. Jones. Benchworking secondary structure prediction
for fold recognition. Proteins, 52:166–175, 2003.

[MM99] O.L. Mangasarian and D.R. Musicant. Successive overrelaxation for support
vector machines. IEEE Transactions on Neural Networks, 1999.

[Mov01] H. Naderi-Manesh M. Sadeghi S. Arab A.A. Moosavi Movahedi. Prediction of
protein surface accessibility with information theory. Proteins, 42(4):452–459,
2001.

[MP92] D.C. Montgomery and E.A. Peck. Introduction to Linear Regression Analysis.
John Wiley and Sons, Inc., 2nd edition edition, 1992.

[MR03] S. Mika and B. Rost. Uniqueprot: creating sequence-unique protein data sets.
Nucleic Acids Res., 31(13):3789–3791, 2003.

[NBvH99] H. Nielsen, S. Brunak, and G. von Heijne. Machine learning approaches for
the prediction of signal peptides and other protein sorting signals. Protein
Eng., 12(1):3–9, 1999.

BIBLIOGRAPHY 135

[Nil65] N.J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965.

[Nil96] M. Nilges. Structure calculation from nmr data. Curr. Opin. Str. Biol.,
6:617–623, 1996.

[Nob04] W.S. Noble. Support vector machine applications in computational biology.
In B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, Kernel Methods in Com-
putational Biology. MIT Press, 2004. In press.

[NR03a] R. Nair and B. Rost. Loc3d: annotate sub-cellular localization for protein
structures. Nucleic Acids Res., 31(13):3337–3340, 2003.

[NR03b] M.N. Nguyen and J.C. Rajapakse. Multi-class support vector machines for
protein secondary structure prediction. Genome Informatics, 14:218–227,
2003.

[OKR+99] A.R. Ortiz, A. Kolinski, P. Rotkiewicz, B. Ilkowski, and J. Skolnick. Ab initio
folding of proteins using restraints derived from evolutionary information.
Proteins, Suppl 3:177–185, 1999.

[OMJ+97] C.A. Orengo, A.D. Michie, S. Jones, D.T. Jones, M.B. Swindells, and J.M.
Thornton. Cath - a hierarchic classification of protein domain structures.
Structure, 5, 1093-1108, 5:1093–1108, 1997.

[ON97] S.I. O’Donoghue and M. Nilges. Tertiary structure prediction using mean-
force potentials and internal energy functions: successful prediction for coiled-
coil geometries. Folding & Design, 2:S47–S52, 1997.

[OO87] E. Otaka and T. Ooi. Examination of protein sequence homologies: Iv. twenty-
seven bacterial ferredoxins. J. Mol. Evol., 26(3):257–67, 1987.

[Pai00] R.H. Pain, editor. Mechanisms of Protein Folding. Frontiers in Molecular
Biology Series. Oxford University Press, 2000.

[PB02] G. Pollastri and P. Baldi. Prediction of contact maps by recurrent neural
network architectures and hidden context propagation from all four cardinal
corners. Bioinformatics, 1(1):1–9, 2002.

[PBFC02] G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio. Prediction of coordination
number and relative solvent accessibility in proteins. Proteins, 47(2):142–153,
2002.

[Pea85] W.R. Pearson. Rapid and sensitive sequence comparisons with fastp and
fasta. Methods in Enzymology, 183:63–98, 1985.

BIBLIOGRAPHY 136

[Pla00] J. Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers. MIT Press,
2000.

[PLN+00] T.N. Petersen, C. Lundegaard, M. Nielsen, H. Bohr, J. Bohr, S. Brunak, G.P.
Gippert, and O. Lund. Prediction of protein secondary structure at 80%
accuracy. Proteins, 41(1):17–20, October 2000.

[PM97] J.T. Pedersen and J. Moult. Protein folding simulations with genetic algo-
rithms and a detailed molecular description. J Mol. Biol., 269(2):240–259,
1997.

[PPF02] A. Passerini, M. Pontil, and P. Frasconi. From margins to probabilities in
multiclass learning problems. In F. van Harmelen, editor, Proc. 15th European
Conf. on Artificial Intelligence, 2002.

[PPF04] A. Passerini, M. Pontil, and P. Frasconi. New results on error correcting
output codes of kernel machines. IEEE Transactions on Neural Networks,
15(1):45–54, 2004.

[PPRB02] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of
protein secondary structure in three and eight classes using recurrent neural
networks and profiles. Proteins, 47(2):228–235, 2002.

[PR02] D. Przybylski and B. Rost. Alignments grow, secondary structure prediction
improves. Proteins, 46(2):197–205, 2002.

[PRE98] M. Pontil, R. Rifkin, and T. Evgeniou. From regression to classification in
support vector machines. A.I. Memo 1649, MIT Artificial Intelligence Lab.,
1998.

[PS72] K.R. Parthasarathy and K. Schmidt. Positive definite kernels, continuous
tensor products, and central limit theorems of probability theory. In Lecture
Notes in Math., volume 272. Springer, Berlin, 1972.

[QS88] N. Qian and T.J. Sejnowski. Predicting the secondary structure of globular
proteins using neural network models. J Mol. Biol., 202(4):865–884, 1988.

[Qui86] J.Ross. Quinlan. Inductive learning of decision trees. Machine Learning,
1:81–106, 1986.

[Qui93] J.Ross. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann
Publishers, 1993.

[Rab89] L.R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

BIBLIOGRAPHY 137

[RB98] A. Rietsch and J. Beckwith. The genetics of disulfide bond metabolism. Annu
Rev Genet., 32:163–184, 1998.

[RB99] C.J. Richardson and D.J. Barlow. The bottom line for prediction of residue
solvent accessibility. Protein Eng., 12:1051–1054, 1999.

[RB01] D. Ritz and J. Beckwith. Roles of thiol-redox pathways in bacteria. Annu.
Rev. Microbiol., 55:21–48, 2001.

[RCFS95] B. Rost, R. Casadio, P. Fariselli, and C. Sander. Transmembrane helices
predicted at 95% accuracy. Protein Sci., 4:521–533, 1995.

[RHH+99] A.C. Rosenzweig, D.L. Huffman, M.Y. Hou, A.K. Wernimont, R.A. Pufahl,
and T.V. O’Halloran. Crystal structure of the atx1 metallochaperone protein
at 1.02 Åresolution. Structure, 7:605–617, 1999.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386–408, 1958.

[Ros97] B. Rost. Protein structures sustain evolutionary drift. Folding & Design,
2:S19–S24, 1997.

[Ros98] B. Rost. Protein structure prediction in 1d, 2d, and 3d. In P. von Rague-
Schleyer, N.L. Allinger, T. CClark, J. Gasteiger, P.A. Kollman, and H.F.
Schaefer, editors, Encyclopedia of Computational Chemistry, pages 2242–
2255. John Wiley, Sussex, 1998.

[RR01] J.D.M. Rennie and R. Rifkin. Improving multiclass text classification with the
support vector machine. Technical Report 2001-026, Massachusetts Institute
of Technology, 2001.

[RS93] B. Rost and C. Sander. Prediction of protein secondary structure at better
than 70% accuracy. J Mol. Biol., 232:584–599, 1993.

[RS94] B. Rost and C. Sander. Conservation and prediction of solvent accessibility
in protein families. Proteins, 20(216–226), 1994.

[RSS97] B. Rost, R. Schneider, and C. Sander. Protein fold recognition by prediction-
based threading. J Mol. Biol., 270:471–480, 1997.

[Sai88] S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman
Scientific Technical, Harlow, England, 1988.

[Sch97] B. Schölkopf. Support Vector Learning. PhD thesis, Technische Universität
Berlin, 1997.

BIBLIOGRAPHY 138

[SGV98] C. Suanders, A. Gammerman, and V. Vovk. Ridge regression learning al-
gortihm in dual variables. In Proc. of the 15th International Conference on
Machine Learning (ICML98), 1998.

[SGV+99] M. Stitson, A. Gammerman, V.N. Vapnik, V. Vovk, C. Watkins, and J. We-
ston. Support vector regression with anova decomposition kernels. In
B. Schölkopf, C Burges, and A.J. Smola, editors, Advances in Kernel Methods
- Support Vector Learning. MIT Press, Cambridge, MA, 1999.

[SHSW01] B. Schölkopf, R. Herbrich, A.J. Smola, and R. Williamson. A generalized
representer theorem. In Proceedings COLT 2001, Lecture Notes in Artificial
Intelligence. Springer, 2001.

[Sip95] M.J. Sippl. Knowledge-based potentials for proteins. Curr. Opin. Struct.
Biol., 5:229–235, 1995.

[SKHB97] K.T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of protein
tertiary structures from fragments with similar local sequences using simu-
lated annealing and bayesian scoring functions. J Mol. Biol., 268(1):209–225,
1997.

[SNB+03] C.A.E.M. Spronk, S.B. Nabuurs, A.M.J.J. Bonvin, E. Krieger, G.W. Vuister,
and G. Vriend. The precision of nmr structure ensembles revisited. Journal
of Biomolecular NMR, 25:225–234, 2003.

[SPST+01] B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson.
Estimating the support of a high dimensional distribution. Neural Computa-
tion, 13:1443–1471, 2001.

[SS90] T. D. Schneider and R. M. Stephens. Sequence logos: A new way to display
consensus sequences. Nucleic Acids Res., 18:6097–6100, 1990.

[SS91] C. Sander and R. Schneider. Database of homology-derived structures and
the structural meaning of sequence alignment. Proteins, 9:56–68, 1991.

[SS02] B. Schölkopf and A.J. Smola. Learning with Kernels. The MIT Press, Cam-
bridge, MA, 2002.

[SSB01] K.T. Simons, C. Strauss, and D. Baker. Prospects for ab initio protein struc-
tural genomics. J Mol. Biol., 306(5):1191–1199, 2001.

[SSB03] Q. Su, S. Saxonov, and D. Brutlag. eblocks: an automated database
of protein conserved regions maximizing sensitivity and specificity, 2003.
http://fold.stanford.edu/eblocks/.

BIBLIOGRAPHY 139

[SSM98] A. Smola, B. Schölkopf, and K. Muller. General cost functions for support
vector regression. In T. Downs, M. Frean, and M. Gallagher, editors, Proc.
of the Ninth Australian Conf. on Neural Networks, pages 79–83, Brisbane,
Australia, 1998.

[SSM99] B. Schölkopf, A.J. Smola, and K.-R. Müller. Kernel principal component anal-
ysis. In B. Schölkopf, C Burges, and A.J. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, pages 327–352. MIT Press, Cambridge,
MA, 1999.

[SW81] T. Smith and M. Waterman. Identification of common molecular subse-
quences. J Mol. Biol., 147:195–197, 1981.

[SW92] M.J. Sippl and S. Weitckus. Detection of native like models for amino acid
sequences of unknown three dimensional structure in a data base of known
protein conformations. Proteins, 13:258–271, 1992.

[SW03] B. Schölkopf and M.K. Warmuth, editors. Kernels and Regularization on
Graphs, volume 2777 of Lecture Notes in Computer Science. Springer, 2003.

[SWS+00] B. Schölkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, and J.C. Platt.
Support vector method for novelty detection. In S.A. Solla, T.K. Leen, and
K.-R. Muller, editors, Advances in Neural Information Processing Systems 12,
Proc. of the 1999 Conference, 2000.

[TCS96] D.J. Thomas, G. Casari, and C. Sander. The prediction of protein contacts
from multiple sequence alignments. Protein Eng., 9(11):941–948, 1996.

[TD99] D.M.J. Tax and R.P.W. Duin. Support vector domain description. Pattern
Recognition Letters, 20:1991–1999, 1999.

[TG96] M.J. Thompson and R.A. Goldstein. Predicting solvent accessibility: higher
accuracy using bayesian statistics and optimized residue substitution classes.
Proteins, 25(1):38–47, 1996.

[Tik63] A.N. Tikhonov. On solving ill-posed problem and method of regularization.
Dokl. Akad. Nauk USSR, 153:501–504, 1963.

[Tsu99] K. Tsuda. Support vector classification with asymmetric kernel function. In
M. Verleysen, editor, Proc. of ESANN, pages 183–188, 1999.

[Ukk95] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260,
1995.

[Vap79] V.N. Vapnik. Estimation of Dependences Based on Empirical Data [in Rus-
sian]. Springer-Verlag, Nauka, Moscow, 1979. (English translation: Springer-
Verlag, New York, 1982).

BIBLIOGRAPHY 140

BIBLIOGRAPHY

[Vap95] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

[Vap98] V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[VC71] V.N. Vapnik and A. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its Ap-
plications, 16(2):264–280, 1971.

[Ver02] R. Vert. Designing a m-svm kernel for protein secondary structure prediction.
Master’s thesis, DEA informatique de Lorraine, 2002.

[VF03] A. Vullo and P. Frasconi. Prediction of protein coarse contact maps. Journal
of Bioinformatics and Computational Biology, 1(2):411–431, 2003.

[vG93] W.F. van Gunsteren. Molecular dynamics studies of proteins. Curr. Opin.
Struct. Biol., 3:277–281, 1993.

[VKD97] M. Vendruscolo, E. Kussell, and E. Domany. Recovery of protein structure
from contact maps. Fold Des., 2(5):295–306, 1997.

[W8̈6] K. Wüthrich. NMR of Proteins and Nucleic Acids. Wiley, New York, 1986.

[Wah90] G. Wahba. Splines Models for Observational Data. Series in Applied Mathe-
matics, Vol. 59, SIAM, Philadelphia, 1990.

[Wat00] C. Watkins. Dynamic alignment kernels. In A.J. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin
Classiers, pages 39–50. MIT Press, 2000.

[WMBJ03] J.J. Ward, L.J McGuffin, B.F. Buxton, and D.T. Jones. Secondary structure
prediction with support vector machines. Bioinformatics, 19(13):1650–1655,
2003.

[WMC+01] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V.N. Vapnik.
Feature selection for support vector machines. In NIPS-13, 2001.

[WW98] J. Weston and C. Watkins. Multi-class support vector machines. Technical
Report CSD-TR-98-04, Royal Holloway, University of London, Department
of Computer Science, 1998.

[WWNS00] W.J. Wedemeyer, E. Welker, M. Narayan, and H.A. Scheraga. Disulfide bonds
and protein folding. Biochemistry, 39:4207–4216, 2000.

[ZJB00] M.J. Zaki, S. Jin, and C. Bystroff. Mining residue contacts in proteins us-
ing local structure predictions. In IEEE International Symposium on Bio-
Informatics and Biomedical Engineering (BIBE’00), Arlilngton, Virginia,
November 08 - 10 2000.

BIBLIOGRAPHY 141

