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Abstract

Reactive search techniques typically rely on the search history in or-
der to adapt heuristics to the local conformation of the search space. By
viewing search history as the trace of the optimization program, we aim
to apply strategies for learning from example-traces, as developed in the
fields of machine learning and inductive logic programming. We believe
that Proof Tree Kernels, which we recently developed as a similarity mea-
sure between program traces, should provide a useful ingredient to fully
exploit search histories. By retaining much of the structural information
contained in traces, they can be employed to model the space conforma-
tion in order to appropriately adapt search heuristics or develop evaluation
scores for candidate moves.

1 Introduction

The problem of learning from example-traces has been addressed in a number of
research fields such as automated program synthesis, inductive logic program-
ming (ILP), intelligent optimization and machine learning. An example-trace is
a sequence of steps taken by a program on a particular example input. Example-
traces have been used to induce Turing machines [1] and logic programs [10],
learn how to solve symbolic integration problems [6], refine logic programs to
speed up their execution [12] or learn stochastic logic programs [3]. In the field
of intelligent optimization, Tabu Search [4] inspects the search history in order
to decide on the admissibility of the next move, thus trying to escape from local
minima and better explore the search space. The diversity of these applications
as well as the difficulty of the learning tasks considered illustrate the power of
learning from example-traces for a wide range of applications.
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2 Proof Tree Kernels

We recently developed Kernels on Prolog Proof Trees [9] as a mean to exploit
example-traces in statistical learning algorithms. The main assumption is that
we are given a target program (called the visitor), that reflects background
knowledge and that takes single examples as its input. The task consists of
learning from the training set of traces obtained by executing the visitor pro-
gram on each example. By developing a kernel on program traces, we are able
to plug extensive symbolic domain knowledge into kernel-based statistical learn-
ing algorithms [11]. The visitor acts therefore as a knowledge-based mediator
between the data and the statistical learning algorithm. The bottom line is that
similar instances should produce similar traces when probed with programs that
express background knowledge and examine characteristics they have in com-
mon. Visitor traces should contain additional information with respect to the
final program output alone. Hence, trace kernels can be introduced with the
aim of achieving a greater generality and flexibility with respect to various de-
composition kernels proposed in the literature (see [11] for a review). Proof
Tree Kernels have been successfully applied [9] to a variety of classification and
regression tasks in the bioinformatics and chemoinformatics domains. Such ex-
tensive experimental evaluation showed the ability of the proposed approach
to address the efficiency and robustness issues typical of symbolic learning ap-
proaches while retaining the expressiveness of the logic formalism.

2.1 A Guiding Example

As a guiding example, consider a very simple Bongard problem in which the
goal is to classify two-dimensional scenes consisting of sets of nested polygons
(triangles, rectangles, and circles). In particular, we focus on the target con-
cept defined by the pattern triangle-Xn-triangle for a given n, meaning that
a positive example is a scene containing two triangles nested into one another
with exactly n objects (possibly triangles) in between. Figure 1(a) shows a
pair of examples of such scenes with their representation as Prolog facts and
their classification according to the pattern for n = 1. A possible example of
background knowledge introduces the concepts of nesting in containment and
polygon as a generic object. A visitor exploiting such background knowledge,
and having hints on the target concept, could be looking for two polygons con-
tained one into the other. Note that the proof of such visitor will implicitly
contain the nesting level between two polygons in the number of times the nest-
ing concept has to be called. A very simple kernel looking at clause identifiers
only can effectively learn the concept: Figure 1(b) shows the SVM leave-one-out
(LOO) error compared to the empirical error of two ILP algorithms, Tilde [2]
and Progol [8], for increasing nesting level of the target concept in a randomly
generated dataset of scenes. Results for Progol are available for n ≤ 2 only,
as we stopped training for n = 3 after more than one week training time on a
3.20 GHz PENTIUM IV. Note that in order for the ILP algorithms to learn the
target concept regardless of the nesting level, it would be necessary to provide
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Figure 1: Experimental evaluation on the Bongard problem

positive(bong1).
triangle(bong1,o1).
circle(bong1,o2).
triangle(bong1,o3).
in(bong1,o1,o2).
in(bong1,o2,o3).

negative(bong4).
triangle(bong4,o1).
rectangle(bong4,o2).
circle(bong4,o3).
triangle(bong4,o4).
in(bong4,o1,o2).
in(bong4,o2,o3).
in(bong4,o3,o4).

(a) Graphical and Prolog facts representation of two
Bongard scenes. The left and right examples are pos-
itive and negative, respectively, according to the pattern
triangle-X-triangle
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(b) Comparison between SVM
leave-one-out error, Progol and
Tilde empirical error in learning the
triangle-Xn-triangle for different
values of n

a more informed inside predicate, which explicitly contains such nesting level
as one of its arguments. The ability of the kernel to extract information from
the predicate proof, on the other hand, allows our method to be employed when
only partial background knowledge is available, which is typically the case in
real world applications.

3 Trace Kernels for Reactive Search

So far, the application of trace kernels was limited to offline supervised learning
and specifically tuned for proof trees obtained from Prolog programs. Trace
kernels, however, allow to introduce a far more general framework that is ap-
plicable to a variety of research areas. In the field of intelligent optimization,
reactive strategies analyse past search history in order to refine the current
search heuristic. It seems reasonable to view search history as the trace of a
certain program (the optimization algorithm) run on a given example (the func-
tion to be optimized). Being able to identify a certain pattern in the recent trace
would provide useful insights for scoring candidate next moves. For instance,
escaping local minima implies being able to recognize if a certain configuration is
still within its attraction basin. Traces of already visited configurations should
provide useful information on the basin structure, allowing to adapt parameters
of local search strategies such as Variable Neighbourhood Search [7] and Tabu
Search [4] or develop a scoring function for candidate moves in a reinforcement
learning fashion. Furthermore, suboptimal local minima within the search space
could be early detected whenever traces are found similar to those of previously
visited basins. In applying kernel over program traces to such a task, we have
to cope with a number of novel problems, the first being how to collect supervi-
sion in the form of portions of past history together to their degree of success.
Nonetheless, the availability of a kernel function providing a similarity measure
between such traces could be a valuable ingredient in the overall mechanism.
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