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Abstract. We introduce relational information gain, a refinement scoring func-
tion measuring the informativeness of newly introduced variables. The gain can
be interpreted as a conditional entropy in a well-defined sense and can be effi-
ciently approximately computed. In conjunction with simple greedy general-to-
specific search algorithms such as FOIL, it yields an efficient and competitive
algorithm in terms of predictive accuracy and compactness of the learned theory.

1 Introduction

Many ILP or relational learning systems build discriminative models by a stepwise re-
finement of logical-relational features. For example, in general-to-specific rule learners
like FOIL [12], features are the bodies of Horn clauses that are constructed by adding
one literal at a time. In models that adopt a decision-tree style design (in a wide sense),
like TILDE [2], Multi-Relational Decision Trees [9], Relational Probability Trees [10],
or Type Extension Trees (TETs) [6], features are represented by branches in the tree
structure, which are constructed in an iterative top-down process.

A distinguishing characteristic of incremental feature construction in relational learn-
ing is the possibility to refine a current feature for a given set of entities X by introduc-
ing new entities Y and their attributes via relations r(X,Y ) (assumed to be binary for
notational simplicity). For example in FOIL this is done by adding a literal r(X, Y ) to
the body of the clause.

The search for the best feature refinement is typically directed by some scoring func-
tion that evaluates its usefulness for discriminating the class label of X . A refinement
that does not introduce any new entities can be scored in a relatively straightforward
manner using standard information gain metrics. A refinement introducing new entities
is more difficult to evaluate, however: standard metrics can measure the direct informa-
tiveness of such a refinement, i.e. the direct improvement in the feature’s discriminative
power. However, it is widely recognized that the main benefit of introducing Y is not
always its direct informativeness, but the possibility it opens up to construct in further
refinement steps informative features for X by imposing suitable conditions on Y . Two
main approaches have been used to take into account this potential informativeness of
a literal introducing new entities: determinate literals [11] are literals where for each X
there exists exactly one Y with r(X, Y ). Determinate literals are not directly informa-
tive, but their inclusion in the clause is computationally inexpensive, which is why e.g.
FOIL adds all possible determinate literals to a clause in order to exploit their potential
informativeness. A second approach consists of lookahead techniques [1, 4], where for
the scoring of the literal r(X, Y ) already further possible refinement steps using Y are



considered. Both determinate literals and lookahead have severe limitations: the for-
mer represent only a very special kind of potentially informative literals, and the latter
is subject to a combinatorial search space explosion when performing lookahead over
multiple refinement steps (which is why, in practice, lookahead is constrained to certain
user-defined refinement patterns).

The goal of this paper is to develop a notion of relational information gain (rig) for
scoring candidate literals introducing new variables, such that both direct and potential
informativeness can be measured. Specifically, we have the following desiderata for rig:

1. rig captures a sound and general information theoretic concept of reduction in con-
ditional entropy of the class label distribution. It thereby is widely applicable, and
not a specialized heuristic scoring function for a specific model or search strategy.

2. rig increases as a function of direct informativeness of literal r(X, Y ), defined as
the information about the target relation associated with the existence of X, Y such
that r(X, Y ) (or, more generally, with the number of such pairs).

3. rig increases as a function of potential informativeness of literal r(X, Y ), defined as
the maximum information that can be gained about the target relation thanks to the
introduction of Y via r(X, Y ) and further refinements using Y (without lookahead,
only based on the immediate relational properties of r).

In the following sections we develop a rig score that is motivated by these desiderata.

2 Data: relational and pseudo-iid

Since information gain is a statistical concept based on a probabilistic data model, we
first investigate what kind of statistical model of relational data is appropriate to support
the definition of rig. We assume that the data consists of a single relational or logical
database containing constants c1, . . . , cn, boolean attributes class, a1, . . . , ak, and bi-
nary relations r1, . . . , rl (it is only for ease of exposition that we restrict ourselves to
boolean attributes, a unary class predicate, and only binary relations). Thus, the data can
also be seen as observations of the boolean random variables class(c1), class(c2), . . .,
a1(c1), . . ., rl(cn, cn) (i.e. the ground atoms of the Herbrand base). However, none
of these random variables are assumed to be independently sampled. In general, the
database is a single draw from a joint distribution over ground atoms (one could also
add a distribution from which the domain itself is sampled, but this adds little in our
current context).

A problem we now encounter is that this data model does not really allow us to
say very much about entropies and information gain. To begin with, we would have to
be able to estimate the entropy of the class label distribution. However, class(c1), . . . ,
class(cn), in this model are single realizations of non-independent random variables.
Even if we assume that the class(cn) at least are identically distributed (i.e. assuming
that the generating distribution makes no distinctions among the different objects in the
domain), we cannot use the observed empirical frequencies of pos and neg labels to
estimate properties of the class label distribution, including its entropy.

It seems that in order to leverage certain types of statistical analysis tools, one actu-
ally has to compromise the holistic relational data model, and extract from the overall



relational structure a number of separate sub-structures, which are then treated as iid.
Such a transformation of relational data into a collection of pseudo-iid data fragments
is performed in several relational learning systems. For example the local training sets
employed by FOIL can be seen in this way; the learning routines in the Proximity system
(http://kdl.cs.umass.edu/software) operate on collections of sub-graphs
extracted from the underlying database.

We will assume that computations of conditional entropy are based on pseudo-iid
data views where the cases are labeled (tuples of) domain elements c = (ci1 , . . . , cim

),
together with boolean attributes representing the internal relational structure of c, as
well as the relational connections between c and other entities cj 6∈ c.

3 Relational Information Gain

For notational simplicity, suppose we are evaluating a literal r(X, Y ) where X can be
bound to an object to be classified. In general we would allow labeled tuples of objects
(e.g. as constructed as the local training sets in FOIL), and literals that contain (one or
several) variables bound to some components of these tuples, as well as new variables.
r(X,Y ) is potentially informative because it may be possible to find further literals
imposing conditions on Y , s.t. the conjunction of these literals allows us to discrimi-
nate positive and negative X . Consider two extreme cases: first, assume that r(X, Y )
is true if and only if Y = cn. Then r(X, Y ) is determinate, but does not enable any
discrimination between positive and negative examples, i.e. it is not potentially infor-
mative. Now consider r(X, Y ) encoding a bijection between the ci. Again, r(X, Y ) is
determinate, but now it also is potentially informative, because if we succeed to find an
attribute ah that characterizes the set B = {ci | ∃cj : class(cj) = pos ∧ r(cj , ci)},
then the conjunction r(X, Y ), ah(Y ) will allow for a perfect classification of X .

When literals are not ideal deterministic literals as above, then there usually will not
exist such a clear-cut definition of the set B of objects associated via r(X, Y ) with the
positive class. However, potential informativeness means that there exists some set B,
such that there is a correlation between class(X) and membership in B of the Y with
r(X,Y ). This leads us to define for a subset B ⊆ {c1, . . . , cn} and literal r(X,Y ) the
following integer-valued attribute, which can be added as a new column to a pseudo-iid
data view:

Fr(X,Y ),B(ci) :=|{cj ∈ B | r(ci, cj)}| . (1)

For each B, (1) defines an attribute that has a standard information gain

ig(Fr(X,Y ),B) := H(class(X))−H(class(X) | Fr(X,Y ),B). (2)

When evaluating r(X,Y ), however, no specific set B is given. We therefore define the
relational information gain of r(X, Y ) as

rig(r(X, Y )) = max
B⊆{c1,...,cn}

ig(Fr(X,Y ),B). (3)

Thus, we are taking an optimistic attitude towards evaluating potential informativeness
(or rather, stressing the “potential”) by basing the definition on the most discriminating



subset B, even though we do not know whether we will be able to characterize this
optimal B using the available attributes and relations. While the definition of rig is
mainly motivated by potential informativeness, it also captures direct informativeness,
which is simply measured by Fr(X,Y ),B for B = {c1, . . . , cn}. The exact maximization
in (3) is presumably computationally intractable. In our experiments we therefore use a
greedy approximation algorithm, that constructs B by testing for k = 1, . . . , n whether
ig(Fr,B∪{ck}) > ig(Fr,B), and adding ck to B if this is the case .

4 Experiments

We tested rig in conjunction with FOIL’s search scheme on both synthetic and real
data: when a new variable is introduced, the refinement is evaluated by rig, while in
other cases FOIL’s traditional weighted information gain (wig) is used. Since the two
scores take on incomparable values, we implemented a simple randomized algorithm
that chooses between variable-introduction (if available) and non-variable-introduction
refinements with probability 0.5 and subsequently uses rig or wig, respectively, to
choose the best refinement in its class. Unless otherwise stated, for all the experiments
both FOIL and rig-FOIL threshold accuracy for clause selection was set to 50%, and
we repeated 20 runs of rig-FOIL. To choose among the 20 randomly generated theo-
ries, we simply used training set accuracy (in all our experiments we observed nearly
perfect correlation between train and test set accuracy). We tested rig-FOIL on one ar-
tificial and seven relational data sets and compared against standard wig-FOIL [12] and
Aleph [14].

4.1 Slotchain data

We use synthetic slotchain data (cf. [6]) to test rig’s ability to identify potentially infor-
mative literals. In this data, an example X is positive, if and only if an entity Z with
att(Z) = true can be reached via the chain of relations r0,0, r1,0, r2,0, r3,0. Thus, the
target clause to find in this data is

positive(X)← r0,0(X, Y1), r1,0(Y1, Y2), r2,0(Y2, Y3), r3,0(Y3, Z), att(Z). (4)

The ri,0-literals are neither directly informative nor determinate. The data set con-
sists of approximately 5,400 true ground facts and also includes “noise relations” ri,j

(i = 0, . . . , 3, j = 0, . . . , 2) that have no predictive value. Using the above strategy, rig-
FOIL is able to recover the target clause 4 from data (about one quarter of the randomly
generated theories contained the target clause and, as expected, these always outper-
formed on the training set the remaining theories). On the same data, both standard
FOIL and Aleph failed to retrieve the target clause.

4.2 Real data

The UW-CSE data set [13] consists of 3,380 tuples and 12 predicates describing the
Department of Computer Science and Engineering at the University of Washington.



Table 1. Results on UW-CSE and KDD 2001 data sets: Precision (P ), recall (R), F-measure (F1),
and number of clauses (N).

FOIL rig-FOIL Aleph
P R F1 N P R F1 N P R F1 N

UW-CSE 44.9 27.4 34.1 21 61.7 38.5 47.4 20 48.2 23.9 32.0 36
Localization 73.9 70.1 72.0 63 78.0 73.6 75.7 70 80.9 82.8 81.8 68
Function 64.2 59.8 61.9 34 73.1 65.0 68.8 27 63.8 81.2 71.4 76

Table 2. Results on the Alzheimer data sets: Accuracy (A) and number of clauses (N ).

FOIL rig-FOIL Aleph
A N A N A N

Amine 84.1 26 84.3 26 80.4 39
Toxic 92.2 16 94.2 18 82.8 30
Acetyl 77.6 49 79.7 33 78.1 44
Memory 70.8 26 70.9 24 69.7 42

The task is to predict the binary relation advisedBy(x, y) using in turn four scientific
areas for training and one for testing as in [13]. In this case, the threshold accuracy for
clause selection for rig- and wig-FOIL was set to 30%. Results in Table 1 correspond
to micro-averaged precision, recall, and F1 measure. The KDD Cup 2001 data set 2 [5]
consist of 862 (training) and 381 (test) anonymized genes for which several relational
features are given, including protein-protein interactions. Two classification tasks are
defined: localization (predict whether a gene/protein is located in the nucleus of the
cell) and function (predict whether the gene/protein function is related to cell growth).
For these data sets, 10-fold cross-validation results are summarized in Table 1. Finally,
in the Alzheimer data sets [8], the goal is to predict the relative biochemical activity
of variants of the Tacrine drug. Four binary classification tasks are defined as in [8]:
amine, toxic, acetyl, and memory. For each task, the target predicate positive(a, b) is
interpreted as “drug a is preferred to drug b” and examples form a partially ordered set.
Negative literals were disallowed in the experiments on these data sets (this prevents
anti-symmetry to be learned) and molecule pairs were randomly split into 10 folds for
cross-validation accuracy estimation.

As shown in Tables 1 and 2, rig-FOIL generally produces more accurate and more
compact theories than standard FOIL and performs comparably or better than Aleph.
A paired two-sided t-test, (p < 0.05) revealed that rig-FOIL significantly outperform
FOIL on function, toxic, and acetyl and Aleph on amine and toxic. The Alzheimer
data sets have been recently used in [7] to benchmark some structure learning algo-
rithms for Markov logic networks (MLN) [13] and, in particular, a novel algorithm
based L1-regularization weight learning on a structure defined by a very large set of
Aleph-generated clauses. We therefore extracted the learned clauses and used them as
the structure for MLN, whose parameters were subsequently learned discriminatively
using the voting perceptron approach implemented in the Alchemy system. Follow-
ing [7], the transitivity relation on the target predicate positive was incorporated as
background knowledge in these experiments (note that FOIL cannot learn transitivity



because of its limitations in handling recursive predicates [3]). Accuracies on amine,
toxic, acetyl, and memory are 89.2, 92.8, 93.7, and 87.9, respectively and are compa-
rable to the best results reported in [7] (90.5, 91.9, 87.6, 81.3, respectively, but using a
different split for 10-fold cross-validation).

5 Discussion and conclusions

Relational information gain is a refinement scoring function that has a sound information-
theoretic justification. Our artificial data experiments clearly show the ability of rig in
discovering potential informativeness of a literal, without requiring a lookahead. In real
data sets, rig in conjunction with FOIL greedy search is able to construct accurate and
compact theories. Rig, however, is not tied to FOIL, and might also be used to drive fea-
ture refinements in other types of logical-relational models, especially also those with a
decision tree architecture.
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