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Abstract
We describe a family of kernels over untyped and
typed Prolog ground terms and show that they can
be applied for learning in structured domains, pre-
senting experimental results in a QSPR task.

1 Introduction
Starting from the seminal work of Haussler on convolution
kernels[Haussler, 1999], several researchers have proposed
kernels on discrete data structures such as sequences, trees
and graphs (see[Gärtner, 2003] for a review). Recently, ker-
nels over complex individuals have been defined using higher
order logic abstractions[Gärtneret al., 2004]. The family
of kernels developed in this paper originates from a special-
ization to first-order logic of such kernels, as it is designed
to work on individuals represented as Prolog ground terms.
There are several reasons for such a specialization.Simplic-
ity: Prolog representations provide a simpler representational
framework. Sufficiency: useful higher order structures such
as sets can be simulated in Prolog. Types can also be in-
troduced. In practice, Prolog based representations are suf-
ficiently expressive for many application domains.Legacy:
many inductive logic programming systems and knowledge
bases are actually based on first order logic and Prolog is a
well supported language.Extendibility: first-order logic pro-
grams have been extended to deal with uncertainty through
the use of probability resulting in models such as stochastic
and Bayesian logic programs (see[De Raedt and Kersting,
2003] for a review); these extensions can be very interesting
in the context of machine learning.

We develop variants of the kernel on typed and untyped
terms. The present formulation allows us to obtain a relatively
simple proof of positive definiteness based on showing that
kernels over terms are a special case of convolution kernels
[Haussler, 1999]. We finally present experimental evidence
of the usefulness of these kernels by learning the boiling point
of alkanes from their chemical structure.

2 Kernels on Prolog ground terms
We begin with kernels on untyped terms. For a given program
P we denote byB the Herbrand universe ofP (i.e. the set of
all ground terms that can be formed from symbols inP ) by
C ⊂ B the set of all constants, and byF the ranked set of
functors.
Definition 1 (Kernels on untyped terms). The kernel be-
tween two termst and s is a functionK : B × B 7→ IR
defined inductively as follows:

• if s ∈ C and t ∈ C thenK(s, t) = κ(s, t) whereκ :
C × C 7→ IR is a valid kernel on constants;

• else if s and t are compound terms and have differ-
ent arities or functors, i.e. s = f(s1, . . . , sn) and
t = g(t1, . . . , tm), then

K(s, t) = ι(f, g) (1)

whereι : F × F 7→ IR is a valid kernel on functors;
• else ifs and t are compound terms and have the same

arity and functor, i.e. s = f(s1, . . . , sn) and t =
f(t1, . . . , tn), then

K(s, t) = ι(f, f) +
n∑

i=1

K(si, ti) (2)

• in all other casesK(s, t) = 0.

We call κ and ι atomic kernels as they operate on non-
structured symbols. A special but useful case is the atomic
match kernelδ defined asδ(x, z) = 1 if x = z andδ(x, z) =
0 if x 6= z.

A finer level of granularity in the definition of ground term
kernels can be gained from the use of typed terms. This extra
flexibility may be necessary to specify different kernel func-
tions associated with constants of different type (e.g. numer-
ical vs. categorical). It may also be necessary in order to
specify different kernels associated to different arguments of
compound terms. Our approach for introducing types is sim-
ilar to that proposed in[Lakshman and Reddy, 1991]. We de-
note byT the ranked set of type constructors. The type signa-
ture of a function of arityn has the formτ1×, . . . ,×τn 7→ τ ′

wheren ≥ 0 is the number of arguments,τ1, . . . , τk ∈ T
their types, andτ ′ ∈ T the type of the result. Functions of ar-
ity 0 have signature⊥ 7→ τ ′ and can be therefore interpreted
as constants of typeτ ′. The type signature of a predicate of
arity n has the formτ1×, . . . ,×τn 7→ Ω whereΩ ∈ T is the
type of booleans. We writet : τ to assert thatt is a term of
type τ . We denote byB the set of all typed ground terms,
by C ⊂ B the set of all typed constants, and byF the set of
typed functors. Finally we introduce a (possibly empty) set
of distinguishedtype signaturesD ⊂ T that can be useful to
specify ad-hoc kernel functions on certain compound terms.

Definition 2 (Kernels on typed terms). The kernel between
two typed termst ands is defined inductively as follows:

• if s ∈ C, t ∈ C, s : τ , t : τ thenK(s, t) = κτ (s, t)
whereκτ : C × C 7→ IR is a valid kernel on constants of
typeτ ;



• else if s and t are compound terms that have the
same type but different arities, functors, or signatures,
i.e. s = f(s1, . . . , sn) and t = g(t1, . . . , tm), f :
σ1×, . . . ,×σn 7→ τ ′, g : τ1×, . . . ,×τm 7→ τ ′, then

K(s, t) = ιτ ′(f, g) (3)

whereιτ ′ : F × F 7→ IR is a valid kernel on functors
that construct terms of typeτ ′

• else ifs and t are compound terms and have the same
type, arity, and functor, i.e.s = f(s1, . . . , sn), t =
f(t1, . . . , tn), andf : τ1×, . . . ,×τn 7→ τ ′, then

K(s, t) =

8>><>>:
κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f, f) +

nX
i=1

K(si, ti) otherwise
(4)

• in all other casesK(s, t) = 0.

In the case of numerical constants, examples of use-
ful kernels includeκReal(x, z) = exp(−γ(x − z)2) and
κReal(x, z) = min{x, z}.
Theorem 1. The kernel functions on Prolog ground terms
given in Definitions 1 and 2 are positive definite (pd).

Proof sketch. Let us introduce the following decomposition
structure (see[Shawe-Taylor and Cristianini, 2004]): R =
〈(X1, X2), R, (k1, k2)〉 with X1 = F (the set of functors),
X2 = (F , IN,B)), and

R = {(f, (f, n, a), s) s.t. s is a term having functorf,

tuple of argumentsa, andf has arityn}

Then it can be immediately verified that the kernel function
of Eq. 1 and 2 correspond to the direct sum decomposition
kernel associated with the decomposition structureR if k1 =
ι andk2((f, n, a), (g,m, b)) = δ(f, g)δ(n, m)k′(a, b) where
givena = (s1, . . . , sn) andb = (t1, . . . , tn)

k′(a, b) =
n∑

i=1

K(si, ti).

Since kernels are closed under direct sum, ifK is pd thenK ′

is also pd. The proof then follows from Haussler’s decompo-
sition framework[Haussler, 1999] and by induction using as
base step the fact thatκ is a valid kernel on constants.

The proof that kernels on typed terms (Def. 2) are pd is
obtained similarly, replacing functor arities by type signatures
in the decomposition structure.�

Alternative forms of typed and untyped kernels can be ob-
tained by replacing sums with products in Eq. (2) and (4),
while keeping the rest of the definitions unchanged. Since
kernels are closed under tensor product, positive definiteness
can be proven using the same technique as in Theorem 1.

3 Experimental evaluation
The kernel has been tested on a quantitative structure-
property relationship (QSPR) prediction task, namely pre-
dicting the boiling point of alkanes given their chemical struc-
ture. Alkanes can be represented as ordered rooted trees us-
ing a very simple procedure[Bianucciet al., 2000], and trees
can be easily encoded as Prolog ground terms, as shown in
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Figure 1: Ground term representation of an Alkane.

Fig. 1. We addressed this task using kernel ridge regression
[Shawe-Taylor and Cristianini, 2004] with the kernelK on
untyped terms of Def. 1, a match kernel for functors (car-
bon atoms), and a null kernel for constants (hydrogen atoms).
In this way the kernel measures the number of carbon atoms
in corresponding positions. As an additional source of in-
formation, we extracted the depths of the trees representing
the molecules, and summed their product to the term kernel,
obtaining a more informed kernelK ′. Finally, we employed
a Gaussian kernel on top ofK and K ′. Performance was
evaluated by a ten fold cross validation procedure, Hyperpa-
rameters (namely, the Gaussian width and the regularization
parameter), were chosen by a hold-out procedure on the train-
ing set of the first fold, and kept fixed for the successive 10
fold cross validation procedure. When using kernelK we
obtained an average mean square error of 4.6 Celsius degrees
while usingK ′ the error can be reduced to 3.8 degrees. These
results are comparable to those produced by the highly tuned
networks developed in[Bianucciet al., 2000].
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