
Fundamenta Informaticae XX (2011) 1–27 1

IOS Press

Relational Feature Mining with Hierarchical Multitask kFOIL∗

Elisa Cilia
Département d’Informatique†

Université Libre de Bruxelles, Belgium

ecilia@ulb.ac.be

Niels Landwehr
Department of Computer Science

University of Potsdam, Germany

landwehr@cs.uni-potsdam.de

Andrea Passerini
Dipartimento di Ingegneria e Scienza dell’Informazione

University of Trento, Italy

passerini@disi.unitn.it

Abstract. We introduce hierarchical kFOIL as a simple extension of the multitask kFOIL learning
algorithm. The algorithm first learns a core logic representation common to all tasks, and then refines
it by specialization on a per-task basis. The approach can be easily generalized to a deeper hierarchy
of tasks. A task clustering algorithm is also proposed in order to automatically generate the task
hierarchy. The approach is validated on problems of drug-resistance mutation prediction and protein
structural classification. Experimental results show the advantage of the hierarchical version over
both single and multi task alternatives and its potential usefulness in providing explanatory features
for the domain. Task clustering allows to further improve performance when a deeper hierarchy is
considered.

∗A preliminary version of this work was presented at the Bio-Logical workshop of AI*IA 2009.
†This work was done while she was at Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy



2 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

1. Introduction

Multitask learning [6] deals with the problem of exploiting information on related tasks in order to im-
prove predictive performances. Existing approaches rely on some type of parameter sharing among tasks,
like learning a common hidden layer representation in multitask feed-forward neural networks [6], em-
ploying common priors for task dependent parameters in hierarchical Bayesian models [2], or both [1].
Most existing approaches assume that task models can be represented as parameter vectors over which
to define prior distributions. In a full relational setting, either domain knowledge allows to explicitly
encode relationships between tasks, or one needs to resort to multitask relational structure learning, and
specifying priors over task-dependent structures is quite challenging. A notable example in this direc-
tion is the recent work by Deshpande et al [13] for multitask learning of probabilistic planning rules
from a common set of rule prototypes. Taking a discriminative viewpoint, kFOIL [24] greedily learns
a relational kernel representation with high discriminant power for a certain task. The algorithm was
recently [25] extended to deal with multitask problems by learning a shared relational representation
which is discriminative for multiple tasks simultaneously. However, learning a single common represen-
tation prevents the model from discovering task-specific features, a problem affecting multitask neural
networks as well. Moreover learning a single common representation can be highly suboptimal if tasks
relatedness is not high [27]. We propose a simple extension where the common representation is viewed
as an initial structure which is further specialized on a per-task basis. This simple approach can be gen-
eralized to a deeper hierarchical process of refinements whenever a hierarchical clustering of the tasks is
available or can be learned from data.

We applied our hierarchical kFOIL algorithm to a dataset of HIV resistance mutations [35]. The
dataset reports wild type and mutations of reverse transcriptase, a viral protein which is essential for the
success of the viral propagation. A mutation can confer the mutant resistance to one or more drugs, for
instance by modifying the inhibitor target site on the protein. Due to the high mutation rate of viruses,
mutants typically have multiple mutations, ranging from 6 to 90 on this dataset. A possible problem in
this setting is predicting which drugs a certain mutant is resistant to. This can be naturally addressed
as a multitask learning problem, where each drug is a single task. However, the relationship between
tasks is not necessarily strong as different drugs can target different sites in the protein. Indeed, plain
multitask learning will sometimes result in a performance worsening with respect to single task in this
setting, especially when drug classes are considered as tasks [35]. On the other hand, our hierarchical
refinement approach succeeds in combining the advantages of the two methods, being always at least
as good as either alternative. Task clustering allows to further improve performance when a finer grain
of tasks is obtained by considering individuals drugs as tasks instead of drug classes. We also applied
the hierarchical multitask approach to a protein structure classification problem, within the SCOP [18]
hierarchy. In a setting in which quite distantly related tasks are combined, our hierarchical approach
is always significantly better than both single task and multitask alternatives. Nonetheless, our main
concern here is not the predictive performance itself, but rather the ability of the method to provide
insights into the reasons for a certain resistance or a certain fold. From this viewpoint, multitask and
hierarchical approaches have an additional advantage: the models learned can be inspected in order to
relate general and task-specific features.

The rest of the paper is organized as follows: Section 2 briefly describes the original kFOIL formula-
tion and its multitask version; Section 3 introduces our extension for hierarchical multitask learning and
Section 4 describes the task clustering approach; related work is discussed in Section 5; Section 6 reports



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 3

our experimental evaluation and discusses the models obtained. Conclusions are drawn in Section 7.

2. kFOIL: Learning Relational Kernels

This section introduces concepts and terminology from relational learning, and briefly reviews the origi-
nal kFOIL algorithm [24] and its multitask extension [25].

2.1. Relational Learning and Hypothesis Search

We consider relational classification problems, where training examples and background knowledge, as
well as the features that are induced during learning, are represented in first-order logic. More specif-
ically, definite clauses, which form the basis for the programming language Prolog, are used as the
representation language. A definite clause is an expression of the form h ← b1, ..., bn, where h and the
bi are atoms. Atoms are expressions of the form p(t1, ..., tn) where p/n is a predicate symbol of arity
n and the ti are terms. Terms are constants (denoted by lower case), variables (denoted by upper case),
or structured terms. Structured terms are expressions of the form f(t1, ..., tk), where f/k is a functor
symbol of arity k and t1, ..., tk are terms. The atom h is also called the head of the clause, and b1, ..., bn
its body. Intuitively, a clause represents that the head h will hold whenever the body b1, ..., bn holds.

As an example, consider the atom mut(A, h,C, y) indicating a mutation that results in the replace-
ment of the amino acid “Histidine” by the amino acid “Tyrosine”. The constants “h” and “y” represent
“Histidine” and “Tyrosine”, respectively. A and C are variables that are matched against a particular ex-
ample; A indicates an example identifier and C the position at which the mutation occurs. Furthermore,
consider the clause

resistant(A,nrti)← mut(A, h,C, y), position(C, 208)

encoding that a mutation resulting in a change from “Histidine” to “Tyrosine” and occurring at position
208 entails resistance to the drug nrti. Such a clause can be matched against an example by grounding,
and if the matching operation is successful the clause is said to cover the example.

Relational classification problems have traditionally been studied in the field of inductive logic pro-
gramming (ILP). The goal of learning in ILP is to identify a hypothesis that covers all positive and no
negative examples. Hypothesis typically take the form of a set of first order clauses, which can be inter-
preted as a set of relational features or rules that characterize the target concept. An example is classified
as positive by the hypothesis if it is covered by one of its clauses.

There are different approaches to searching for an (approximately) optimal set of clauses within a pre-
defined hypothesis space H called the language bias. A central idea in most ILP systems is to structure
the search space H according to generality. A hypothesis G ∈ H is called more general than another
hypothesis S ∈ H, denoted G � S, if all examples covered by S are also covered by G. The generality
relation induces a lattice on the hypothesis space H, and thus provides a way to systematically search
H. A popular approach is to search the lattice top-down, that is, from general to specific hypotheses,
using a refinement operator. A refinement operator ρ takes a clause c and returns all specializations
c′ ∈ ρ(c) of the clause that fall within the language bias. In the simplest case, these specializations
(or refinements) are obtained by simply appending a literal to the clause c. For example, the clause
c′ =← mut(A, h,C, y), position(C, 208) is a refinement of the clause c =← mut(A, h,C, y). Note



4 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

that c will match any example matched by c′; thus, a hypothesis in which the clause c is replaced by the
clause c′ becomes more specific.

Top-down search based on refinement operators is the main principle underlying many ILP algo-
rithms. For instance, incremental rule learners such as the well-known FOIL algorithm greedily search
for a set of clauses that covers all positive examples by performing a hill-climbing search in the hypoth-
esis space using a refinement operator [31].

2.2. The kFOIL Algorithm

kFOIL [24] is a statistical relational learning approach that combines techniques from inductive logic
programming—specifically, the FOIL algorithm [31]—with kernel methods. ILP systems such as FOIL
learn a first-order logical hypothesis for the target concept. This approach has several advantages, in-
cluding that a large and flexible space of hypotheses is considered, and that the final model is readily
interpreted by human experts. On the negative side, ILP methods do not always incorporate statistical
robustness principles needed to handle noise, and searching in a large, discrete space of hypotheses can
be challenging. In contrast, kernel-based learning methods are well-suited to deal with noisy training
data, and learning reduces to a much simpler convex optimization problem for which globally optimal
solutions can be found. It is possible to apply kernel methods to relational data by manually defining a
kernel function for relational instances and using this function in standard kernel-based learners. How-
ever, this approach lacks the flexibility of an ILP-style hypothesis search, as relevant relational features
have to be encoded a priori in the kernel function, rather than being discovered automatically from data.
It also limits the amount of domain insight obtainable from the learned model, as no new relational
features are induced during learning.

kFOIL integrates the clause search of ILP approaches with kernel methods, by learning a set of
interpretable first-order clauses from data that define a relational kernel function. Thus, ILP methods
are used as a form of structure learning to induce a suitable kernel function from data. This approach
has the appealing potential of combining the advantages of both approaches, namely the flexibility and
interpretability of ILP-style clause search and the robustness of kernel-based learners.

The simplest way to introduce a relational kernel function k(x1, x2) based on a set H = {c1, ..., cn}
of first-order clauses is to propositionalize the examples x1 and x2 using H and then employ existing
kernels on the resulting vectors, which we will refer to as the feature space representation of the ex-
amples. We will thus map each example x onto a vector φ(x) over {0, 1}n with φ(x)i = 1 if the i-th
clause ci ∈ H covers the example x, and φ(x)i = 0 otherwise. Figure 1 shows an example of the
propositionalizing function φ(x) and feature space representation of examples m261 and m1636 in the
HIV resistance domain. Each mutant is mapped to a vector with one entry for each clause, evaluating to
one if the clause fires on the example (i.e. the clause and the background knowledge logically entail it)
and zero otherwise. A linear kernel in this representation amounts to counting the number of rules firing
on both examples. For details on the logic representation employed see Section 6.1.2.

kFOIL integrates ILP and kernel-based learning by solving an integrated optimization problem given
by

max
H∈H

max
f∈FH

S(f,D,B). (1)

Here, H denotes the logical hypothesis space under consideration, i.e. the set of all possible sets of
clauses. H is defined using language bias declarations similar to those employed in FOIL and other ILP



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 5

Figure 1. Example of a relational kernel function for the HIV resistance mutation database. An alignment be-
tween the wild type and two mutants is reported with colors highlighting positions which jointly satisfy the corre-
sponding clause. The resulting feature space representation and mutants similarity for a linear kernel are reported
in the lower right part.

algorithms. FH denotes the model space of a kernel machine working on the feature space representation
given by H . S denotes a scoring function that measures the predictive performance of f on the training
data D, and B the available logical background knowledge.

Note that Problem (1) consist of jointly optimizing the logical hypothesis H defining the feature
space representation, and the function f(x;H,B) implemented by a kernel machine working on this
representation. In the following, we will refer to the outer optimization problem as hypothesis learning
and the inner optimization problem as function learning. As discussed above, hypothesis learning implies
searching in a discrete space of candidates, which is a complex task. Thus, heuristic strategies will be
employed. In contrast, function learning takes place in a continuous space, for which principled search
techniques are available. It is thus unclear whether scoring functions employed for function learning
are also suitable for hypothesis learning. In fact, statistical relational learning systems often employ
different scoring functions for learning the logical model structure and the statistical part of the model.
Problem (1) should therefore be generalized to the following formulation:

max
H∈H

SO

(
argmax
f∈FH

SI(f,D,B),D,B

)
(2)

where SO and SI are the scoring functions used for hypothesis and function learning respectively
(see [25] for a more detailed discussion).

To solve the outer optimization problem (that is, learn the hypothesis H), kFOIL follows the well-
known FOIL algorithm [31] for learning a set of clauses from data. The search procedure is sketched
in Algorithm 1. In an outer loop, kFOIL repeatedly searches for clauses that score well with respect to
the data set and the current hypothesis, and adds them to the current hypothesis. The initial hypothesis
H0 is the empty set in the standard algorithm, but it will be a partial model when the procedure will
be used in the hierarchical version of the algorithm described in Section 3. In the inner loop, kFOIL
greedily searches for a clause that scores well. To this aim, it employs a general-to-specific hill-climbing



6 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

Algorithm 1 kFOIL algorithm.
1: procedure KFOIL(H0,D,B)
2: Initialize H ← H0

3: repeat
4: Initialize c := p(X1, · · · , Xn)←
5: repeat
6: c := argmaxc′∈ρ(c) S(H ∪ {c′},D,B)
7: until stopping criterion
8: H := H ∪ {c}
9: until stopping criterion

10: return H
11: end procedure

search strategy. Let p/n denote the predicate that is being learned. Then the most general clause, which
succeeds on all examples, is “p(X1, ..., Xn) ←”. This clause serves as a starting point for the hill-
climbing search. The set of all refinements of a clause c within the language bias is produced by a
refinement operator ρ(c). Clauses are greedily refined until a stopping criterion is met, and the highest-
scoring clause encountered during the search is added to the hypothesis H . The joint optimization of the
hypothesis H and kernel machine f reflected in Equation (2) and Algorithm 1 means that kFOIL falls
into the framework of dynamic propositionalization [23]. This is in contrast to static propositionalization
approaches that decouple propositionalization of the data and propositional learning.

Several scoring functions S(H∪{c′},D) for candidate hypotheses have been proposed. One class of
scoring functions uses the performance of a kernel machine trained on the feature space representation
of the data φ(D) obtained from H ∪ {c′}, by setting

S(H,D,B) = SO

(
argmax
f∈FH

SI(f,D,B),D,B

)
. (3)

These measures require that the statistical learner is trained for each candidate clause, and its performance
on the training set is reported. An efficient alternative consist of using kernel target alignment (KTA) [9],
defined as:

S(H,D,B) = 〈K, yyT 〉F√
〈K,K〉F 〈yyT , yyT 〉F

(4)

where K is the kernel matrix resulting from H , y ∈ {−1, 1}m is the target vector for m examples, yT

is the transpose of y, and the Frobenius product is defined as 〈M,N〉F =
∑

ijMijNij . Intuitively, the
alignment measures how the kernel adheres to a “perfect” kernel, scoring one and minus one for examples
belonging to the same and different classes respectively, and is thus an indication of the performance a
kernel machine can reach using it.

As a stopping criterion, the original FOIL algorithm stops when it fails to find a clause that covers
additional positive examples. As an equally simple stopping criterion, learning in kFOIL is stopped when
there is no improvement in score between two successive iterations.



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 7

2.3. Multitask kFOIL

The original kFOIL algorithm has been recently extended to a multitask setting [25]. Multitask learning
in kFOIL is based on sharing the learned feature representation (or, equivalently, the relational kernel
function) across tasks. This can be achieved by learning a single joint set of clauses for all tasks under
consideration, such that all task-specific kernel machines trained on this representation achieve good
performance in their respective prediction tasks. In a multitask setting, Algorithm 1 is thus adapted
by replacing the single-task scoring function S(H,D,B) by an appropriate multitask scoring function,
which is obtained as a combination of single-task scoring functions on the individual tasks. Assume that
S(H,D,B) is an (outer) scoring function as given by Equation (3) or Equation (4), and that D1, ...,DM
are the available training data for M tasks T1, ..., TM . A simple but effective multitask scoring function
is obtained by averaging single-task scores. That is, we replace Equation (3) with

S(H,D,B) = 1

M

M∑
t=1

SO

(
argmax
f∈FH

SI(f,Dt,B),Dt,B

)
, (5)

or equivalently, replace Equation (4) with

S(H,D,B) = 1

M

M∑
t=1

〈K, ytyTt 〉F√
〈K,K〉F 〈ytyTt , ytyTt 〉

(6)

where yt is the label vector of task t ∈ 1, ...,M .
Experimental results presented in [25] show several advantages of multitask learning in the proposed

setting. First, generalization performance is improved in some cases, confirming the advantages of multi-
task learning observed in the literature [6]. Second, in our setting learning a shared clause set for multiple
tasks leads to a more compact representation of the learned concept, as the multitask clause set is signif-
icantly smaller than the union of the task-specific clause sets. In terms of the learned similarity/kernel
function, this yields a generic definition of similarity that is shared between tasks and should be easier
to interpret than a number of task-specific similarity functions. Finally, multitask learning also results in
significant computational savings.

3. Hierarchical kFOIL

Learning a representation which is common to multiple related tasks is a way to reduce the risk of
overfitting the data [2]. However, it prevents the algorithm to learn specific task-dependent features,
which can be harmful for some of the other tasks. Furthermore, it assumes a high relatedness among
tasks, and performances can be badly affected when relatedness is not that high. In this work we propose
a simple extension to the multitask kFOIL learning algorithm dealing with this problem. A hierarchical
approach to multitask learning is taken: the algorithm first learns a representation which is common to
all tasks by using the multitask kFOIL; then such initial representation is refined separately for each task,
leading to task-dependent final representations obtained as extensions of a common core. Algorithm 2
shows the resulting hierarchical kFOIL learning system, where {D1, . . . ,Dk} are the datasets for the k
different tasks. For simplicity we assumed a common background knowledge B, but it is straightforward
to replace it with task-specific background knowledge, as well as a task-specific language bias defining
the clause refinement operator ρ.



8 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

Algorithm 2 Hierarchical kFOIL algorithm.
1: procedure HIERARCHICALKFOIL({D1, . . . ,Dk},B)
2: Initialize H0 ← KFOIL(∅, {D1, . . . ,Dk},B) . compute initial representation
3: for all Di ∈ {D1, . . . ,Dk} do
4: Hi ← KFOILREFINE(H0,Di,B) . compute task-dependent refinements
5: end for
6: return {H1, . . . ,Hk}
7: end procedure

Algorithm 3 kFOIL refinement algorithm.
1: procedure KFOILREFINE(H0,D,B)
2: Initialize H ← H0

3: for all c ∈ H0 do . refinement of existing clauses
4: H ← H \ {c}
5: repeat
6: c← argmaxc′∈ρ(c) S(H ∪ {c′},D,B)
7: until stopping criterion
8: if score improvement then
9: H ← H ∪ {c}

10: end if
11: end for
12: H ← KFOIL(H,D,B) . search for novel clauses
13: return H
14: end procedure

The refinement stage is described in Algorithm 3 and consists of two steps. First, each clause from
the initial representation is further refined guided by the task-specific score. If the (possibly) refined
clause fails to improve the score, it is not added to the task-specific model. Then, the model from the
previous step is enlarged by creating novel clauses using the plain kFOIL procedure. In principle, when
refining general clauses, specializing the initial representation is not the only available option. We also
implemented a search operator that considers both specializations and generalizations of the current
clause, by greedily adding or removing a single literal. As this did not change results significantly in our
experimental settings, in this paper we only report results obtained with the specialization operator.

A detailed analysis of computational complexity for both single task and multitask kFOIL is reported
in [25], showing the increase in efficiency of the latter especially when KTA scoring is employed. The
additional complexity of the refinement stage depends on the number of single-task clauses added: the
more related the tasks are, the more the multitask clauses will already explain them and the refinement
size will be limited.

The hierarchical kFOIL algorithm can be easily generalized to multiple levels of refinements when-
ever tasks can be naturally aggregated into a hierarchical structure. When the existence of a hierarchy can
be guessed but its structure is unknown, the approach can be combined with a task-clustering algorithm
as suggested by Thrun and O’Sullivan [38].



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 9

4. Task Clustering

The rationale of multitask learning is that predictive performance on a certain task should improve if
information from related tasks can be exploited. However, performance worsening can also be experi-
enced when trying to transfer information between unrelated tasks. A selective transfer [38] approach
would be advisable. In such approach the transfer occurs only among tasks related one to each other.
This requirement can be combined with the potential advantages of a multi-level representation by pur-
suing a hierarchical clustering approach. We basically adapt the task-clustering algorithm of Thrun and
O’Sullivan [38] to our setting in which multitask learning is seen as a way to improve performance
among training tasks rather than on novel test ones, and the clustering structure is used to learn inter-
pretable hierarchical models and discover hierarchical rules relating tasks and groups of tasks.

Most clustering approaches rely on a measure of similarity (or distance) among instances. Intuitively,
two tasks are similar if they have the same output over the same (or similar) examples. Whenever few
(or no) examples are shared between tasks, we cannot just rely on them in order to compute a reliable
measure of similarity. However, we can simply fill missing labels using predicted ones. Assume D is
the overall set of training instances, and Di its subset having labels for task i. We compute missing
task-dependent labels for D \ Di as those predicted by a model for task i trained on Di. Repeating the
procedure for all tasks, we compute pairwise task similarity as:

sim(i, j) =
1

|D|
∑
x∈D

δ(f̂i(x), f̂j(x)) (7)

where f̂k(x) is the true task-specific label yk for x if available, or the predicted one fk(x) otherwise.
Learning a model for each task requires providing a representation for instances. We rely on the ini-
tial common representation H0 (see Algorithm 2) and use it to derive task-dependent models, pairwise
similarities and resulting hierarchical clustering. We employed an agglomerative hierarchical clustering
approach with average pairwise similarity between elements for cluster similarity. Once the clustering
structure is available, a multi-level refinement can be applied. Note however that the amount of transfer
and the granularity of the refinement structure can be adaptively adjusted to the problem at hand. At each
node in the clustering structure, two choices are possible, depending on the similarity between the node
children: 1) learn a node-dependent model, and refine it for each child; this would be the default strategy
to achieve a fully hierarchical model; 2) learn a node-dependent model, and use it within each child; this
option would reduce the granularity of the hierarchical structure by merging together nodes containing
similar tasks. The choice between these two options can be made separately for each choice point, by
specifying a similarity threshold θmax, or jointly by constraining the size of the representational structure
(e.g. three levels from the root to the task-specific models). Algorithm 4 reports the pseudo-code of the
hierarchical kFOIL procedure with task clustering. The initial representation H0 obtained by running
the plain multitask kFOIL on all tasks is used to infer a hierarchical clustering rooted at C0. The repre-
sentation H0 is then refined on a per-node basis for each child of C0, using the subset of D containing
examples for tasks in Ci. SIM(C0) returns the similarity between the children of C0, needed to decide on
the amount of transfer. Algorithm 5 describes the node-dependent refinement for a generic node C. If
the similarity value s between the node and its siblings is below θmax, or the node contains a single task,
a node-refined representation is generated calling the kFOIL refinement algorithm, implementing case 1
of node choices previously described. Otherwise, no node-wise refinement is performed (case 2) and the



10 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

Algorithm 4 Hierarchical clustering kFOIL algorithm.
1: procedure HIERARCHICALCLUSTKFOIL(D,B)
2: Initialize H0 ← KFOIL(∅,D,B) . compute initial representation
3: C0 ← HIERARCHICALCLUSTERING(H0,D,B) . compute clustering
4: for all Ci children of C0 do . compute node-dependent refinements
5: Di ← subset of D involving tasks in Ci
6: CLUSTERNODEKFOIL(H0, Ci, SIM(C0),Di,B)
7: end for
8: end procedure

Algorithm 5 kFOIL algorithm for cluster node.
1: procedure CLUSTERNODEKFOIL(H0, C, s,D,B)
2: if s ≤ θmax ∨ ISLEAF(C) then
3: H ← KFOILREFINE(H0,D,B)
4: else
5: H ← H0

6: end if
7: for all Ci children of C do
8: Di ← subset of D involving tasks in Ci
9: CLUSTERNODEKFOIL(H,Ci, SIM(C),Di,B)

10: end for
11: end procedure

parent model is directly passed to the children.

5. Related Work

Multitask learning [6] is an active research area and various techniques have been proposed in the litera-
ture. The underlying idea is that of introducing a form of parameter sharing among tasks. In feed-forward
neural networks [6], this is achieved by learning a common hidden layer for the tasks, while in kernel
machines a matrix encoding the tasks relationship is included in the regularization term [14]. In a fully
Bayesian framework, hierarchical Bayesian models [2] introduce a common prior distribution for the
task-specific models, favouring parameter sharing among related tasks. These models allow for a great
flexibility in modeling different levels of tasks relatedness. Bakker and Heskes [1] for instance, gen-
eralize standard multitask feed-forward neural networks with prior distributions over the output layer
weights. In the task gating approach, they allow for both task clustering, by using a mixture model for
the prior distribution, and task-specific mixing proportions for the clustering. However, the number of
clusters needs to be pre-specified according to the available domain knowledge, or determined by model
selection strategies. Non-parametric Bayesian approaches have gained increasing popularity in recent
years as they allow to overcome this problem, by sampling distributions over parameters rather than pa-
rameters directly. Dirichlet processes [15] have been employed for multitask learning [43] in order to
automatically select the appropriate number of clusters for task-dependent parameters. Approaches to
learn an entire latent hierarchy of tasks have been also proposed [29, 19].



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 11

These approaches, however, assume that task models can be eventually represented as parameter vec-
tors. The setting considered in this paper is rather different, as we are learning hybrid statistical-logical
models made up of first-order clauses. It would be quite challenging to devise prior distributions for
such discrete structures. Our approach exploits multitask information for learning a general-to-specific
hierarchy of logical hypotheses, represented as relational kernel functions, to be coupled with appropri-
ate task-specific weights. To the best of the authors’ knowledge, multitask kFOIL was the first attempt
to address multitask kernel learning in a statistical relational learning context. Indeed, multitask struc-
ture learning itself has received little attention in the statistical relational learning setting. A notable
exception is the work by Deshpande et al. [12] on learning multitask probabilistic relational rule sets.
Their approach assumes that the prior information shared among tasks is a set of rule prototypes. Task-
specific rules are derived from these prototypes by a generative probabilistic process involving prototype
selection and modification steps or rule generation from scratch. From the point of view of learning
hierarchies of concepts in relational domains, the works on infinite relational models [42, 20] are also
worth mentioning. Here latent indicator variables on entities or concepts are introduced on top of the
relational structure, allowing to cluster them using Dirichlet process priors. The approach has also been
extended [36] to discover a hierarchical structure of concepts. While these models do not perform struc-
ture learning in terms of logical hypotheses, their ability to infer arbitrary clustering structures is an
appealing feature to be integrated in our approach.

In the ILP community, multitask learning has been tackled in the form of learning several related
concepts simultaneously. Different approaches have been pursued. Related to our approach is the work
by [32], where the assessment of candidate clauses on the primary task is augmented with the perfor-
mance of similar rules on a secondary task. Furthermore, a scenario resembling multitask learning has
been studied in [10], where (sub)structures of concepts already learned are used as building blocks when
learning a new concept. A further related scenario is that of repeat learning and multiple predicate learn-
ing [21, 11], where an ILP learner has to discover a series of related concepts drawn from some (initially
unknown) distribution. Moreover, predictive clustering trees have been used in an ILP setting. These
trees can be used in a multitask setting, where predictions for several tasks are made at every leaf [4, 5].

6. Experimental Evaluation

We evaluated our hierarchical approach on datasets from two domains, namely HIV resistance mutations
and SCOP protein structure classification hierarchy. In all experiments the KTA (see Equation 4) was
used as scoring function for guiding the search of the kFOIL algorithm, as it is more efficient even if
less effective [25] in general than measures based on a trained kernel machine. A simple linear kernel
was employed in order to maximize the understandability of the learned models. Note that we are not
interested in pushing the performance of the learning algorithm by fine tuning its parameters but rather
comparing the respective advantages of the different approaches and evaluate their explanatory power.
The Hierarchical kFOIL program is freely available online 1. The package also includes all the prediction
results and learned models of the experiments reported in the following sections.

1http://www.disi.unitn.it/~passerini/software/HkFOIL.tgz



12 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

6.1. Predicting Drug-Resistance of Mutants

Viruses are characterized by a very high mutation rate, which allows them to quickly develop drug-
resistant strains. A single- or multiple-point mutation can confer the mutant resistance to one or more
drugs, for instance by modifying the inhibitor target site on the protein. Predicting the drug-resistance of
mutants can be of valuable help in designing more effective drugs, especially if interpretable models can
be provided. This can be addressed as a multitask learning problem, where each drug is a single task.
However, the relationship between tasks is not necessarily strong as different drugs can target different
sites in the protein. A hierarchical approach seems a natural candidate in this setting. We focused on
HIV, both for the impact of the virus and the availability of annotated databases of mutants.

6.1.1. The HIV Resistance Mutations Datasets

We experimented on a dataset of mutations from the Los Alamos National Laboratories (LANL) HIV
resistance database2. The dataset was derived in [35] and is composed of 2,339 mutants of the HIV
reverse transcriptase (RT). RT is a DNA polymerase enzyme that transcribes RNA into DNA, allowing it
to be integrated into the genome of the host cell and replicated along with it, and is thus crucial for virus
propagation. Richter et al. [35] formulated the learning problem as a mining task and applied a relational
association rule miner to derive rules relating different mutations and their resistance properties. We take
a slightly different approach here and provide supervision at the mutant rather than mutation level. A
mutant is considered resistant to a drug if it contains at least one observed resistance mutation to that
drug. We derived two different versions of the dataset, considering resistance to drug classes or specific
drugs respectively.

drug class resistance dataset We selected the three classes of drugs: (a) NonNucleoside RT Inhibitors
(NNRTI); (b) NonCompetitive RT inhibitors (NCRTI); (c) Pyrophosphate Analogue RT Inhibitors
(PARTI). In the dataset 1081 mutants are labelled as resistant to NNRTI, 75 to NCRTI and 53 to
PARTI. We ignored the Nucleoside RT Inhibitors (NRTI) since all the mutants in this dataset had
at least one mutation conferring resistance to that class of drugs.

drug resistance dataset We used all the four classes of drugs from the original dataset, thus including
the NRTI class. We specialized the labeling on a single-drug basis, extracting this information
directly from the LANL HIV resistance database when available. Table 1 reports the drugs be-
longing to the four inhibitor classes and the number of mutants resistant to each of them. In this
way we deepen the hierarchy at the single drug level with the aim of testing the usefulness of our
hierarchical clustering approach.

6.1.2. Background Knowledge

We built a relational knowledge base for the domain at hand. Table 2 summarizes the predicates we
included as a background knowledge. We represented the amino acids of the wild type with their po-
sitions in the primary sequence (aa/2) and the specific mutations characterizing them (mut/4). Target
predicates were encoded as resistance of the mutant to a certain drug (res against/2).

2ttp://www.iv.lanl.gov/content/sequence/RESDB/



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 13

Drug class Drug # mutants
Zidovudine (azt) 2211
Lamivudine (3tc) 1356

NRTI Abacavir (abc) 422
Zalcitabine (ddc) 336
Didanosine (ddi) 280
Efavirenz (efv) 883
Nevirapine (nvp) 833

NNRTI Delavirdine (dlv) 796
ADAMII 114
Trovirdine 113

NCRTI MSK-076 75
PARTI foscarnet 53

Table 1. Hierarchical task structure for the HIV resistance mutation datasets with associated number of instances.

Background Knowledge Predicates
aa(Pos,AA) indicates a residue in the wild type sequence

mut(Mutant,AA,Pos,AA1) indicates a mutation: mutant identifier, position and
amino acids involved, before and after the substitution

res against(Mutant,Drug) indicates whether a mutant is resistant to a certain drug

color(Color,AA) indicates the type of a natural amino acid

same type(R1,R2) indicates whether two residues are of the same type

same type mut(Mutant,Pos) indicates a mutation to an amino acid from the same type
different type mut(Mutant,Pos) indicates a mutation changing the type of residue

correlated mut(Mutant,Pos1,Pos2) indicates whether two mutations are correlated (see the
text for the details)

Table 2. Summary of the HIV drug resistance background knowledge facts and rules.



14 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

Color Class Amino Acids Description
red AVFPMILW small and/or hydrophobic and/or aromatic
blue DE acidic
magenta RK basic
green STYHCNGQ hydroxyl and/or polar and/or basic

Table 3. Amino acid types encoded in color classes.

Additional background knowledge was included in order to highlight characteristics of residues and
relationships between mutations:

color/2 indicates the type of the natural amino acids according to the coloring proposed in [37] and
also reported in Table 3. For example the magenta class includes basic amino acids as lysine and
arginine while the blue class includes acidic amino acids as aspartic and glutamic acids.

same type/2 indicates whether two residues belong to the same type, i.e. a change from one residue to
the other conserves the type of the amino acid.

same type mut/2 indicates that a residue substitution at a certain position does not modify the amino
acid type with respect to the wild type. For example mutation d123e conserves the amino acid type
while mutation d123a does not (i.e. different type mut/2 holds for it).

correlated mut/3 states that two mutations are potentially correlated. We considered two mutations
in different positions along the primary sequence as correlated, if they compensate reciprocally
for the substitutions of the amino acids. This predicate captures simple cases like the two muta-
tions d123a and a321d, and more complex correlations in which the changes involve not exactly
the same residue but residues of the same type, like d123a and a321e or d123a and v321e. By
simply looking at the characteristics of pairs of mutated positions we collect potential instances of
compensatory mutations. These counterbalance other eventually destabilizing replacements in the
protein structure, thus playing a key role in the emergence of drug resistance [16].

6.1.3. Hierarchical multitask experiments

We evaluated our hierarchical kFOIL algorithm on the drug class resistance dataset, with three tasks cor-
responding to the three drug classes (see Section 6.1.1). We compared the results with the two alternatives
of: 1) considering three separate single task learning problems; 2) considering a single common mul-
titask learning problem with no per-task refinement. We performed 3-fold cross-validation procedures
stratified at the single-task level to ensure a good balancing between positive and negative examples for
each learning task. The area under the ROC curve (AUC) was employed as measure of performance in
all experiments.

We experimented with two variants of the language bias guiding the learner, by varying the con-
straints on the use of the mut/4 predicate. In the first variant (V1) the learner can extend a clause by
using the predicate mut/4 with the position variable already instantiated, and thus scoring it accord-
ing to the mutants that have a mutation in that position. In the second variant (V2), in the predicate



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 15

V1 V2
Drug class single task multitask hierarchical single task multitask hierarchical
NNRTI 0.95◦ 0.77 0.96◦ 0.68 0.66 0.71◦•
NCRTI 0.95 0.99 0.99• 0.88 0.86 0.88
PARTI 0.81 0.95• 0.98• 0.65 0.84• 0.90•

Table 4. Summary of the hierarchical multitask experiments (kta scoring). Statistical tests for the significance
of the differences in AUC were computed for the methods within each language bias variant using the two-tailed
Hanley-McNeil test [17] (p=0.05). A bullet (•) indicates that the method is significantly better than the single task
approach, while a circle (◦) indicates a significant improvement over the multitask one. All other differences are
not statistically significant.

mut/4 the position variable is not instantiated while the variable corresponding to the mutated form of
the residue is instantiated instead. In the first case the search space of the learner will contain predi-
cates like mut(Mutant,a,123,Rnew) with a specific position instantiated, while in the second case it will
contain predicates like mut(Mutant,Rold,Position,k) where k indicates a change resulting in a lysine.
The rationale for considering the two variants is that the former will tend to learn more specific clauses
involving relationships between point-wise mutations, as for the association rules discovered in [35].
Conversely, the latter variant will be biased to learn possibly suboptimal but more general and hopefully
more interesting mutation rules, trying to discover higher level patterns relating different mutations.

Table 4 reports the results of the two variants V1 and V2. Different behaviours can be detected
for different drug classes. Overall, multitask learning achieves comparable results with respect to a
standard single task approach in both variants, being twice significantly better and once significantly
worse than the alternative. The result suggests that for this dataset we are not always able to take a real
advantage from the multitask learning approach, possibly because classes of drugs can be quite unrelated
by targeting different binding sites. By adding a refinement stage on a per-task basis, we succeed in
improving the results with respect to both single task and multitask approaches. Hierarchical kFOIL is
never significantly worse than any of the two alternatives, while being significantly better than at least
one of them in five out of six cases.

6.1.4. Discussion and Rule Interpretation

Concerning the language bias variants, we can observe from Table 4 that as expected the instantiation of
a specific position (V1) gives better results compared to searching more general rules (V2). The former
models can exploit the fact that mutants resistant to the same drug often share mutations in the same
positions. These could be located in the protein binding site or its vicinity, but drug resistance could also
be conferred more indirectly by other conformational modifications.

Figure 2 shows an example of hierarchy of learned clauses in the V1 variant setting. The root clause
mut(A,g,196,B),color(blue,B) was learned in the multitask models of all folds. The clause states that
a mutation in position 196 changing a glycine into an acidic residue (aspartic or glutamic acid) can be
important for a mutant to develop resistance to the three kinds of drugs analysed. This could provide
hints for understanding how the binding works and is affected by the surrounding residues. Moreover
it underlines the potential of the approach also in other contexts: for example to gain insights on the
wild type protein function and on its active site starting from its mutants usually obtained by random



16 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

mutagenesis. We are currently pursuing such research direction on an amidase. When inspecting the
models resulting from the single task refinements, we found that for the NNRTI task the above-mentioned
clause is not extended. Additional mutations are instead included in the extended clauses for the NCRTI
and the PARTI tasks. This could suggest that in those cases the drug-specific resistance results from the
combination with one or two other mutations.

Introduction kFOIL The kFOIL Hierarchical Extension The HIV RT Drug Resistance Prediction Experiments Conclusion

Learned Clauses
Some examples

mut(A,g,196,B),

color(blue,B)

NCRTI
mut(A,g,196,B),

color(blue,B),

mut(A,s,162,C).

NNRTI
mut(A,g,196,B),

color(blue,B).

PARTI
mut(A,g,196,B),

color(blue,B),

mut(A,i,178,C),

mut(A,g,359,D).

Note

kFOIL identifies also known correlation previously observed to
be related to resistance to NNRTI

mut(A,m,41,B),mut(A,t,215,C) , mut(A,d,67,D)

E. Cilia, N. Landwehr, A. Passerini — Mining Drug Resistance Relational Features with Hierarchical Multitask kFOIL 26/31

Figure 2. Example hierarchy of learned clauses.

Some mutations, like the mutation of the asparagine in position 348, appear in multitask model and in
all the single task models (in all the folds) with the addition of at most one other mutation. This seems to
suggest that such mutation is important for the mutant resistance to the three drug classes. Interestingly
the refined model further enriches the corresponding clause by associating the mutation with up to three
other mutations.

The learned rules generated by kFOIL for NNRTIs, NCRTIs and PARTIs can be compared with
those reported by the rule miner used in [35] which are not explicitly linked to the resistance to NRTIs.
These rules associate mutations in position 41 and 215, sometimes also with other mutations in position
277 and 293. kFOIL identified the association between the mutations at positions 215 and 41. This
association was previously observed to be related to resistance to NRTIs [26]. kFOIL identified the
same association for the resistance to the quite different other classes of inhibitors. In particular the two
mutated positions were found among the rules for the resistance to PARTIs where additional mutated
position are highlighted: 67 and 376.

The learned models in the variant V2 contain clauses like

mut(A,B,C,w),mut(A,D,E,i),mut(A,F,G,l),mut(A,H,I,d),mut(A,J,K,a)

or

mut(A,B,C,g),position(C,135),mut(A,D,E,m),

correlated_mut(A,E,F),position(F,138)

which combine a quite large set of mutations, with the latter clause including an explicitly correlated pair
of mutations. As a further example the refined model on the PARTI task suggests, in all folds, the clause:

mut(A,B,C,w),different_type_mut(A,C)

which highlights a mutation into a tryptophan that completely changes the type of amino acid in the
mutated position. Note that the need for multiple mutations in order to induce a change in the phenotype



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 17

has recently found confirmation [40] in experimental studies on molecular phenotypes. A suggested
interpretation [40] states that “neutral mutations prepare the ground for later evolutionary adaptation”.
While this is far from being a confirmation for the specific patterns found by our algorithm, the obvious
limitation of learning techniques focusing on single point mutations alone is an additional stimulus for
this research direction.

6.1.5. Hierarchical clustering experiments

We evaluated our task clustering approach for hierarchical multitask learning on the drug resistance
dataset (see Section 6.1.1) which provides a deeper structure of tasks as information on both drug classes
and specific drugs are available. We compared the results with the three alternatives of: 1) considering
three separate single task learning problems; 2) considering a single common multitask learning problem
with no per-task refinement; 3) learning a per-task refinement of an initial common multitask model as
in the previous section. In order to feed the clustering algorithm with an accurate estimate of tasks simi-
larities, we focused on the variant of the language bias providing the better results (V1). The validation
procedure is the same as for the hierarchical multitask experiments.

Figure 3 shows the dendrograms of the clusterings obtained in each one of the folds of the cross-
validation. Drug classes are highlighted with different colors: red for drugs belonging to the NRTIs, blue
for those belonging to NNRTIs, orange for PARTIs and green for NCRTIs. Note that the hierarchical
clustering obtained is rather stable across folds. Interestingly, Zidovudine (azt) is consistently separated
from the rest of the drugs and merged only at the root. A possible explanation for this behaviour is that
the large number of examples available for the drug (see Table 1) makes the kernel machine employed
in kFOIL more focused on the task and less predictive for different drugs. Indeed, multitask learning
already achieves an AUC of 0.95 for azt (see Table 5), which is rather high considered that the resulting
binary classification problem is the most balanced.

A dotted line in Figure 3 indicates the value of the similarity threshold employed (θmax = 0.5): a
single intermediate level of refinement is obtained in all folds between the shared multitask model at the
root and the per-task refinements at the leaves.

Table 5 reports AUC results for the different learning strategies for the V1 variant of the language
bias. The problem of using a plain multitask approach is even more severe when considering single drugs
from all classes, as the single task alternative is significantly better in six out of twelve cases and never
significantly worse. Again, a per-task refinement of the multitask model allows to recover the single-task
performance. However, only in one case (azt) the refinement is significantly better than the single-
task alternative. This seems to indicate a poor overall contribution of task transfer, possibly because of
the difference between target sites for the four inhibitor classes. Indeed, such inhibitors rely on quite
different mechanisms. NNRTI and NCRTI inhibit the reverse transcriptase by binding to the enzyme
active site, therefore directly interfering with the enzyme function. NRTI is instead incorporated into the
newly synthesized viral DNA for preventing its elongation. Finally the PARTI targets the pyrophosphate
binding site and it is employed, as part of a salvage therapy, on patients in which the HIV infection shows
resistance to the other classes of antiretroviral drugs. A further refinement level guided by the clustering
procedure allows to increase to four the number of cases in which a hierarchical approach is significantly
better than the single-task alternative. Furthermore, in one of these cases the approach is significantly
better than the shallow hierarchical multitask model too. Note that in one case (foscarnet) the hierarchical
clustering is actually significantly worse than the shallow approach. However, in this case a plain single



18 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

(a) fold 0 (b) fold 1

(c) fold 2

Figure 3. Hierarchical clustering dendrograms. Specific drugs belonging to the same class are colored respec-
tively in red for NRTI, blue for NNRTI, orange for PARTI, green for NCRTI.

task model is significantly better than both hierarchical versions3. This drug has very few examples (53),

3Note that the multitask approach for foscarnet is not significantly better than the hierarchical ones even if its AUC value is the



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 19

Drug
Drug multitask single task

hierarchical hierarchical
Class multitask clustering

azt 0.95 0.93 0.97•◦ 0.97•◦
3tc 0.76 0.92◦ 0.91◦ 0.94•◦�

NRTI abc 0.92 0.95◦ 0.96◦ 0.95◦
ddC 0.94 0.92 0.94 0.94•
ddi 0.95 0.94 0.94 0.95
efavirenz 0.93 0.94◦ 0.95◦ 0.96•◦
nevirapine 0.92 0.95◦ 0.96◦ 0.96◦

NNRTI delavirdine 0.93 0.96◦ 0.97◦ 0.97◦
ADAMII 0.87 0.90 0.91 0.90
trovirdine 0.91 0.96◦ 0.96◦ 0.97◦

NCRTI MSK-076 0.99 0.98 0.97 0.99
PARTI foscarnet 0.88 0.88�? 0.86? 0.84

Table 5. Summary of the hierarchical clustering experiments (kta scoring) with the V1 version of the language
bias. AUC values are reported, together to the results of the statistical tests for the significance of AUC differences
computed using the two-tailed Hanley-McNeil test [17] (p=0.05). A symbol after an AUC value indicates that
the corresponding method is significantly better than: single task (•), multitask (◦), hierarchical multitask (�),
hierarchical clustering (?). All other differences are not statistically significant.

indicating a possible sub-optimality of the hierarchical versions when insufficient data are available.

6.1.6. Discussion and Rule Interpretation

By mining the learned rules some interesting examples of hierarchical concept learning can be found: the
clause mut(A,w,88,B) learned in the multitask setting is specialized at the first refinement stage into the
clause mut(A,w,88,B),mut(A,C,D,E),color(blue,C),color(green,E), in which an additional rather
high-level mutation description is included. In the second refinement stage, the per-drug one, the clause
is further specialized depending on the specific drug under consideration. In the case of Lamivudine
(3tc), for instance, the final clause is:

mut(A,w,88,B),mut(A,C,D,E),color(blue,C),color(green,E),mut(A,t,400,F)

that is, a specific position is selected in combination with the previously characterized mutations.
Another interesting example is given by the clause mut(A,t,215,y),mut(A,g,196,B), which is ini-

tially refined into mut(A,t,215,y),mut(A,g,196,B),mut(A,t,357,C). When refining on a single task
basis for the NRTI drug Abacavir (abc), for instance, the previously observed [41] the association of
mutations in positions 215 and 41 is recovered:

mut(A,t,215,y),mut(A,g,196,B),mut(A,t,357,C),mut(A,m,41,D),mut(A,i,293,E).
The association of mutations in position 41, 215 and 293 was also highlighted by the relational rule

miner used in [35]. Here we are able to be a bit more specific and relate the association to resistance to a
particular drug (abc).

same as the single-task one. This is due to the fact that in the latter case predictions are highly related to the hierarchical ones,
and the Hanley-McNeil test [17] considers such relatedness in computing the critical ratio.



20 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

All-α N All-β N α/β N α+ β N
DNA 3-helical 30 Ig beta-sandwich 45 β/α (TIM)-barrel 55 Ferredoxin-like 26
EF hand-like 14 Tryp ser proteases 21 Rossmann-fold 21 Zincin-like 13
Globin-like 13 OB-fold 20 P-loop 14 SH2-like 13
4-Helical cytokines 10 SH3-like barrel 16 Periplasmic II 13 beta-Grasp 12
Lambda repressor 10 Lipocalins 14 α/β-Hydrolases 12 Interleukin 9

Table 6. Number of examples (N) in each of the folds in the SCOP dataset. Folds are grouped by fold classes:
All-α, All-β, α/β and α+ β.

Among the kFOIL generated rules many surveillance mutations [3] indicated for the resistance to
NRTI and NNRTI can be found. Those mutations often appear with other mutations that potentially
participate in conferring the resistance to a class of inhibitors or to a specific inhibitor. For instance, the
mutations in position 184 that were shown to be involved in 3tc resistance appear jointly with a mutation
in position 69. In abc resistance the same 184 mutated position appears with a mutation in position 10 in
the generated model.

6.2. Protein structure classification

After translation from mRNA, the linear chain of amino acids (primary structure) composing a protein
folds in the three-dimensional space assuming a specific native conformation (tertiary structure). Large
regularities can be observed in these conformations, from the local arrangements into secondary structure
elements, α-helices and β-strands, to their aggregation into domains, protein subunits characterized by a
semi-independent evolution and function with respect to the rest of the protein structure.

A number of hierarchies of protein three-dimensional structures have been created, based on evolu-
tionary and/or structural considerations. A protein structure classification task in this setting consists of
automatically assigning a protein structure to the correct class, relying on information like the arrange-
ment of its secondary structure elements.

SCOP [18] is a manually curated hierarchy based on both structural and evolutionary relationships
between protein domains. Turcotte et al. [39] extracted a dataset made of the five most populated folds
of each of the four main classes (see Table 6). They learned a set of rules characterizing each of the folds
with respect to the other folds of the same class, in a binary classification setting. The problem was later
generalized [8] to full multiclass classification at the fold-class level. We consider this last setting in our
experiments.

6.2.1. Background Knowledge

We used the background knowledge encoded in [39] for representing the three-dimensional structure
information of the protein domains. Table 7 reports the background knowledge predicates divided into
three classes: global knowledge, which encodes global characteristics of the protein domain, namely,
the number of residues and the number and type of secondary structure elements; local knowledge,
which encodes local information of a single secondary structure element (SSE); relational knowledge,
introducing relationships between secondary structure elements and their properties.



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 21

Background Knowledge Predicates
global background knowledge

len interval(Min,Domain,Max) indicates that the number of amino acids com-
posing a Domain is between Min and Max

nb alpha interval(Min,Domain,Max) indicates that the number of α-helices com-
posing a Domain is between Min and Max

nb beta interval(Min,Domain,Max) indicates that the number of β-strands com-
posing a Domain is between Min and Max

local background knowledge

unit len(SSE,Value) indicates the length of an SSE as very low,
lo, hi, very high

unit aveh(SSE,Value) indicates the average hydrophobicity of an
SSE as very low, lo, hi, very high

unit hmom(SSE,Value) indicates the hydrophobic moment of an SSE
as very low, lo, hi, very high

has pro(SSE) indicates whether an SSE contains a proline

relational background knowledge

adjacent(Domain,SSE1,SSE2,N,TypeSSE1,TypeSSE2) indicates that the N-th (position along the
chain) secondary structure element SSE1 of
type TypeSSE1 is followed by SSE2 of type
TypeSSE2. The type can be h for α-helices or
e for β-strands. α-helices and β-strands are
numbered separately

coil(SSE1,SSE2,Len) indicates that there are Len residues between
two SSEs

Table 7. Summary of the SCOP background knowledge.



22 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

Fold class single task multi task hierarchical
All-α 0.66◦ 0.45 0.69◦•
All-β 0.78◦ 0.65 0.87◦•
α/β 0.55◦ 0.50 0.59◦•
α+ β 0.59◦ 0.46 0.67◦•

Table 8. Summary of the hierarchical multitask experiments for the SCOP dataset. Multiclass accuracies at the
fold-class level are reported, averaged over 5 folds. The results of a two-tailed paired t-test for the significance of
accuracy differences are also shown (p=0.05). A symbol after an accuracy value indicates that the corresponding
method is significantly better than single task (•) or multitask (◦) respectively.

6.2.2. Hierarchical multitask experiments

Single task problems here consist of discriminating a fold against the other folds in the same fold class.
A common multitask learning problem can be devised by jointly addressing all 20 single tasks. We
compared the two alternatives with our hierarchical approach. We adhered to the experimental setting
in [8], running a 5-fold cross validation procedure and reporting multiclass classification accuracies at
the fold-class level.

Experimental results are summarized in Table 8. Single task learning is always significantly better
than the multitask approach. This is rather expected in this setting, as different fold classes have quite
different structural characteristics. This is a clear example where plain multitask learning is badly harm-
ful because of the limited relationship between tasks. On the other hand, our hierarchical approach is
always significantly better than both multitask and single task alternatives. That is, it succeeds in col-
lecting the useful information coming from loosely related tasks, to be effectively refined on a per-task
basis. Indeed, only a fraction of the multitask clauses are actually retained, or further specialized, in
the refined models. Note that a deeper hierarchical structure could be conceived by learning a common
representation at the fold-class level, to be further refined. This is a special case in which the multitask
problem is actually a multiclass one. While single tasks are definitely related in this case, there is no
increase in the training set size as all examples appear in all tasks. We experienced a performance degra-
dation when including this additional level of the hierarchy. Our results are roughly comparable to those
reported in [8]. We achieve better results on the two most populated fold classes, and worse on the other
two. However, a sound comparison cannot be conducted because of the different learning setting. The
set of rules employed in [8] were learned on the entire dataset, and only their weights were learned and
evaluated with a cross-validation procedure.

6.2.3. Discussion and Rule Interpretation

Figure 4 highlights the different roles of global, relational and local background knowledge predicates
(on the x axis) in our learned models. On the y axis we report the relative frequency of occurrence of
each predicate among the ten best clauses learned in the different settings (multitask, single task and
hierarchical).

As expected the multitask learning produces models mainly including global background knowledge
predicates, especially those characterizing the number and type of secondary structure elements. Indeed
these are the main features characterizing the different fold classes. In single task learning models and re-



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 23

multitask
single task
hierarchical

best 10

nb_beta_interval/3 nb_alpha_interval/3len_interval/2 coil/3 adjacent/6 has_pro/1 unit_len/2 unit_hmom/2 unit_aveh/2

0.8 0.836364 0.0545455 0 0.363636 0 0 0 0

0.253846 0.254945 0.375824 0.0142857 0.362637 0 0 0.0010989 0

0.428182 0.504545 0.658182 0.0309091 0.453636 0 0 0.01 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nb_beta_interval/3
nb_alpha_interval/3
len_interval/2

coil/3

adjacent/6

has_pro/1

unit_len/2

unit_hm
om

/2

unit_aveh/2

R
e
la

ti
ve

 F
re

q
u
e
n
c
y

Predicates

multitask
single task
hierarchical

Figure 4. Relative frequency of the background knowledge predicates in the learned models.



24 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

fined models relational background knowledge predicates gain more relevance. The results also confirm
the observation in [7] that local information, related to the hydrophobicity (unit aveh/2 and unit hmom/2)
and the presence of a proline in the SSE (has pro/1), has a quite marginal role.

To give a more detailed idea of the learned clauses interpretation, we report an example of hierarchi-
cal rule. At the root level, the multitask model includes the following clause:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18).

The clause is refined at the single-task level both by adding global information on domain lengths and
relational one for SSE pairs. Examples of the former type of refinement include the 4-Helical cytokines
fold from the All-α class:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),len_interval(104,A,145).

and the Ferredoxin-like for the α+ β one:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),len_interval(58,A,72).

Relational background knowledge is used with regard to β-strands in the Interleukin fold from the α+β
class:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),adjacent(A,B,C,2,e,e).

and to α-helices in the EF-hand like fold (All-α).

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),

nb_alpha_interval(3,A,5),adjacent(A,B,C,1,h,h).

Note that in this last clause the number of α-helices is also restricted to a range from three to five. The
domain should then contain two consecutive helices at the beginning of the polypeptide chain. We report
in Figure 5 an example of EF Hand-like protein structure (PDB code 1CNP) that respects the above rule.
The two consecutive α-helices are highlighted in red.

7. Conclusion

We developed hierarchical kFOIL as a simple extension of the multitask kFOIL learning algorithm. The
algorithm addresses the limitations of learning a single relational structure for multiple tasks, by taking
a hierarchical approach and successively refining a common model on a per-task basis. The algorithm
can be generalized to deeper levels of task structure, which can itself be learned during the process
by a hierarchical task clustering approach. We applied the algorithm to problems of drug-resistance
mutant prediction and protein structure classification, showing its advantage over both single and multi
task alternatives. We stress here that a major advantage of the adopted strategy is the ability to provide
explanations for the learned models which are themselves hierarchical: a subset of relational features
relevant to all tasks can be identified together with more specific task-dependent ones.



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 25

Figure 5. Example of EF Hand-like protein structure (PDB code 1CNP). The first two consecutive α-helices are
highlighted in red.

Acknowledgment

We would like to thank Lothar Richter, Regina Augustin and Stefan Kramer for sharing the processed
version of the HIV resistance mutation database. In this paper Figure 5 was produced using the UCSF
Chimera package [30] from the Resource for Biocomputing, Visualization, and Informatics at the Uni-
versity of California, San Francisco (supported by NIH P41 RR-01081).

References
[1] Bakker, B., Heskes, T.: Task clustering and gating for bayesian multitask learning, Journal of Machine

Learning Research, 4, 2003, 83–99.

[2] Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling, Machine
Learning, 1997, 7–39.

[3] Bennett, D. E., Camacho, R. J., Otelea, D., Kuritzkes, D. R., Fleury, H., Kiuchi, M., Heneine, W., Kantor, R.,
Jordan, M. R., Schapiro, J. M., Vandamme, A.-M., Sandstrom, P., Boucher, C. a. B., van de Vijver, D., Rhee,
S.-Y., Liu, T. F., Pillay, D., Shafer, R. W.: Drug resistance mutations for surveillance of transmitted HIV-1
drug-resistance: 2009 update., PloS one, 4(3), 2009, e4724.

[4] Blockeel, H., De Raedt, L., Ramon, J.: Top-down Induction of Clustering Trees, Proceeding of the 15th
International Conference on Machine Learning, Madison, Wisconsin, USA, 1998.

[5] Blockeel, H., Dzeroski, S., Kompare, B., Kramer, S., Pfahringer, B., Laer, W.: Experiments In Predicting
Biodegradability., Applied Artificial Intelligence, 18(2), 2004, 157–181.

[6] Caruana, R.: Multitask Learning, Machine Learning, 28(1), 1997, 41–75.

[7] Chen, J., Kelley, L., Muggleton, S., Sternberg, M.: Multi-class prediction using stochastic logic programs,
Inductive Logic Programming, 2007, 109–124.



26 E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL

[8] Chen, J., Kelley, L., Muggleton, S., Sternberg, M.: Protein fold discovery using stochastic logic programs,
in: Probabilistic inductive logic programming (L. De Raedt, P. Frasconi, K. Kersting, S. Muggleton, Eds.),
Springer-Verlag, Berlin, Heidelberg, 2008, 244–262.

[9] Cristianini, N., Shawe-Taylor, J., Elisseef, A., Kandola, J.: On kernel-target alignment, Proceedings of NIPS
14, 2001.

[10] Datta, P., Kibler, D. F.: Concept Sharing: A Means to Improve Multi-Concept Learning, Proceedings of the
10th International Conference on Machine Learning, Amherst, MA, USA, 1993.

[11] De Raedt, L., Lavrac, N., Dzeroski, S.: Multiple Predicate Learning, Proceedings of the 13th International
Joint Conference on Artificial Intelligence, Chambery, France, 1993.

[12] Deshpande, A., Milch, B., Zettlemoyer, L., Kaelbling, L.: Learning Probabilistic Relational Dynamics for
Multiple Tasks., Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI-07), 2007.

[13] Deshpande, A., Milch, B., Zettlemoyer, L. S., Kaelbling, L. P.: Learning Probabilistic Relational Dynamics
for Multiple Tasks, Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI), 2007.

[14] Evgeniou, T., Micchelli, C. A., Pontil, M.: Learning Multiple Tasks with Kernel Methods, Journal of Ma-
chine Learning Research, 6, 2005, 615–637.

[15] Ferguson, T. S.: A Bayesian Analysis of Some Nonparametric Problems, The Annals of Statistics, 1(2), 1973,
209–230.

[16] Handel, A., Regoes, R. R., Antia, R.: The Role of Compensatory Mutations in the Emergence of Drug
Resistance, PLoS Computational Biology, 2(10), 10 2006, e137.

[17] Hanley, J., McNeil, B.: A method of comparing the areas under receiver operating characteristic curves
derived from the same cases, Radiology, 148(3), 1983, 839–843.

[18] Hubbard, T., Murzin, A., Brenner, S., Chothia, C.: SCOP: a structural classification of proteins database,
Nucleic Acids Research, 25(1), January 1997, 236–9.

[19] III, H. D.: Bayesian Multitask Learning with Latent Hierarchies, Proceedings of the 25th Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-09), AUAI Press, Corvallis, Oregon, 2009.

[20] Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., Ueda, N.: Learning systems of concepts with an
infinite relational model, AAAI’06: Proceedings of the 21st national conference on Artificial intelligence,
AAAI Press, 2006.

[21] Khan, K., Muggleton, S., Parson, R.: Repeat Learning Using Predicate Invention, Proceedings of Inductive
Logic Programming, 8th International Workshop, Madison, Wisconsin, USA, 1446, Springer, 1998.

[22] Kramer, S., De Raedt, L.: Feature Construction with Version Spaces for Biochemical Applications, Pro-
ceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann Publishers Inc.,
2001.

[23] Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Naive Bayes and FOIL., Proceedings of the
20th National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, USA, 2005.

[24] Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: learning simple relational kernels, Proceed-
ings of AAAI’06, 2006.

[25] Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: Fast Learning of Relational Kernels, Machine
Learning, 79(3), 2010, 305–342.

[26] Lengauer, T., Sing, T.: Bioinformatics-assisted anti-HIV therapy, Nature Reviews Microbiology, 4(10), 2006,
790–797.



E. Cilia, N. Landwehr, A. Passerini / Relational Feature Mining with Hierarchical Multitask kFOIL 27

[27] Madrid-Sanchez, J., Parrado-Hernandez, E., Figueiras-Vidal, A.: Selective Multitask Learning by Coupling
Common and Private Representations, Proceedings of NIPS 08 Workshop on Learning from Multiple Sources,
2008.

[28] Muggleton, S., Raedt, L. U. C. D. E.: Inductive Logic Programming : Theory and Methods, University
Computing, 1994, 629–682.

[29] Neal, R.: Density modeling and clustering using dirichlet diffusion trees, Bayesian Statistics 7, 2003.

[30] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E.:
UCSF Chimera–a visualization system for exploratory research and analysis., Journal of Computational
Chemistry, 25(13), October 2004, 1605–1612, ISSN 0192-8651.

[31] Quinlan, J.: Learning Logical Definitions from Relations, Machine Learning, 5, 1990, 239–266.

[32] Reid, M. D.: Improving Rule Evaluation Using Multitask Learning, Proceedings of Inductive Logic Pro-
gramming, 14th International Conference, Porto, Portugal, 3194, Springer, 2004.

[33] Rhee, S., Taylor, J., Wadhera, G., Ben-Hur, A.: Genotypic predictors of Human Immunodeficiency Virus
type 1 drug resistance, Proceedings of the National Academy of Sciences, Jan 2006.

[34] Rhee, S.-Y., Gonzales, M. J., Kantor, R., Betts, B. J., Ravela, J., Shafer, R. W.: Human Immunodeficiency
Virus reverse transcriptase and protease sequence database, Nucleic Acids Research, 31(1), Jan 2003, 298–
303.

[35] Richter, L., Augustin, R., Kramer, S.: Finding Relational Associations in HIV Resistance Mutation Data,
Proceeding of 19th International Conference on Inductive Logic Programming (ILP09), Jun 2009.

[36] Roy, D. M., Kemp, C., Mansinghka, V. K., Tenenbaum, J. B.: Learning annotated hierarchies from relational
data, in: Advances in Neural Information Processing Systems 19 (B. Schölkopf, J. Platt, T. Hoffman, Eds.),
MIT Press, Cambridge, MA, 2007, 1185–1192.

[37] Taylor, W. R.: The classification of amino acid conservation., J Theor Biol, 119(2), March 1986, 205–218.

[38] Thrun, S., O’Sullivan, J.: Discovering Structure in Multiple Learning Tasks: The TC Algorithm, Proceedings
of the International Conference on Machine Learning ’96, 1996.

[39] Turcotte, M., Muggleton, S. H., Sternberg, M. J.: Automated discovery of structural signatures of protein
fold and function, Journal of Molecular Biology, 306(3), 2001, 591 – 605, ISSN 0022-2836.

[40] Wagner, A.: Neutralism and selectionism: a network-based reconciliation., Nature reviews. Genetics, 9(12),
December 2008, 965–974.

[41] Walter, H., Schmidt, B., Werwein, M., Schwingel, E., Korn, K.: Prediction of abacavir resistance from
genotypic data: impact of zidovudine and lamivudine resistance in vitro and in vivo, Antimicrobial agents
and chemotherapy, 46(1), 2002, 89.

[42] Xu, Z., Tresp, V., Yu, K., Kriegel, H.: Infinite Hidden Relational Models, Proceedings of the 22nd Conference
on Uncertainty in Artificial Intelligence (UAI 2006), Cambridge, MA, USA, July 2006.

[43] Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-Task Learning for Classification with Dirichlet Process
Priors, Journal of Machine Learning Research, 8, 2007, 35–63.


