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Abstract. We focus on graph-valued outputs in supervised learning
and propose a novel solution to the pre-image problem in the kernel
dependency estimation framework. Output structures are generated by
a stochastic grammar and the output feature space is directly associated
with the set of productions for the grammar. The regression estimation
step learns to map input examples into a feature vector that counts the
number of applications of each production rule. A max-propagation al-
gorithm finally builds the predicted output according to the normalized
counts. We test our method on a ambiguous context free grammar (CFG)
parse tree reconstruction problem. We show on an artificial dataset that
mimics the prepositional attachment problem how learning the number
of applications of each production rule on a per example base allows CFG
parser to better tackle ambiguity issues.

1 Introduction

A structured output prediction problem can be formulated as a supervised learn-
ing problem in which the output or target space is not restricted in any way
and can be any set (e.g. a set of graphs or sequences). In this way, several
predictions can be made collectively on the same input instance, still main-
taining that instances are sampled independently. Formally, we denote by X
and Y the input and output spaces, respectively. Examples are in the form
D = {(x1, y1), . . . , (xm, ym)} with xi ∈ X and yi ∈ Y and are sampled iden-
tically and independently from a fixed and unknown distribution p. The cost
associated with prediction errors is measured by a loss function V : Y ×Y 7→ IR.
Learning consists of finding a function f : X 7→ Y in a given hypothesis space
such that the average loss V (y, f(x)) is minimized.

The above setting can be useful in many real world application domains.
Structural bioinformatics offers interesting examples since there are several pre-
diction tasks where the target is about a relation between two or more residues
in a protein chain. Problems of this kind include prediction of disulfide bridges,
metal binding sites, beta sheet partners and contact maps. Correlation often
plays a major role linking the prediction at different residues in the same chain.
It is relatively safe, however, to assume that different protein chains are sam-
pled independently. Thus, these structural bioinformatics problems fit the above
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framework choosing X to be a set of sequences and Y a set of graphs (whose
vertices are the elements of the input sequence). Computational linguistics offers
other interesting examples of sequential translation problems like POS-tagging
and named entity recognition.

Typically, structured output prediction involves searching the output space
Y, where the search can be guided by a scoring function associated with the
input x and a candidate output y.

f(x) = argmax
y∈Y

S(x, y). (1)

Exhaustive search in spaces of graphs is generally intractable and heuristic meth-
ods are necessary. Search in graph space can be implemented starting in some
initial state and iteratively moving in Y by applying some modification operator
to the current structure. In [2, 6], parse tree construction from input sequences
is formulated in the context of incremental dynamic grammars and recursive
neural networks were employed to learn the best operator to be applied at each
search step. In some special cases it is possible to define “unimodal” functions
S(x, y) for which hill climbing can be shown to be complete in solving Eq. 1.
In [12], a unimodal function was proposed for scoring candidate protein contact
maps and a recursive neural network was trained in regression mode to predict
the value S(x, y) to be plugged in Eq. 1.

Weston et al. [13] and Tsochantaridis et al. [10] have proposed kernel-based
formulations of the problem in Eq. 1. Here we follow-up the kernel dependency
estimation (KDE) framework introduced in [13] and further specialized to the
case of sequential transductions in [1].

2 Kernel Dependency Estimation

In KDE [13, 1], both the input and the output portions of the data are mapped
into their feature spaces, denoted as FX and FY , respectively. As usual, these
mappings can be implicitly defined via two kernel functions:

κ(x, x′) = 〈φ(x), φ(x′)〉 (2)
λ(y, y′) = 〈ψ(y), ψ(y′)〉 (3)

where φ : X 7→ FX and ψ : Y 7→ FY are the input and the output feature
mapping, respectively. Then every function f : X 7→ Y in the original domain,
can be mapped to a corresponding function F : FX 7→ FY in the transformed
space defined as F (φ(x)) = ψ(f(x)). KDE consists of two separate steps: feature
estimation and pre-image calculation, as detailed below.

Feature estimation problem. This step consists of predicting the image of
the target ψ(y) given the input x. We need the assumption that FY has
finite dimension no (or alternatively we could apply kernel PCA to reduce
its dimensionality to a finite integer).
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The feature estimation problem can be conveniently represented as a vector-
output regression problem where one learns a function g : X 7→ FY from
examples {(xi, ψ(yi))}. It can be shown that using kernel ridge regression,
the no regression problems can be solved using a single matrix inversion,
obtaining the general solution

g(x) =
m∑
i=1

ciκ(x, xi) (4)

being ci ∈ IRn0 the columns of the solution to the following linear problem:

C = Ψ(y)(K + γmIm)−1 (5)

being K the input kernel matrix and Ψ(y) the no ×m matrix with columns
ψ(y). Efficient alternatives to the above approach consist of solving each
of the no regression problems by support vector regression [11] or using
maximum margin regression [8, 7].

Pre-image calculation problem. Once the feature space representation of
the target has been estimated as g(x), we are left with the problem of in-
verting the output feature mapping ψ(y) in order to obtain a predicted
f(x) ∈ Y. The approach suggested in [13, 1] consists of searching the space
Y for a structure whose image in FY is close to g(x):

f(x) = argmin
y∈Y

‖g(x)− ψ(y)‖2 (6)

When using kernel ridge regression, it can be shown that

‖g(x)− ψ(y)‖2 = λ(y, y)− 2
m∑

i,j=1

hijλ(yi, y)κ(xj , x) (7)

being H = {hij} = (K+µI)−1. In [1] the search problem of Eq.(6) is solved
by a graph theoretical algorithm in the case of output strings and k-gram
output kernels.

3 Using stochastic grammars

We propose here an alternative KDE formulation where the pre-image prob-
lem is solved via probabilistic inference in stochastic grammars. We focus on
supervised problems where input instances are arbitrary objects (e.g. strings)
and the associated targets y are the result of a generative mechanism described
by a stochastic grammar which depends on the input instance. One example is
language learning where x is a string in a finite alphabet T and y a parse tree
of x (which is not necessarily unique if the grammar is ambiguous). Another
example is string transduction where x and y are strings in different alphabets
and y is generated by selecting suitable production rules on the basis of x. Let
G(x) = {N,T,S,Π(x)} denote the stochastic grammar associated with x, where
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N is the set of nonterminal symbols, T the set of terminal symbols, S the set of
production rules and Π(x) the corresponding probabilities. In our notation we
have made explicit the assumption that the structure S of the grammar is fixed
and given as background knowledge to the learner, while the parameters Π(x)
depend on x and are unknown. Let L(x) be the language generated by G(x) and
for y ∈ L(x) let Pr(y|x) denote the probability that G(x) has generated y: in
order to solve the statistical learning problem outlined in the introduction, we
need that Pr(y|x) be a good model for p(y|x).

We link this generative process to KDE by choosing as features ψ(y) a real
vector from which Π(x) can be conveniently obtained.

While in this phase there is in principle no constraint on the kind of stochastic
grammar to employ (context free, context sensitive, or even more expressive!),
when we finally get down to the computation of the pre-image of ψ(y) we have
to opt for computationally tractable methods. To this end we choose a stochastic
context free grammar to model the structured output information so to exploit
efficient maximum-propagation algorithms (such as Viterbi [3]) which can, in
practice, run with complexity lower than O(|x|3). In this case ψ(y) is a vector
of frequency counts for the rules used in the parse tree y.

Formally, suppose G(x) is a stochastic context free grammar. Production
rules rk` have the form Ak 7→ α` with Ak ∈ N and α` ∈ (N ∪ T ∪ {ε})∗. Each
production rule rk` has an attached probability πk,` with constraints

∑
` πk,` = 1

for each k = 1 . . . , |N |. These probabilities are linked to the feature vector ψ(y)
by the softmax function:

πk,` =
eψk,`∑
j=1 e

ψk,j
. (8)

In this way, the feature estimation step of KDE consists of solving the regression
problem for a multinomial logit model, i.e. a generalized linear model [5]. Note
how the expressive power of the grammar describing the output structure is
greater than simple SCFG as the probabilities associated to each rule depend
on the inputs x. Informally, first we learn ψ(y) i.e. the frequency counts of each
rule in G for the parse tree y then we give these estimates to a SCFG parser
that computes the pre-image of ψ(y) i.e. builds the actual parse tree. We call
the overall procedure KDE-SCFG.

For another approach to the task of learning the structured output of a SCFG
parse tree in terms of its production rules see [9] where they learn a kernel
machine that discriminates among the entire space of parse trees factorized in
an extended bottom-up tabular representation.

4 Experiments

4.1 The artificial task

We test the proposed method on an artificial dataset. We are interested in prob-
lems where instances’ output structure cannot be well explained resorting only
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to a SCFG (in this case we could use the standard parsing techniques). We sim-
ulate a problem of interest in the NLP domain known as the PP-attachment
ambiguity resolution problem which is known to be context-sensitive. The task
consists in deciding which of two possible structural parse tree that involve a
preposition is the correct one. To clarify the issue consider the following two
sentences “eat a salad with a fork” and “eat a salad with tomatoes”: in the first
one the propositional phrase (PP) “with a fork” specifies a characteristic of the
action of eating, while in the second case it specifies a property of the salad; in
the first case we have a parse tree where the PP is attached to the verb ’eat’
as in: (VP (V eat) (NP a salad) (PP with a fork)) while in the second case the
PP is attached to the noun ’salad’ as in (VP (V eat) (NP a salad (PP with
tomatoes))). A CFG that has access to the part of speech (POS) of the sentence
words only has no way to discriminate between the two alternatives which are
both syntactically correct: the disambiguation can happen only lexicalizing the
grammar i.e. making the rules dependent on the actual words, which is a way
to introduce a form of context-sensitiveness.

We simulate the PP-attachment problem using the following simple stochas-
tic context free grammar G:

S → ScS|NV
V → wNP |vNP
N → n|ncV
NP → nP |ncV P
P → pn

w → 5
v → 4
n→ 2|3
p→ 1
c→ 0

whereN = {S, V,N,NP , P, c, n, p, v, w} and T = {0, 1, 2, 3, 4, 5} and {c, n, p, v, w}
are the POS tags (pre-terminal). The probabilities are all uniform except for the
S derivation for which we set a .2 probability of deriving ScS against a .8 prob-
ability for NV .

To introduce the context-sensitiveness we collapse the POS tags ’v’ and ’w’ in
a single tag ’x’: now, given the structure of G and a dataset wide global estimate
of Π, the SCFG parser has no deterministic information as to which expansion
rule to use for the verbal phrase: the resulting grammar is ambiguous. We want
to show that exploiting similarities between the inputs in sequential form we
can learn the probabilities associated to the different rules used to resolve the
ambiguity and inform the SCFG parser on a per example base on which rule to
prefer hence obtaining a better parse tree.

4.2 Data preparation

We used Douglas Rohde’s Simple Language Generator (SLG) program1 to ran-
domly produce sets of sentences according to G. We then post-processed the sets
1 http://tedlab.mit.edu/ dr/SLG/
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with two strategies: in the first one (Natural) we filtered out sentences with the
same sequence structure (and therefore with the same parse trees), while in the
second set (Unique) we filtered out sentences with identical representation in the
output feature space FY .

4.3 Results

We compared KDE-SCFG with a standard SCFG parser that makes use of prob-
abilities globally estimated over the entire dataset. We employed a spectrum ker-
nel [4] with k-mers of size 2 to 5 to compute κ. We use Collin’s evalb program2

to compute the bracketing F-measure and exact parse matching scores. We ran-
domly split the dataset in two equally sized sets of 1,000 instances each, which
were employed for model selection and final evaluation respectively, both per-
formed by a 5-fold cross validation procedure. Table 1 reports micro-averaged
results of the 5-fold cross validation evaluation procedure, both for the entire
evaluation set and focused on short sequences (< 35 terminals) only. The results
indicate that the KDE-SCFG approach outperforms the SCFG parser signifi-
cantly (p < .05 in all pairwise comparisons).

Table 1. Comparison between standard SCFG and KDE-SCFG

Filtering Natural Unique

Measure F-score Exact F-score Exact

SCFG<35 86.4 10.3 84.7 3.1
SCFG 85.8 8.1 84.4 0.5
KDE-SCFG<35 93.3 33.2 94.3 28.6
KDE-SCFG 91.5 26.1 89.6 4.8

5 Conclusions

We introduced a novel solution to the pre-image problem for kernel dependency
estimation using an output feature space associated to the frequency of context
free grammar production rules. We showed that learning their frequency on a
per instance base is an effective way to approximate a specific context sensitive
grammar on a simplified NLP problem significantly outperforming a standard
stochastic context free parser. The key ideas introduced in this (preliminary)
work can in principle be extended to more complex settings: as an example
consider associating the feature space with clauses in a probabilistic inductive
logic programming setting and running logical inference procedures to find an
explanation (proof) for the target concept.
2 http://nlp.cs.nyu.edu/evalb/
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