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ABSTRACT
Normative texts can be viewed as composed by formal par-
titions (articles, paragraphs, etc.) or by semantic units con-
taining fragments of a regulation (provisions). Provisions
can be described according to a metadata scheme which con-
sists of provision types and their arguments. This semantic
annotation of a normative text can make the retrieval of
norms easier. The detection and description of the provi-
sions according to the established metadata scheme is an
analytic intellectual activity aiming at classifying portions
of a normative text into provision types and to extract their
arguments. Automatic facilities supporting this intellectual
activity are desirable. Particularly, in this paper, two mod-
ules able to qualify fragments of a normative text in terms
of provision types and to extract their arguments are pre-
sented.

1. INTRODUCTION
The legal system usually suffers from scarce transparency
which is caused by a non-systematic organization of the le-
gal order. Law, in fact, is a normative and documentary
unit of reference, hence the inability to obtain an analyti-
cal/systematic vision of a legal order itself, allowing to query
a legal information system according to the content of each
norm. This necessarily creates obstacles to the knowledge
and upkeep of the legal order: from the uncertainty of the
impact of new laws on the legal order in terms of coherency
preservation, to the difficulties in norm accessing by both
citizens and legal experts. For these reasons a more analyt-
ical unit of reference has been indentified in order to take a
more organic view of the legal system [5, 7]. According to
this point of view a normative text may be seen as a vehicle
that contains and transports rules, or provisions, and the
legal order as a set of rules rather than of laws. Recently,
in Italy, the “Norme in Rete” (NIR) project (“Legislation
on the Net”) has adopted such a perspective within a con-
text of strategies aiming at creating a unique access point
of normative documents on the Web with search and re-
trieval services. A “provision-centric” view of legal order
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indeed has been considered of primary importance to define
strategies and tools for the upkeep of legal systems and to
provide facilities to access norms. Such strategies are es-
sentially based on the identification of the provisions within
a normative text and on providing them with an explicit
semantic description in terms of provision types and their
arguments, namely the actions and the entities, with their
roles, which are regulated by the provisions. This activity
can be carried out both manually and automatically. This
paper explores automatic methodologies for helping the hu-
man activities of detecting the typologies of provisions con-
tained in a normative document and extracting the related
arguments. This paper is organized as follows: in Section
2 the main components of a model of provisions are intro-
duced; Section 3 presents the standards established by the
NIR project and the tools developed to make their adoption
easier; among such tools in Section 4 a module able to au-
tomatically describe a normative document in terms of the
contained provision types is described and tested, as well as
in Section 5 a module able to automatically extract the ar-
guments of the detected provisions is shown and evaluated.
Finally, in Section 6 some conclusions are discussed.

2. A MODEL OF PROVISIONS
The entire body of the law, with its articles and paragraphs,
may be seen as a set of provisions, intended as rules and car-
ried by linguistic acts, and therefore propositions, whether
simple or complex, endowed with meaning1 [25]. Basically,
a normative text can be viewed according to a structural
or formal profile, and a semantic or functional profile. Fol-
lowing this perspective, fragments of a normative text are,
at the same time, paragraphs and provisions, according to
whether they are seen from a formal or functional view-
point. The two points of view, both completely compatible
with each other, can be alternated as required during the de-
finition of the text. In particular the functional profile can
also be considered as composed by two sub-profiles: the reg-
ulative profile and the thematic profile. The first one reflects
the lawmaker directions, the second one the peculiarities of
the regulated field. The regulative profile can be described
in terms of provisions. A provision can assume different
types as definition, obligation, sanction, competence, amen-
daments, etc. The thematic profile can be described by the
so-called arguments of the provisions (for example the ad-

1Raz suggests among other things that a good criterion for
individuation of the provisions should not depart too much
or without well-founded reason from the ordinary concept
of provision of law.



dressee of an obligation). Types of provision and related
arguments define a model of provisions. They can be con-
sidered as a sort of metadata able to analitically describe
the normative content of a normative text, hence the name
of analytical metadata.
Using analytical metadata, a fragment of a normative text
can be qualified according to a semantic point of view. For
example, the following fragment of the Italian privacy law:

“A controller intending to process personal data
falling within the scope of application of this Act
shall have to notify the “Garante” . . . ”

besides being considered as a part of the physical structure
of a normative text (a paragraph), can also be viewed as a
component of the logical structure of it (a provision). In
particular, it can be qualified as a provision of type obliga-
tion, whose arguments are:

Addressee: “Controller”;
Action: “Notification”;
Third-party: “Garante”.

The detection of provisions in a normative text consists,
essentially, in an analytic effort in which all the possible
distinctions among the elements, understood as rules, that
go to make up the legislative texts, are made, and the nature
and function of each one are singled out where possible.
The relevant issue is that of taking note of the types of rules
in use and of defining their roles within a coherent functional
vision of the legal system.
More in detail, it includes:

- Viewing the legal order as a rule system and the text
as a set of rules;

- Clearly defining the rules functions in terms of provi-
sion types;

- As regards the internal structure of the rules, individ-
uating the logically necessary components (argument
types) of each type of provisions;

- As regards the relationships among the rules, analyz-
ing the recurring and privileged relationships among
types of rules.

The detection of the functional profile in a normative text
can be carried out both during the drafting process, in or-
der to more efficiently serve the needs of the legislator in his
work of formulating and managing legal norms [5, 8], and at
the end of the process as a pure documentalist activity.
Basically, such a function is similar to the qualification of
a text using metadata according to a particular metadata
scheme (for example the classification of a text according
to the subject on the ground of a classification scheme). In
our case the detection of the types of provisions and their
arguments can be viewed as the process of qualification of a
normative text using analytical metadata.
The use of analytical metadata permits different applica-
tions. Firstly, they allow to index and access normative doc-
uments from a semantic point of view. Legal persons, public

administrations or associations handling personal data, for
example, may query a legal information system where nor-
mative documents are indexed on the basis of the analytical
metadata, searching for all the obligation regarding who is
the controller of personal data, obtaining a selective answer.
Analytical metadata can also be used in the drafting phase
giving the drafter the possibility to insert metadata annotion
and also of drawing up new normative documents starting
from their logical structure using an editor able to use meta-
data in the phase of building up a text. Moreover analytical
metadata allows diagnosis on normative texts to analyse the
coherency of the legal system.
Recently, within the NIR project, a standard to describe the
functional profile of a normative text, as well as the formal
one, have been defined for the Italian legal system.

3. THE NIR PROJECT: STANDARDS AND
TOOLS

The “Norme in Rete” (NIR) project (“Legislation on the
Net”) has been proposed by the CNIPA [Italian National
Center for Information Technology in the Public Adminis-
tration] in conjunction with the Italian Ministry of Justice,
with the aim of creating a unique access point on the Web
with search and retrieval services of normative documents
so as to eliminate the information historical fragmentation
of the legal information systems, as well as to create a mech-
anism of stable cross-references able to guide users towards
relevant sites of the public authorities participating in the
project.
To achieve these purposes, the NIR project proposed to
adopt a standardized description of normative documents
able to guarantee interoperability among the sites and the
information systems of the adhering authorities.
Particularly the project proposed the adoption of XML as a
standard for representing normative documents [21] allow-
ing the description of their formal and functional profiles
(Section 2), and a uniform cross-referencing system, based
on URN technique [29], providing documents with charac-
teristics of interoperability and effective of use.
In order to make the adoption of such standards easier, a
number of tools have been developed within the NIR project.
The main one is NIREditor [8], an authoring tool which
includes facilities, based on previous studies on legislative
drafting [6], and modules aiming at managing new or legacy
normative documents according to the established standards.
Hereinafter, two of these modules aiming at automatically
detecting the functional profile in a normative text are de-
scribed: they are the Automatic Provision Classifier (Sec-
tion 4), able to classify law paragraphs as provision types
(regulative profile (Section 2)), and the Provision Argument
Extractor (Section 5), able to provide values to the argu-
ments of the provisions (thematic profile (see Section 2)).

4. PROVISION AUTOMATIC CLASSIFIER
The detection of provisions in a normative text is basically
a documentalist activity which is to be carried out by legal
experts. However it can be particularly time consuming, es-
pecially for long and complex laws. An automatic module
able to support the intellectual activity of classifying provi-
sions is therefore desirable.
The Provision Automatic Classifier we have developed is a
module able to automatically detect the type of provisions



contained in a normative text. In this work we have con-
sidered a paragraph as cointaining an entire provision, and
also coincident with a provision, assumption, the second one,
which is widely observed by the legislator. Assuming that a
document has already been transformed in XML as concerns
its physical structure (formal profile), this module classifies
law paragraphs in terms of provision types, and it stores
such information according to the NIR analytical metadata
scheme. When combined with the Provision Arguments Ex-
tractor, it can detect the content of provision arguments,
thus completing the detection of the normative text func-
tional profile.
The Provision Automatic Classifier mainly consists of a text
categorization algorithm which takes as input a law para-
graph (hereinafter also called simply “document”) d rep-
resenting a provision, and outputs its predicted type (or
“class”) c choosing from a set of candidate classes C. In
order to perform such an operation, it relies on a machine
learning algorithm which has been trained on a set of train-
ing documents D with known class, and thus learned a
model able to make predictions on new unseen documents.
A wide range of machine learning approaches have been ap-
plied to automated text categorization, also in legal domain
[16], and a vast literature on the subject exists (see [27] for
a comprehensive review). Two correlated problems must
be addressed in facing such a task: the choice of the docu-
ment representation, that is how to turn the document into
a format amenable for computation, and the choice of the
particular learning algorithm to employ.
In Section 4.1 we outlined in detail the different types of doc-
ument representation that we tried, while in Section 4.2 we
described the Multiclass Support Vector Machines learning
algorithm that was employed. Finally, Section 4.3 reports
the experimental results of the method proposed.

4.1 Document Representation
A number of alternatives are possible in order to represent
a document in a format which can be managed by an au-
tomatic classifier. Two main problems have to be faced:
the choice of the meaningful textual units, representing the
atomic terms of the document, and the level of structure
to be mantained when considering the combination of such
terms. Concerning the second problem, the most common
approach, which we followed in our implementation, is that
of ignoring the sequential order of the terms within a given
document, and representing it simply as an unordered bag of
terms. Concerning the first problem, the simplest possibil-
ity is that of representing words as terms, but more complex
approaches can be conceived. A number of authors [11, 15]
have tried using phrases as terms, but their experiments did
not produce significantly better effectiveness. According to
Lewis [20], a possible explanation for such a behaviour is
that even if phrases have superior semantic qualities with
respect to words, their statistical qualities are usually quite
inferior. We thus limited ourselves to individual words in
our document representation. Nevertheless, a number of
preprocessing operations can be performed on pure words
in order to increase their statistical qualities:

• Stemming can be applied to words in order to reduce
them to their morphological root 2;

2We employed the snowball software, available at

• Digit characters can be represented using a special
character;

• Non alphanumeric characters can be represented using
a special character.

Once basic terms have been defined, a vocabulary of terms
T can be created from the set of training documents D, con-
taining all the terms which occur at least once in the set. A
single document d will be represented as a vector of weights
w1, . . . , w|T |, where the weight wi represents the amount of

information which the ith term of the vocabulary carries out
with respect to the semantics of d. We tried different types
of weights, with increasing degree of complexity:

• A binary weight δ(w, d) indicating the presence/absence
of the term within the document;

• A term-frequency weight tf(w, d) indicating the num-
ber of times the term occurs within the document,
which should be a measure of its representativeness
of the document content;

• A TFIDF weight which indicates the degree of speci-
ficity of the term with respect to the document. Term
Frequency Inverse Document Frequency [12] is com-
puted as

tfidf(w, d) = tf(w, d) ∗ log(|Dw|−1)

where |Dw| is the fraction of training documents con-
taining at least once the term w. The rationale be-
hind this measure is that term frequency is balanced
by inverse document frequency, which penalizes terms
occurring in many different documents as being less
discriminative.

Note that any learning algorithm to be run on the set of
training examples D won’t be able to compute statistics over
terms not included in the vocabulary T . Therefore, new test
documents will still be represented as vectors of size T , and
any term not included in T will be ignored. Moreover, sta-
tistics computed for extremely rare terms will be far less
reliable, as already pointed out for phrases with respect to
words, thus possibly leading to overfitting phenomena. In
order to address such a problem, feature selection techniques
can be applied to reduce the number of terms to be consid-
ered, thus actually restricting the vocabulary to be employed
(see e.g. [27, 32]). We tried two simple methods:

• An unsupervised min frequency threshold over the num-
ber of times a term has been found in the entire train-
ing set, aiming at eliminating terms with poor statis-
tics.

• A supervised threshold over the Information Gain [24]
of terms, which measures how much a term discrimi-
nates between documents belonging to different classes.
The Information Gain of term w is computed as:

http://www.snowball.tartarus.org/italian/stemmer



ig(w) = H(D) − |Dw|
|D| H(Dw) − |Dw̄|

|D| H(Dw̄)

where H is a function computing the entropy of a la-
belled set, Dw is the set of training documents con-
taining the term w, and Dw̄ is the set of training doc-
uments not containing it. Entropy in information the-
ory measures the amount of bits necessary to encode
the class of a generic element from a labelled set, and
thus depends on the dispersion of labels within the set.
Information Gain measures the decrease of entropy ob-
tained by dividing the training set basing on the pres-
ence/absence of the term, thus preferring terms which
produce subsets with more uniform labels.

4.2 Classification Algorithm
Binary classification is a typical machine learning task, and
a number of different approaches have been developed so far.
A main difference between classification algorithms is that
of generative vs discriminative ones. The first type of algo-
rithms learns a model for each possible label, and predicts
the label of an example as the most likely given the example
and the models. The second type directly learns the poste-
rior probability of the label given the example, and is usu-
ally considered more appropriate for classification tasks (see
e.g. [30]), even if different opinions arise for non asymptotic
behaviours [22]. We focused on Support Vector Machines
(SVM)[13, 10] as a state-of-art discriminative approach, pro-
vided with strong theoretical background and a number of
successfull applications in various domains [26, 28]. The ex-
tension of binary classifiers to the multiclass case is straight-
forward for algorithms like decision trees [24], neural net-
works [9] or Bayesian classifiers [18], while SVM require more
complex extensions. Generally speaking, SVM for multiclass
classification have been developed as either combinations of
binary classifiers, or by directly implementing multiclass ver-
sions of the SVM learning algorithm (see [17, 23] for reviews
and comparisons). We choose the second methodology and
employed a multiclass support vector machine (MSVM) as
developed independently by Vapnik [30] and Crammer and
Singer [14] (other implementations of MSVM [31, 19] differ
in the cost function employed).
Assume a training set D = {(di, ci) ∈ D × [1, C]}m

i=1 of
examples belonging to one of C possible classes and repre-
sented as vectors in a vector space D of dimension T . The
decision function implemented by the MSVM algorithm is
given by:

f(d) = argmaxc∈[1,C]〈wc,d〉. (1)

Here we have a vector of parameters wc for each of the C
possible classes, and its dot product with the example d
measures the confidence that the example belong to class c.
The decision function f assigns a new example d to the most
confident class. Parameters wc are learned from the training
set D by solving a quadratic optimization problem which
amounts at simoultaneously minimizing the complexity of
the learned hypothesis and the number of errors committed
on the training set (see [30, 14] for the details).

4.3 Experimental Results
A wide range of experiments was conducted over a dataset
made of 582 paragraphs, here simply documents, distributed
among 11 classes (Tab. 1), representing as many types of
provisions. Paragraphs of the data set have been collected
from italian legislative texts; each paragraph represents the
minimal formal division containing a provision. They have
been selected and labelled by legal experts according to the
model of provisions discussed in Section 2.

Class labels Provision types (classes) Number of provisions
(documents)

c0 Repeal 70
c1 Definition 10
c2 Delegation 39
c3 Delegification3 4
c4 Prohibition 13
c5 Reservation 18
c6 Insertion 121
c7 Obligation 59
c8 Permission 15
c9 Penalty 122
c10 Substitution 111

Table 1: Provision types (classes) and number of
provisions (documents) for each class in the experi-
ments

In a preliminary phase, we found out that removing quoted
sentences from documents before processing them led to bet-
ter performances. In fact, they usually do not carry out se-
mantic information regarding the type of provision in which
they appear, and they would lead to poor statistics for the
great variability of the text they can contain. After such
a preprocessing step, we tried a number of combinations of
the document representation and feature selection strate-
gies described in Section 4.1, for the MSVM algorithms.
We employed a leave-one-out (loo) procedure for measur-
ing performances of the different strategies. For a dataset
of n documents D = {d1, . . . , dn}, it consists of performing
n runs of the learning algorithm, where for each run i the
algorithm is trained on D \ di and tested on the single left
out document di. The loo accuracy is computed as the frac-
tion of correct tests over the entire number of tests. Table
2 reports loo accuracy and train accuracy, which is com-
puted as the average train accuracy over the loo runs, of the
MSVM algorithm for the different document representation
and feature selection strategies. The first three columns
(apart from the index one) represent possible preprocessing
operations. The fourth column indicates the term weight-
ing scheme employed, binary (δ), term frequency (tf) and
TFIDF (tfidf). The two following columns are for feature
selection strategies: the unsupervised min frequency and the
supervised max infogain, which actually indicates the num-
ber of terms to keep, after being ordered by Information
Gain. Finally, the last two columns contain loo and train
accuracies. While replacing digits or non alphanumeric char-
acters slightly degrades performances, with a loo accuracy
of 90.38% compared to 91.24%, the use of stemming actu-
ally helps clustering together terms with common semantics,
bringing loo accuracy to 91.92%. The simpler binary weight
scheme (loo acc. 91.92%) appears to work better then term
frequency (loo acc. 88.14%) and tfidf (loo acc. 89.18%),

3Type of provision identifying matters that will be here-
inafter regulated by administrative acts.



# repl. repl. use weight min freq max IG loo acc train acc
digit alnum stem scheme sel. sel. (%) (%)

1 no no no δ no no 91.24 100
2 yes no no δ no no 90.38 100
3 yes yes no δ no no 90.38 100
4 yes yes yes δ no no 91.92 100
5 yes yes yes δ 2 no 91.92 100
6 yes yes yes tf 2 no 88.14 100
7 yes yes yes tfidf 2 no 89.18 99.66
8 yes yes yes δ 2 2000 91.92 100
9 yes yes yes δ 2 1000 91.92 100

10 yes yes yes δ 2 500 92.44 100
11 yes yes yes δ 2 250 91.24 100
12 yes yes yes δ 2 100 88.66 100
13 yes yes yes δ 2 50 87.80 98.11

Table 2: Detailed results of MSVM algorithm for
different document representation and feature se-
lection strategies.

probably for the small size, in terms of number of words,
of the provisions in our training set; this fact makes sta-
tistics on the number of occurences of a term less reliable.
Only a slight improvement can be obtained by feature se-
lection, bringing loo accuracy to 92.44% when choosing the
500 terms with maximum infogain. This confirms how SVM
algorithms are able to effectively handle quite large feature
spaces.

Classes c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c0 69 0 0 0 0 0 0 0 0 0 1
c1 0 7 0 0 0 0 0 2 0 1 0
c2 0 0 39 0 0 0 0 0 0 0 0
c3 0 0 0 4 0 0 0 0 0 0 0
c4 1 0 0 0 5 1 1 2 1 1 1
c5 0 0 0 0 2 8 1 0 5 2 0
c6 1 0 0 0 1 0 118 0 0 0 1
c7 0 1 0 0 1 1 0 54 2 0 0
c8 1 0 0 0 1 3 1 3 5 0 1
c9 0 0 0 0 1 0 0 0 0 121 0
c10 1 0 0 0 0 0 1 0 0 1 108

Table 3: Confusion matrix for the best MSVM clas-
sifier.

Classes Precision Recall Entropy
c0 0.945 0.986 0.120
c1 0.875 0.700 0.157
c2 1.000 1.000 0.000
c3 1.000 1.000 0.000
c4 0.455 0.385 0.642
c5 0.615 0.444 0.430
c6 0.967 0.975 0.079
c7 0.885 0.915 0.200
c8 0.385 0.333 0.509
c9 0.960 0.992 0.092
c10 0.964 0.973 0.085

Table 4: Precision, recall and entropy values for the
best MSVM classifier.

Table 3 shows the confusion matrix for the best classifier, the
MSVM indexed 10, reporting details of predictions for in-
dividual classes. Rows indicate true classes, while columns
indicate predicted ones. Note that most errors are com-
mitted for classes with fewer documents, for which poorer
statistics could be learned. Finally, in Table 4 we reported
precision, recall and entropy values for each class.

5. PROVISION ARGUMENT EXTRACTOR
As mentioned above, paragraphs of normative documents
can be analyzed not only according to the particular type of

Provision types Arguments
Repeal Rule, Position, Novellando
Prohibition Action, Third-party
Insertion Rule, Position, Novella
Obligation Addressee, Action, Third-party
Permission Addressee, Action, Third-party
Penalty Addressee, Action, Object, Rule
Substitution Rule, Position, Novellando, Novella

Table 5: A frame-based description of the different
provision types.

provision they express, but also with respect to the main le-
gal entities involved by the law. Consistently, each provision
type can be formally defined as a frame with a fixed num-
ber of (possibly optional) slots. The slot types required for
the description of seven of the previously introduced classes
of the provision model are illustrated in Table 5. The pur-
pose of the Provision Argument Extractor is to select rele-
vant text fragments corresponding to specific semantic roles4

that are relevant for the different types of provisions5. In
a nutshell, the Provision Argument Extractor is realized as
a suite of Natural Language Processing tools for the auto-
matic analysis of Italian texts (see [2]), specialized to cope
with the specific stylistic conventions of the legal parlance.
Although legal language is considerably more constrained
than ordinary language, its specific syntactic and lexical
structures still pose a considerable challenge for state-of-
the-art Natural Language Processing tools. Nonetheless, if
our goal is not a fully-fledged representation of their content,
but only identification of specific information portions, leg-
islative texts are relatively predictable and hence tractable
through Natural Language Processing techniques.
A first prototype of the Provision Argument Extractor has
just been brought to completion and its performance eval-
uated. The NLP technology used is relatively simple, but
powerful, also thanks to the comparative predictability of
normative texts. The Provision Argument Extractor mod-
ule takes in input single law paragraphs in raw text, coupled
with the categorization provided by the Automatic Provision
Classifier, and outputs a semantic tagging of the text, where
the semantic roles corresponding to different arguments are
rendered as XML tags. An output example (translated into
English for the reader’s convenience) is given in Figure 1,
where the input paragraph is classified as an obligation and
portions of the text are identified as respectively denoting
the addressee and the action. The approach to provision ar-
gument extraction from normative documents follows a two–
stage strategy. In the first step, a general purpose parsing
system, hand-tuned to handle some idiosyncrasies of Italian
legislative texts, pre–processes each law paragraph to pro-
vide a shallow syntactic analysis. In the second step, the

4In order to make arguments useful for searching purposes
it would be necessary not only to identify the text fragments
but also to extract the relevant terms contained there and
map them onto the corresponding entries in thesauri, dic-
tionaries, or linguistic ontologies. The development of this
project expects to provide the drafter with the possibility of
inserting links to ontology concepts, with the twofold aim
of a semantic indexing of normative documents on the one
hand, and the population of domain-specific ontologies on
the other.
5For more details about this module, the interested reader
is referred to [4] and [3].



<obligation>

<addressee>The Member State</addressee>

shall

<action>pay the advance within 30 calendar

days of submission of the application

for advance payment</action>.

</obligation>

Figure 1: Output example.

syntactically pre–processed text is fed into the semantic an-
notation component proper, making explicit the information
content implicitly conveyed by the provisions.

5.1 Syntactic pre–processing
Syntactic pre–processing produces the data structures to
which semantic annotation applies. At this stage, the in-
put text is first tokenized and normalized for dates, abbre-
viations and multi–word expressions; the normalized text
is then morphologically analyzed and lemmatized, using an
Italian lexicon specialized for the analysis of legal language;
finally, the text is POS-tagged and shallow parsed into non–
recursive constituents called “chunks”. A chunked sentence,
however, does not give information about the nature and
scope of inter–chunk dependencies. These dependencies,
whenever relevant for semantic annotation, are identified at
the ensuing processing stage (see section 5.2 below).
Although full text parsing may be suggested as an obvi-
ous candidate for adequate content processing, we contend
that shallow syntactic parsing provides a useful intermedi-
ate representation for content analysis. First, at this stage
information about low level textual features (e.g. punctu-
ation) is still available and profitably usable, whereas it is
typically lost at further stages of analysis. In this connec-
tion, it should be appreciated that correct analysis of mod-
ifications crucially depends on punctuation marks, and in
particular on quotes and colons, which are used to iden-
tify the text of the amendment (novella) and the amending
text (novellando). Secondly, chunked sentences naturally
lend themselves to incrementally being used as the start-
ing point for partial functional analysis, whereby the range
of dependency relations that are instrumental for semantic
annotation is detected. In particular, dependency informa-
tion is heavily used for the mark–up of both modifications
and obligations, which requires knowledge of the underly-
ing syntactic structure. Finally, a third practical reason is
that chunking yields a local level of syntactic annotation.
As a result, it does not “balk” at domain–specific construc-
tions that violate general grammar patterns; rather, parsing
is carried on to detect the immediately following allowed
structure, while ill–formed chunks are left behind, unspeci-
fied for their category.

5.2 Semantic annotation
As mentioned above, the implementation of the Provision
Argument Extractor module is closely inspired by main-
stream techniques of Information Extraction. In particular,
semantic annotation consists in the identification of all ar-
guments relevant to a specific provision type. A provision
type can then be regarded as a frame, which in turn acts as
an extraction template whose slots are filled with the textual

material matching the corresponding conceptual roles.
The semantic annotation component takes in input a chun-
ked representation of each law paragraph and identifies se-
mantically relevant structures by applying domain–depen-
dent, finite state techniques locating relevant patterns of
chunks. Semantic mark–up is performed through a two–step
process:

1. Each paragraph is assigned to a frame (corresponding
to the legislative provision expressed in the text);

2. Slots of the frame identified at step (1) are turned into
an extraction template and instantiated through the
structural components (i.e. sentences, clauses, phrases)
of the law paragraph.

The current version of the semantic annotation component
is a specialized version of the ILC finite–state compiler of
grammars for dependency syntactic analysis (see [1]). The
specific version of the grammar compiler uses a specialized
grammar including (i) a core group of syntactic rules for the
identification of basic syntactic dependencies (e.g. subject
and object), and (ii) a battery of specialized rules for the
semantic annotation of the text.
All rules in the grammar are written according to the fol-
lowing template:

<chunk-based regular expression> WITH <bat-
tery of tests> => <actions>

The extraction of provision arguments from law paragraphs
is based on structural patterns that are combined with lex-
ical conditions and other tests aimed at detecting low–level
textual features (such as punctuation) as well as specific
syntactic structures (e.g. the specification of a given depen-
dency relation). Structural patterns are expressed in terms
of regular expressions over sequences of chunks, whereas all
other conditions (e.g. lexical, syntactic, etc.) are checked
through a battery of tests. The action type ranges from the
identification of basic dependency relations (in the case of
syntactic rules) to the semantic mark–up of the text (in the
case of semantic annotation rules).
Reliable identification of dependency relations is also im-
portant for assigning structural elements to semantic roles,
since the latter tend to be associated with specific syntac-
tic functions (e.g. subject, object). To give the reader but
one example, the addressee of an obligation typically corre-
sponds to the syntactic subject of the sentence, while the
action (s)he is obliged to carry out is usually expressed as
an infinitival clause, as in the example reported below:

[[Il comitato misto]subj]addressee] è tenuto [[a

raccomandare modifiche degli allegati secondo le modalità

previste dal presente accordo]i clause]action]

[[The Joint Committee]subj]addressee] shall [[be

responsible for recommending amendments to the An-

nex as foreseen in this Agreement]i clause]action].

Note, however, that this holds only when the verbal head of
the infinitival clause is used in the active voice. By contrast,



Provision Class Success Partial Success Failure
Repeal 95.71% 2.86% 1.43%
Prohibition 73.33% 26.67% –
Insertion 97.48% 1.68% 0.84%
Obligation 88.89% 11.11% –
Permission 66.67% 20% 13.33%
Penalty 47.93% 45.45% 6.61%
Substitution 96.40% 3.60% –
Tot. 82.09% 15.35% 2.56%

Table 6: Provision Argument Extractor results

the syntactic subject can express the action if the verb is
used in the passive voice and is governed by specific lexical
heads.

5.3 Experimental results
The Provision Argument Extractor module was evaluated on
a sub–set of the dataset used for the evaluation of the Au-
tomatic Classifier. The evaluation set for the Argument Ex-
tractor consisted of 473 law paragraphs, covering seven pro-
vision classes of those defined by the NIR standards. Since
the performance of the Argument Extractor is to be com-
pared against human annotation, the choice of a reduced
data set is justified by the need for restricting the costly
process of deep, expert annotation to the most representa-
tive examples.
Table 6 illustrates the performance of the system. Know-
ing the right provision type of each example, the aim of
the evaluation here was to assess the system’s reliability in
identifying, for each provision type or frame, all the seman-
tic roles or arguments that are relevant for that frame and
are instantiated in the text. Three possible cases are dis-
tinguished: a) the module correctly identifies all and only
the relevant semantic roles instantiated in the provision text
(”Success”); b) the module identifies only a subset of the
relevant semantic roles (”Partial Success”); c) the module
utterly fails and no role is detected.

6. CONCLUSIONS
The legal system usually suffers from scarce transparency
mainly caused by a non-systematic organization of the le-
gal order. Law is usually referred in terms of a normative
and documentary unit, hence the difficulties in norm ac-
cessing by both citizens and legal experts. For these reasons
it can be useful to identify a more analytical unit of refer-
ence, the provision, in order to take a more organic view of
the legal system. Provisions can be described according to a
model which consists of provision types and their arguments.
Even if the detection of the provisions within a normative
text is essentially an intellectual activity aiming at classify-
ing portions of normative texts into provision types and to
extract their arguments, automatic facilities supporting the
user are desirable. In this paper two modules able to clas-
sify fragments of normative texts into provision types and
to extract their arguments have been presented. They are
based on multiclass Support Vector Machine classification
techniques and on Natural Language Processing techniques
respectively. The test of these two approaches produced
promising results.
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