
Declarative Kernels

Paolo Frasconi† Andrea Passerini† Stephen Muggleton‡ Huma Lodhi‡

† Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
‡ Department of Computing, Imperial College London

Abstract

We introduce a declarative approach to kernel design based on back-
ground knowledge expressed in the form of logic programs. The the-
oretical foundation of declarative kernels is mereotopology, a general
theory for studying parts and wholes and for defining topological rela-
tions among parts. Declarative kernels can be used to specify a broad
class of kernels over relational data and represent a step towards bridg-
ing statistical learning and inductive logic programming. The flexibility
and the effectiveness of declarative kernels is demonstrated in a number
of real world problems.

1 Introduction

Kernels are widely used in machine learning to represent the similarity between instances.
Choosing an appropriate kernel (or an appropriate class of kernels) is essentially the main
decision affected by the available domain knowledge and may carry paramount conse-
quences on the success of an application. In spite of these considerations, kernels design
is very often carried out in a rather ad-hoc manner because of the lack ofsystematicand
flexibletools for aiding the design task. One difficulty is perhaps that real-valued functions
are inappropriate as a knowledge representation language. Declarative languages such as
first order logic offer a better alternative. Indeed, symbolic approaches to machine learning
such as inductive logic programming (ILP) [12] heavily rely on first order representations
of domain knowledge. Flexible tools for exploiting knowledge that has been formalized in
a logical language, however, are not usually available when using statistical learning and
kernel methods. In this paper, we propose a framework that attempts to fill in the gap.

During the last few years, several approaches have been proposed for defining kernels
on discrete data structures (see [5] for a review) and higher-order logic individuals [4].
These kernels, however, operate onextensionalinstances and not onintensionalknowl-
edge. Other researchers have proposed ideas for incorporating background knowledge into
kernel machines. For example, Funget al.’s method [3] incorporates partial knowledge
about the target function in the learning process associated with support vector machines.
Unfortunately, such methods are not sufficiently flexible to exploit expressive knowledge
representation languages such as first-order logic. Propositionalization is a rather different
solution that transforms a relational problem into one that can be solved by an attribute-
value learner by mapping relations into a fixed-size set of features [11]. Although it is
known that in many practical applications propositionalization works well, its flexibility is
generally limited. A remarkable exception is the method proposed in [2] that uses descrip-
tion logics to specify features associated with a kernel.

In this paper we aim to introduce a general logical framework that allows us to specify a

broad class of kernels and to provide a simple interface for the incorporation of relational
background knowledge. Our main focus is not to propose another new kernel on relational
data but rather to provide the foundations for a programming environment that incorporates
kernel-based learning. Within this environment, one may write programs that are translated
into kernel functions over logical representations ofbothdata and knowledge. We assume
that instances are well defined individuals represented by sets of ground facts and that
background knowledge is available in the form of first-order predicates. Learning in this
setting is traditionally a prerogative of ILP but in this paper we show that statistical learning
with kernels is possible as well.

We propose to start from a specific setting based on two special and germane sets of re-
lations for reasoning aboutparts and places. The parthood relation has been formally
investigated by logicians and philosophers for almost a century since the early work of
Leśniewski, followed by Leonard & Goodman’s calculus of individuals (see [1] and refer-
ences therein). The axiomatic theory of parts is referred to asmereology(from the Greek
µερoζ, “part”). This theory already brings some connections to representational issues in
learning since decomposition into parts is central to the study of several kernels on dis-
crete structures (e.g. convolution kernels [8]). The theory can be enriched with additional
topological predicates and axioms aiming to describe wholeness. As pointed out by Varzi
[1], topology is much needed because “mereological reasoning by itself cannot do justice
to the notion of a whole (a one-piece, self-connected whole, such as a stone or a whistle,
as opposed to a scattered entity made up of several disconnected parts, such as a broken
glass, an archipelago, or the sum of two distinct cats).” These ideas are also relevant to
learning since pure decompositional approaches may have limited representational power
(e.g. bag-of-words representation of documents or representations of proteins as sets of
k-mers may destroy potentially useful information). For these reasons, a mereotopological
starting point for the definition of kernel functions may have a promising potential.

2 The logical framework

In the following, we base our discussion on standard first-order logic and when discussing
programs we implicitly refer to the Prolog programming languages [16] that support pred-
icate declaration and first-order deductive inference via resolution.

2.1 Ontology

Data and domain theory are represented by means of a program in which each instance
consists of a set of ground facts and background knowledge consists of a set of first order
predicates. We denote byU the universe of discourse, consisting of a set of objects, and by
X ⊂ U the instance space.

To enrich the expressivity of the representation, we can enforce a type discipline on objects
by introducing a finite set of monadic type namesT where each typeτ ∈ T defines a
subset ofU . We denote by: the relation between objects and their types, i.e. forx ∈ U
we writex : τ to denote thatx has typeτ . A special case is whenT = {τ1, . . . , τn} is
a partition ofU . In this caseT can be viewed as an equivalence relation=T as follows:
∀x, y ∈ U x =T y iff ∃τi ∈ T s.t.(x : τi ⇔ y : τi). Another interesting situation is
when type names are hierarchically organized in a partial order≺T⊂ T × T , with σ≺T τ
meaning thatσ is a τ (e.g. dog≺T animal). Numerical and categorical attributes can be
attached to objects. We denote bya[x] the value taken on by attributea in objectx. As
common in many object-oriented models, we maintain that objects of the same type share
the same set of attributes and that subtyping adds attributes to the base type.

The ontology is completed by a set of facts and rules representing instances of parthood and
connection relations between objects. For this purpose, we introduce two special predicates
in the ontology:�P andC, with the following intended meaning. For any two objectsx

C1

C2

C3

C4

C5

C6

N7

C8 C9

N10

O11
O12

H13

H14

H15

H16

H17 H18

Figure 1: Molecule used to illustrate the examples.

andy, x �P y if x is declared to be a part ofy. Similarly, C(x, y) if x is declared to
be connected toy. These predicates should obey general rules that have been the subject
of many investigations (as pointed out in the introduction) and that we briefly summarize
below.

2.2 Mereotopology

In the context of knowledge representation, it is widely accepted that�P should be a partial
order, i.e.∀x, y, z ∈ U

x�P x (P1)

x�P y ∧ y�P x ⇒ y=P x (P2)

x�P y ∧ y�P z ⇒ x�P z (P3)

The theory defined by the above axioms is referred to asground mereology. Interestingly,
the above theory immediately provides us with a natural identity predicate=P that may be
used as a basic elementary operator for comparing parts. Additional useful relations are
supported by the theory, in particular

x≺P y iff x�P y ∧ ¬y�P x proper part (1)

O(x, y) iff ∃z.(z�P x ∧ z�P y) overlap (2)

U(x, y) iff ∃z.(x�P z ∧ y�P z) underlap (3)

Thesupplementationaxiom, if added to the theory, supports the notion of extensionality:

∀z.(z�P x ⇒ O(z, y)) ⇒ x�P y. (P4)

Following [1], the following axioms characterize topology and its link to mereology:

C(x, x) (C1)

C(x, y) ⇒ C(y, x) (C2)

x�P y ⇒ ∀z.(C(z, x) ⇒ C(z, y)) (C3)

Additional useful relations are supported by the theory, in particular

EC(x, y) iff C(x, y) ∧ ¬O(x, y) external connection (4)

In our framework, mereotopology is used to enrich the given ontology in the hope that it
will generate further instances of the parthood and connection relations that will beuseful
for learning. It may also serve the purpose of checking the correctness of the declared parts
and connections in the ontology. When used for generating new instances of mereotopo-
logical relations, the theory should be used wisely or it may give raise to an explosion of
uninteresting parts and connections. Thus, depending on the application domain, axioms
can be selectively omitted — for example (P4) will be typically avoided. As an extreme
case, the whole set of axioms can be omitted.

Example 1. Supposex is the benzene ring in Fig. 1. Suppose that every atom of the ring
(C1–C6) is declared to be a part ofx in the ontology. Adding the supplementation axiom
(P4) to the theory entails that any subset of atoms (e.g. C1, C3, C4) is also a part ofx.
While this appears to be correct in the common interpretation, it leads to comparing an
exponentially growing number of sub-parts that are uninteresting when seen as features.

Example 2. With reference to Fig. 1, suppose that the only pairs declared to be connected
in the ontology are bonded atoms. Then we can infer from axiom (C3) that the nitro group
consisting of atoms N10, O11, and O12 is connected to the benzene ring. The connection is
external since it does not involve sharing of parts.

2.3 Mereotopological relations (MRs)

Several MRs can be introduced to characterize an instancex, for example:

i) the proper parts ofx: RP (x) = {y : y≺P x};
ii) the connected proper parts ofx: RC(x) = {(y, z) : y≺P x ∧ z≺P x ∧ C(y, z)};

iii) the overlapping parts inx, along with their common proper parts:
RI(x) = {(y, z, w) : y 6= z ∧ y≺P x ∧ z≺P x ∧ w≺P y ∧ w≺P z};

iv) the externally connected parts inx along with the associated linking terminals:

RL(x) = {(y, z, u, v) : z≺P x∧y≺P x∧¬O(z, y)∧u≺P z∧v≺P y∧C(u, v)}.

Additional MRs can be defined if necessary. We denote byM the set of declared MRs. As
detailed below, a declarative kernel compares two instances by comparing the correspond-
ing MRs, so adding relations toM plays a crucial role in shaping the feature space.

Example 3. With reference to Fig. 1, if we denote byx the molecule, byy the benzene ring
and byz the 5-ring, then(y, z, C3) and (y, z, C4) are both inRI(x). Similarly, denoting
byv the nitro group,(y, v, C6, N10) is inRL(x).

3 Declarative kernels

The definition of the kernel between two instances is built up from simpler kernel functions
on mereological relations.

3.1 The contribution of parts

The kernel on parts, denotedKP , is naturally defined as theset kernelbetween the sets of
proper parts:

KP (x, x′) =
∑

y∈P(x)

∑
y′∈P(x′)

kP (y, y′) (5)

wherekP denotes a kernel function on parts, which is defined recursively usingKP . The
precise definition ofkP depends on the organization of types, as discussed below.

Flat type system.Suppose types can be viewed as an equivalence relation (T is a partition
of U). In this case

kP (y, y′) =

{
ι(y, y′) if y =T y′ andy,y′ are atomic objects;
KP (y, y′) + ι(y, y′) if y =T y′ andy,y′ are non atomic objects;
0 otherwise (i.e.y 6=T y′).

(6)

In the above definition,ι(y, y′) is a kernel function between objects that only depends on
the attributes ofy andy′ (an not on their parts). The available attributes will be character-
ized by the type ofy andy′. If there are no attributes, thenι(y, y′) = 1. Otherwise:

ι(y, y′) =
∑

`

κ`(a`[y], a`[y′]) (7)

wherea`[y] is the value of attributea` in y and the sum extends to the attributes associated
with the type ofy (andy′). κ` is a kernel on attributea`, (e.g. κ`(r, s) = r · s if a` is a
numerical attribute). As an alternative, the sum betweenKP andι in Eq. 6 can be replaced
by a product.

Hierarchical type system. In this case the test for type equality in Eq. 6 can be replaced
by a more relaxed test on type compatibility. In particular, ify : τ , y′ : τ ′ and there exists
a least general supertypeσ : τ ≺T σ, τ ′ ≺T σ, then we may type casty andy′ to σ and
evaluateκ on the generalized objectsσ(y) andσ(y′). In this case the sum in Eq. 7 extends
to the subset of attributes for typeτ that are also present in typeσ.

3.2 The contribution of other MRs

The kernel on connected parts compares the sets of objectsRC(x) andRC(x′) as follows:

KC(x, x′) =
∑

(y,z)∈RC(x)

∑
(y′,z′)∈RC(x′)

KP (y, y′) ·KP (z, z′). (8)

The kernel on overlapping parts compares the sets of objectsRI(x) andRI(x′) as follows:

KI(x, x′) =
∑

(y,z,w)∈RI(x)

∑
(y′,z′,w′)∈RL(x′)

KP (w,w′)δ(y, y′)δ(z, z′) (9)

whereδ(x, y) = 1 if x andy have the same type and 0 otherwise. The kernelKL(x, x′) on
externally connected parts is defined in a similar way:

KL(x, x′) =
∑

(y,z,u,v)∈RL(x)

∑
(y′,z′,u′,v′)∈RL(x′)

KP (u, u′)KP (v, v′)δ(y, y′)δ(z, z′). (10)

3.3 The general case

Given a setM of MRs (such as those defined above), the final form of the kernel is

K(x, x′) =
∑

M∈M
KM (x, x′). (11)

Alternatively, a convolution-type form of the kernel can be defined as

K(x, x′) =
∏

M∈M
KM (x, x′). (12)

To equalize the contributions due to different MRs, the kernelsKM can be normalized
before combining them with sum or product. It is straightforward to show thatK is positive
definite, provided kernels defined on attributes are themselves pd, as kernels are closed
under both direct sum and tensor product operators [8].

3.4 Remarks

The kernel of Eq. (11) could have been obtained also without the support of logic program-
ming. However, deductive reasoning greatly simplifies the task of recognizing parts and
connected parts and at the same time, the declarative style of programming makes it easy
and natural to define the features that are implicitly defined by the kernel.

It may be tempting to see a one-to-one mapping between declarative kernels and Haussler’s
convolution kernels [8]. However the concept ofparts in [8] is very broad and does not
necessarily satisfy mereological assumptions. Eq. 12 can be seen as a convolution kernel
but what would be called apart in [8] is a mereotopological relation in our case.

4 A guided example: Mutagenesis

Defining and applying declarative kernels involves a three-step process: (1) collect data and
background knowledge; (2) interface mereotopology to the available data and knowledge;
(3) calculate the kernel on pairs of examples. In this Section, we illustrate the process in a

type(instance).
type(atm).
type(benzene).

obj(X,atm) :-
 atm(Drug,X,_,_,_).
obj(X,benzene) :-
 benzene(Drug,X).

has_part(B,Drug) :-
 obj(Drug,instance),
 benzene(Drug,B).

partof(X,X) :- % P1 axiom
 obj(X,_SomeType).
equalp(X,Y) :- % P2 axiom
 partof(X,Y), partof(Y,X).

c d

e

atm(drug,atom,element,charge,qa)
bond(drug,atom_1,atom_2,bond_kind,qb)

a benzene(Drug,RingList) :-
 atoms(Drug,6,AtmList,[c,c,c,c,c,c]),
 ring6(Drug,AtmList,RingList,[7,7,7,7,7,7]).

b

partof(X,Y) :- % P3 axiom (base)
 has_part(X,Y).
partof(X,Y) :- % P3 axiom (induction)
 has_part(X,Z), partof(Z,Y).

ppartsof(Parts,Y) :- % MR i)
setof(X,ppartof(X,Y),Parts).

ppartof(X,Y) :- % (proper part)
partof(X,Y), \+ partof(Y,X).

Figure 2: Code fragments for the guided example (see text).

realistic learning domain. The task (a classical benchmark for relational learners) consists
of predicting the mutagenicity of a set of nitro aromatic and heteroaromatic compounds.
The first step in this case simply consists of acquiring the atom-bond data and the ring
theory developed by Srinivasanet al. [15]. Data are described by the two predicatesatm
andbond declaring atoms and bonds (Fig. 2a). Background knowledge for this domain
consists of a theory describing the main functional groups, such as benzene and nitro (see
Fig. 2b for an example). The second step consists of interfacing the available data and
knowledge to the kernel. For this purpose, we first need to provide a set of declarations
for types, objects, and basic instances of mereotopological relations. Objects are declared
using the predicateobj(X,T) meaning thatX is an object of typeT. For example types
include atoms and functional groups (see Fig. 2c). Then we declare basic proper parts
via the predicatehas_part(X,Y) that is true whenY is known to be a proper part
of X . For example if an instanceD (a molecule in this case) contains a benzene ringB,
thenB ≺P D (Fig. 2d). Note that the use of a predicate calledhas_part (rather than
partof) is necessary to avoid calling a recursive predicate in the Prolog implementation.
The third step is independent of the domain. To calculate the kernel, we first make use of
mereotopology to construct the MRs associated with each instance (for example, the code
for computing proper parts is shown in Fig. 2e). The resulting sets of ground facts are then
passed to a modified version of SVMlight [10] for fast kernel calculation.

5 Experiments
5.1 Mutagenesis
We run a series of 10-fold cross-validation experiments on the regression friendly data set
of 188 compounds. First, we applied a mature ILP technique constructing an ensemble
of 25 Aleph theories [14]. A 3-fold cross validation in the training set of the first fold
was used to select Aleph parameters. We obtained accuracy .88± .07 using atom-bond
data and .89± .05 by adding the background ring theory. Next we applied declarative
kernels with support vector machines (SVM), obtaining accuracy .90± .07. CPU time
was of the order of minutes for the declarative kernel and days for the Aleph ensemble.
Finally, we compared the expressive power of ground mereological relations with that of
the full mereotopological theory. Fig. 3a reports LOO accuracy for different values of the
regularization parameterC, for both mereological and mereotopological kernels, showing
the latter achieves both better optimal accuracy and more stable performances.

5.2 Information extraction in biology
In these experiments we apply declarative kernels to the extraction of relational infor-
mation from free text. Specifically, we focus on multi-slot extraction of binary re-
lations between named entities. Our experiments were carried out on the yeast pro-
tein localization data set described in [13] and subsequently used as a testbed for
state-of-the-art methods based on ILP [7]. The task consists of learning the rela-

LO
O

 a
cc

ur
ac

y

.92

.90

.88

.86

.84

Regularization parameter C
400300200100 5000

Mereological
kernel

Mereotopological
kernel

Gleaner

Declarative
kernel

.2 .4 .6 .8 1

.2

.4

.6

.8

1

Recall

Pr
ec
is
io
n

0

(a) (b)

Figure 3: (a): LOO accuracy on the regression friendly mutagenesis data set. (b): compar-
ing Gleaner and the declarative kernel on the information extraction task (fold 5).

tion protein_location between two named entities representingcandidatepro-
tein names and cell locations. Instances are ordered pairs of noun phrases (NP) ex-
tracted from MEDLINE abstracts and with stemmed words. An instance is pos-
itive iff the first NP is a protein and the second NP is a location, for example:

protein_location("sco1", "the inner mitochondri membran", pos).
protein_location("the ept1 gene product","membran topographi",pos).
protein_location("a reductas activ", "the cell", neg).
protein_location("the ace2 gene", "multipl copi", neg).

The data set is a collection of7, 245 sentences from871 abstracts, yielding1, 773 positive
and279, 154 negative instances. The data is enriched by a large body of domain knowledge,
including relations about the structure of sentences and abstracts, lexical knowledge, and
biological knowledge derived from several specialized vocabularies and ontologies such as
MeSH and Gene Ontology. For simplicity, only a fraction of the available knowledge has
been used in our experiments. The main data types in this domain are:instance (pairs
of candidate NP’s);cp_NP (candidate protein NP);cl_NP (candidate location NP);
word_p (word in a protein NP);word_l (word in a location NP). Basic parthood rules
in the ontology declare that phrases (cp_NP andcl_NP) are parts of instances and words
are parts of phrases. For this task we used a minimal mereological kernel with no con-
nections and no axiomatic theory to avoid explosion of features due to words appearing
both as part of NP’s and instances. We compared declarative kernels to state-of-the-art
ILP-based system for this domain: Aleph and Gleaner [7]. We used the same setting as in
[7], performing a five-fold cross validation, with approximately 250 positive and120, 000
negative examples in each fold (split at the level of abstracts), and measuring the quality of
the predictor by means of thearea under the recall-precision curve(AURPC). As reported
in [7], Aleph attains its best performance (area.45) by learning on the order of108 rules,
while Gleaner attains similar performance (.43± .6) but using several orders of magnitude
less rules [6]. We trained five SVMs using the declarative kernel composed with a Gaus-
sian kernel. Gaussian width and the regularization parameter were selected by reserving a
validation set inside each fold. The obtained AURPC was.47 ± .7. Fig. 3b compares the
recall precision curve reported in [7], which is produced by Gleaner using1, 000, 000 can-
didate clauses on fold five, with that obtained by the declarative kernel. The result is very
encouraging given that only a fraction of the available knowledge has been used. Training
took less than three hours on a single 3.00GHz Pentium while Aleph and Gleaner run for
several days on a large PC cluster on the same task [6].

5.3 Prediction of mRNA signal structure

We now describe an SVM solution to mRNA classification problem studied by Horwáth
et al. [9]. The task consists in predicting the structural class of untranslated regions of
mRNA (i.e. portions of mRNA that do not code for proteins). State-of-the-art solutions
are in this case based on RIBL, (ak-NN like instance-based algorithm) with an ad-hoc

similarity measure. The main data types in this domain are:instance (an mRNA signal
structure) and mRNA secondary structure types (hairpin , stem , bulge3 , bulge5 ,
single). Every element is part of a structure and adjacent segments are connected.
Nucleotides are the attributes of each segment. An SVM with the declarative kernel for
this domain achieved 95.4% leave-one-out accuracy on the data set of 66 signal structures
(i.e. 3 misclassifications). This result coincides with that reported in [9].

6 Conclusions
Declarative kernels effectively bridge two important paradigms: symbolic and statistical
learning. Solving large scale learning problems in domains characterized by complex
knowledge (such as the application we presented to information extraction) becomes acces-
sible and relatively easy. In addition, training time compared to state-of-the-art ILP systems
can be dramatically improved. Although we have focused on parthood and connection,
other relations that do not have a mereotopological nature could possibly incorporated fol-
lowing ideas in this paper. Note also that connection needs not to be restricted to proper
parts of instances on which the kernel operates. In facts, the predicateC(x, y) makes sense
wheneverx andy are objects of the universe and they could be two different instances (e.g.
two linked Web pages) or two parts of different instances. This flexibility brings in some
potential for supporting in the future frameworks such as collective classification.

References
[1] R. Casati and A. Varzi.Parts and places: the structures of spatial representation. MIT Press,

Cambridge, MA and London, 1999.

[2] C. M. Cumby and D. Roth. On kernel methods for relational learning. InProceedings of the
20th Int. Conf. on Machine Learning (ICML ’03), 2003.

[3] G. M. Fung, O. L. Mangasarian, and S. Shavlik. Knowledge-based nonlinear kernel classifiers.
In Proc. of COLT/Kernel ’03, volume 2777 ofLNAI, pages 102–113. Springer, 2003.

[4] T. Gärtner, J. Lloyd, and P. Flach. Kernels and distances for structured data.Machine Learning,
57(3):205–232, 2004.

[5] T. Gärtner. A survey of kernels for structured data.SIGKDD Explor. Newsl., 5(1):49–58, 2003.

[6] M. Goadrich. Personal communication, 2005.

[7] M. Goadrich, L. Oliphant, and J. W. Shavlik. Learning ensembles of first-order clauses for
recall-precision curves: A case study in biomedical information extraction. InProc. 14th Int.
Conf. on Inductive Logic Programming, ILP ’04, pages 98–0115, 2004.

[8] D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10,
University of California, Santa Cruz, 1999.

[9] T. Horváth, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with lists and
terms.Machine Learning, 43(1/2):53–80, 2001.

[10] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors,Advances in Kernel Methods – Support Vector Learning. MIT Press, 1998.

[11] S. Kramer, N. Lavrac, and P. Flach. Propositionalization approaches to relational data mining.
In Relational Data Mining, pages 262–286. Springer-Verlag, 2000.

[12] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.Journal of
Logic Programming, 19(20):629–679, 1994.

[13] S. Ray and M. Craven. Representing sentence structure in hidden Markov models for informa-
tion extraction. InProceedings of IJCAI ’01, pages 1273–1279, 2001.

[14] A. Srinivasan.The Aleph Manual. Oxford University Computing Laboratory, 2001.

[15] A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mutagenicity: A
study in first-order and feature-based induction.Artificial Intelligence, 85(1-2):277–299, 1996.

[16] L. Sterling and E. Shapiro.The Art of Prolog: Advanced Programming Techniques. MIT Press,
2nd edition, 1994.

