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Abstract. We are interested in learning complex combinatorial features from re-
lational data. We rely on an expressive and general representation language whose
semantics allows us to express many features that have been used in different sta-
tistical relational learning settings. To avoid expensive exhaustive search over the
space of relational features, we introduce a heuristic search algorithm guided by
a generalized relational notion of information gain and a discriminant function.
The algorithm succesfully finds interesting and interpretable features on artificial
and real-world relational learning problems.

1 Introduction

A key component of relational data mining methods is the construction of relevant
features. Whereas in conventional (“propositional”) learning settings the set of possible
features is usually given by the available attributes, one has in relational learning the
ability to construct new features by considering the relational neighborhood of an entity.
Taking into consideration related entities and their attributes, one obtains a large supply
of potential features.

To illustrate the situation, consider Figure 1, which gives a graphical representation
of an imaginary fragment of a movie database. Unfilled circles represent movies, shaded
circles represent actors, arrows represent the binary relation cast, and stars identify
movies that have won the best picture award. Suppose, now, that for movies m1, m2 it
is not yet known whether they will win best picture award, and we want to predict this.
For this prediction, awards won by movies with the same actors as m1, m2 may provide
relevant information.
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To express features in terms of properties of related objects, many different frame-
works have been proposed. Some approaches are based on Boolean features corre-
sponding to logical conditions like “there exists an actor in the cast who has also played
in a movie that has won the best picture award.” Formal languages for expressing such
features can be based on predicate logic (as in inductive logic programming), or use
graphical representations [9].

Movies m1, m2 in Figure 1 can not be distinguished with such simple qualitative
features, since both satisfy the same basic logical properties. Nevertheless, considering
certain quantitative aspects of the relational neighborhoods of m1, m2, one might per-
haps expect that m2 has a higher chance of receiving an award than m1: the two awards
associated with m1 come from cast members who have appeared in a relatively large
number of movies, indicating that these are perhaps actors playing minor roles in many
different movies, some of which happened to be successful. The awards associated with
m2, on the other hand, come from actors appearing in fewer movies, indicating that
these could be major actors having leading roles in m2.

One well established approach to express quantitative features is the use of slot
chains and aggregation, which translate into database queries [5, 13, 14]. An example
is the feature that counts the number of award-winning movies played by all cast mem-
bers. This feature evaluates to 2 for both m1 and m2, and thus does not express the
distinction described above. This distinction could be expressed by using proportion
instead of count as a form of aggregation, yielding the feature that measures the propor-
tion of award-winning movies among those played by cast members. It evaluates to 2/13
and 2/4 for m1 and m2, respectively, and thus makes the desired distinction. However,
it is doubtful that this numeric feature captures exactly the most relevant quantitative
information for making a prediction about m1, m2. Perhaps the count of actors with a
proportion of ≥ 50% award winning movies among the movies they participated in is
the more relevant feature (here evaluating to 0 and 2, respectively, assuming that the
movie to be classified is not considered in the count). Nested aggregates like this have
been used in conjunction with first-order decision trees [1].

This very simple example illustrates three interesting aspects of relational features.
First, the search space of possible features constructible by different combinations of
aggregation, even for a single given slot chain, is quite big; second, each feature that
we can construct in this way will probably only provide an approximation to the most
relevant quantitative information for the prediction of the class label, and third, all these
features are really summary statistics of a single, underlying more complex and fun-
damental feature: the complete specification of how many actors in the movie to be
classified acted in how many other award winning and non award winning movies. The
values of this count of count feature for m1, m2 are given by:
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a : 1
¬a : 3
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a : 1
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The value for m1 shows that in the cast of m1 there are two actors that acted in 1 award
winning, and 3 non award winning movies. The formatting of the feature value em-
phasizes the hierarchical, combinatorial structure of these count of count values (which
can also be nested deeper into count of count of count values, etc.). Note that count of
count features in our sense are quite different from nested aggregates in the sense of [1]:
unlike the latter, our counts of counts do not aggregate a multiset of values into a single
number at each level of nesting.

In this paper, we study relational learning on the basis of complex count of count
features. To this end we first review syntax and semantics of Type extension trees
(TETs), which are a representation language for such features first introduced in [7].
It has been shown in [7] that the TET language is very powerful, and many classes of
features that have been used in relational learning can be derived from TET features.

However, the use of TET features in actual learning tasks has not been studied so
far. In this paper, we introduce an algorithm for learning the structure of a TET from
data in the supervised learning setting. A key component of this algorithm is a special
kind of discriminant function that maps TET values into real numbers, and can be used
as a simple but computationally efficient classifier. The TET learning algorithm uses
heuristic search based on two types of evaluation heuristics: a generalized information
gain measure for relational data, and a wrapper evaluation score based on empirical
error of the discriminant function. Our experimental evaluation shows that we can learn
TETs representing relevant and interpretable features.

2 TET Basics

In this section, we review the basic syntax and semantics definitions of TETs [7]. To
simplify the definitions, we will assume fully Boolean domains, i.e. all attributes and
relations are Boolean. All basic concepts can be quite easily generalized to multi-valued
attributes and relations. In a Boolean domain, data can be viewed as a model in the sense
of the following definition.

Definition 1. Let R be a relational signature i.e. a set of relation symbols of different
arities. A (finite) model for R, M = (M, I) consists of a finite domain M , and an
interpretation function I : r(a) → {true, false} defined for all ground atoms r(a)
constructible from relations r ∈ R and arguments a ∈ M arity(r).

In logic programming terminology, M is a Herbrand interpretation for the vocabulary
consisting of R and constant symbols for the elements of M . For convenience we may

movie(v)
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(0.375)

w cast(u, w), u 6= v

(0.222)

u

award(u)
(0.5)

¬award(u)
(0.181)

Fig. 2. A simple TET



assume that the domain M is partitioned into objects of different types, that arguments
of relations are typed, and that I is only defined for ground atoms with arguments of
appropriate types. We now proceed to define the formal syntax for expressing count of
count features. The following definition is illustrated by Figure 2, which shows the TET
defining the movie feature whose values for m1, m2 are shown in Eq. 1. The numbers
in parantheses included in Figure 2 will be explained in Example 2 below.

Definition 2. An R-literal is a (negated) atom r(v) (r ∈ R ∪ {=}, v a tuple of (pos-
sibly typed) variable symbols). An R-literal may not contain any constant symbols for
elements a ∈ M as arguments. We also allow the special literal >(v), which always
evaluates to true. A type is a conjunction of R-literals.

A type extension tree (TET) over R is a tree whose nodes are labeled with R-types,
and whose edges are labeled with (possibly empty) sets of variables.

Note that the type of an object corresponds to a literal consisting of a single unary
relation (e.g. movie(v)). Definition 2 generalizes this to types of tuples of objects, and
to types which are expressed via a conjunction of literals. Labeled edges in a TET
are related to quantifiers in predicate logic: like a quantifier, a labeled edge binds all
occurrences of the variables associated with the edge in the subtree rooted at this edge.
The free variables of a TET are all variables not bound by an edge label. The TET
of Figure 2 has the single free variable v. We write T (v) to denote a TET whose free
variables are among the variables v (but does not necessarily contain all of them). We
write

T (v) = [τ(v), (w1, T1(v, w1)), . . . , (wm, Tm(v, wm))]

to denote a TET with a root labeled with τ(v), and m sub-trees T1(v, wi) reached by
edges labeled with variables wi (possibly empty).

A TET T (v) with free variables v = v1, . . . , vk defines a feature for k-tuples of
domain elements: for any model M, and any a ∈ M k the TET defines a feature value
V (T (a)). Eq 1 shows V (T (m1)) and V (T (m2)) for the TET T in Figure 2. We give
the general definition of TET semantics in two steps: first we define the value space of
nested counts associated with a given TET, and then the actual mapping a 7→ V (T (a)).

Definition 3. For any set A we denote with multisets(A) the set of all multisets over
A. We denote with {a1 : k1, . . . , an : kn} a multiset that contains ki copies of ai. The
pruned value space V(T ) of a TET T is inductively defined as follows:

– If T = [τ ] consists of a single node, then V(T ) = {true, false}.
– If T = [τ, (w1, T1), . . . , (wm, Tm)], then

V(T ) = {false} ∪ ×m
i=1multisets(V(Ti)))

We call the V(T ) of Definition 3 the pruned value space, because with these values
we will only count objects that satisfy the conditions in the nodes. Full TET values, as
originally defined in [7], treat true and false on an equal basis, and count both satisfying
and non-satisfying objects.

Definition 4. Let M = (M, I) be a model, T (v1, . . . , vk) a TET, and a ∈ Mk. The
value V (T (a)) ∈ V(T ) is defined as follows:



(i) If T (v) = [τ(v)] consists of a single node, then V (T (a)) := I(τ(a)).
(ii) Otherwise:

(a) If I(τ(a)) = false then V (T (a)) = false.
(b) If I(τ(a)) = true then

V (T (a)) = (µ(a, w1, T1), . . . , µ(a, wm, Tm)),

with µ(a, wi, Ti) ∈ multisets(V(Ti)) given by

{γ :|{b ∈ M | V (Ti(a, b)) = γ}| | γ ∈ V(Ti)}.

Example 1. Eq. 1 shows V (T (m1)) and V (T (m2)). To explain the compuations of
V (T (m1)), we introduce abbreviations for sub-TETs of T :

T (1)(u, w) := [cast(u, w), (∅, [award(u)]), (∅, [¬award(u)])]
T (2)(v, w) := [cast(v, w), (u, T (1)(u, w))]

Since I(movie(m1)) = true, the computation of V (T (m1)) follows case ii.b of Def-
inition 4. That means we have to count for each γ ∈ V(T (2)) the number of actors a
for which V (T (2)(m1, a)) = γ. We do this by computing for each of the four actors
a1, . . . , a4 the value V (T (2)(m1, ai)). Consider a1. Since I(cast(m1, a1)) = true, we
again reach case ii.b, and now have to compute for each of the 13 movies m′ 6= m1 the
value V (1)(m′, a1). For 9 out of the 13 movies this is just the false value (ii.a), because
I(cast(m′, a1)) = false. For 3 movies (the ones without award), we obtain the value
({false : 1}, {true : 1}) (the pair of values (V ([award(m′)]), V ([¬award(m′)]))), and
for the award winning movie the value ({true : 1}, {false : 1}). Collecting these counts,
we get

V (T (2)(m1, a1)) =







false : 9
({false : 1}, {true : 1}) : 3
({true : 1}, {false : 1}) : 1







This has been simplified to {a : 1,¬a : 3} in Equation 1. The same value is obtained
for V (T (2)(m1, a2)), giving a count of 2 for this value in V (T (m1)).

A TET T (v) represents a feature of object tuples a. Several features might be ex-
pressed by TETs T1(v), . . . , Tm(v). Such a collection of features can always be com-
bined into the single TET [>(v), (∅, T1(v)), . . . (∅, Tm(v))], which exactly provides
the combined information of the Ti. In the following we will therefore focus on the
scenario where a single TET represents all relevant features.

3 TET Discriminant Function

A TET alone only defines a feature of objects in a relational domain. TET-defined fea-
tures can be incorporated in many ways into existing types of predictive or descriptive
models. For example, one can define distance or kernel functions on TET value spaces
V(T ), thereby making TET features useable for standard clustering techniques, or SVM
classifiers. In this section we briefly describe how to build a predictive model on a TET
feature using simple discriminant functions on TET values, i.e. functions of the form

d : V(T ) → R.



To obtain a binary classification model (throughout we assume that class labels are
{+,−}), we learn two discriminant functions d+, d−, and a threshold value t, and as-
sign class label + to a tuple a iff

d+(V (T (a))/d−(V (T (a)) > t. (2)

We now introduce one simple type of TET-discriminant function. The motivation for the
particular form of discriminant function we propose is twofold: first, for a given TET,
our functions are efficient to learn and evaluate. Since we use the discriminant function
in TET learning within a wrapper evaluation routine for candidate TETs, efficiency is
an important issue. Second, in spite of their simplicity, one can show that “proposi-
tional TETs” (TETs with only unary relations and no edge labels) together with these
discriminant functions provide a uniform generalization of the classic decision tree and
Naive Bayes models. Due to space limitations we have to defer a full discussion of the
relationship between our discriminant functions and other predictive models to a full
paper.

Definition 5. Let T be a TET. A weight assignment β for T assigns a nonnegative real
number to all nodes of T . A weight assignment can be written as (βr, β1, . . . , βm),
where βr is the weight assigned to the root, and βi is the weight assignment to the ith
sub-tree.

For a TET T with node weights β we define the discriminant function dβ as follows.
Let γ ∈ V(T ):

– If γ = false define dβ(γ) := 0.
– If γ = true then T = [τ(v)] consists of a single node, and β = (βr). Define

dβ(γ) := βr.
– If γ = (µ1, . . . , µm), µi ∈ multisets(V(Ti)), define

dβ(γ) := βr ·
m
∏

i=1

∏

γ′∈µi,γ′ 6=false

1

βr
dβ

i(γ′).

Example 2. The numbers shown in Figure 2 are a weight assignment. These are the
actual weights defining the discriminant function d+ we would learn using the method
described in Section 4 for this TET, assuming that m1 and m2 of Figure 1 are given as
a negative and positive example, respectively.

Now consider the value γ1 = V (T (m1)) as shown on the left in Eq. 1 and ex-
plained in Example 1. The (simplified) inner values {a : j,¬a : k} ∈ V(T (2)) have the
discriminant value

d(a : j,¬a : k) = 0.375 ·
(

0.222
0.375

0.5
0.222

)j
·
(

0.222
0.375

0.181
0.222

)k

= 0.375 ·
(

0.5
0.375

)j
·
(

0.181
0.375

)k
.

This leads to

d(γ1) = 0.5 ·
(

d(a:1,¬a:3))
0.5

)2 (

d(a:0,¬a:3))
0.5

) (

d((a:0,¬a:2))
0.5

)

= 0.5 ·
(

0.375
0.5

)4
·
(

0.5
0.375

)2
·
(

0.181
0.375

)11
.



Similarly for γ2 = V (T (m2)):

d(γ2) = 0.5 ·
(

0.375
0.5

)3
·
(

0.5
0.375

)2
·
(

0.181
0.375

)2
.

Intuitively, we can interpret this discriminant function as follows: because in the training
data the positive example had a smaller cast than the negative example, the discriminant
function multiplies the marginal probability of the positive class (0.5) for each actor in
the cast with a penalty term 0.375

0.5 < 1. Furthermore, since in the negative example the
actors in the cast appeared in a larger number of movies than in the positive example,
another penalty factor 0.222

0.375 < 1 is added for every associated movie of any actor in
the cast. Finally, a factor of 0.5

0.222 > 1 is added for every associated award movie, and a
factor 0.181

0.222 < 1 for every non-award movie (cancelling out the 0.222 terms).

4 TET Learning

We first describe in more detail the learning problem we want to solve. Our data con-
sists of a model M in the sense of Definition 1. In our implementation, M is given as
a relational database containing one table for each r ∈ R, where the table for r con-
tains all tupels a ∈ M arity(r) for which I(r(a)) = true. Furthermore, we are given an
initial target table, i.e. a table consisting of a set of examples with +/− class labels.
For example, a learning problem given by the data depicted in Figure 1, and m1, m2

as a negative and positive example, respectively, would be given by the 4 leftmost ta-
bles in Table 4. Columns in the data tables are headed by synthetic identifiers Argi.
Columns in the target table (other than the class label column) are headed by variable
names, which will then become the names of the free variables in the TET we con-
struct. Thus, given the input we will want to construct a TET T (v) over the signature
R = {movie, cast, award} that captures features of v that are predictive for the class
label given in target.

Note that in this representation of the learning task it is not visible that the class we
want to predict is actually the award relation. Such a representation is appropriate, for
example, when we have temporally stratified data, and the task is to predict for current
movies m1, m2 whether they will receive an award – a prediction for which we may use
the award label of older movies m3, . . . , m19 (this is the scenario we have in our IMDB

Table 1. Data and Target Tables

Arg
1

m1

m2

...
m19

movie

Arg
1

Arg
2

m1 a1

m1 a2

...
...

m19 a7

cast

Arg
1

m4

m8

m17

m18

award

v Label
m1 −

m2 +

target

Input data

v w Label
m1 a1 −

...
...

...
m1 a4 −

m2 a5 +
m2 a6 +
m2 a7 +

target

Local target



experiment, Section 5). For prediction problems without such a stratification, notably
when for the prediction of any object’s class label one may use the class label of all
other objects in the domain, the target table will essentially duplicate the class table (in
our example, the award table would also contain m2, and the target table would contain
all movies, correctly labeled + or −). In such a case suitable syntactic constraints can
be imposed in the TET construction that prevent the construction of “illegal” features
(award(v) as a feature for predicting the class of v).

Our general approach to TET learning is a recursive top-down construction that
associates with each node a local discrimination task represented by a local target table.
This makes our approach somewhat related to decision tree learning. In a fundamental
difference to decision tree learning, however, it will generally not be the case that the
target tables of child nodes partition the target table of their parent. In our running
example, if starting with the input data in Table 4 we initially constructed the extension
movie(v) w cast(v, w), then we would associate with the node cast(v, w) the local
target table shown on the right of Table 4. Rather than a reduction of the discrimination
task to a smaller set of examples, as in decision tree learning, the construction of this
new target table amounts to a problem transformation: the problem of predicting the
label of a movie is transformed into predicting the label of movie/actor pairs in the
new target table, which may be effected by taking into consideration attributes of both
movies and actors, as well as additional relations between actors and movies (if any
such exist in the data).

The exact specification of the construction of local target tables is as follows. Let n
be a TET node associated with a local target table ttn(v, L) with columns for variables
v and label L. Let n′ be a child of n labeled with type σ(v, w), and reached by an edge
labeled with variables w (we include the possibility that w is the empty tuple, i.e. the
edge is really unlabeled). Then n′ is associated with a target table ttn′ with columns for
v, w and L, defined as:

ttn′(v, w, L) = {(a, b, l) ∈ M |v|+|w| × {+,−} : (a, l) ∈ ttn;M |= σ(a, b)}. (3)

When building the TET we score candidate extensions based on a generalized informa-
tion gain (gig) measure, which is a function of the old and new target table. The gig
measure plays a central role in our TET learning method, and is more fully discussed in
Section 4.1 below. In addition to gig scoring of candidate extensions (which is a local
score for one node and a child), our learning method is driven by a global evaluation
of the current full TET structure based on the accuracy of this TET in conjunction with
the chosen classification model. In our implementation this is the discriminant function
model. Using a different type of TET-based classifier (e.g. an SVM based on a TET-
kernel) could obviously lead to different results in the TET learning. Thus, the TET
learner does not perform “pure” feature discovery; rather, it constructs features that are
useful in combination with a discriminant function classifier. However, our experimen-
tal results (Section 5) indicate that the features we obtain are not highly biased towards
this particular classification model.

Table 2 shows the general structure of our TET learning method. The method is
essentially implemented as a node constructor, that receives as arguments the data, a
target table tt to be classified, a pointer r to the root of the TET in which this node is



Table 2. TET learning

TET node(DataM, Labeled table tt, TET node r, Type τ (v))
1. this.type = τ (v)
2. this.weight = positive class frequency(tt)
3. TET node root
4. if (r=null) root=this else root=r

5. current score = predictive score(root)
6. EXT:=possible extensions(root,this)
7. for all σ(v, w) ∈ EXT compute gig(tt, σ(v, w))
8. CAND:= candidate extensions(EXT,gig-values)
9. for all σ(v, w) ∈ CAND
10. tt′ = construct tt(M, tt, σ(v, w))
11. add as child c = TET node(M, tt′, root, σ(v, w))
12. new score = predictive score(root)
13. if new score − current score < threshold
14. delete c

15. else current score=new score

constructed, and the type τ(v) with which the node is to be labeled. A TET is learned
by the call

root of learned TET = TET node(M, tt, null,>(v))

(because of initialization issues, all our TETs have the vacuous type >(v) in the root).
The construction works as follows: Line 1 labels the node under construction with

its type. Line 2 sets the weight for the discriminant function d+ for this node. It is
just the relative frequency of positive examples in the target table associated with this
node (the weight for d− being one minus this weight). Thus, the discriminant function
here is learned (at little extra cost) in parallel with the TET construction. If a different
classification model was used for the TET construction, then line 2 would be omitted.
Lines 3-4 set a local root variable pointing to the root of the TET under construction.

The function predictive score called in lines 5 and 12 performs the global evaluation
of the current TET based on its predictive performance in conjunction with the chosen
classification model. If a model other than the discriminant function here is used, then
calls to predictive score may require computationally expensive model training for the
current TET.

Lines 6-8 are crucial: here a subset of all the possible extensions of the current node
is constructed for further exploration. This operation is analogous to refinement opera-
tors in ILP. Our construction is in two steps: in the first step the set of possible extensions
for the current node is constructed by the function possible extensions. This function
can implement various constraints and a language bias. In our implementation, we re-
strict possible extensions to contain only one literal, and to introduce at most one new
variable. The function can also take TILDE-style user-defined rmode declarations, that
can force certain arguments of the new literal to be filled with variables already present
in the parent node (input variable), or with a new variable introduced by this extension
(output variable). In all our experiments we use rmode declarations that force the argu-



ment of any unary relation to be an input variable. Furthermore, possible extensions is
used to implement a termination condition: if the depth of the current node in the TET
has reached a (user specified) maximum depth, then possible extensions will return an
empty set. In a second step, the generalized information gain is computed for all pos-
sible extensions; the function candidate extensions then performs a selection based on
gig values. Our current implementation of candidate extensions selects all extensions
whose gig value exceeds user defined thresholds (we use different thresholds depending
on whether a candidate extension introduces a new variable; the gig values for these two
types of extensions are incomparable, see Section 4.1).

For each candidate extension then a child node is created. The function construct tt
constructs the local target table for the child according to (3). After line 11 is executed, a
whole new subtree is rooted at the new node c. Lines 12-15 then evaluate the extension
of the old TET with this new subtree, and either accept or reject the subtree based on a
user defined threshold for the required global score improvement.

4.1 Generalized Information Gain

To select promising candidate extensions in lines 7-8 of the TET learner, we use a gen-
eralized information gain measure that we now introduce. Given is a TET node labeled
with a target table tt(v, L). We distinguish extensions with unlabeled and labeled edges,
which we also call condition introductions and object introductions, respectively.

In a condition introduction we add a child node labeled with a type σ(v) that puts
additional constraints on the tuples in tt(v, L), and the new target table obtained from tt
and σ(v) via (3) is just a subset of tt. We denote this sub-table ttσ(v). Let H(tt) denote
the entropy of the class label distribution in tt. Standard information gain

ig(σ(v)) := H(tt) −
| ttσ(v) |

| tt |
H(ttσ(v)) −

| tt \ ttσ(v) |

| tt |
H(tt \ ttσ(v)) (4)

can therefore be used to measure the informativeness of a candidate condition introduc-
tion.

When evaluating candidate object introductions, we have to consider two different
aspects: first, extending a node in the current TET by an object introduction refines
the feature represented by the TET and modifies the discriminant function, which may
directly lead to improved predictive performance. In this case we say that the object
introduction is directly informative. Secondly, an object introduction can be potentially
informative when the problem transformation represented by the new target table en-
ables additional strategies for discriminating between positive and negative examples.

To illustrate these two aspects, consider the candidate extension w cast(v, w) of
the root >(v) for the data in Table 4. This extension introduces the number of actors
in a movie as a feature. Since in the data movies in the positive class have fewer actors
than movies in the negative class (i.e. there is degree disparity [8]), this extension is
directly informative. Note that due to the fact that every movie has at least one actor,
cast(v, w) is a non-discriminating relation [4] for standard ILP systems without ag-
gregation functions. The extension also is potentially informative, because, as the new
local target table indicates, movies in the positive class have different actors in their cast



than movies in the negative class, and therefore the classes can also be distinguished if
we succeed in separating the two sets of actors by subsequent extensions of the new
cast(v, w) node.

Our goal is to find an evaluation measure for both the direct and potential informa-
tiveness of a candidate object introduction w σ(v, w). Measuring the potential infor-
mativeness serves similar goals as lookahead [2, 4] in ILP systems, but differs in that
it tries to achieve this goal by considering only one-step extensions (i.e. single literals
in the context of our learner), rather than the combinatorial search space of possible
multi-step refinements.

Consider a specific tuple of objects a that can be substituted for the variables w

in σ(v, w). Then we can consider σ(v, a) as a condition introduction (it imposes on
the tuples in tt(v, L) the condition of being related to the fixed objects a in the way
specified by σ(v, a)), and we can measure ig(σ(v, a)) according to (4). If objects a are
either mostly associated with v’s from the positive class, or with v’s from the negative
class, then ig(σ(v, a)) will tend to be larger than when no such association exists. If
this association exists for a significant proportion of tuples a, then this will be reflected
in the generalized information gain defined as

gig(σ(v, w)) :=
1

|bindings(w) |

∑

a∈bindings(w)

ig(σ(v, a)),

where bindings(w) is the set of tuples of objects that can be substituted for w. The val-
ues one obtains for gig(σ(v, w)) must be interpreted with some care: in most situations
| ttσ(v,a) |/| tt | will be small for all a, and therefore also gig(σ(v, w)) will be a small
number. It therefore does not make sense to compare gig(σ(v, w)) against the informa-
tion gain ig(σ(v)) of a simple condition introduction. However, gig(σ(v, w)) provides
a meaningful measure to compare several candidate object introductions against each
other. 3

So far, we have motivated gig by its ability to measure the potential informativeness
of an object introduction. However, direct informativeness from degree disparity, too,
will increase gig: when v’s in the positive class, on average, have more associated w’s
than v’s in the negative class, then, conversely, for many a’s in bindings(w) the distri-
bution of v’s within ttσ(v,a) must show a higher proportion of the positive class than
in the base table tt. This leads to higher values of ig(σ(v, a)), for many a’s, and thus a
higher value of gig(σ(v, w)).

5 Experiments

Our experiments focus on the capability of TET learning as a feature discovery method.
We are interested in whether the TET learner will produce known relevant and/or new
useful and interpretable features. We also investigate the predictive performance of the
learned TETs in conjunction with the discriminant function classifier. We compare

3 gig in Table 2 refers to either gig when object introductions are scored, or standard ig for
scoring condition introductions.



the TET learner with a range of other relational learning systems: relational proba-
bility trees [11] as implemented in the Proximity system (kdl.cs.umass.edu/proximity),
TILDE [3] (a relational decision tree learner driven by traditional info-gain), and the
Alchemy system (alchemy.cs.washington.edu) for Markov Logic Networks [15].

Slotchain data (synthetic) An important type of relational features consists of attribute
values of other objects that are reachable via a certain sequence of relations, also called
slotchain. The challenge posed by slotchain features lies in the fact that they consist
of a conjunction of literals, none of which is informative individually. Thus, slotchain
features are useful prototype features for testing the effectiveness of tools like lookahead
or our generalized information gain.

We generated data representing slotchain dependencies as follows: the domain con-
sists of 300 objects each of 3 different types type0, . . . , type2. Between objects of type
i and i + 1 (i = 0, 1) 2 different binary relations reli,k (k = 0, 1) are generated by ran-
domly selecting for each object o of type i exactly 2 distinct objects as reli,k-successors.
Objects of type type2 have a boolean attribute att. Objects of type type0 have a class la-
bel class. The probability that o ∈ type0 is in the positive class is 0.8 if o is connected
via the chain of relations rel0,0, rel1,0 to an object o′ ∈ type2 with att(o) = true; and
0.1 otherwise. The att relation is true for o′ ∈ type2 with probability 0.2. The relevant
feature for predicting the class label therefore is

>(v) w0 rel0,0(v, w0)
w1 rel1,0(w0, w1) att(w1)

The TET learner returned the weighted TET

>(v)
(0.57)

rel0,0(v, w1)
(0.57)

w1

rel0,0(w2, w1), w2 6= v
(0.6)

w2

rel1,0(w1, w3)
(0.57)

w3

att(w3)
(0.74)

While this TET contains a spurious branch apart from the correct feature, this branch
does not contribute much to the discriminant function, because the weight of its root is
very close to the weight of the root’s parent. This weighted TET achieves a predictive
accuracy of 0.86 and AUC(ROC) value of 0.87 on a test set.

A comparison with the Proximity implementation of relational probability trees
(Prox-RPTs) is made difficult by the fact that Proximity does not operate directly on
the relational database, but on set of examples consisting of small subgraphs of the full
data graph. These subgraphs have to be constructed by a user-defined query, the formu-
lation of which already amounts to a large part of the feature discovery process. Queries
are formulated in a language of graph patterns. To retrieve suitable subgraphs for the
slotchain learning task, we used the query

V1 V2 V3
e2e1

[1..] [1..]

[0..] [0..]
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This query retrieves for every object o ∈ type0 the subgraph consisting of all nodes and
edges that are at most two steps away from o. The feature language employed by Prox-
RPTs uses count and aggregation operators for attributes of node and edge elements
in the query graph. The RPT we obtained had in its root the feature prop(V3.att =
true) ≥ 0.875, and similar features referring to V3.att in its other nodes. Thus, while
the Prox-RPT learner determined the relevance of the att attribute in nodes two steps
away, it did not refine this in terms of the exact slotchain by which these nodes are
reached. Accuracy (0.65) and AUC(ROC) (0.633), therefore, were much lower than in
the TET-based model.

TILDE without lookahead, as expected, was unable to learn the slotchain (it returns
the empty clause). Only when the correct slotchain is given as a user-defined lookahead
clause, can this feature be learned.

Alchemy structure learning did not terminate on the slotchain data within 6 hours
(whereas the TET learner took about 30 seconds, and Proximity less than 10 seconds).
However, Alchemy tries to solve the much harder task of learning a full generative
model for all relations in the data, rather than a predictive model for the class attribute.

IMDB Our second experiment uses the real world Internet Movie Database (IMDb).
In our experimental setup we follow [10]. The problem is to predict whether a movie
will earn more than $2 million in its opening weekend (expressed by a receipts class la-
bel). Available data includes attributes of movies, e.g. a genre attribute, binary relations
between movies and actors, movies and producing studios, and movies and directors,
as well as an award attribute of actors. Movie data from 5 successive years 1996-2000
was used, and the 4 separate prediction problems for the class labels of movies from
the years 1997,. . . ,2000 were considered. When classifying movies from a given year,
then the receipts label of movies from the preceding year is available. In all 4 versions
of the experiment we obtained quite similar TETs, a representative one being

>(v)

thriller(v)

studio(s, v)

s

studio(s, w)

w

¬thriller(v)

T1(v)

studio(s, v)

s

studio(s, w)

w

receipts(w) ¬receipts(w)

cast(a, v)

a

Because of space limitations, the subtree T1(v) here is not shown. It consists of further
condition introduction nodes (10 in total) testing different genre attributes of movies.
The most interesting feature encoded by this TET (which is present in all 4 versions
of the experiment) is the third branch from the left, which counts the receipt attribute
values among the movies produced (in previous years) by the same studio as the movie
to be classified. Interestingly, this is essentially the underlying count statistic of the
feature that Neville and Jensen [10] obtain at the root of a relational probability tree
they construct for the same classification problem:

Studio Movie Prop(receipts = y) > 0.6



The TETs we construct, together with the simple discriminant function as the clas-
sification model, yields accuracy results (84.4, 78.8, 80.7, and 86.4%, respectively, for
the 4 different years) which are competitive with the results reported by Neville and
Jensen.

CORA Our third experiment uses the CORA citation data. We consider the entity
resolution problem as investigated by Singla and Domingos [15]; we use the dataset
available at alchemy.cs.washington.edu. The predictive tasks are to decide whether
two strings found in the author, respectively venue field in two different bibliographic
entries refer to the same entity, and whether two different bibliographic entries re-
fer to the same paper. Types of objects in the database include author, venue, bib,
word,. . . Available relations include the binary relations hasWordVenue(v, w) represent-
ing that venue v contains the word w, bibToVenue(b, v) representing that bibliographic
item b contains v in the venue field, and similar relations for the fields ’author’ and
’title’.

We ran the TET learner on each of the 5 different training sets defined by a 5-
fold division of the source data. In all 3 tasks the TETs constructed over the different
folds exhibited a quite stable structure, with some branches being present in all folds.
A representative TET for the venue resolution task is shown at the left in Figure 3.

The left branch (which was constructed in all 5 runs) represents a central feature
for entity resolution: whether two entities (i.e. strings) are the same depends on the
number of words that appear in both of them. This simple fact is called reverse predicate
equivalence in [15], and hand-coded into the prediction model via logical axioms of the
form

hWV(v1, w) ∧ hWV(v2, w) => sameVenue(v1, v2)

The right branch first introduces the bib-entries that have the string v1 in the venue
field). The left sub-branch tests whether b1 also contains v2 in the venue field. In effect,
this is a test whether v1 and v2 are identical strings – an obvious feature to consider, yet
one that is not expressible in a more straightforward manner with the given relational
vocabulary! The right sub-branch introduces the title of the bib entry b1, and then counts
the number of bib-entries b2 that also have this title, and that contain venue v2 in the

>(v1, v2)

hWV(v1, w)
w

hWV(v2, w)

bTV(b1, v1)
b1

bTV(b1, v2) bTT(b1, t)
t

bTT(b2, t)
b2

hTV(b2, v2)

>(p, r)

within 5(p, r, r1)

r1

consCYS(p, r1)

within 5(p, r1, r2)

r2

consXXX(p, r2) consYYY(p, r2)

Fig. 3. TETs for Venue resolution (left) and metal binding sites (right)



venue field. In effect, this whole branch represents a feature that considers how often
v1 and v2 appear in bib-entries b1, b2 that have the same title.

For the three prediction tasks, author resolution, venue resolution, and bib-entry res-
olution, we achieved with our weighted TETs AUC(PR) values of 0.987, 0.771, 0.938,
respectively (micro-averaged over the 5 folds). This is slightly better for author and
venue than the values 0.980, 0.743, 0.971 reported in [15] for a Markov Logic Network
model that (like our TET) is language independent, i.e. does not contain rules referring
to specific strings occurring in the data. The worse performance on Bib can probably be
explained by the fact that [15] perform multi-task classification, and that Bib resolution
benefits more from the multi-task setting than Author and Venue (there is no direct evi-
dence for two Bibs being the same: they tend to be the same if their authors and venues
are the same).

Metal binding sites In our last experiments we predict metal binding residues in pro-
teins, using sequence information only. Metal ions are essential for Life, performing
structural, catalytical and regulatory roles in the cell. About one third of the known pro-
teins is believed to bind metal ions in their native conformation. A single metal ion is
typically coordinated by a number of residues ranging from one to eight, each metal
having a preferred coordination number and a range of possible alternatives. The most
common metal ligands are CYS and HIS, followed by ASP and GLU which are how-
ever far more abundant in proteins. Metal binding sites typically show many regularities
in terms of number, type, and distance of ligands and surrounding residues. Biologists
have tried to encode such regularities in motifs identifying specific metal binding sites,
as well as other biologically relevant portions of proteins. PROSITE [6] motifs con-
sist of either regular expressions or position-specific profiles with amino acid weights
and ggvgap costs. The former are extremely specific but have a very low recall, the
latter show a more balanced precision/recall ratio but their performance is still rather
unsatisfactory. While providing interpretable explanations, such motifs fail to capture
much of the information provided by the sequence, especially when enriched by evolu-
tionary information in the form of multiple alignment profiles, as shown by the perfor-
mance achieved by a supervised learning architecture [12] fed by such inputs. Our TET
learning algorithm discovered relevant and interpretable combinatorial features that out-
perform the knowledge-based regular expressions defined in PROSITE. Furthermore,
counts-of-counts capabilities indeed provide additional discriminative power, as shown
by experimental comparisons with Tilde and with TETs based on regular expression-
like features only.

We learned two separate TETs for CYS and HIS respectively. Objects in the do-
main consist of proteins and residues within proteins. Residue attributes are extracted
from multiple alignment profiles, and consist of the binarized conservation of either
relevant residue types such as CYS, HIS, ASP, GLU or PRO, or relevant residue classes
such as small, hydrophobic or negative. Relations have the form Within n(p,r1,r2) and
Plus n(p,r1,r2), and represent pairs of residues (r1,r2) in a certain protein p whose
sequence separation is at most or exactly n, respectively. Note that despite their simi-
larity, these two types of relations express quite different features: once one of the two
residues is given, Plus n(p,r1,r2) is satisfied by at most one other residue, and will thus



Table 3. Microaveraged area under the ROC curve (%) for CYS and HIS metal bonding state
prediction.

Task TETfull TETregexp PROSITEmotifs PROSITEpatterns TILDE SVM-BRNN
CYS 85.6±0.8 81.6±0.9 76.5±0.9 64.4±1.0 83.8±0.8 93.2±0.6
HIS 80.1±1.0 77.7±1.1 67.3±1.2 60.5±1.2 71.1±1.1 88.6±0.8

lead to regular expression-like features similar to PROSITE patterns (but typically less
specific). On the other hand, Within n(p,r1,r2) allows to collect all residues in the neigh-
bourhood of a given residue, and naturally generates counts-of-counts types of features.
We ran a five-fold cross validation procedure on the same folds employed in [12].
Table 3 reports microaveraged area under the ROC results for TET with (TETfull)
and without (TETregexp) the Within n(p,r1,r2) relation, PROSITE patterns and mo-
tifs and TILDE, as well as the state-of-the-art performance for this task [12]. Figure 4
reports significance of performance difference between learners, computed by a two-
tailed Hanley-McNeil test [16] on areas under the ROC curve. TILDE was run with the
same declarative bias used for learning TETs (rmode declarations that set one of the
residues in Plus n and Within n relations to input, and the other to output). However, it
was unable to exploit the Within n(p,r1,r2) relations, which are non-discriminating re-
lations [4] as any residue has at least one neighbour, while Plus n(p,r1,r2) relations hap-
pen to be slightly discriminant as residues at sequence boundaries do not satisfy the rela-
tion and are typically non-binding residues. Forcing TILDE to explore Within n(p,r1,r2)
relations by extensive lookahead produced worse results and increased computational
costs. Area under the ROC results for TILDE were calculated assigning to each example
the probability of binding of the leaf node which classified it.
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Fig. 4. Significance of performance difference between learners for the MBS data set. A black
(grey) box indicates that the learner on the row is significantly better than that on the column at
p=0.05 (p=0.1).

The best reported performance for this task (93.2% and 88.6% AUC for CYS and
HYS, respectively) was previously obtained with SVM-BRNN, a highly engineered



architecture based on support vector machines and bidirectional recurrent neural net-
works, fed by amino acid windows [12]. However, predictions obtained by such an
architecture are not interpretable. While the TET-based classifier does not reach the
same levels of accuracy, it significantly outperforms annotations curated by experts and
effectively suggests novel and more compact explanations: TETs produced by our learn-
ing algorithm had 22 nodes on average, while there are 467 PROSITE patterns and 305
position-specific profiles that match at least one residue in the dataset. Counts-of-counts
features do contribute to the overall TETs performance, as shown by the improvements
over TILDE and TETs which rely on regular expression-like features only.

Figure 3 (right) shows a TET structure learned for CYS. Inspecting the structure, we
note that the first branch learned in all folds encodes counts-of-counts features explor-
ing the surrounding of the candidate residue, where XXX and Y Y Y can be: HIS or
negative identifying candidate co-ligands (ASP and GLU are both negatively charged);
polar or positive identifying hydrophilic residues, an indication that the region is ex-
posed to the exterior and thus apt to contain a binding site; small as small residues often
provide the needed flexibility for the 3D conformation of the site. A similar branch is
learned most of the time for the left context of the target residue too. Note that by con-
catenating the relation within 5 twice, learned TETs manage to explore a wide context
of the target residue. Empirical evidence in [12] shows that wide contexts (in a range
of up to 15 residues) are useful for accurate prediction. Branches encoding standard
regular expressions such as CXXC (two CYS separated by any two residues) are added
at the latest stages only, i.e. they only play a minor refinement role.

The learning experiments reported here took in the range of 30 seconds (slotchain)
and 19 hours (Bib-resolution; per fold) to complete on an Intel Xeon 3.2 GHz platform,
with metal binding sites (3 h) and venue resolution (5 h; per fold) in between. By far
the most time is spent on data retrieval from the underlying MySQL database.

6 Conclusion

The TET language is a very simple yet highly expressive language for representing fea-
tures in relational data. Unlike previous feature representation frameworks a TET repre-
sents raw count of count statistics, not simple numeric or Boolean features obtained by
aggregation of such counts. Our current TET implementation is restricted to Boolean
attributes and relations only. However, on the representational, semantic level, there is
no problem with extending the TET framework to multi-valued and numeric datatypes.
However, numeric data poses additional challenges for transforming the complex TET
values into more manageable, condensed features that then can be used in standard
predictive models.

We have defined a discriminant function that enables prediction directly on the basis
of TET values. Using this discriminant function and a new generalized information gain
measure, we have developed a TET learner that in our experiments has been able to
discover relevant and interpretable features in a variety of learning settings that differ
significantly both with regard to the structure of the data, and the type of learning task.

The discriminant function we used in this paper is motivated by its grounding in
classical prediction models, and the fact that it is easy to learn and evaluate, which



makes it suitable for use in a wrapper evaluation procedure. In spite of its simplicity,
we achieve with the discriminant function in our experiments predictive performance
that is competitive with other state-of-the-art models, and sometimes (Cora) outper-
forms models that have been built using hand-coded domain knowledge. It must be
emphasized, though, that the TET feature language is not tied to this discriminant func-
tion. Future work, therefore, will be directed towards constructing refined TET-based
classification models using tools for collective and multi-task classification, as well as
integrating TET features into other existing supervised learning techniques, e.g. kernel
methods or relational probability trees. Also, in future work, we will further investigate
“relational” information gain measure (our gig at this point being a somewhat ad-hoc
solution) in order to obtain better theoretical justifications for the current gig, or im-
proved versions thereof.
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