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Abstract. We address the problem of automated discovery of preferred
solutions by an interactive optimization procedure. The algorithm itera-
tively learns a utility function modeling the quality of candidate solutions
and uses it to generate novel candidates for the following refinement. We
focus on combinatorial utility functions made of weighted conjunctions
of Boolean variables. The learning stage exploits the sparsity-inducing
property of 1-norm regularization to learn a combinatorial function from
the power set of all possible conjunctions up to a certain degree. The op-
timization stage uses a stochastic local search method to solve a weighted
MAX-SAT problem. We show how the proposed approach generalizes to
a large class of optimization problems dealing with satisfiability modulo
theories. Experimental results demonstrate the effectiveness of the ap-
proach in focusing towards the optimal solution and its ability to recover
from suboptimal initial choices.

1 Introduction

The field of combinatorial optimization focussed in the past mostly on solving
well defined problems, where the function f(x) to optimize is given, either in
a closed form, or as a simulator which can be interrogated to deliver f values
corresponding to inputs, possibly with some noise leading to stochastic opti-
mization. One therefore distinguishes two separated phases, a first one related
to defining the problem through appropriate consulting, knowledge elicitation,
modeling steps, and a second one dedicated to solving the problem either opti-
mally, in the few cases when this is possible, or approximately, in most real-world
cases leading to NP-hard problems.

Unfortunately the above picture is not realistic in many application scenarios,
where learning about the problem definition goes hand in hand with delivering
a set of solutions of improving quality, as judged by a decision maker (DM)
responsible for selecting the final solution. In particular, this holds in the con-
text of multi-objective optimization, where one aims at maximizing at the same
time a set of functions f1, ..., fn. Multi-objective optimization, when cast in
the language of machine learning, is a paradigmatic case of lack of information,
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where only some relevant building blocks (features) are initially given as the in-
dividual function fi’s, but their combination into a utility function modeling the
preferences of the DM is not given and has to be learnt by interacting with the
DM [1]. Dealing with human DM, characterized by limited patience and bounded
rationality, demands for some form of strategic production of candidates to be
evaluated (query learning), and requires to account for the possible mistakes and
dynamical evolution of her preferences (learning about concrete possibilities may
lead somebody to change his/her initial objectives and evaluations). A further
complication is related to the difficulty of delivering quantitative judgments by
the DM, who is often better off in ranking possibilities more than in deliver-
ing utility values. The interplay of optimization and machine learning has been
advocated in the past for example in the Reactive Search Optimization (RSO)
context, see [2, 3] also for an updated bibliography and [4] for an application of
RSO in the context of multi-objective optimization.

In this work, we focus on a setting in which the optimal utility function is
both unknown and complex enough to prevent exhaustive enumeration of possi-
ble solutions. We start by considering combinatorial utility functions expressed
as weighted combinations of terms, each term being a conjunction of Boolean
features. A typical scenario would be a house sale system suggesting candidate
houses according to their characteristics, such as “the kitchen is roomy”, “the
house has a garden”,“the neighbourhood is quiet”. The task can be formalized
as a weighted MAX-SAT problem, a well-known formalization which allows to
model a large number of real-world optimization problems. However, in the set-
ting we consider here the underlying utility function is unknown and has to be
jointly and interactively learned during the optimization process.

Our method consists of an iterative procedure alternating a search phase
and a model refinement phase. At each step, the current approximation of the
utility function is used to guide the search for optimal configurations; preference
information is required for a subset of the recovered candidates, and the utility
model is refined according to the feedback received. A set of randomly generated
examples is employed to initialize the utility model at the first iteration.

We show how to generalize the proposed method to more complex utility
functions which are combinations of predicates in a certain theory of interest. A
standard setting is that of scheduling, where solutions could be starting times for
each job, predicates define time constraints for related jobs, and weights spec-
ify costs paid for not satisfying a certain set of constraints. The generalization
basically consists of replacing satisfiability with satisfiability modulo theory [5]
(SMT). SMT is a powerful formalism combining first-order logic formulas and
theories providing interpretations for the symbols involved, like the theory of
arithmetic for dealing with integer or real numbers. It has received consistently
increasing attention in recent years, thanks to a number of successful applications
in areas like verification systems, planning and model checking.

Experimental results on both weighted MAX-SAT and MAX-SMT problems
demonstrate the effectiveness of our approach in focusing towards the optimal
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solutions, its robustness as well as its ability to recover from suboptimal initial
choices.

This manuscript is organized as follows: Section 2 introduces the algorithm
for the SAT case. Section 3 introduces SMT and its weighted generalization and
shows how to adapt our algorithm to this setting. Related works are discussed
in Section 4. Section 5 reports the experimental evaluation for both SAT and
SMT problems. A discussion including potential research directions concludes
the paper.

2 Overview of our approach

Candidate configurations are n dimensional Boolean vectors x consisting of cata-
log features. The only assumption we make on the utility function is its sparsity,
both in the number of features (from the whole set of catalog ones) and in the
number of terms constructed from them. We rely on this assumption in designing
our optimization algorithm.

The candidate solutions are obtained by applying a stochastic local search
(SLS) algorithm that searches the Boolean vectors maximizing the weighted sum
of the terms of the learnt utility model. At each iteration, the algorithm chooses
between a random and a greedy move with probability wp and 1 − wp, respec-
tively. A greedy move consists of flipping one of the variables leading to the
maximum increase in the sum of the weights of the satisfied terms (if improv-
ing moves are not available, the least worsening move is accepted). The main
difference w.r.t the “standard” weighted SLS algorithms consists of the DNF
rather than CNF representation, which we believe to be a more natural choice
when modeling combined effects of multiple non-linearly related features. Since
switching from disjunctive to conjunctive normal form representations may in-
volve an exponential increase in the size of the Boolean formula, we implemented
a method that operates on formulae represented as a weighted linear sum of
terms.

The candidate solutions generated by the optimizer during the search phase
are first sorted by their predicted score values and then shuffled uniformly at
random. The first s/2 configurations are selected, where s is the number of the
random training examples generated at the initialization phase. The evaluation
of the selected configurations completes the generation of the new training ex-
amples.

The refinement of the utility model consists of learning the weights of the
terms, discarding the terms with zero weight. In the following, we assume that
the available feedback consists of a quantitative score. We thus learn the utility
function by performing regression over the set of the Boolean vectors. Adapting
the method to other forms of feedback, such as ranking of sets of solutions, is
straightforward as will be discussed in Section 6. We address the regression task
by the Lasso [6]. The Lasso is an appropriate choice on problem domains with
many irrelevant features, as its 1-norm regularization can automatically select
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input features by assigning zero weights to the irrelevant ones. Feature selection
is crucial for achieving accurate prediction if the underlying model is sparse [7].

LetD = (xi, yi)i=1...m the set ofm training examples, where xi is the Boolean
vector and yi its preference score. The learning task is accomplished by solving
the following lasso problem:

minw

m
∑

i=1

(yi −wT · Φ(xi))
2 + λ||w||1 (1)

where the mapping function Φ projects sample vectors to the space of all possible
conjunctions of up to d Boolean variables. The learnt function f(x) = wT ·Φ(x)
will be used as the novel approximation of the utility function. A new iteration of
our algorithm can now take place. The pseudocode of our algorithm is in Fig. 1.

Note that dealing with the explicit projection Φ in Eq. 1 is tractable only
for a rather limited number of catalog features and size of conjunctions d. This
will typically be the case when interacting with a human DM. A possible alter-
native consists of directly learning a non-linear function of the features, without
explicitly projecting them to the resulting higher dimensional space. We do this
by kernel ridge regression [8] (Krr), where 2-norm regularization is used in place
of 1-norm. The resulting dual formulation can be kernelized into:

α = (K + λI)−1y

where K and I are the kernel and identity matrices respectively and λ is again
the regularization parameter. The learnt function is a linear combination of
kernel values between the example and each of the training instances: f(x) =
∑m

i=1
αiK(x,xi). We employ a Boolean kernel [9] which implicitly considers all

conjunctions of up to d features:

KB(x,x
′) =

d
∑

l=1

(

xT · x′

l

)

With the lasso, the function Φ(·) maps the Boolean variables to all possible
terms of size up to d. This allows for an explicit representation of the learnt
utility function f as a weighted combination of the selected Boolean terms. On
the other hand, in the kernel ridge regression case terms are only implicitly
represented via the Boolean kernel KB . In both cases, the value of the learnt
function f is used to guide the search of the SLS algorithm. In the following, the
two proposed approaches are referred as the Lasso and the Krr algorithms. As
will be shown in the experimental section, the sparsity-inducing property of the
Lasso allows it to consistently outperform Krr. The problem of addressing more
complex scenarios, possibly involving non-human DM, where we can not afford
an explicit projection, will be discussed in Section 6.
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1. procedure interactive optimization
2. input: set of the catalog variables
3. output: configuration optimizing the learnt utility function
4. /* Initialization phase */
5. initialize training set D by selecting s configurations uniformly at random;
6. get the evaluation of the configurations in D;
7. while (termination criterion)
8. /* Learning phase */
9. Based on D, select terms and relative weights for current
10. weighted MAX-SAT formulation (Eq. 1);
11. /* Optimization phase */
12. Get new configurations by optimizing current weighted MAX-SAT
13. formulation;
14. /* Training examples selection phase */
15. Select s/2 configurations, get their evaluation and add them to D;
16. return configuration optimizing the learnt weighted MAX-SAT formulation

Fig. 1. Pseudocode for the interactive optimization algorithm.

3 Satisfiability Modulo Theory

In the previous section, we assumed our optimization task could be cast into
a propositional satisfiability problem. However, many applications of interest
require or are more naturally described in more expressive logics as first-order
logic (FOL), involving quantifiers, functions and predicates. In these cases, one
is usually interested in validity of a FOL formula with respect to a certain back-

ground theory T fixing the interpretation of (some of the) predicate and function
symbols. A general purpose FOL reasoning system such as Prolog, based on the
resolution calculus, needs to add to the formula a conjunction of all the axioms
in T . This is, for instance, the standard setting we consider in inductive logic
programming when verifying whether a certain hypothesis covers an example
given the available background knowledge. Whenever the cost of including such
additional background theory is affordable, our algorithm can be applied rather
straightforwardly.

Unfortunately, adding all axioms of T is not viable for many theories of
interest: consider for instance the theory of arithmetic, which restricts the in-
terpretation of symbols such as +,≥, 0, 5. A more efficient alternative consists
of using specialized reasoning methods for the background theory of interest.
The resulting problem is known as satisfiability modulo theory (SMT)[5] and has
drawn a lot of attention in recent years, guided by its applicability to a wide
range of real-world problems. Among them, consider, for example, problems aris-
ing in formal hardware/software verification or in real-time embedded systems
design. Popular examples of useful theories include various theories of arithmetic
over reals or integers such as linear or difference ones. Linear arithmetic consid-
ers + and − functions alone, applied to either numerical constants or variables,
plus multiplication by a numerical constant. Difference arithmetic is a fragment



6 Paolo Campigotto, Andrea Passerini, and Roberto Battiti

of linear arithmetic limiting legal predicates to the form x − y ≤ c, where x, y
are variables and c is a numerical constant. Very efficient procedures exists for
checking satisfiability of difference logic formulas [10]. A number of theories have
been studied apart from standard arithmetic ones (e.g., the theory of bit-vector
arithmetic to model machine arithmetic).

3.1 Satisfiability Modulo Theory solvers

The most successful SMT solvers can be grouped into the two main approaches
named eager and lazy. The eager approach consists of developing theory-specific
and efficient translators which translate a query formula into an equisatisfiable
propositional one, much like compilers do when optimizing the code generated
from a high-level program. Lazy approaches, on the other hand, work by building
efficient theory solvers, inference systems specialized on a theory of interest.
These solvers are integrated as submodules into a generic SAT solver. In the rest
of the paper we will focus on this latter class of SMT solvers, which we integrated
in our optimization algorithm. The simplest approach for building a lazy SMT-
solver consists of alternating calls to the satisfiability and the theory solver
respectively, until a solution satisfying both solvers is retrieved or the problem
is found to be unsatisfiable. Let ϕ be a formula in a certain theory T , made of a
set of n predicates A = {a1, . . . , an}. A mapping α maps ϕ into a propositional
formula α(ϕ) by replacing its predicates with propositional variables pi = α(ai).
The inverse mapping β replaces propositional variables with their corresponding
predicates, i.e., β(pi) = ai. For example, consider the following formula in a
non-linear theory T:

(cos(x) = 3 + sin(y)) ∧ (z ≤ 8) (2)

Then, p1 = α(cos(x) = 3 + sin(y)) and p2 = α(ai ≤ 8). Note that the truth
assignment p1 = true, p2 = false is equivalent to the statement (cos(x) =
3 + sin(y)) ∧ (z > 8) in the theory T.

Figure 2 reports the basic form [11] of an SMT algorithm. SAT(ϕ) calls the
SAT solver on the ϕ instance, returning a pair (r,M), where r is sat if the
instance is satisfiable, unsat otherwise. In the former case, M is a truth assign-
ment satisfying ϕ. T-Solver(S) calls the theory solver on the formula S and
returns a pair (r, J), where r indicates if the formula is satisfiable. If r =unsat,
J is a justification for S, i.e any unsatisfiable subset J ⊂ S. The next iteration
calls the SAT solver on an extended instance accounting for this justification.

State-of-the-art solvers introduce a number of refinements to this basic strat-
egy, by pursuing a tighter integration between the two solvers. A common under-
lying idea is to prune the search space for the SAT solver by calling the theory
solver on partial assignments and propagating its results. Finally, combination
methods exist to jointly employ different theories, see [12] for a basic procedure.

3.2 Weighted MAX-SMT

Weighted MAX-SMT generalizes SMT problems much like weighted MAX-SAT
does with SAT ones. While a body of works exist addressing weighted MAX-SAT
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1. procedure SMT-solver(ϕ)
2. ϕ′ = α(ϕ)
3. while (true)
4. (r,M) ← SAT(ϕ′)
5. if r = unsat then return unsat

6. (r,J) ← T-Solver(β(M))
7. if r = sat then return sat

8. C ←
∨

l∈J
¬α(l)

9. ϕ′
← ϕ′

∧ C

Fig. 2. Pseudocode for a basic lazy SMT-solver.

problems, the former generalization has been tackled only recently and very few
solvers have been developed [13–15]. The simplest formulation consists of adding
a cost to each or part of the formulas to be jointly satisfied, and returning the
assignment of variables minimizing the sum of the costs of the unsatisfied clauses,
or a satisfying assignment if it exists. The following is a “weighted version” of
Eq. 2:

5 · (cos(x) = 3 + sin(y)) + 12 · (z ≤ 8) (3)

where 5 and 12 are the cost of the violation of the first and the second predicate,
respectively.

Generalizing, consider a true utility function f expressed as a weighted sum
of terms, where a term is the conjunction of up to d predicates defined over the
variables in the theory T . The set of all n possible predicates represents the
search space S of the MAX-SAT solver integrated in the MAX-SMT solver. Our
approach learns an approximation f̂ of f and gets one of its optimizers v from
the MAX-SMT solver. The optimizer (and in general each candidate solution
in the theory T) identifies an assignment p∗ = (p∗

1
, . . . , p∗n) of Boolean values

(p∗i = {true, false}) to the predicates in S. The DM is asked for a feedback on
the candidate solution v and returns a possibly noisy quantitative score s ≈ f(v).
The pair (p∗, s) represents a new training example for our approach. In order

to obtain multiple training examples, we optimize again f̂ with the additional
hard1 constraint generated by the disjunction of all the terms of f̂ unsatisfied
by p∗ . For example, let t1 and t5 be the terms of f̂ unsatisfied by p∗, then the
hard constraint becomes:

(t1 ∨ t5)

If p∗ satisfies all the terms of f̂ , i.e., f̂(p∗) = 0, the additional hard constraint
generated is

(¬p∗
1
∨ ¬p∗

2
. . . ∨ ¬p∗n)

1 Hard constraints do not have a cost, and they have to be satisfied. On the contrary,
the terms with a cost, which may or may not be satisfied, are called soft constraints.
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which excludes p∗ from the feasible solutions set of f̂ . The generation of the train-
ing examples is iterated till the desired number of examples have been created
or the hard constraints generated made the MAX-SMT problem unsatisfiable.

The learning component of our algorithm is then re-trained, including in the
training set the new collected examples and the approximation of the true utility
function is refined. A new optimization phase can now take place (see Fig. 1).

The mechanism creating the training examples is motivated by the tradeoff
between the selection of good solutions (w.r.t. the current approximation of the
true utility function) and the diversification of the search process.

4 Related works

Active learning is a hot research area and a broad range of different approaches
has been proposed (see [16] for a review). The simplest and most common frame-
work is that of uncertainty sampling : the learner queries the instances on which
it is least certain. However, the ultimate goal of a recommendation or opti-
mization system is selecting the best instance(s) rather than correctly modeling
the underlying utility function. The query strategy should thus tend to suggest
good candidate solutions and still learn as much as possible from the feedback
received. Typical areas where research on this issue is quite popular are single-
and multi-objective interactive optimization [1] and information retrieval [17].
The need to trade off multiple requirements in this active learning setting is
addressed in [18] where the authors consider relevance, diversity and density in
selecting candidates. Note that our approach relies on query synthesis rather
than selection, as de-novo candidate solutions are generated by the SLS algo-
rithm. Nonetheless, our diversification strategies are very simple and could be
significantly improved by taking advantage of the aforementioned literature.

Choosing relevant features according to their weight within the learnt model
is a common selection strategy (see e.g. [19]). When dealing with implicit feature
spaces as in kernel machines, the problem can be addressed by introducing a
hyper-parameter for each input feature, like a feature-dependent variance for
Gaussian kernels [20]. Parameters and hyper-parameters (or their relaxed real-
valued version) are jointly optimized trying to identify a small number of relevant
features. One-norm regularization [6] has the advantage of naturally inducing
sparsity in the set of selected features. Approaches also exist [21] which directly
address the combinatorial problem of zero-norm optimization.

A large body of recent work exists for developing interactive approaches [1]
to multiobjective optimization. A common approach consists of modeling the
utility function as a linear combination of objectives, and iteratively updating
its weights trying to match the DM requirements. Our algorithm allows to deal
with complex non-linear interactions between (Boolean) objectives and, thanks
to the SMT extension, can be applied to a wide range of optimization problems.

Very recent works in the field of constraint programming [22] define the user
preferences in terms of soft constraints and introduce constraint optimization
problems where the data are not completely known before the solving process



9

starts. In particular, the work in [22] introduces an elicitation strategy for soft
constraint problems with missing preferences, with the purpose of finding the
solution preferred by the DM asking to reveal as few preferences as possible.
Despite the common purpose, this approach is different from ours. A major dif-
ference regards the preference elicitation problem considered. In [22] decision
variables and soft constraints are assumed to be known in advance and the in-
formation uncertainty consists only of missing preference values. On the other
hand, our settings assume sparsity of the utility function, both in the number of
features (from the whole set of catalog features) and in the selection of the terms
constructed from them. Furthermore, our technique is robust to imprecise infor-
mation from the DM, modeled in terms of inaccurate preference scores for the
candidate solutions. Even if interval-valued constraints [23] have been introduced
to handle uncertainty in the evaluations of the DM, the experiments in [22] do
not consider the case of inconsistent preference information. Finally, while the
technique in [22] combines branch and bound search with preference elicitation
and the adoption of local search algorithms is matter of research, our approach
works straightforwardly with both incomplete and complete search techniques.

5 Experimental results

The following empirical evaluation demonstrates the versatility and the efficiency
of our approach for the weighted MAX-SAT and the weighted MAX-SMT prob-
lems. The MAX-SMT tool used for the experiments is the “Yices” solver [13].

5.1 Weighted MAX-SAT

The Lasso and the Krr algorithms were tested over a benchmark of randomly
generated utility functions according to the triplet (number of features, number of

terms, max term size), where max term size is the maximum allowed number of
Boolean variables per term. We generate functions for: {(5, 3, 3), (6, 4, 3), (7, 6, 3),
(8, 7, 3), (9, 8, 3), (10, 9, 3)}. Each utility function has two terms with maximum
size. Terms weights are integers selected uniformly at random in the interval
[−100, 0) ∪ (0, 100]. We consider as gold standard solution the configuration ob-
tained by optimizing the true utility function.

The number of catalog features is 40. The maximum size of terms is assumed
to be known. The walk probability parameter of the SLS algorithm wp is set
to 0.2. Furthermore, the score values of the training examples are affected by
Gaussian noise, with mean 0 and standard deviation 10.

We run a set of experiments for 10, 20, . . . 100 initial training examples, for
the Lasso and the Krr versions of the algorithm. Results are expressed in terms
of the quality of the learnt utility function (Fig. 3) and of the approximation of
the gold solution (Fig. 4). Each point of the curves in the Fig. 3 and 4 is the
mean and the median values, respectively, over 400 runs with different random
seeds.
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Fig. 3. Quality of the learnt utility function for an increasing number of training ex-
amples observed for the algorithms at the first iteration. The y-axis reports the root
mean squared error between the true and the predicted values for a benchmark of 1000
test examples. The x -axis contains the number of training examples. The solid blue
and the dashed green lines show the performance of the Lasso and the Krr algorithms,
respectively. See text for details.

Fig. 3 shows the quality of the learnt utility function, in terms of the root
mean squared error (rmse) between the true and the predicted values for a
benchmark of 1000 test examples. A better approximation is generated by the
Lasso algorithm for all the considered true utility functions. Furthermore, while
increasing the number of training examples, a faster improvement is observed for
the Lasso w.r.t. the Krr algorithm. Consider, for example, the case of nine terms.
With 40 training examples, the performance of Krr is within 10 units from the
value observed for the Lasso method. When 100 examples are employed, the
mean rmse of the Lasso algorithm is less than value 30, while the performance
of the Krr method does not increase beyond value 50.

The superior performance of the Lasso algorithm is confirmed by the exper-
iments in Fig. 4, reporting the quality of the best configuration at the different
iterations for an increasing number of initial training examples. The best con-
figuration is the configuration optimizing the current approximation of the true
utility function. Its quality is measured in terms of the approximation error w.r.t.
the gold solution.

Considering the simplest problems with three and four terms, the perfor-
mance of Krr is comparable with the results obtained by Lasso, except at the
first iteration of Krr in the case of four terms true utility functions, where the
gold solution is not identified even with 100 initial training examples.

However, the Lasso approach outperforms the Krr results when the true
utility function includes at least six terms. First, note that the Lasso algorithm
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Fig. 4. Learning curves for an increasing number of training examples observed for the
two algorithms at different iterations. The y-axis reports the solution quality, while
the x -axis contains the number of training examples. The dashed lines refer to the Krr
algorithm, while the solid lines are for the Lasso algorithm. Furthermore, red, green
and cyan colors show the performance of the algorithms at the first, the second and
the third iteration, respectively. See text for details.
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succeeds in exploiting its active learning strategy, and converges rather quickly
to the optimal solution when enough iterations are provided. At the first iter-
ation its approximation error is above 40 even when 30 training examples are
used. At the third iteration, the Lasso algorithm identifies the gold standard
solution, when at least 60 training examples are available. On the other hand,
for true utility functions with more than seven terms Krr fails to improve over
its suboptimal solution when increasing the number of examples and iterations.
As a consequence, the Krr algorithm does not identify the gold solution, even
in the case of 100 training examples. However, when very few training examples
are available, the Krr algorithm reaches a better approximation than Lasso.

5.2 Weighted MAX-SMT

SMT is a hot research area [11]. However, MAX-SMT techniques are very recent
and there are no well established publicly available benchmarks for weighted
MAX-SMT problems. Existing results [14] indicate that MAX-SMT solvers can
efficiently address real-world problems.

In this work, we modeled a scheduling problem as a MAX-SMT problem. In
detail, a set of five jobs must be scheduled over a given period of time. Each job
has a fixed known duration, the constraints define the overlap of two jobs or their
non-concurrent execution. The true utility function is generated by selecting
uniformly at random weighed terms over the constraints. The solution of the
problem is a schedule assigning a starting date to each job and minimizing the
cost, where the cost of the schedule is the sum of the weights of the violated
terms of the true utility function. The temporal constraints are expressed by
using the difference arithmetic theory. In detail, let si and di, with i = 1 . . . 5, be
the starting date and the duration of the i-th job, respectively. If si is scheduled
before sj , the constraint expressing the overlap of the two jobs is sj − si < di,
while their non-concurrent execution is encoded by sj − si ≥ di Note that there
are 40 possible constraints for a set of 5 jobs. The maximum size of the terms of
the true utility function is three and it is assumed to be known. Their weights
are distributed uniformly at random in the range [1, 100]. Similarly to the MAX-
SAT case, the experimental setting includes Gaussian noise (with mean 0 and
standard deviation 10) affecting the cost values of the training examples.

Fig. 5 depicts the performance of the Lasso algorithm for the cases of 3,
4, 6, 7, 8, 9 terms in the true utility function. The y-axis reports the solution
quality measured in terms of deviation from the gold solution, while the x -axis
contains the number n of training examples at the first iteration. At the following
iterations, n/2 examples are added to the training set (see Sec. 2). Each point
of the curves is the median value over 400 runs with different random seeds.

As expected, the learning problem becomes more challenging while increas-
ing the number of terms. However, the results for the scheduling problem are
promising: our approach identifies the gold standard solution in all the cases.
In detail, less than 40 examples are required to identify the gold solution at
the second iteration. At the third iteration our algorithm needs only 20 training
examples for convergence to the gold solution.
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Finally, note that the approach based on Krr does not maintain an explicit
representation of the learnt utility function, and therefore a direct extension to
SMT problems is not possible for the current MAX-SMT solvers which tightly
integrate SAT and theory solvers as discussed in Section 3.
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Fig. 5. Learning curves observed at different iterations of the Lasso algorithm while
solving the scheduling problem. The y-axis reports the solution quality, while the x -axis
contains the number of training examples. Red, green and cyan colors show the per-
formance of the algorithm at the first, the second and the third iteration, respectively.
See text for details.

6 Discussion

We presented an interactive optimization strategy for combinatorial problems
over an unknown utility function. The algorithm alternates a search phase using
the current approximation of the utility function to generate candidate solutions,
and a refinement phase exploiting feedback received to improve the approxima-
tion. One-norm regularization is employed to enforce sparsity of the learned
function. An SLS algorithm addresses the weighted MAX-SAT problem result-
ing from the search phase. We show how to adapt the approach to a large class
of relevant optimization problems dealing with satisfiability modulo theories.
Experimental results on both weighted MAX-SAT and MAX-SMT problems
demonstrate the effectiveness of our approach in focusing towards the optimal
solutions, its robustness as well as its ability to recover from suboptimal initial
choices.

The algorithm can be generalized in a number of directions. The availability
of a quantitative feedback is not necessarily straightforward, especially when a
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human DM is involved in the loop. A more affordable request is often that of
ranking sets of candidates according to preference. Our setting can be easily
adapted to this setting by replacing the squared error loss in the learning stage
with appropriate ranking losses. The simplest solution consists of formulating it
as correctly ordering each pair of instances as done in support vector ranking,
and applying 1-norm SVM [24]. More complex ranking losses have been proposed
in the literature (see for instance [25]), especially to increase the importance
of correctly ranking the best solutions, and could be combined with 1-norm
regularization.

Our experimental evaluation is focused on small-scale problems, typical of
an interaction with a human DM. In principle, when combined with appropriate
SMT solvers, our approach could be applied to larger real-world optimization
problems, whose formulation is only partially available. In this case, a local
search algorithm rather than a complete solver will be used during the optimiza-
tion stage, as showed in the experiments on the weighted MAX-SAT instances.
However, the cost of requiring an explicit representation of all possible conjunc-
tion of predicates (even if limited to the unknown part) would rapidly produce
an explosion of computational and memory requirements. One option is that
of resorting to an implicit representation of the function to be optimized, like
the one we used in the Krr algorithm. Kernelized versions of zero-norm regu-
larization [26] could be tried in order to enforce sparsity in the projected space.
However, the lack of an explicit formula would prevent the use of all the effi-
cient refinements of SMT solvers, based on a tight integration between SAT and
theory solvers. A possible alternative is that of pursuing an incremental feature
selection strategy and iteratively solving increasingly complex approximations of
the underlying problem. We are currently investigating both research directions.

Finally, we are also considering larger preference elicitation problems, with
both known hard constraints limiting the set of feasible solutions and unknown
user preferences. This setting allows us to address many real-world scenarios.
In the house sale system, for instance, the hard constraints could define the
available house types or locations, and the preferences of the DM would drive
the search within the set of feasible solutions.
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