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Abstract
Metal binding is important for the structural and functional characterization of
proteins. Previous prediction efforts have only focused on bonding state, i.e. de-
ciding which protein residues act as metal ligands in some binding site. Identify-
ing the geometry of metal-binding sites, i.e. deciding which residues are jointly
involved in the coordination of a metal ion is a new prediction problem that has
been never attempted before from protein sequence alone. In this paper, we formu-
late it in the framework of learning with structured outputs. Our solution relies on
the fact that, from a graph theoretical perspective, metal binding has the algebraic
properties of a matroid, enabling the application of greedy algorithms for learning
structured outputs. On a data set of 199 non-redundant metalloproteins, we ob-
tained precision/recall levels of 75%/46% correct ligand-ion assignments, which
improves to 88%/88% in the setting where the metal binding state is known.

1 Introduction
Metal ions play important roles in protein function and structure and metalloproteins are involved
in a number of diseases for which medicine is still seeking effective treatment, including cancer,
Parkinson, dementia, and AIDS [10]. A metal binding site typically consists of an ion bound to one
or more protein residues (called ligands). In some cases, the ion is embedded in a prosthetic group
(e.g. in the case of heme). Among the 20 amino acids, the four most common ligands are cysteine
(C), histidine (H), aspartic acid (D), and glutamic acid (E). Highly conserved residues are more likely
to be involved in the coordination of a metal ion, although in the case of cysteines, conservation is
also often associated with the presence of a disulfide bridge (a covalent bond between the sulfur
atoms of two cysteines) [8]. Predicting metal binding from sequence alone can be very useful in
genomic annotation for characterizing the function and the structure of non determined proteins,
but also during the experimental determination of new metalloproteins. Current high-throughput
experimental technologies only annotate whole proteins as metal binding [13], but cannot determine
the involved ligands. Most of the research for understanding metal binding has focused on finding
sequence patterns that characterize binding sites [8]. Machine learning techniques have been applied
only more recently.

The easiest task to formulate in this context is bonding state prediction, which is a binary classifica-
tion problem: either a residue is involved in the coordination of a metal ion or is free (in the case of
cysteines, a third class can also be introduced for disulfide bridges). This prediction task has been
addressed in a number of recent works in the case of cysteines only [6], in the case of transition
metals (for C and H residues) [12] and for in the special but important case of zinc proteins (for
C,H,D, and E residues) [11, 14]. Hovever, classification of individual residues does not provide
sufficient information about a binding site. Many proteins bind to several ions in their holo form
and a complete characterization requires us to identify the site geometry, i.e. the tuple of residues
coordinating each individual ion. This problem has been only studied assuming knowledge of the
protein 3D structure (e.g. [5, 1]), limiting its applicability to structurally determined proteins or their



close homologs, but not from sequence alone. Abstracting away the biology, this is a structured
output prediction problem where the input consists of a string of protein residues and the output is a
labeling of each residue with the corresponding ion identifier (specific details are given in the next
section).

The supervised learning problem with structured outputs has recently received a considerable
amount of attention (see [2] for an overview). The common idea behind most methods consists
of learning a function F (x, y) on input-output pairs (x, y) and, during prediction, searching the
argument y that maximises F when paired with the query input x. The main difficulty is that the
search space on which y can take values has usually exponential size (in the length of the query).
Different structured output learners deal with this issue by exploiting specific domain properties
for the application at hand. Some researchers have proposed probabilistic modeling and efficient
dynamic programming algorithms (e.g. [16]). Others have proposed large margin approaches com-
bined with clever algorithmic ideas for reducing the number of constraints (e.g. [15] in the case of
graph matching). Another solution is to construct the structured output in a suitable Hilbert space of
features and seek the corresponding pre-image for obtaining the desired discrete structure [17]. Yet
another is to rely on a state-space search procedure and learn from examples good moves leading to
the desired goal [4].

In this paper we develop a large margin solution that does not require a generative model for produc-
ing outputs. We borrow ideas from [15] and [4] but specifically take advantage of the fact that, from
a graph theoretical perspective, the metal binding problem has the algebraic structure of a matroid,
enabling the application of greedy algorithms.

2 A formalization of the metal binding sites prediction problem
A protein sequence s is a string in the alphabet of the 20 amino acids. Since only some of the 20
amino acids that exist in nature can act as ligands, we begin by extracting from s the subsequence
x obtained by deleting characters corresponding to amino acids that never (or very rarely) act as
ligands. By using T = {C,H,D,E} as the set of candidate ligands, we cover 92% ligands of struc-
turally known proteins. A large number of interesting cases (74% in transition metals) is covered by
just considering cysteines and histidines, i.e. T = {C,H}. We also introduce the set I of symbols
associated with metal ion identifiers. I includes the special nil symbol. The goal is to predict the
coordination relation between amino acids in x and metal ions identifiers in I. Amino acids that are
not metal-bound are linked to nil. Ideally, it would be also interesting to predict the chemical element
of the bound metal ion. However, previous studies suggest that distinguishing the chemical element
from sequence alone is a difficult task [12]. Hence, ion identifiers will have no chemical element at-
tribute attached. In practice, we fix a maximum numberm of possible ions (m = 4 in the subsequent
experiments, covering 93% of structurally known proteins) and let I = {nil , ι1, . . . , ιm}.
The number of admissible binding geometries for a given protein chain having n candidate ligands
is the multinomial coefficient n!

k1!k2!···km!(n−k1−···−km)! being m the number of ions and ki the
number of ligands for ion ιi. In practice, each ion is coordinated by a variable number of ligands
(typically ranging from 1 to 4, but occasionally more), and each protein chain binds a variable
number of ions (typically ranging from 1 to 4). The number of candidate ligands n grows linearly
with the protein chain. For example, in the case of PDB chain 1H0Hb (see Figure 1), there are
n = 52 candidate ligands and m = 3 ions coordinated by 4 residues each, yielding a set of 7 · 1015

admissible conformations.

It is convenient to formulate the problem in a graph theoretical setting. In this view, the string
x should be regarded as a set of vertices labeled with the corresponding amino acid in T . The
semantic of x will be clear from the context and for simplicity we will avoid additional notation.

Definition 2.1 (MBG property). Let x and I be two sets of vertices (associated with candidate
ligands and metal ion identifiers, respectively). We say that a bipartite edge set y ⊂ x × I satisfies
the metal binding geometry (MBG) property if the degree of each vertex in x in the graph (x∪I, y)
is at most 1.

For a given x, let Yx denote the set of y that satisfy the MBG property. Let Fx : Yx 7→ IR+ be a
function that assigns a positive score to each bipartite edge set in Yx. The MBG problem consists of
finding arg maxy∈Yx Fx(y).
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Figure 1: Metal binding structure of PDB entry 1H0Hb. For readability, only a few connections
from free residues to the nil symbol are shown.

Note that the MBG problem is not a matching problem (such as those studied in [15]) since more
than one edge can be incident to vertices belonging to I. As discussed above, we are not interested
in distinguishing metal ions based on the element type. Hence, any two label-isomorphic bipartite
graphs (obtained by exchanging two non-nil metal ion vertices) should be regarded as equivalent.
Outputs y should be therefore regarded as equivalence classes of structures (in the 1H0Hb example
above, there are 7 · 1015/3! equivalence classes, each corresponding to a permutation of ι1, ι2, ι3).
For simplicity, we will slightly abuse notation and avoid this distinction in the following.

We could also look over the MBG problem by analogy with language parsing using formal gram-
mars. In this view, the binding geometry consists of a very shallow “parse tree” for string x, as
examplified in Figure 1. A difficulty that is immediately apparent is that the underlying grammar
needs to be context sensitive in order to capture the crossing-dependencies between bound amino
acids. In real data, when representing metal bonding state in this way, crossing edges are very
common. This view enlightens a difficulty that would be encountered by attempting to solve the
structured output problem with a generative model as in [16].

3 A greedy algorithm for constructing structured outputs
The core idea of the solution used in this paper is to avoid a generative model as a component of
the structured output learner and cast the construction of an output structure into a maximum weight
problem that can be solved by a greedy algorithm.
Definition 3.1 (Matroid). A matroid (see e.g. [9]) is an algebraic structureM = (S,Y) where S is
a finite set and Y a family of subsets of S such that: i) ∅ ⊆ Y; ii) all proper subsets of a set y in Y
are in Y; iii) if y and y′ are in Y and |y| < |y′| then there exists e ∈ y′ \ y such that y ∪ {e} ∈ Y .

Elements of Y are called independent sets. If y is an independent set, then ext(y) = {e ∈ S :
y ∪ {e} ∈ Y} is called the extension set of y. A maximal (having an empty extension set) inde-
pendent set is called a base. In a weighted matroid, a local weight function v : S 7→ IR+ assigns
a positive number v(e) to each element e ∈ S. The weight function allows us to compare two
structures in the following sense. A set y = {e1, . . . , en} is lexicographically greater than set y′
if its monotonically decreasing sequence of weights (v(e1), . . . , v(en)) is lexicographically greater
than the corresponding sequence for y′. The following classic result (see e.g. [9]) is the underlying
support for many greedy algorithms:
Theorem 3.2 (Rado 1957; Edmonds 1971). For any nonnegative weighting over S, a lexicographi-
cally maximum base in Y maximizes the global objective function F (y) =

∑
e∈y v(e).

Weighted matroids can be seen as a kind of discrete counterparts of concave functions: thanks to the
above theorem, ifM is a weighted matroid, then the following greedy algorithm is guaranteed to
find the optimal structure, i.e. arg maxy∈Y F (y):

GREEDYCONSTRUCT(M, F )
y ← ∅
while ext(y) 6= ∅

do y ← y ∪
{

arg maxe∈ext(y) F (y ∪ {e})
}

return y

This theory shows that if the structured output space being searched satisfies the property of a ma-
troid, learning structured outputs may be cast into the problem of learning the objective function



F for the greedy algorithm. When following this strategy, however, we may perceive the additive
form of F as a strong limitation as it would prescribe to predict v(e) independently for each part
e ∈ S, while the whole point of structured output learning is to end-up with a collective decision
about which parts should be present in the output structure. But interestingly, the additive form of
the objective function as in Theorem 3.2 is not a necessary condition for the greedy optimality of
matroids. In facts, Helman et al. [7] show that the classic theory can be generalized to so-called
consistent objective functions, i.e. functions that satisfy the following additional constraints:

F (y ∪ {e}) ≥ F (y ∪ {e′})⇒ F (y′ ∪ {e}) ≥ F (y′ ∪ {e′}) (1)

for any y ⊂ y′ ⊂ S and e, e′ ∈ S \ y′.
Theorem 3.3 (Helman et al. 1993). If F is a consistent objective function then, for each matroid on
S, all greedy bases are optimal.

Note that the sufficient condition of Theorem 3.3 is also necessary for a slighly more general class
of algebraic structures that include matroids, called matroid embeddings [7]. We now show that the
MBG problem is a suitable candidate for a greedy algorithmic solution.
Theorem 3.4. If each y ∈ Yx satisfies the MBG property, thenMx = (Sx,Yx) is a matroid.

Proof. Suppose y′ ∈ Yx and y ⊆ y′. Removing an edge from y′ cannot increase the degree of any
vertex in the bipartite graph so y ∈ Yx. Also, suppose y ∈ Yx, y′ ∈ Yx, and |y| < |y′|. Then there
must be at least one vertex t in x having no incident edges in y and such that (ι, t) ∈ y′ for some
ι ∈ I. Therefore y ∪ {(ι, t)} also satisfies the MBG property and belongs to Yx, showing thatMx

is a matroid.

We can finally formulate the greedy algorithm for constructing the structured output in the MBG
problem. Given the input x, we begin by forming the associated MBG matroid Mx and a corre-
sponding objective function Fx : Yx 7→ IR+ (in the next section we will show how to learn the
objective function from data). The output structure associated with x is then computed as

f(x) = arg max
y∈Yx

Fx(y) = GREEDYCONSTRUCT(Mx, Fx). (2)

The following result immediately follows from Definition 2.1 and Theorem 3.3:
Corollary 3.5. Let (x, y) be an MBG instance. If Fx is a consistent objective function and
Fx(y′ ∪ {e}) > Fx(y′ ∪ {e′}) for each y′ ⊂ y, e ∈ ext(y′) ∩ y and e′ ∈ ext(y′) \ y, then
GREEDYCONSTRUCT((Sx,Yx), Fx) returns y.

4 Learning the greedy objective function
A data set for the MBG problem consist of pairs D = {(xi, yi)} where xi is a string in T ∗ and yi
a bipartite graph. Corollary 3.5 directly suggests the kind of constraints that the objective function
needs to satisfy in order to minimize the empirical error of the structured-output problem. For any
input string x and (partial) output structure y ∈ Y , let Fx(y) = wTφx(y), being w a weight vector
and φx(y) a feature vector for (x, y). The corresponding max-margin formulation is

min
1
2
‖w‖2 (3)

subject to: wT
(
φxi(y

′ ∪ {e})− φxi(y
′ ∪ {e′})

)
≥ 1 (4)

wT
(
φxi(y

′′ ∪ {e})− φxi(y
′′ ∪ {e′})

)
≥ 1 (5)

∀i = 1, . . . , |D|, ∀y′ ⊂ yi, ∀e ∈ ext(y′) ∩ yi, ∀e′ ∈ ext(y′) \ yi,
∀y′′ : y′ ⊂ y′′ ⊂ Sx.

Intuitively, the first set of constraints (Eq. 4) ensures that “correct” extensions (i.e. edges that actually
belong to the target output structure yi) receive a higher weight than “wrong” extensions (i.e. edges
that do not belong to the target output structure). The purpose of the second set of constraints (Eq. 5)
is to force the learned objective function to obey the consistency property of Eq. (1), which in turns
ensures the correctness of the greedy algorithm thanks to Theorem 3.3. As usual, a regularized



variant with soft constraints can be formulated by introducing positive slack variables and adding
their 1-norm times a regularization coefficient to Eq. (3). The number of resulting constraints in the
above formulation grows exponentially with the number of edges in each example, hence naively
solving problem (3–5) is practically unfeasible. However, we can seek an approximate solution by
leveraging the efficiency of the greedy algorithm also during learning. For this purpose, we will use
an online active learner that samples constraints chosen by the execution of the greedy construction
algorithm.

For each epoch, the algorithm maintains the current highest scoring partial correct output y′i ⊆ yi
for each example, initialized with the empty MBG structure, where the score is computed by the
current objective function F . While there are “unprocessed” examples in D, the algorithm picks
a random one and its current best MBG structure y′. If there are no more correct extensions of
y′, then y′ = yi and the example is removed from D. Otherwise, the algorithm evaluates each
correct extension of y′, updates the current best MBG structure, and invokes the online learner by
calling FORCE-CONSTRAINT, which adds a constraint derived from a random incorrect extension
(see Eq. 4). It also performs a predefined number L of lookaheads by picking a random superset of
y′′ which is included in the target yi, evaluating it and updating the best MBG structure if needed,
and adding a corresponding consistency constraint (see Eq. 5). The epoch terminates when all
examples are processed. In practice, we found that a single epoch over the data set is sufficient for
convergence. Pseudocode for one epoch is given below.

GREEDYEPOCH(D, L)
for i← 1, . . . , |D|

do y′i ← ∅
while D 6= ∅

do pick a random example (xi, yi) ∈ D
y′ ← y′i, y

′
i ← ∅

if ext(y′) ∩ yi = ∅
then D ← D \ (xi, yi)
else for each e ∈ ext(y′) ∩ yi

do pick randomly e′ ∈ ext(y′) \ yi
if F (y′i) < F (y′ ∪ {e}) then y′i ← y′ ∪ {e}
FORCE-CONSTRAINT(Fxi(y

′ ∪ {e})− Fxi(y
′ ∪ {e′}) ≥ 1)

for l← 1, . . . , L
do randomly choose y′′ : y′ ⊂ y′′ ⊂ yi ∧ e, e′ ∈ Sx \ y′′

FORCE-CONSTRAINT(Fxi
(y′′ ∪ {e})− Fxi

(y′′ ∪ {e′}) ≥ 1)
if F (y′i) < F (y′′ ∪ {e}) then y′i ← y′′ ∪ {e}

There are several suitable online learners implementing the interface required by the above proce-
dure. Possible candidates include perceptron-like or ALMA-like update rules like those proposed
in [4] for structured output learning (in our case the update would depend on the difference between
feature vectors of correctly and incorrectly extended structures in the inner loop of GREEDYEPOCH).
An alternative online learner is the LaSVM algorithm [3] equipped with obvious modifications for
handling constraints between pairs of examples. LaSVM is an SMO-like solver for the dual version
of problem (3–5) that optimizes one or two coordinates at a time, alternating process (on newly
acquired examples, generated in our case by the FORCE-CONSTRAINT procedure) and reprocess
(on previously seen support vectors or patterns) steps. The ability to work efficiently in the dual
is the most appealing feature of LaSVM in the present context and advantageous with respect to
perceptron-like approaches. Our unsuccessful preliminary experiments with simple feature vectors
confirmed the necessity of flexible design choices for developing rich feature spaces. Kernel meth-
ods are clearly more attractive in this case. We will therefore rewrite the objective function F using
a kernel k(z, z′) = 〈φx(y), φx′(y′)〉 between two structured instances z = (x, y) and z′ = (x′, y′),
so that Fx(y) = F (z) =

∑
i αik(z, zi).

Let σi(z) denote the set of edges incident on ion ιi ∈ I \ nil and n(z) the number of non-nil ion
identifiers that have at least one incident edge. Below is a top-down definition of the kernel used in



the subsequent experiments.

k(z, z′) = kglob(z, z′)
n(z)∑
i=1

n(z′)∑
j=1

kmbs(σi(z), σj(z′))
n(z)n(z′)

(6)

kglob(z, z′) = δ(n(z), n(z′))
2 min{|x|, |x′|}
|x|+ |x′|

(7)

kmbs(σi(z), σj(z′)) = δ(|σi(z)|, |σj(z′)|)
|σi(z)|∑
`=1

kres(xi(`), x′j(`)) (8)

where δ(a, b) = 1 iff a = b, xi(`) denotes the `-th residue in σi(z), taken in increasing order
of sequential position in the protein, and kres(xi(`), x′j(`)) is simply the dot product between the
feature vectors describing residues xi(`) and x′j(`) (details on these features are given in Section 5).
kmbs measures the similarity between individual sites (two sites are orthogonal if have a different
number of ligands, a choice that is supported by protein functional considerations). kglob ensures
that two structures are orthogonal unless they have the same number of sites and down weights their
similarity when their number of candidate ligands differs.

5 Experiments
We tested the method on a dataset of non-redundant proteins previously used in [12]
for metal bonding state prediction (http://www.dsi.unifi.it/˜passe/datasets/
mbs06/dataset.tgz). Proteins that do not bind metal ions (used in [12] as negative examples)
are of no interest in the present case and were removed, resulting in a set of 199 metalloproteins
binding transition metals. Following [12], we used T = {C,H} as the set of candidate ligands.
Protein sequences were enriched with evolutionary information derived from multiple alignments.
Profiles were obtained by running one iteration of PSI-BLAST on the non-redundant (nr) NCBI
dataset, with an e-value cutoff of 0.005. Each candidate ligand xi(`) was described by a feature
vector of 221 real numbers. The first 220 attributes consist of multiple alignment profiles in the
window of 11 amino acids centered around xi(`) (the window was formed from the original protein
sequence, not the substring xi of candidate ligands). The last attribute is the normalized sequence
separation between xi(`) and xi(`− 1), using the N-terminus of the chain for ` = 1.

A modified version of LaSVM (http://leon.bottou.org/projects/lasvm) was run
with constraints produced by the GREEDYEPOCH procedure of Section 4, using a fixed regulariza-
tion parameter C = 1, and L ∈ {0, 5, 10}. All experiments were repeated 30 times, randomly
splitting the data into a training and test set in a ratio of 80/20. Two prediction tasks were consid-
ered, from unknown and from known metal bonding state (a similar distinction is also customary
for the related task of disulfide bonds prediction, see e.g. [15]). In the latter case, the input x only
contains actual ligands and no nil symbol is needed.

Several measures of performance are reported in Table 1. PE and RE are the precision and recall
for the correct assignment between a residue and the metal ion identifier (ratio of correctly pre-
dicted coordinations to the number of predicted/actual coordinations); correct links to the nil ion
(that would optimistically bias the results) are ignored in these measures. AG is the geometry ac-
curacy, i.e. the fraction of chains that are entirely correctly predicted. PS and RS are the metal
binding site precision and recall, respectively (ratio of correctly predicted sites to the number of pre-
dicted/actual sites). Finally, PB and RB are precision and recall for metal bonding state prediction
(as in binary classification, being “bonded” the positive class). Table 2 reports the breakdown of
these performance measures for proteins binding different numbers of metal ions (for L = 10).

Results show that enforcing consistency constraints tends to improve recall, especially for the bond-
ing state prediction, i.e. helps the predictor to assign a residue to a metal ion identifier rather than to
nil. However, it only marginally improves precision and recall at the site level. Correct prediction of
whole sites is very challenging and correct prediction of whole chains even more difficult (given the
enormous number of alternatives to be compared). Hence, it is not surprising that some of these per-
formance indicators are low. By comparison, absolute figures are not high even for the much easier
task of disulfide bonds prediction [15]. Correct edge assignment, however, appears satisfactory and
reasonably good when the bonding state is given. The complete experimental environment can be
obtained from http://www.disi.unitn.it/˜passerini/nips08.tgz.



Table 1: Experimental results.
ab-initio

L PE RE AG PS RS PB RB

0 75±5 46±5 12±4 18±6 14±6 81±5 51±6
5 66±5 52±4 14±6 20±7 17±6 79±4 64±6

10 63±5 52±5 13±6 20±7 15±6 78±4 68±5
metal bonding state given

L PE RE AG PS RS

0 87±2 87±2 64±6 65±6 65±6
5 87±3 87±3 65±7 66±7 66±7

10 88±3 88±3 67±7 67±7 67±7

Table 2: Breakdown by number of sites each chain. BS= (K)nown/(U)nknown bonding state.
# sites = 1 (132 chains) # sites = 2 (48 chains)

BS PE RE PS RS AG PE RE PS RS AG

U 62±6 57±6 25±9 21±8 19±8 67±9 46±8 14±12 6±8 3±6
K 97±2 97±2 92±6 92±6 92±6 73±5 73±5 21±10 21±10 20±11

# sites = 3 (11 chains) # sites = 4 (8 chains)
BS PE RE PS RS AG PE RE PS RS AG

U 65±16 33±13 1±5 1±5 0 44±31 24±20 3±11 2±6 0
K 61±12 61±12 8±11 9±13 0 37±25 37±25 1±2 1±2 0

6 Related works
As mentioned in the Introduction, methods for structured outputs usually learn a functionF on input-
output pairs (x, y) and construct the predicted output as f(x) = arg maxy F (x, y). Our approach
follows the same general principle.

There is a notable analogy between the constrained optimization problem (3–5) and the set of con-
straints derived in [15] for the related problem of disulfide connectivity. As in [15], our method
is based on a large-margin approach for solving a structured output prediction problem. The un-
derlying formal problems are however very different and require different algorithmic solutions.
Disulfide connectivity is a (perfect) matching problem since each cysteine is bound to exactly one
other cysteine (assuming known bonding state, yielding a perfect matching) or can be bound to an-
other cysteine or free (unknown bonding state, yielding a non-perfect matching). The original set of
constraints in [15] only focuses on complete structures (non extensible set or bases, in our terminol-
ogy). It also has exponential size but the matching structure of the problem in that case allows the
authors to derive a certificate formulation that reduces it to polynomial size. The MBG problem is
not a matching problem but has the structure of a matroid and our formulation allows us to control
the number of effectively enforced constraints by taking advantage of a greedy algorithm.

The idea of an online learning procedure that receives examples generated by an algorithm which
constructs the output structure was inspired from the Learning as Search Optimization (LaSO) ap-
proach [4]. LaSO aims to solve a much broader class of structured output problems where good
output structures can be generated by AI-style search algorithms such as beam search or A*. The
generation of a fresh set of siblings in LaSO when the search is stuck with a frontier of wrong can-
didates (essentially a backtrack) is costly compared to our greedy selection procedure and (at least
in principle) unnecessary when working on matroids.

Another general way to deal with the exponential growth of the search space is to introduce a gener-
ative model so that arg maxy F (x, y) can be computed efficiently, e.g. by developing an appropriate
dynamic programming algorithm. Stochastic grammars and related conditional models have been
extensively used for this purpose [2]. These approaches work well if the generative model matches
or approximates well the domain at hand. Unfortunately, as discussed in Section 2, the specific ap-
plication problem we study in this paper cannot be even modeled by a context-free grammar. While
we do not claim that it is impossible to devise a suitable generative model for this task (and indeed
this is an interesting direction of research), we can argue that handling context-sensitiveness is hard.
It is of course possible to approximate context sensitive dependencies using a simplified model. In-
deed, an alternative view of the MBG problem is supervised sequence labeling, where the output
string consists of symbols in I. A (higher-order) hidden Markov model or chain-structured condi-
tional random field could be used as the underlying generative model for structured output learning.



Unfortunately, these approaches are unlikely to be very accurate since models that are structured as
linear chains of dependencies cannot easily capture long-ranged interactions such as those occurring
in the example. In our preliminary experiments, SVMHMM [16] systematically assigned all bonded
residues to the same ion, thus never correctly predicted the geometry except in trivial cases.

7 Conclusions

We have reported about the first successful solution to the challenging problem of predicting protein
metal binding geometry from sequence alone. The result fills-in an important gap in structural and
functional bioinformatics. Learning with structured outputs is a fairly difficult task and in spite of
the fact that several methodologies have been proposed, no single general approach can effectively
solve every possible application problem. The solution proposed in this paper draws on several
previous ideas and specifically leverages the existence of a matroid for the metal binding problem.
Other problems that formally exhibit a greedy structure might benefit of similar solutions.
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