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Abstract. Many algorithms that attempt to predict proteins’ native
structure from sequence need to generate a large set of hypotheses in or-
der to ensure that nearly correct structures are included, leading to the
problem of assessing the quality of alternative 3D conformations. This
problem has been mostly approached by focusing on the final 3D con-
formation, with machine learning techniques playing a leading role. We
argue in this paper that additional information for recognising native-
like structures can be obtained by regarding the final conformation as
the result of a generative process reminiscent of the folding process that
generates structures in nature. We introduce a coarse representation of
protein pseudo-folding based on binary trees and introduce a kernel func-
tion for assessing their similarity. Kernel-based analysis techniques em-
pirically demonstrate a significant correlation between information con-
tained into pseudo-folding trees and features of native folds in a large
and non-redundant set of proteins.

1 Introduction

Accurate protein structure prediction is still an open and challenging problem
for a vast subset of the protein universe. Experiments of blind prediction such
as the CASP series [14] demonstrate that the goal is far from being achieved,
especially for those proteins whose sequence does not resemble that of any pro-
tein of known structure (nearly half of the total) - the field known as ab initio.
Difficulties in this case are well known: the choice of a reduced protein repre-
sentation and the corresponding empirical potential function may allow for an
efficient search of the conformational space, but generally the methods are not
sensitive enough to differentiate correct native structures from conformations
that are structurally close to the native state. On the other hand, techniques
such as Comparative Modelling and Fold Recognition can be very successful
at predicting accurate models, but success strongly depends on the quality of
the alignment and the ability to reliably detect homologues. Moreover, models
with severely unrealistic geometry can be produced, especially when using fully



automated prediction pipelines. As past and recent findings suggest, a practi-
cal way to obtain improvements in protein structure prediction consists of the
integration of alternative techniques and sources of information. For instance,
empirical elements (e.g. secondary structure predictions) are routinely used to
constrain the space of allowed conformations, to correct and refine an alignment
or to improve the sensitivity of remote homologue detection. Model quality as-
sessment programs (MQAPs) are becoming increasingly important for filtering
out wrong predictions [17]. A common theme between computational predic-
tion techniques and most refinement methods is that they more or less directly
depend on knowledge mined from existing protein structures and, to a smaller
extent, on the available theory and principles of protein structure. In spite of
the continuous increase in the amount of available structural data, progresses
in protein structure prediction and model quality assessment have been slow.
This may indicate that the goal of reaching reliable protein structure prediction
requires new, alternative sources of information.

This paper is an attempt to investigate in this direction. We believe that
novel algorithmic ideas may come from looking at the dynamics of protein folding
simulations, instead of focussing solely on their final product. We assume that
any plausible abstraction of the folding process may contain potentially valuable
information about the final fold. Indeed, specific folding patterns are intimately
related with the native structure. If deviations from these pathways occur, often
this will yield incorrect (i.e. non native-like) contacts between residues that are
more stable than the correct ones, resulting in structural deviations from the
native fold [8]. Folding may then be viewed as the dynamical fingerprint of the
resulting structure.

Modelling or understanding protein folding at the conceptual level remains
beyond the scope of the present paper. Theoretical modelling of the dynam-
ics of protein folding faces several difficulties: there is a much smaller body of
experimental data than the PDB, which is typically at low resolution, and car-
rying out computations over long time scales requires either very large amounts
of computer time or the use of highly approximate models [10]. Rather, we
take the more pragmatic perspective of finding manageable representations of
protein pseudo-folding simulations and evaluating their potential impact on pro-
tein structure prediction. In this study, we derive a representation called binary
pseudo-folding tree (BPFT), borrowing ideas from other recent works [11, 22]. A
BPFT expresses a hierarchy of timestamped pairing events involving secondary
structure elements (SSEs) and is computed by inspecting the execution trace
of a stochastic optimisation algorithm for structure reconstruction that explores
a protein conformational space driven by spatial proximity restraints. Similar
algorithms are common for example in the NMR structure determination liter-
ature and can be applied to recover protein structure from contact maps [18].
We empirically investigate the existence of a relationship between information
provided by BPFTs and features of native folds for a large and non-redundant
set of proteins. We first introduce a kernel function for measuring similarity be-
tween BPFTs, and compare its ability to detect similarities with respect to the



TM-score [23]. We then apply the kernel to cluster sets of optimisation traces
associated with alternative reconstructions from contact maps.

2 Binary Pseudo-Folding Trees

Although the fine mechanisms that regulate protein folding are in principle ex-
tremely complex, hence nearly impossible to simulate and predict on current
computational hardware, there is evidence that the essential elements of the pro-
cess are much simpler and coarse-grained [2, 15]. In nature, the folding process
appears to follow “pathways”, involving hierarchical assemblies and intermedi-
ate states requiring doing and undoing of structures [9]. Rather than static, and
driven by properties identifiable in the final fold, the folding process appears to
be dynamic and driven by interactions whose nature and relative importance
changes during the process itself. Multiple pathways, with different transition
states also appear to be possible [21]. The combination of experimental and
computational techniques has revealed other properties of the folding process
[7]. For instance, it appears that in some cases interactions among key elements
in the protein form a core or nucleus that essentially constrains the protein
topology to its fold [19]. Also, there is much evidence that folding is hierarchi-
cal; for some proteins it involves stable intermediates, called foldons, that consist
of SSEs [12]. Folding routes can then be thought of as having an underlying tree
structure [11] and clusters of interacting SSEs may form the tree labels [22].

Our aim is to derive representations of protein folding simulations which have
to be simple yet informative, i.e. tractable by machine learning techniques. We
borrow ideas from the work of other authors [11, 22], although with different
premises and details. Neither we assume that the three-dimensional (3D) struc-
ture of a protein is known nor we want to identify real folding pathways for the
protein under study. Rather we argue that regarding a predicted protein con-
formation as the result of a generative process may yield additional information
about this conformation. Structures are generated by an algorithm that explores
the conformational space of the protein. A labelled binary tree is built in an in-
cremental fashion by observing notable intermediate events happening along the
trajectory that is being followed. Since we are not dealing with the real process,
we call the trajectory a pseudo-folding pathway and the resulting tree a binary
pseudo-folding tree.

2.1 Pseudo-folding pathways

Protein folding simulations are carried out with an algorithm that models protein
structures by exploring a protein’s conformational space starting from an initial
(random) configuration. Usually, this kind of algorithms are guided by some form
of energy encoding structural principles or a pseudo-energy (statistical potential
function) or a combination of the two. In this work, we employ 3Distill [3], a
machine learning based system for the prediction of alpha carbon (Cα) traces.
For a given input sequence, first a set of 1D features is predicted, e.g. secondary



Fig. 1. BPFT for a protein (PDB code 1WITA) as a result of the application of Alg.1
to the trajectory followed by the reconstruction algorithm described in section 2.1.

structure and solvent accessibility. These features are then used as an input
to infer the shape of 2D features like the contact map (binary or multi-class).
In the last stage, protein structures are coarsely described with their backbone
Cα atoms and are predicted by means of a stochastic optimisation algorithm
using as pseudo-energy a function of the geometric constraints inferred from the
underlying set of 1D and 2D predictions. The stochastic optimisation algorithm
explores the configurational space starting from a random conformation, and
refining this by global optimisation of the pseudo-potential function using local
moves and a simulated annealing protocol. For more and complete details on the
form of the cost function and the annealing protocol see [4].

2.2 Notation

Let s1 . . . sm be the sequence of m secondary structure segments of the protein,
where si is the i-th segment in the sequence, either a α-helix or a β-strand. Let
S1 . . . ST be the time ordered sequence of structures observed at discrete time
steps during a simulation. Using this notation, S1 is the initial configuration
and ST is the predicted model structure. We introduce a simple and synthetic
representation of an execution trace based on binary trees.

A Binary Pseudo-Folding Tree (BPFT) is a rooted, unordered, leaf-labelled
binary tree. Suppose we are given the pseudo-folding pathwayP = S1 . . . ST . The
corresponding BPFT, called T , expresses a hierarchy of timestamped pairing
events involving sets of α-helices and β-strands3. Each leaf node has a label that
represents the type and position of a SSE (e.g. β2 means the second strand of
the sequence, α1 the first helix and so on). An internal node n ∈ T corresponds
to a pairing event occurred at time 1 < t < T and that involved two SSEs

3 Random coil fragments are not usually involved in major structure stabilisation events and
are not considered here.



belonging to different clusters of interacting SSEs. Each of the two clusters is a
child node of n, which in turn represents a larger set of SSEs that eventually
joins another cluster in its parent. The recursive structure of T is inspired to
other binary tree representations of folding pathways [22], but with a number of
differences. In [22], a tree (the predicted folding pathway) is built by recursively
applying a polynomial-time mincut algorithm to a weighted graph, this graph
representing sets of interacting SSEs of the known experimental structure. Here,
we do not assume to know the real 3D structure of a protein, unless we run
the 3Distill reconstruction algorithm with experimental 1D and 2D restraints.
Moreover, folding information is obtained by using a pseudo-folding trajectory,
i.e. simulated dynamical data. For a given time step t of the simulation there is a
node n ∈ T such that the subtree Tn rooted at n corresponds to the assembling
history (from t = 1 . . . t) of a cluster of interacting SSEs in St, where the segments
involved are given by the leaves dominated by n. Let chl[n] (resp. chr[n]) be the
assigned left (resp. right) child of n and let Leaves(·) be a function returning the
set of leaf labels of a subtree of T . The cluster of node n is formed because one
or more segments in Leaves(Tchl[n]) interact with segments in Leaves(Tchr [n]),

thus forming a larger cluster of pairwise interacting segments in n. An example
BPFT can be seen in Fig. 1. For convenience, each internal node in the figure
has a numerical index. The internal node 3 represents a cluster of interactions
between the segments α1β2β6 in an intermediate fold St (1 < t < T ). The
cluster has formed because the first helix (α1) started to interact with the β-
sheet made by the second and sixth strands (node 1). Other portions of the tree
can be similarly interpreted. The simulation ends in the predicted fold which is
symbolically represented by the root node; its children indicate that the final
structure was predicted by joining the first strand (β1, left child) with one or
more of the segments (i.e. leaves) dominated by node 7.

2.3 BPFT construction algorithm

The pseudo codes of Algorithms 1 and 2 describe the procedure that we apply
to build BPFTs. Parameters of GenerateBPFT are the set of indexed SSEs
of the protein and the ordered sequence of structures found along the whole
simulation trajectory, from t = 1 . . . T . The BPFT T is built bottom-up, from
the leaves to the root node. The structure returned by Algorithm 1 describes the
assembling history of ST as a hierarchical set of SSEs pairing events. Steps 1 to
6 initialise the partial tree with m leaf nodes, each one representing an isolated
SSE not interacting with the others. This corresponds to the initial structural
configuration before the configurational search starts. New nodes are then added
whenever, moving from step t to t + 1 of the trajectory, we find that new SSEs
interactions have been formed. If we add a new node (a new potentially larger
cluster), its children (subclusters) are not necessarily searched among the last
added nodes, because these might not longer represents clusters in St+1 (i.e. at
time t+1, SSEs links in St may have been broken as well). For these reasons, T
maintains a reference to a subset of its nodes, the ’frontier’, each node pointing
to a cluster of SSE interactions that are present in the fold at the current time



Algorithm 1 GenerateBPFT({s1 . . . sm}, {S1 . . . ST })

1: T ← ∅
2: for i← 1 . . . m do

3: v ← CreateNode({si})
4: AddNode(T , v, ∅)
5: T .frontier ← T .frontier ∪ {v}
6: end for

7: CT ← contact map of ST

8: NC ← ∅ {Contacts of ST formed so far}
9: for t← 1 . . . T do

10: (Ct, CCt)← (residue, coarse) contact maps of St

11: NCt ← Ct ∩ CT {Contacts of ST in current fold}
12: if NCt \ NC 6= ∅ then

13: UpdateTree(T , CCt) {Update tree if there are new native contacts}
14: end if

15: NC ← NCt {Update the set of temporarily formed native contacts}
16: end for

step. Whenever we add a new node, its cluster must describe pairings between
smaller subclusters of the current fold, so that the children are always searched
among the frontier nodes. At time step 0, the structure is assumed to contain
only isolated segments (not forming any interaction), so that the frontier is
made with only leaf nodes (Step 5). In order to build and complete the tree, the
trajectory is monitored searching for events that involve SSEs interactions. This
is accomplished by looking, at each step, at the formation of contacts among
residues in different SSEs, with the constraint that these contacts exist in the
final predicted fold ST . We motivate this choice from the assumption that the
topology of the protein, here represented by the contact map CT of ST in Step 7,
has an influence on the corresponding pathway [1]. In Step 8, NC keeps trace of
the set of contacts of ST formed until a given time step of the simulation. From
Step 9 to 16, the algorithm analyses the structure St of each time step t of the
trajectory: NCt is assigned to the set of contacts of ST formed in St (Step 11)
and if new contacts are formed wrt those formed in steps 1 . . . t−1 (step 12), the
tree is updated by a call to UpdateTree (Step 13) passing as parameter the
coarse contact map of St

4. Alg. 2 first updates T ’s frontier such that its nodes
correctly represent clusters of SSE interactions of the last visited structure (steps
1-6). For each frontier node n, segments in Leaves(Tn) form the vertexes of a
graph with edges between interacting SSEs in the last coarse contact map. The
nodes are partitioned into subsets of pairwise interacting SSEs5 (Step 2). If there
is only one component, the segments of n represent a portion of the interactions
in the last fold. Hence the node is still in the frontier and will be searched for the
next pairing operations. If this is not the case, the frontier is updated by a call

4 A coarse contact map represents SSEs interactions and is defined similarly to a residue
contact map: SSEs are used instead of residues, see e.g. [16].

5 Partition(·) is implemented by computing the connected components of the graph using a
simple depth first search.



Algorithm 2 UpdateTree(T , CC)

1: for n ∈ T .frontier do

2: C ← Partition(Leaves(Tn), CC)
3: if |C| > 1 then

4: T .frontier ← UpdateFrontier(T , n, C)
5: end if

6: end for

7: for (si, sj) ∈ CC do

8: v ← {x ∈ T .frontier | si ∈ leaves(Tx)}
9: w← {x ∈ T .frontier | sj ∈ leaves(Tx)}

10: if v 6≡ w then

11: n← CreateNode()
12: AddNode(T , n, {v, w}) {Leaves(Tn) = Leaves(Tv)∪ Leaves(Tw)}
13: T .frontier ← T .frontier ∪ {n} \ {v, w}
14: end if

15: end for

to UpdateFrontier (not shown) where Tn is visited and n is replaced by its
first descendants that contain the clusters in C. In steps 7-14, we search for SSE
interactions in the current fold (given by CC) that are not represented by the
partial tree built so far. The frontier nodes are searched for those containing two
interacting SSEs (steps 8-9). If the corresponding nodes are distinct, it means
that no node in T encodes the interaction so that a new node is formed as a
parent of the two nodes; the frontier is updated accordingly.

2.4 Mining frequent pseudo-folding patterns

We briefly discuss an efficient procedure used to capture simple descriptions of
the dominant features of pseudo-folding simulations, as represented by BPFTs,
and then compare this descriptions with known experimental folding facts of
a set of proteins considered in previous studies [22]. In this way, we test the
protocol for its ability to mimic the real folding process.

We wish to discover patterns in pseudo-folding pathways represented by
BPFTs. Since the simulator is stochastic, given the same set of restraints, any two
runs could output different BPFTs varying both in shape and size. To tackle this,
we represent a pseudo-folding landscape by the distribution of labelled subtrees
in pseudo-folding pathways represented as BPFTs. Patterns can be naturally
thought of as being the common subtrees of a set of BPFTs. We search for these
patterns by mining the most frequent subtrees [5].

We have applied the methodology described to the set of proteins considered
in [22]. For each protein, the reconstruction algorithm ran 200 times with the
restraints defined by the native contact map, thus obtaining a sample of possible
trajectories, hence BPFTs, leading to the correct native structure. From these
trees we mined the most frequent subtrees and compared the events they describe
with known facts about the folding of the protein under study. We have found
significant correspondences between our artificial samples and the experimental



Table 1. Top 5 most frequent sub BPFTs mined from a sample of reconstruction traces
(chain 1O6XA). Each subtree’s support is the normalised frequency wrt to sample size.

Rank Support SubBPFT

1 0.85 β1β2

2 0.70 (α2(β1β2))
3 0.69 (β3(α2(β1β2)))
4 0.63 (α1(α3(α2(β1β2))))
5 0.14 (β2(β3(β1β2)))

evidence. Most of the events described in the literature appear as encoded in
one or more of the most frequent subtrees. For instance, Table 1 shows the top
five frequent subtrees for one of the chains under study (PDB code 1O6XA).
It is known that the folding nucleus of 1O6X is made by packing of the second
helix with the β-sheet formed by β2β1 [22]. Indeed, we found the second most
frequent subtree (α2(β1β2)) as perfectly describing this event, where the most
frequent subtree indicates the formation of the β-sheet β2β1.

3 Kernels on BPFT

We develop kernels (i.e. similarity measures) between BPTFs to investigate the
informative content of the proposed features by learning techniques. For effi-
ciency issues, we turn BPFTs into ordered trees, by imposing a total order on
the leaves according to the relative position of the SSEs in the protein sequence.
We focus only on complete subtrees, that is subtrees that contain all descen-
dants of the subtree root up to the leaves of the original tree. We can now apply
a set kernel on complete subtrees by decomposing each BPFT into the set of
its complete subtrees, and comparing two BPFTs by summing up all pairwise
comparisons between elements of the two sets:

K(T , T ′) =
∑

n∈T

∑

m∈T ′

k(Tn, T ′
m) (1)

To keep things simple, we compare subtrees by the delta function k(Tn, T ′
m) =

δ(Tn, T ′
m) iff Tn = T ′

m. The overall kernel computes the similarity between two
BPFTs by counting the number of complete subtrees (i.e. partial pseudo-folding
representations) they have in common. In the following, we refer to this kernel
as cluster-node kernel. Note that by imposing a canonical ordering to BPFTs
and having no timestamps in the internal nodes, we only care of the hierarchy
of interactions between SSE clusters, ignoring differences due to the relative
timestamp of events involving non-overlapping clusters. Such invariance aims
at modelling cases in which separate portions of a chain fold independently,
a situation which is known to take place in nature. Comparison of complete
subtrees of size one (i.e. leaves) provides an informative contribution whenever
two simulations rely on different SSE predictions. Note that the cluster-node



kernel does not retain information of temporary interactions which form during
the process but are not preserved in the final structure. Moreover, the kernel
compares SSE clusters, but it does not consider the specific SSE pairs responsible
for the formation of a cluster, apart from those formed by exactly two SSEs.

By this, we also consider a variant where the description of internal BFPT
nodes is enriched with three different sets of SSE pairs: those which began inter-
acting when the cluster formed; those which preserved their interaction; those
whose interaction was lost when the cluster formed. A new subtree kernel ac-
counting for such information is defined as follows:

k(Tn, T ′
m) = δ(Tn, T ′

m) +
∑

i∈F (n)
j∈F (m)

δ(i, j) +
∑

i∈P (n)
j∈P (m)

δ(i, j) +
∑

i∈L(n)
j∈L(m)

δ(i, j) (2)

where F (n), P (n), L(n) represent the sets of pairwise SSE interactions which are
respectively formed, preserved and lost in the cluster corresponding to node n.
This kernel is dubbed pairwise-interaction kernel in the following. Note that the
kernels described in this section are conceived for measuring similarities between
BPFTs originating from simulations on the same protein sequence, even if with
possibly different restraints. The extension to inter-protein similarities is subject
of ongoing investigation.

4 Experiments and discussion

Given a predicted structure and its pseudo-folding pathway, we first test whether
the corresponding BFPT retains some information about the distance between
the predicted and native (unknown) fold. We thus generated a data set of pseudo-
folding simulations for 250 non-redundant PDB chains (maximum 25% mutual
sequence similarity for any two chains) by running 3Distill (see Sec. 2.1) using re-
straints obtained from four increasingly noisy contact maps: the native one, con-
tact maps obtained from PDB templates with a max sequence identity threshold
at 95% and 50% respectively, and an ab initio predicted map. For each of these
maps, 200 simulations were run, resulting in 800 structures for each protein. The
TM-score function [23] was used to measure the distance between the predicted
and native fold. BPFTs were generated from the pseudo-folding processes us-
ing Alg. 1, and the two kernels defined in Section 3 were employed to measure
pairwise BPFT similarities. The kernels were normalised as suggested in [6], i.e.
the input vectors are normalised in feature space and centered by shifting the
origin to their center of gravity. Figures 2(a) and 2(b) show the kernel matrices
obtained averaging over structures with similar quality, for the cluster-node and
pairwise-interaction kernel respectively. Each ([i, i+1], [j, j+1]) bin in the maps
represents the average kernel value between two structures whose TM-score to
the native is in the [i, i + 1] and [j, j + 1] interval respectively. The kernel values
increase with the TM-score to the native in both cases. Interestingly, the kernels
discriminate pseudo-folding simulations when TM-score ∈ [0.3, 0.4], a range of
thresholds that separates poorly predicted and native-like folds [23].



Fig. 2. Kernel matrix obtained averaging over structures with similar quality measured
as TM-score with the native: (a) cluster-node kernel (b) pairwise-interaction kernel

In a binary classification setting, the relatedness of a certain kernel function
to the target can be measured by the Kernel Target Alignment (KTA) [6], defined
as the normalised Frobenius product between the kernel matrix and the matrix
representing pairwise target products. In our setting, a binary target can be
obtained using a threshold on the TM-score with respect to the native structure
(we chose 0.4, see above). Figure 3 (left) reports an histogram of KTA values
for our two kernels. About half of the proteins show an alignment greater that
0.15. As expected, the more informed pairwise-interaction kernel has an overall
better alignment.

As a final test for the discriminative power of our two kernels, we clustered
protein structures and their simulations using spectral techniques [20]. Given a
matrix S of pairwise similarities between examples, they compute the principal
eigenvectors of a Laplacian matrix derived from S, and apply a simple clustering
algorithm, like k-means or recursive bi-partitioning, on the rows of the eigen-
vector matrix. As suggested in [20], we employed the multicut algorithm [13],
combined with a k-means with 5 runs initialized with orthogonal centers and 20
runs initialized with random centers. Since we are mainly focussing on separa-
tion between decoys and native-like structures, the number of searched clusters
was set to two. We then measured the quality of clustering using the correlation
between (1) a binary value that indicates the cluster assigned to the BPFT (2)
the TM-score to the native of the corresponding predicted structure. Figure 3
(right) shows histograms of the correlations obtained by clustering with the two
kernels. Albeit simple, the cluster-node kernel shows a significant correlation for
a large fraction of tested proteins. For 80% of the proteins, the correlation is
greater than 0.15. The average correlation per protein is 0.4, and go up to 0.47
using the more informed pairwise-interaction kernel. With this kernel we see a
consistent increase of the number of cases where the correlation is more than
0.5. Noticeably, the ability of clustering the predicted models increases by using
additional dynamical information, i.e. pairwise intermediate SSE interactions.
Finally, the correlation between clustering quality and KTA value is about 0.6
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Fig. 3. Histogram of: (left) KTA values, binary targets obtained with TM-Score thresh-
old with the native set to 0.4; (right) correlation between cluster assignment and TM-
score with native structure. Results are for cluster-node and pairwise interaction kernel.

for both cluster-node and pairwise-interaction kernel, thus showing a certain de-
gree of match between the two analyses. An in-depth look at the results showed
that high correlation is obtained when structures generated using the same re-
straints are assigned (with possibly few exceptions) to the same cluster. For
the simple kernel, 42 proteins have correlation higher than 0.7. In 23 of these
cases, structures generated from the native contact map are separated from all
other structures, in 17 cases structures from native and 95% identity template
maps are clustered together. In 1 case ab initio generated structures are clus-
tered together with those from native maps, and all template-based structures
are assigned to the other cluster. The last case (chain A of PDB entry 1OJH),
is an interesting exception as indeed ab initio generated structures had a better
TM-score with the native than all template-based ones.

5 Conclusions and Future Work

This study was motivated by the idea that reasonable computational abstrac-
tions of the protein folding process may contain useful information about the
final protein structures. We focused on a specific pseudo-folding algorithm based
on stochastic reconstruction from contact maps and empirically found that the
information extracted from the pseudo-folding process does indeed allow us to
define a discriminant measure of similarity (expressed by a kernel function) be-
tween the corresponding final protein structures. We found that (1) clustering
with our kernels provides a certain amount of separation between good and poor
reconstructions of the same protein, and that (2) the introduced protocol agrees
with availalble experimental evidence about the folding of some proteins.

These findings pave the way towards the use of pseudo-folding features in the
analysis and discrimination of protein structures. Attaining such a goal from a
machine learning perspective requires a generalisation of the current kernel to
compare pseudo-folding trees associated with different proteins.
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