
The pywmi Framework and Toolbox for Probabilistic Inference
using Weighted Model Integration

Samuel Kolb1 ∗ , Paolo Morettin2 , Pedro Zuidberg1 , Francesco Sommavilla2 ,
Andrea Passerini2 , Roberto Sebastiani2 and Luc De Raedt1

1KU Leuven
2University of Trento

{samuel.kolb, pedro.zuidbergdosmartires, luc.deraedt}@cs.kuleuven.be,
{paolo.morettin, andrea.passerini, roberto.sebastiani}@unitn.it

francesco.sommavilla@studenti.unitn.it

Abstract
Weighted Model Integration (WMI) is a popular
technique for probabilistic inference that extends
Weighted Model Counting (WMC) – the standard
inference technique for inference in discrete do-
mains – to domains with both discrete and con-
tinuous variables. However, existing WMI solvers
each have different interfaces and use different for-
mats for representing WMI problems. Therefore,
we introduce pywmi, an open source framework
and toolbox for probabilistic inference using WMI,
to address these shortcomings. Crucially, pywmi
fixes a common internal format for WMI prob-
lems and introduces a common interface for WMI
solvers. To assist users in modeling WMI prob-
lems, pywmi introduces modeling languages based
on SMT-LIB.v2 or MiniZinc and parsers for these
languages. To assist users in comparing WMI
solvers, pywmi includes implementations of several
state-of-the-art solvers, a fast approximate WMI
solver, and a command-line interface to solve WMI
problems. Finally, to assist developers in imple-
menting new solvers, pywmi provides Python im-
plementations of commonly used subroutines.

1 Modeling WMI problems
In a nutshell, WMI [Belle et al., 2015] traces back to SAT, the
problem of deciding if a Boolean formula is satisfiable. #SAT
builds on SAT but answers the question of how many models
satisfy a formula and WMC extends #SAT by allowing mod-
els to be weighted. Like SMT(LRA) extends SAT to answer
satisfiability for logical formulas with linear inequalities over
real variables, WMI extends WMC to integrate over (instead
of summing) over the (possibily infinitely many) weighted
models of an SMT(LRA) formula. A WMI problem consists
of a support φ, an SMT(LRA) formula that describes all fea-
sible worlds, a weight function w : Rr×Bb 7→ R that assigns
a weight to every possible world and a set of queries, ev-
ery query being an SMT(LRA) formula whose probability we

∗Contact Author

Figure 1: An overview of the pywmi framework. The language
decouples specific modeling languages (top) and solvers (bottom)
using a generic format and solver interface, as well as providing
command-line interface and tools for solvers.

want to compute. Worlds are value assignments to the prob-
lem variables. Internally, pywmi represents WMI problems
as tuples 〈dom, φ, w,Q〉. The domain dom contains prob-
lem variables, their types and, optionally, the valid ranges for
numeric variables (e.g., x ∈ [0, 1]). Both SMT(LRA) for-
mulas (φ, q ∈ Q) and weight functions (w) are represented
as Abstract Syntax Trees (ASTs) using the implementation
provided by the PySMT library [Gario and Micheli, 2015].

The internal representation is exposed to developers and,
for example, probabilistic programming languages can inter-
face with it. For example, a language such as Problog [Dries
et al., 2015] produces ground programs to be solved us-
ing WMC, an extension with continuous variables can solve
ground programs using WMI instead. However, for end-
users, pywmi also provides two modeling languages for WMI
problems that can be directly parsed to the pywmi representa-
tion (see Figure 1 for an overview). Both formats can be used
to compactly encode a WMI problem, differing in the syntax
used for the expressions (inspired by MiniZinc [Nethercote et
al., 2007] or SMT-LIB.v2 [Barrett et al., 2010]).

As an example, consider modelling a factory that produces
banana and chocolate flavoured ice cream. Figure 2 shows a
toy model of the factory production in the MiniZinc-inspired
syntax. Variables b and c represent the amount of banana and
chocolate ice cream produced in a work day by the factory,
while weekday is a Boolean variable distinguishing between



1 var float : b; % banana-flavoured ice cream
2 var float : c; % chocolate-flavoured ice cream
3 var bool : weekday; % weekday or weekend
4

5 par float : CAPACITY = 10.0;
6

7 % production is nonnegative
8 constraint (b >= 0) /\ (c >= 0);
9

10 % production cannot exceed the storage capacity
11 constraint (b + c < CAPACITY);
12

13 weight : (if weekday then 5/7 else 2/7) *
14 (if weekday
15 then (0.004 * b + 0.002 * c)
16 else (0.002 * b + 0.004 * c))
17

18 % queries and evidence
19 constraint (not weekday);
20 query (b >= 2*c);
21 query (b >= 9.0) \/ (c > 9.0);

Figure 2: The ice cream production example problem encoded using
the MiniZinc-flavored WMI modeling language.

weekdays and weekends. Intuitively, the production is deter-
mined by physical constraints, i.e., being non-negative and
not exceeding the capacity of the factory, and market trends
causing the preference over flavours to produce to be inverted
in the weekends. In this toy example, the density functions
combines the probability of weekday vs weekend and a linear
combination of the amount of flavours produced, conditioned
onweekday, that increases with the amount of ice cream pro-
duced. The WMI file can also contain evidence, e.g., condi-
tioning on weekend days, and a list of queries to, for example,
compute the probability that the banana ice cream production
at least doubles the chocolate one (xxx), or the probability of
having a particularly high production of any flavour (yyy).

2 Framework for WMI Solvers
Given a WMI problem in a standardized format, a WMI
solver is employed to calculate weighted model integrals,
most frequently, with the aim to compute query probabili-
ties. The core interface for WMI solvers in pywmi consists of
two methods: 1) computing a weighted model integral, given
a domain, support and weight functions; and 2) computing
the probability of a set of queries, given a domain, support,
weight function and a set of queries. As computing the prob-
abilities of a set of queries can be reduced to a set of weighted
model integral computations, pywmi offers a default imple-
mentation. However, solvers that can only compute query
probabilities or offer more efficient ways to compute query
probabilities (e.g., using knowledge compilation [Kolb et al.,
2018]), can override the default implementation.

The solving interface makes it possible to use any sup-
ported solver to solve any WMI problem in the common rep-
resentation format. For users, pywmi offers a command-line
interface to call or compare different solvers for a problem.
Additionally, it can assist with converting file formats, in-
stalling new solvers or visualizing WMI problems. For devel-
opers, pywmi offers a growing amount of common functional-

Figure 3: The performance of the solvers varies for different types
of problems. For highly structured problems the BR solver performs
better, while for less structured problems the PA solver is faster.

ity that might be useful to manipulating WMI problems or im-
plementing a new solver, such as, easy-to-use data-structures
for WMI problems and domains, wrappers around numeric
integration software (e.g., Latte [De Loera et al., 2013]) and
symbolic computation systems (e.g., PSI [Gehr et al., 2016])
that make it easy to write backend-agnostic solvers, and sub-
routines for computing with PySMT ASTs, linear inequali-
ties, polynomials, sampling from WMI densities, evaluating
points w.r.t. to their feasibility and density, etc.

3 Comparing WMI Solvers
As mentioned above, pywmi allows the performance of dif-
ferent solvers to be compared. Aside from a common in-
terface, however, pywmi also provides implementations for
many state-of-the-art algorithms. These implementations
either wrap around existing tools or libraries, or are (re-
)implemented natively in pywmi. For solvers with exter-
nal dependencies pywmi tries to make the installation as
easy as possible by automating installations or providing
detailed instructions. The supported state-of-the-art WMI
solvers are: WMI-PA [Morettin et al., 2019], XADD-
based path-enumeration [Sanner et al., 2011] or bound-
resolution (BR) algorithms [Kolb et al., 2018], symbolic
SDD-based solver Symbo [Zuidberg Dos Martires et al.,
2019], PRAiSE [De Salvo Braz et al., 2016]1. Additionally,
pywmi includes a native implementation of XADDs and the
BR algorithm, a fast approximate solver based on rejection-
sampling and new WMI solvers that are currently being de-
veloped using pywmi2.

Using pywmi, we can now easily compare how different
solvers behave on different problems. For example, we can
compare how two state-of-the-art solvers (WMI-PA and BR)
compare on some of the problems they introduce: highly
structured xor and mutex problems with sparse inequalities
(introduced alongside the BR solver), and synthetic WMI
problems with random ASTs as support and weight func-
tion (using the WMI-PA problem generator). Running both
solvers on these problems shows that the search-based WMI-
PA solver and its numeric integration software outperform the
BR solver for the WMI problems with random ASTs, while
the compilation-based BR solver better exploits the structure
of the xor and mutex problems (Figure 3).

1through the WMI-PA wrapper, without support for raw WMI
computations – only query probabilities

2these will remain private until their publication



References
[Barrett et al., 2010] Clark Barrett, Aaron Stump, and Ce-

sare Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK), 2010.

[Belle et al., 2015] Vaishak Belle, Andrea Passerini, and
Guy Van den Broeck. Probabilistic Inference in Hybrid
Domains by Weighted Model Integration. In IJCAI, pages
2770–2776, 2015.

[De Loera et al., 2013] Jesús A De Loera, Brandon Dutra,
Matthias Koeppe, Stanislav Moreinis, Gregory Pinto, and
Jianqiu Wu. Software for exact integration of polynomials
over polyhedra. Computational Geometry, 46(3):232–252,
2013.

[De Salvo Braz et al., 2016] Rodrigo De Salvo Braz, Ciaran
O’Reilly, Vibhav Gogate, and Rina Dechter. Probabilistic
inference modulo theories. In IJCAI, pages 3591–3599,
2016.

[Dries et al., 2015] Anton Dries, Angelika Kimmig, Wannes
Meert, Joris Renkens, Guy Van den Broeck, Jonas Vlas-
selaer, and Luc De Raedt. Problog2: Probabilistic logic
programming. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages
312–315. Springer, 2015.

[Gario and Micheli, 2015] Marco Gario and Andrea
Micheli. Pysmt: a solver-agnostic library for fast proto-
typing of smt-based algorithms. In SMT Workshop 2015,
2015.

[Gehr et al., 2016] Timon Gehr, Sasa Misailovic, and Martin
Vechev. PSI: Exact Symbolic Inference for Probabilistic
Programs. In CAV, pages 62–83. Springer, 2016.

[Kolb et al., 2018] Samuel Kolb, Martin Mladenov, Scott
Sanner, Vaishak Belle, and Kristian Kersting. Efficient
Symbolic Integration for Probabilistic Inference. In IJCAI,
pages 5031–5037, 2018.

[Morettin et al., 2019] Paolo Morettin, Andrea Passerini,
and Roberto Sebastiani. Advanced smt techniques for
weighted model integration. Artificial Intelligence, 2019.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J
Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. MiniZinc: Towards a standard
CP modelling language. In International Conference
on Principles and Practice of Constraint Programming,
pages 529–543. Springer, 2007.

[Sanner et al., 2011] Scott Sanner, Karina Valdivia Delgado,
and Leliane Nunes De Barros. Symbolic Dynamic Pro-
gramming for Discrete and Continuous State MDPs. In
UAI, 2011.

[Zuidberg Dos Martires et al., 2019] Pedro Zuidberg
Dos Martires, Anton Dries, and Luc De Raedt. Exact and
Approximate Weighted Model Integration with Probabil-
ity Density Functions Using Knowledge Compilation. In
AAAI, 2019.


	Modeling WMI problems
	Framework for WMI Solvers
	Comparing WMI Solvers

