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1 Introduction

A multi-objective optimization problem (MOP) is formulated as the joint minimization ofm conflicting
objective functionsf1(x), . . . , fm(x) w.r.t a vectorx of n decision variables. Typically,x ∈ Ω, where
Ω ⊂ R

n is thefeasible region, defined by a set of constraints on the decision variables. Objective vectors
are images of decision vectors and can be written asz = f(x) = (f1(x), . . . , fm(x)), with z ∈ Φ, where
Φ is the image ofΩ, i.e., f : Ω → Φ ⊂ R

m. An objective vectorz is said todominate z′, denoted as
z ≻ z′,if zk ≤ z′

k
for all k and there exists at least oneh such thatzh < z′

h
. A point x is Pareto-optimal

if there is no otherx′ ∈ Ω such thatf(x′) dominatesf(x). The set of Pareto-optimal solutions is called
Pareto set (PS). The corresponding set of Pareto-optimal objective vectors is called Pareto front (PF).

The Active Learning of Pareto fronts (ALP) algorithm [1] learns ananalytical model of the Pareto
front from a training set of approximated Pareto-optimal vectors. The training Pareto-optimal vectors are
obtained by solving different scalarized instances of the original MOP. In order to minimize the compu-
tational effort (measured as number of evaluations of the MOP objective functions), informative training
objective vectors are selected by applying active learning principles. The experimental results reported
in [1] show that ALP outperforms the state-of-the-art MMEA and NSGA-II algorithms over widely-
used continuous-optimization benchmarks, including a set of four well-known MOPS with disconnected
Pareto front. However, the benchmarks considered in the experimental comparison haveconnected fea-
sible decision and objective spaces.

This paper highlights a possible generalization of ALP to tackle continuous MOPs wherethe feasible
decision and objective spaces are disconnected. To validate the ALP extension, the formulation of a well-
known continuous MOP is modified to obtain disconnected feasible decision and objective spaces. We
are not aware of established benchmark problems in the literature with this feature. Our contribution can
also be considered a first attempt to fulfill this lack, in the spirit of simulating real-world optimization
tasks.

2 The ALP algorithm

Under mild smoothness conditions on the objective functions, the PF exhibits a regular structure. In
particular, the PF of a problem withm objectives is a(m − 1)-dimensional piecewise-continuous man-
ifold [2]. Furthermore, the dominance relation enables a functional formulation of the PF. As matter of
fact, the PF can be characterized by expressing an arbitrary objectiveas a functiong of the remaining
objectives.

The current version for the ALP algorithm focuses on bi-objective problems, where the Pareto front
is a piecewise-continuous curvez2 = g(z1). An equivalent formulation consists of expressingz1 as a
function ofz2. Without losing generality, we adopt the former formulation. Possible generalizations of
ALP with an arbitrary number of objectives are under investigation. Underthe above regularity assump-
tions, ALP casts the identification of the Pareto front into a supervised regression task. The target of
the regression task is an approximationg̃ of the unknown functiong, with the input and the output of
the regression problem being the independent objectivez1 and the dependent objectivez2, respectively.
The approximatioñg is learnt from a set of approximated Pareto-optimal vectors, each one providing a
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training example(z1, z2). The training set is generated iteratively by applying the uncertainty sampling
principle (active learning). At each iteration, a new informative training example is generated first by
selecting the input̂z1 where the prediction of the current PF modelg̃ is most uncertain and then by com-
puting the supervised information forẑ1. The supervised information consists of the outputẑ2 = g(ẑ1),
obtained by solving the single-objective optimization task formulated by the mathematical program (1),
whereΩ ⊆ R

n identifies the decision region of the MOP. Letx̂ be theexact solution of program (1).
Then, ẑ2 = f2(x̂). The objective vector̂z = {ẑ1, ẑ2} is Pareto-optimal, i.e.,̂z2 = g(ẑ1). The slack
variableǫ in program (1) relaxes the equality constraintsf1(x) = ẑ1. When anapproximated solution of
the above problem is obtained, anoisy training example is generated.

min
x,ǫ

f2(x)

subject to

f1(x) = ẑ1 + ǫ

|ǫ| ≤ 10−2

x ∈ Ω

Program 1: Generation of the supervised information for
a selected input̂z1.

min
x

ẑ1 − f1(x)

subject to

z
cl
1 ≤ f1(x) ≤ ẑ1

x ∈ Ω

Program 2: Identification of the infeasible-interval lower
bound.

The ALP algorithm consists of an initialization phase followed by a refinement phase. The former
stage provides an initial approximationg̃ froms approximated Pareto optimal vectors obtained by solving
s instances of the problem (1) fors inputsẑ1 selected uniformly at random in the regression domain. We
useds = 1 in the experiments reported below. The latter stage refinesg̃ by iteratively increasing the
training set with the example selected by the active learning principle, and re-training the model for
the following refinement. ALP stops when the predictive uncertainty of the model g̃ is negligible over
the whole regression domain (i.e., the information gain obtained fromany additional training example is
negligible), or a limit on the number of training iterations or MOP function evaluations has been reached.
A detailed description of ALP can be found in [1].

3 Extension to tackle disconnected feasible decision and objective spaces

The work in [1] also extends the basic framework of ALP, sketched in the previous section, to solve
continuous MOPs with a disconnected Pareto front, but withconnected feasible decision and objective
spaces. In this case, ALP algorithm learns an approximationh̃ of the whole lower boundaryh of the
objective space. By definition,h entails the Pareto front of the MOP. An approximationg̃ of g can thus
be obtained from̃h by applying the dominance relation.

However, real-world continuous-optimization tasks may exhibitdisconnected feasible decision and
objective spaces. When the feasible objective space is disconnected, the problem (1) may be infeasible.
In this case, the input̂z1 belongs to an interval whereh is not defined (infeasible interval). Our extension
of ALP identifies the lower bound and the upper bound of the infeasible interval and updates the regres-
sion domain by removing the infeasible interval. From now on, the ALP extension will be referred to by
the acronym ALPI, where the final letter “I” denotes the ability in handling infeasible intervals.

The lower bound is obtained by solving the non-linear program (2). Let us denote byzcl
1
= f1(x

cl) <
ẑ1 the training input closest to the infeasible query inputẑ1. Program (2) consists of searching for the
feasible decision vectorx, with f1(x) ∈ [ẑcl

1
, ẑ1], minimizing the distance between̂z1 andf1(x). A

robust approach to solve the non-linear program (2) is provided by themulti-start continuous local search
method introduced in [3] and implemented in the Matlab global optimization toolbox. The continuous
local search algorithm is initialized with the feasible starting pointx

cl. When there are no training
inputsz1 ≤ ẑ1, ALPI first identifies one feasible pointx with f1(x) < ẑ1 by maximizing the distance
ẑ1 − f1(x) and then solves the non-linear program (2). An analogous procedureis adopted to identify
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Figure 1: Selected iterations from a sample run of ALPI, showing the identification of the domain ofh and the generation
of informative training examples. The solid black lines define the boundary of the disconnected components of the feasible
objective space, while the disconnected PF is highlighted with the green color. The solid blue lines define the piecewise-
continuous approximatioñh learnt by ALP from the training set represented by the square-markedpoints. The gray-shaded
area denotes the predictive uncertainty of the learnt model.

the upper bound of the infeasible interval.

4 Experimental results

The formulation of the widely-used ZDT3 MOP from the benchmark suite [4] has been modified to
obtain disconnected feasible decision and objective spaces. In Fig. 1, the solid black lines define the dis-
connected components of the feasible objective space, while the disconnected PF is highlighted with the
green color. The solid blue lines define the piece-wise continuous approximation h̃ learnt by ALP form
the training set represented by the square-marked points. The gray-shaded area denotes the predictive un-
certainty of the PF model (a larger area corresponds to more uncertain predictions). The different figures
refer to refinement iterations one (i.e., the initialization phase, with only one initialtraining example), six
and twenty of a selected ALPI run. Comparable results are observed fordifferent runs. When increasing
the number of iterations, the disconnected domain ofh̃ is correctly identified. At the sixth refinement it-
eration, the infeasible interval located between the values 0.5 is and 0.6 is recovered. At iteration twenty
all the infeasible intervals are accurately identified, while the predictive uncertainty of the learn model
is sensibly reduced. Therefore, ALPI can learn an accurate modelh̃ of the lower boundaryh, with the
exception of the leftmost feasible component of the disconnected feasible objective space, where noisy
training examples affect the quality of the approximation. Future work will be devoted to increase the
robustness to noisy training examples and to reduce the computational effort (in terms of the number of
evaluations of the original MOP objectives).
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