
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Co-creating Platformer Levels with Constrained Adversarial Networks

PAOLO MORETTIN, KU Leuven, Belgium

ANDREA PASSERINI and STEFANO TESO, University of Trento, Italy

Fig. 1. Example Mario levels generated by a constrained adversarial network. Left: Pipe props are constrained to be complete and
symmetric (coherency). Right: The rightmost column must be reachable from the starting position, regardless of gaps (playability).
Images taken with permission from [6].

Given the success of deep generative models in many creative tasks, it is natural to ask how to best leverage them to support human
designers. We study this problem in the context of mixed-initiative design of platformer levels, a paradigmatic co-creative task. This
setting is especially challenging, because – like all functional content – platformer levels must satisfy complex validity constraints,
like coherency and playability. We explore mixed-initiative interaction with constrained adversarial networks (CANs), a class of deep
generative models that synthesize structures satisfying one or more validity constraints. As such, CANs can be used to complete
user-supplied partial levels while retaining full control of the constraints to be applied. We go one step beyond, and consider the issue
of customizing a pre-trained CAN to some target design task at hand and to the designer’s preferences. We discuss how to achieve this
by combining CANs with coactive learning, a very natural mixed-initiate interaction protocol that acquires the necessary supervision
from the designer in a transparent manner. Finally, we illustrate how to extend coactive learning to acquire informative supervision in
the form of interpretable constraints.

CCS Concepts: • Human-centered computing → Collaborative interaction; • Computing methodologies → Unsupervised
learning; • Theory of computation → Structured prediction.

Additional KeyWords and Phrases: mixed-initiative interaction, structured objects, interactive machine learning, generative adversarial

networks, constraints

ACM Reference Format:
Paolo Morettin, Andrea Passerini, and Stefano Teso. 2018. Co-creating Platformer Levels with Constrained Adversarial Networks.
InWoodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/10.1145/1122445.1122456


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Woodstock ’18, June 03–05, 2018, Woodstock, NY Morettin et al.

1 INTRODUCTION

Deep generative models have achieved remarkable results in image synthesis [12, 26], music generation [20], style
transfer [44], and many other creative tasks. It is only natural to ask how these models, which are designed to work in
full autonomy, can be adapted for assisting and complementing human designers.

To ground the discussion, we focus on a concrete application, namely mixed-initiative design of 2-D platformer
game levels [21, 22, 33]. This and other forms of semi-autonomated content generation are very relevant for the game
industry, as they promise to lower production costs and facilitate scalability [36]. A key feature of this problem is that –
in contrast to, e.g., natural images – game levels are functional [22], that is, they obey complex validity constraints like
coherence (for instance props must be complete, non-flying enemies must touch the ground) and playability (the goal
tile must be reachable), see Figure 1. Standard deep generative models, however, do not handle validity constraints and
hence struggle to generate valid objects.

This motivates us to explore mixed-initiative level design with constrained adversarial networks (CANs) [6]. CANs
are generative adversarial networks (GANs) [12] designed specifically for functional objects. Like other generative
models, once trained on existing content, CANs can be invoked to create novel content from scratch [12] or to finish
incomplete sketches supplied by a designer [43]. As a bonus, during interaction the designer can turn on and off different
constraints, allowing her to synthesize different types of structures and boost diversity [6].

In this setup the model is trained to generate content that mimics the training data, which might be quite different
from the content needed by the designer for the task at hand. Compatibly with recent work [13, 19], we argue that
effective content synthesis requires customizing the generative model for the target domain. To this end, we propose to
leverage coactive learning (CL) [32], an interaction protocol whereby the machine acquires pairwise preferences (that
is, “object 𝑥 is better than object 𝑥 ′”) by tracking the modifications made by the designer to its own suggestions. The
generative model is then periodically adjusted to comply with the collected preferences. Coactive learning integrates
seamlessly into mixed-initiative workflows and is completely transparent to the designer [7, 39].

Given the tension between the amount of feedback that can reasonably be acquired during a design session and
the number of preferences needed to adjust deep generative models like CANs [19], we also discuss how to extend CL
to collect both preferences and constraints. In our view, constraints are a powerful form of feedback as they provide
information about entire sets of candidate levels: levels that do satisfy a constraint are preferred to levels that do not, all
else being equal. Importantly, constraints can be imposed on top of both outputs (e.g., tile and enemy patterns) and
disentangled latent representations of the generative models.

In the following, we overview GANs and CANs. Next, we discuss mixed-initiative level design with CANs and
distinguish between strategies based on conditional generation and adaptive strategies based on coactive learning and
constraint acquisition. In Section 4 we discuss related work and then conclude with some final remarks.

2 BACKGROUND

Generative Adversarial Networks (GANs) [12] are a popular class of generative models where two neural networks, the
generator 𝑔 and the discriminator 𝑑 , are trained jointly in an adversarial fashion. Specifically, the discriminator 𝑑 is
trained to distinguish “real” objects in the training set X from “fake” objects synthesized by the generator 𝑔. At the
same time, 𝑔 is trained to output objects that fool 𝑑 . The generator is typically implemented as a feed-forward or a
deconvolutional neural network that maps random vectors z (sampled from some simple distribution, like a multivariate

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Co-creating Platformer Levels with Constrained Adversarial Networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

normal) into objects x. The discriminator is a feed-forward or convolutional neural network that takes objects x and
output their probability of being real or fake.

Training is typically performed using (variants of) stochastic gradient descent by interleaving updates to 𝑔 and 𝑑 ,
and it proceeds until the synthesized objects look indistinguishable from those in the training set X. Under idealized
assumptions [12], the learned generator eventually recovers the data distribution. Once trained, the generator 𝑔 can be
used to synthesize new objects x by simply sampling random vectors z and computing their image under the generator,
that is, x = 𝑔(z). This operation is extremely efficient. This form of training has the advantage of not requiring to
compute an objective based on likelihood or other probabilistic metrics, which are in general intractable and thus
approximated. For this reason, GANs have found successful applications in domains where formalizing the target
distribution is hard.

GANs and other standard deep generative models are not designed to generate valid structures [6]. Indeed, generating
objects consistent with a constraint involves first discovering that such a constraint exists (at least implicitly) by looking
at the data, and generative models are not designed to carry out this non-trivial task. Furthermore, if the training data
contains infeasible examples (because of, e.g., mistakes during the data collection), then the validity constraint cannot
be acquired perfectly even in principle.1

2.1 Constrained Adversarial Networks

Constrained Adversarial Networks (CANs) address this issue by taking both training examples and validity constraints
into consideration. CANs train the generator 𝑔 so that it jointly maximizes the probability of fooling the discriminator
𝑑 and the probability of synthesizing valid objects. This is achieved by augmenting the adversarial loss used in standard
GANs (denoted by ℓ𝑎𝑑𝑣 ) with the semantic loss (SL), a technique proposed in [41] to encourage neural networks to output
predictions consistent with constraints. Letting𝜓 be a user-supplied validity constraint (encoded as a propositional
logic formula over the elements of x), CANs train 𝑔 and 𝑑 to optimize (resp. minimize and maximize) the following
expression:

ℓ𝑎𝑑𝑣 (𝑔,𝑑) + 𝜆 · 𝑆𝐿𝜓 (𝑔) (1)

where 𝜆 > 0 is a hyper-parameter controlling the importance of the constraint. The SL is designed to be large whenever
the probability that the generator outputs a valid object is small. To this end, the SL is defined as the negative logarithm
of this probability:

𝑆𝐿𝜓 (𝑔) = − log


∑
x satisfies𝜓

𝑃𝑔 (x)
 (2)

The sum measures the total probability allocated by the generator to valid objects. Evaluating the sum involves
enumerating all possible objects (e.g., tile arrangements) x, checking which ones are feasible, and computing their
probability with respect to the generator (written 𝑃𝑔 (x)). Since the number of possible objects is typically exponential,
naïve enumeration is infeasible. Knowledge compilation (KC) [4] is thus used to compile the sum into a compact

polynomial (or more precisely, an arithmetic circuit) that can be evaluated efficiently during training. KC works by
leveraging distributivity to rewrite 𝑆𝐿𝜓 (𝑔) as compactly as possible, enormously speeding up evaluation. This is
achieved by identifying shared sub-components and compactly representing the factorized expression using a DAG.

If𝜓 is very complex, the polynomial output by KC may be large. This is not a huge issue during training, which is
performed once (or infrequently) on powerful machines, but it could be problematic for inference. A major advantage of

1It can be shown that in this case GANs will acquire a wrong validity constraint [6].

3



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Woodstock ’18, June 03–05, 2018, Woodstock, NY Morettin et al.

CANs is that – as in regular GANs – synthesizing new objects boils down to a simple forward pass over the generator,
independently of the KC polynomial, which can thus be thrown away after training.

3 MIXED-INITIATIVE LEVEL DESIGNWITH (CONDITIONAL) CANS

We are concerned with mixed-initiative design of 2-D platformer levels. In this setting, a human designer and a
generative model take turns in proposing modifications to a shared level map [21, 22, 33]. The designer can reject or
modify any suggestions made by the model. The process can be considered a success if the machine proposes useful
suggestions (that is, modifications that improve the overall quality of the level) thus saving time and resources, or if it
inspires the human designer to create an overall better level [18, 42].

Co-designing with a pre-trained model. Perhaps the most straightforward co-design strategy is to use a pre-trained
generative model to synthesize levels conditioned on the designer’s input. The simplest setup is inpainting: in this case,
the user supplies an incomplete level and the network fills in the missing parts based on the context [43]. CANs, in
particular, can be easily adapted to inpainting under constraints [6]. In a second, orthogonal approach, the designer
specifies some desired features of the output and lets the network generate a level compatible with those features.
For instance, one could condition the generator to output objects from a specific class (e.g., underground rather than
an open air levels) [24], to include a given quantity of certain elements (enemies, amount of water) [15], or to satisfy
expected length/playtime or leniency (a proxy of expected difficulty) requirements [31].

CANs support an additional form of conditional generation that makes it possible during synthesis to enable or
disable different groups of constraints. A technical description of this mechanism can be found in [6]. Hence CANs not
only inherit the conditional capabilities of traditional GANs, but also support the generation of objects conditioned on
properties expressed in logical terms. Using this technique, the designer can generate diverse levels by turning on and
off constraints like “a room contains a boss fight if and only if it contains a treasure chest” or “if the exit is locked then the

room must contain a key somewhere”. The requirement is that these optional constraints are all baked into the CAN
generator during training.

In complex co-creative scenarios like level generation, the output of the model is unlikely to satisfy all of the
designer’s desiderata from the get go. To solve this issue, recent work has investigated strategies that allow the designer
to iteratively refine an initial suggestion by interacting with the generative model [3, 9, 10]. In this sequential setting, a
crucial aspect is how to ensure consistency of the generated object with respect to previous iterations. This is particularly
challenging when the designer’s feedback is expressed in natural language and the output is relatively unstructured [23].
Since game levels are inherently structured it is easier to unambiguously describe the desired changes, to maintain
consistency with respect to previous iterations, and to identify possibly contradictory feedback from the user. For
instance, it is much easier to effectively account for feedback like “turn all the water tiles into lava” or “the first half of
the level should not contain enemies” than “the subject in the photo should smile”.

Co-designing and customization. So far, we considered interaction based on conditioning a pre-trained generative
model during synthesis. Since the model generates content that mimics the training data, unless the training data
is designed appropriately, the synthesized content will not fit the target application. This introduces a fundamental
tension between the effort required to create the training data and the effort saved by using the generative model [19].

A sensible option is then to collect feedback on the model’s suggestions while interacting with the designer, and
then to incorporate the latter into the generative model itself [7, 13, 39]. We propose to do so by leveraging coactive
learning [7, 32], an interactive learning protocol in which the machine iteratively suggests content to the user, the

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Co-creating Platformer Levels with Constrained Adversarial Networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

user improves – even by changing just a few tiles – the suggested content, and the process repeats. The meaning
of “improvement” is entirely defined by the designer’s preferences and requirements. At the end of each iteration,
the machine has access to a suggested object x and an improved configuration x′, and extracts a pairwise preference
of the form “x′ is better than x”. Such preferences are collected in a data set and then used to adjust the generative
model. A simple procedure to do this is to re-train the current generative model to better comply to the collected
preferences using a ranking loss, as proposed in [16]. As interaction proceeds, more preferences are collected and the
model progressively aligns to the designer’s needs. Notice that coactive learning is completely transparent to the user
and integrates naturally in mixed-initiative interaction via manipulative interfaces [7], which are commonplace in level
co-design [21, 22, 33].

The nature of the feedback highly impacts the performance of the model. Preferences are very effective for capturing
the designer’s needs [28], however they do not explanation why one object is preferred to the other. As a concrete
example, if the user is presented with a Super Mario level x and improves it by removing some coins from it, leading to
x′, the system does not know whether the coins were removed because they were unreachable, because there were
too abundant already, because they did not look good, etc. This kind of explanatory supervision conveys a lot of
information [30] and can dramatically improve the speed of adaptation, especially for data hungry models like GANs.
We propose to do so by combining constraint acquisition [5] with CANs. The human designer not only can adjust the
generative model by modifying the presented output, but is also empowered with tools for specifying constraints on the
desired output. Of course, encoding preferences in formal/logical terms can be hard for the end user. Nonetheless, there
exists a body of work on translating natural language into various formal representations [2, 8, 38]. Most crucially, the
system must be able to learn the building blocks of this interaction language, that is, the logical predicates that the
designer uses to specify her needs. While many predicates of practical interest can be specified a priori, like the presence
or number of specific elements in a portion of the level, we can go further and provide an interface for learning new
predicates from the user. As shown in [6], it is indeed possible to use learned (neural) predicates in the CAN framework,
opening up the possibility of extending the base language with new high-level concepts. For instance, the designer may
want to specify that a portion of the level referenced by its coordinates represents a castle, 𝑖𝑠𝐶𝑎𝑠𝑡𝑙𝑒 (𝑥1, 𝑦1, 𝑥2, 𝑦2). Even
if the concept is unknown to the system, it can be learned from user examples and possibly refined with interactions
where the user is presented with some positive examples and labels whether they represent a castle or not.

CANs readily provide an interface for learning from such constraints, hence once collected these constraints can
simply used to re-train the CAN until it complies with them. It is to be expected that very complex constraints require
an expensive compilation step and many re-training epochs. We admit for adaptation to occur in the background or
during periodic sleep cycles, rather than during the design session as in CL. Delayed learning of this kind is completely
sound from a machine learning perspective [45] and widely adopted in settings characterized by computationally
demanding concept drifts like anomaly detection [27] and some reinforcement learning applications [1, 25].

4 RELATEDWORK

Procedural (game) content generation (PCG) has been traditionally addressed with search-based or rule-based methods.
In recent years, the focus has shifted toward techniques based on machine learning [17, 36] and deep learning [22].
Game content can be divided into functional content, like game levels, game mechanics or behavioural rules for non-
player characters, and cosmetic content, such as textures, music and sound effects. Functional content is arguably more
challenging for automatic generators. While tasks in computer vision or natural language processing are supported
by very large and accessible datasets, the training data for the generation of functional content for games is typically

5



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Woodstock ’18, June 03–05, 2018, Woodstock, NY Morettin et al.

very scarce. Game level generation is by far the most studied problem in this area, with most works focusing on 2D
tile-based video games. Although annotated datasets of levels exist [37], they are relatively small in size and cover
a handful of popular games. The available data is often insufficient for effectively training a fully autonomous deep
generative model and, most crucially, different approaches must be adopted for training a generator for a novel game
with no data available. While some works mitigate this problem with bootstrapping techniques [40] or by allowing for
diverse sources of supervision (like gameplay videos [14] or transfer learning across different games [29, 34]), involving
human interaction in the training of these systems is likely a necessity for all but the most trivial settings.

Automated creation tools are unlikely to output content that fits the target application perfectly. Successful applica-
tions of computer-aided design (CAD) tools have spurred research in developing mixed-initiative co-creation techniques
for level generation. This interaction paradigm is not only deemed effective for reaching satisfiable end results, but it
also useful in fostering the creativity of the human designer [42].

Coactive learning was first proposed in the context of interface optimization [11] and information retrieval [32]. A
useful feature of CL is that it integrates seamlessly with mixed-initiative interaction: preferences are extracted whenever
the human supervisor modifies, explicitly or implicitly, any suggestion made by the machine. For this reason, CL was
adopted in constructive preference elicitation with manipulative interaction [7]. Our proposed approach is directly
inspired by this line of work.

Recently, Guzdial et al. introduced an interaction protocol reminiscent of CL. The difference is that, whereas in CL
the model used to synthesize structures and the model used to learn from the designer’s feedback are the very same,
Guzdial et al. allow the two models to be different [13]. From a learning perspective this is sub-optimal, as the two
models might make different mistakes and have different biases, and therefore feedback useful for one model might
be less (than) useful for the other. Finally, our idea of integrating interpretable constraint acquisition into coactive
learning extends prior work in constructive preference elicitation [39] by combining it with constraint learning [5] and
explanatory interactive learning [30, 35].

5 CONCLUSION

We discussed mixed-initiative level design with constrained adversarial networks. Our contribution is conceptual: on
the one hand, we show that these models – which are designed for autonomously generating functional content – can
be used for helping human designers, and on the other that they can be adapted to the task at hand by combining
them with coactive learning and constraint acquisition. Of course, these insights must be validated through extensive
experiments and user studies. This is left to future work.

ACKNOWLEDGMENTS

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. [694980] SYNTH: Synthesising Inductive Data Models).
The research of ST and AP was partially supported by TAILOR, a project funded by EU Horizon 2020 research and
innovation programme under GA No 952215.

REFERENCES
[1] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science 359, 6374 (2018),

418–424.
[2] Andrea Brunello, Angelo Montanari, and Mark Reynolds. 2019. Synthesis of LTL formulas from natural language texts: State of the art and

research directions. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer

6



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Co-creating Platformer Levels with Constrained Adversarial Networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

Informatik.
[3] Yu Cheng, Zhe Gan, Yitong Li, Jingjing Liu, and Jianfeng Gao. 2020. Sequential attention GAN for interactive image editing. In Proceedings of the

28th ACM International Conference on Multimedia. 4383–4391.
[4] Adnan Darwiche and Pierre Marquis. 2002. A knowledge compilation map. Journal of Artificial Intelligence Research 17 (2002), 229–264.
[5] Luc De Raedt, Andrea Passerini, and Stefano Teso. 2018. Learning constraints from examples. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 32.
[6] Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, and Andrea Passerini. 2020. Efficient Generation of Structured

Objects with Constrained Adversarial Networks. Advances in Neural Information Processing Systems 33 (2020).
[7] Paolo Dragone, Stefano Teso, and Andrea Passerini. 2018. Constructive preference elicitation. Frontiers in Robotics and AI 4 (2018), 71.
[8] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn. 2009. What to do and how to do it: Translating natural language directives

into temporal and dynamic logic representation for goal management and action execution. In 2009 IEEE International Conference on Robotics and
Automation. IEEE, 4163–4168.

[9] Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, and Graham W Taylor.
2019. Tell, draw, and repeat: Generating and modifying images based on continual linguistic instruction. In Proceedings of the IEEE International
Conference on Computer Vision. 10304–10312.

[10] Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, and Graham W Taylor.
2018. Keep Drawing It: Iterative language-based image generation and editing. In Neural Information Processing Systems: Visually Grounded Interaction
and Language Workshop.

[11] Krzysztof Gajos and Daniel S Weld. 2005. Preference elicitation for interface optimization. In Proceedings of the 18th annual ACM symposium on User
interface software and technology. 173–182.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Advances in neural information processing systems. 2672–2680.

[13] Matthew Guzdial, Nicholas Liao, and Mark Riedl. 2018. Co-creative level design via machine learning. arXiv preprint arXiv:1809.09420 (2018).
[14] Matthew Guzdial and Mark O Riedl. 2016. Game Level Generation from Gameplay Videos.. In AIIDE. 44–50.
[15] Andreas Hald, Jens Struckmann Hansen, Jeppe Kristensen, and Paolo Burelli. 2020. Procedural Content Generation of Puzzle Games using Conditional

Generative Adversarial Networks. In International Conference on the Foundations of Digital Games. 1–9.
[16] Eric Heim. 2019. Constrained Generative Adversarial Networks for Interactive Image Generation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 10753–10761.
[17] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup. 2013. Procedural content generation for games: A survey. ACM

Transactions on Multimedia Computing, Communications, and Applications (TOMM) 9, 1 (2013), 1–22.
[18] Pegah Karimi, Jeba Rezwana, Safat Siddiqui, Mary Lou Maher, and Nasrin Dehbozorgi. 2020. Creative sketching partner: an analysis of human-AI

co-creativity. In Proceedings of the 25th International Conference on Intelligent User Interfaces. 221–230.
[19] Isaac Karth and Adam M Smith. 2019. Addressing the fundamental tension of PCGML with discriminative learning. In Proceedings of the 14th

International Conference on the Foundations of Digital Games. 1–9.
[20] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and

Aaron C Courville. 2019. Melgan: Generative adversarial networks for conditional waveform synthesis. Advances in Neural Information Processing
Systems 32 (2019), 14910–14921.

[21] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2013. Sentient sketchbook: computer-assisted game level authoring. (2013).
[22] Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian Togelius. 2020. Deep learning for procedural content

generation. Neural Computing and Applications (2020), 1–19.
[23] Yahui Liu, Marco De Nadai, Deng Cai, Huayang Li, Xavier Alameda-Pineda, Nicu Sebe, and Bruno Lepri. 2020. Describe What to Change: A

Text-guided Unsupervised Image-to-Image Translation Approach. In Proceedings of the 28th ACM International Conference on Multimedia. 1357–1365.
[24] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
[25] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael

Bowling. 2017. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science 356, 6337 (2017), 508–513.
[26] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional image synthesis with auxiliary classifier gans. In International conference

on machine learning. PMLR, 2642–2651.
[27] Murugaraj Odiathevar, Winston KG Seah, and Marcus Frean. 2019. A hybrid online offline system for network anomaly detection. In 2019 28th

International Conference on Computer Communication and Networks (ICCCN). IEEE, 1–9.
[28] Gabriella Pigozzi, Alexis Tsoukias, and Paolo Viappiani. 2016. Preferences in artificial intelligence. Annals of Mathematics and Artificial Intelligence

77, 3-4 (2016), 361–401.
[29] Anurag Sarkar and Seth Cooper. 2018. Blending Levels from Different Games using LSTMs.. In AIIDE Workshops.
[30] Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein,

and Kristian Kersting. 2020. Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nature
Machine Intelligence 2, 8 (2020), 476–486.

7



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Woodstock ’18, June 03–05, 2018, Woodstock, NY Morettin et al.

[31] Jacob Schrum, Vanessa Volz, and Sebastian Risi. 2020. CPPN2GAN: Combining Compositional Pattern Producing Networks and GANs for Large-scale
Pattern Generation. arXiv preprint arXiv:2004.01703 (2020).

[32] Pannaga Shivaswamy and Thorsten Joachims. 2015. Coactive learning. Journal of Artificial Intelligence Research 53 (2015), 1–40.
[33] Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: A mixed-initiative level design tool. In Proceedings of the Fifth International

Conference on the Foundations of Digital Games. 209–216.
[34] Sam Snodgrass and Santiago Ontanon. 2016. An approach to domain transfer in procedural content generation of two-dimensional videogame

levels. In Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference.
[35] Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. 2020. Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting

with their Explanations. arXiv preprint arXiv:2011.12854 (2020).
[36] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius.

2018. Procedural Content Generation via Machine Learning (PCGML). IEEE Transactions on Games 10, 3 (2018), 257–270.
[37] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago Onta n’on Villar. 2016. The VGLC: The Video Game Level Corpus.

Proceedings of the 7th Workshop on Procedural Content Generation (2016).
[38] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Banerjee, Seth Teller, and Nicholas Roy. 2011. Understanding natural

language commands for robotic navigation and mobile manipulation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 25.
[39] Stefano Teso, Paolo Dragone, and Andrea Passerini. 2017. Coactive critiquing: Elicitation of preferences and features. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 31.
[40] Ruben Rodriguez Torrado, Ahmed Khalifa, Michael Cerny Green, Niels Justesen, Sebastian Risi, and Julian Togelius. 2020. Bootstrapping conditional

gans for video game level generation. In 2020 IEEE Conference on Games (CoG). IEEE, 41–48.
[41] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. 2018. A Semantic Loss Function for Deep Learning with Symbolic Knowledge. In

International Conference on Machine Learning. 5498–5507.
[42] Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos. 2014. Mixed-initiative co-creativity. (2014).
[43] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. 2018. Generative image inpainting with contextual attention. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 5505–5514.
[44] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks.

In Proceedings of the IEEE international conference on computer vision. 2223–2232.
[45] Martin Zinkevich, John Langford, and Alex Smola. 2009. Slow learners are fast. Advances in neural information processing systems 22 (2009),

2331–2339.

8


	Abstract
	1 Introduction
	2 Background
	2.1 Constrained Adversarial Networks

	3 Mixed-initiative Level Design with (Conditional) CANs
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

