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Abstract. We study the problem of multiclass classification within
the framework of error correcting output codes (ECOC) using
margin-based binary classifiers. An important open problem in this
context is how to measure the distance between class codewords and
the outputs of the classifiers. In this paper we propose a new decod-
ing function that combines the margins through an estimate of their
class conditional probabilities. We report experiments using support
vector machines as the base binary classifiers, showing the advantage
of the proposed decoding function over other functions of the mar-
gin commonly used in practice. We also present new theoretical re-
sults bounding the leave-one-out error of ECOC of kernel machines,
which can be used to tune kernel parameters. An empirical validation
indicates that the bound leads to good estimates of kernel parameters
and the corresponding classifiers attain high accuracy.

Keywords: Machine Learning, Error Correcting Output Codes, Sup-
port Vector Machines, Statistical Learning Theory.

1 Introduction and Notation

Many machine learning algorithms are intrinsically conceived for bi-
nary classification. However, many real world learning problems re-
quire that inputs are mapped into one of several possible categories.
The extension of a binary algorithm to its multiclass counterpart
is not always possible or easy to conceive. An alternative consists
in reducinga multiclass problem into several binary sub-problems.
Perhaps the most general reduction scheme is the information the-
oretic method based on error correcting output codes (ECOC), in-
troduced by Dietterich and Bakiri [5] and more recently extended
in [1]. ECOC work in two steps: training and classification. Dur-
ing the first step,S binary classifiers are trained onS dichotomies
of the instance space, formed by joining non overlapping subsets
of classes. AssumingQ classes, let us introduce a “coding matrix”
M ∈ {−1, 0, 1}Q×S which specifies a relation between classes and
dichotomies.mqs = 1 (mqs = −1) means that examples belonging
to classq are used as positive (negative) examples to train thes−th
classifierfs. Whenmqs = 0, points in classq are not used to train
the s−th classifier. Thus each classq is encoded by theq−th row
of matrix M which we also denoted byMq. Typically the classi-
fiers are trained independently. This approach is known asmulti-call
approach. Recent works [8, 2] considered also the case where classi-
fiers are trained simultaneously (single-callapproach). In this paper
we focus on the former approach although some of the results may
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be extended to the latter one. In the second step a new inputx is
classified by computing the vector formed by the outputs of the clas-
sifiers, f(x) = (f1(x), . . . , fS(x)) and choosing the class whose
corresponding row is closest tof(x). In so doing, classification can
be seen as a decoding operation and the class of inputx is computed
as

arg
Q

min
q=1

d(Mq, f(x)),

whered is the decoding function. In [5] the entries of matrixM were
restricted to take only binary values and thed was chosen to be the
Hamming distance:

L(Mq, f) =

S∑
s=1

|mqs − sign(fs)|
2

(1)

In the case that the binary learners are margin-based classifiers, [1]
shown the advantage of using a loss-based function of the margin

dL(Mq, f) =

S∑
s=1

L(mqsfs)

whereL is a loss function. Such a function has the advantage of
weighting the confidence of each classifier thus allowing a more ro-
bust classification criterion. The simplest loss function one can use
is the linear loss for whichL(mqsfs) = −mqsfs but several other
choices are possible and it is not clear which one should work the
best. In the case that all binary classifiers are computed by the same
learning algorithm Allwein, Shapire and Singer [1] proposed to set
L to be the same loss function used by that algorithm. In this pa-
per we suggest a different approach which is based on decoding via
conditional probabilities of the outputs of the classifiers. The advan-
tages offered by our approach is twofold. First, the use of conditional
probabilities allows to combine the margins of each classifier in a
principled way. Second, the decoding function is itself a class con-
ditional probability which can give an estimate of multiclassification
confidence. This approach is discussed in Section 2. In Section 3
we present experiments, using SVM as the underlying binary clas-
sifiers, which enlighten the advantage over other proposed decoding
schemes. In Section 4 we study the generalization error of ECOC.
We present a general bound on the leave one out error in the case
of ECOC of kernel machines. The bound can be used for estimat-
ing optimal kernel parameters. The novelty of this analysis is that
it allows multiclass parameters optimization even though the binary
classifiers are trained independently. We report experiments showing
that the bound leads to good estimates of kernel parameters and the
corresponding classifiers attain high accuracy.



2 Decoding Functions Based on Conditional
Probabilities

We have seen that a loss function of the margin presents some advan-
tage over the standard Hamming distance because it can encode the
confidence of each classifier in the ECOC. This confidence is, how-
ever, a relative quantity, i.e. the range of the values of the margin may
vary with the classifier used. Thus, just using a linear loss function
may introduce some bias in the final classification in the sense that
classifiers with a larger output range will receive a higher weight.
Not surprisingly, we will see in the experiments below that the Ham-
ming distance can work better than the linear and soft-margin losses
in the case of pairwise schemes. A straightforward normalization in
some interval, e.g.[−1, 1], can also introduce bias since it does not
fully take into account the margin distribution. A more principled
approach is to estimate the conditional probability of each output
codebitOs given the input vectorx. Assuming that all the informa-
tion aboutx that is relevant for determiningOs is contained in the
marginfs(x) (or fs for short) the above probability for each classi-
fier isP (Os|fs, s). We can now assume a simple model for the prob-
ability of Y given the codebitsO1, . . . , OS . The conditional proba-
bility that Y = q should be 1 if the configuration onO1, . . . , OS
is the code ofq, should be zero if it is the code of some other class
q′ 6= q, and uniform (i.e.1/Q if the configuration is not a valid class
code. Under this model,

P (Y = q|f) = P (O1 = mq1, . . . , OS = mqS |f) + α

beingα a constant that collects the probability mass dispersed on the
2S − Q invalid codes. Assuming thatOs andOs′ are conditionally
independent givenx for eachs, s′, we can write the likelihood that
the resulting output codeword isq as

P (Y = q |f) =

S∏
s=1

P (Os = mqs |fs) + α. (2)

In this case, ifα is small, the decoding function will be:

d(Mq, f) ≈ − logP (Y = q |f). (3)

The problem boils down to estimating the individual conditional
probabilities in Eq. (2). To do so, one can try to fit a parametric model
on the output produced by an-fold cross validation procedure. In our
experiments we choose this model to be a sigmoid computed on a 3-
fold cross validation as suggested in [10]:

P (Os = mqs |fs, s) =
1

1 + exp{Asfs +Bs}
.

It is interesting to notice that an additional advantage of the proposed
decoding algorithm is that the multiclass classifier outputs a condi-
tional probability rather than a mere class decision.

3 Experimental Comparison Between Different
Decoding Functions

The proposed decoding method is validated on ten datasets from UCI
repository. Their characteristics are shortly summarized in Table 1.

We trained multiclass classifiers using SVM as the base binary
classifier. In our experiments we compared our decoding strategy to
Hamming and other common loss-based decoding schemes (linear,
and the soft margin loss used to train SVM) for different types of
ECOC schemes: one-vs-all, all-pairs, and dense matrices consisting

Table 1. Characteristics of the Datasets used

Name Classes Train Test Inputs

Anneal 5 898 - 38
Ecoli 8 336 - 7
Glass 6 214 - 9
Letter 26 15000 5000 16
Optdigits 10 3823 1797 64
Pendigits 10 7494 3498 16
Satimage 6 4435 2000 36
Segment 7 1540 770 19
Soybean 19 683 - 35
Yeast 10 1484 - 8

of 3Q columns of{−1, 1} entries. SVM were trained on a Gaussian
kernel with the same value of the variance for all the experiments.
For datasets with less than 2,000 instances we used ten random splits
of the available data (picking up 2/3 of examples for training and 1/3
for testing) and averaged results over the ten trials. For the remain-
ing datasets we used the original split defined in the UCI repository.
Results are summarized in Tables 2–4.

Table 2. One-vs-All

Dataset Hamming Linear Soft-margin Likelihood

Anneal 94.4 94.8 94.8 96.4
Ecoli 64.9 79.0 79.0 76.8
Glass 27.6 54.9 54.9 59.6
Letter 30.9 69.8 69.8 76.8
Optdigits 94.8 97.2 97.2 97.1
Pendigits 90.8 94.5 94.5 94.8
Satimage 81.0 82.9 82.9 83.1
Segment 56.5 82.2 82.2 88.2
Soybean 75.7 92.1 92.1 92.7
Yeast 14.5 54.0 54.0 57.9

Table 3. All-Pairs

Dataset Hamming Linear Soft-margin Likelihood

Anneal 94.7 93.6 95.1 95.9
Ecoli 77.0 76.6 77.0 82.8
Glass 50.0 47.9 50.7 61.0
Letter 80.1 54.3 80.3 81.1
Optdigits 97.3 93.8 96.3 97.4
Pendigits 96.1 89.5 95.0 96.5
Satimage 85.3 75.2 84.9 85.0
Segment 84.9 70.5 85.5 86.1
Soybean 90.1 90.7 90.6 92.3
Yeast 52.7 53.1 52.6 58.6

Our likelihood decoding works significantly better for all ECOC
schemes. This result is particularly clear in the case of pairwise clas-
sifiers. In the case of dense ECOC some dichotomies can be partic-
ularly hard to learn and in this situation the sigmoid may be a too
simple model for the conditional probability. We suspect that by us-
ing a better estimate of the conditional probability one could obtain



Table 4. Dense Codes

Dataset Hamming Linear Soft-margin Likelihood

Anneal 94.5 94.9 94.9 95.9
Ecoli 78.4 79.2 79.1 78.0
Glass 43.9 47.9 48.1 53.6
Letter 61.7 62.9 63.2 64.3
Optdigits 97.3 97.3 97.3 97.2
Pendigits 90.9 92.1 92.1 92.9
Satimage 81.3 82.6 82.5 82.9
Segment 82.7 84.3 84.3 85.7
Soybean 91.8 92.2 92.2 92.4
Yeast 50.4 54.2 54.2 56.8

better results with the likelihood decoding. Notice that the Hamming
distance works well in the case of pairwise classification, while it per-
forms poorly with one-vs-all classifiers. Both results are not surpris-
ing: the Hamming distance corresponds to the majority vote, which
is known to work well for pairwise classifiers [7] but does not make
much sense for one-vs-all because in this case ties may occur often.

4 Tuning Kernel Parameters

In this section we study the problem of model selection in the case
of ECOC of Kernel Machines [12, 11, 6, 3]. The analysis uses a
leave-one-out error estimate as the key quantity for selecting the best
model. We first recall the main features of kernel machines for bi-
nary classification. For a more detailed account consistent with the
notations in this section see [6].

4.1 Background on Kernel Machines

Kernel machines are the minimizers of functionals of the form:

H[f ;D`] =
1

`

`∑
i=1

V (cif(xi)) + λ‖f‖2K , (4)

where we use the following notation:

• {(xi, ci) ∈ X × {−1, 1}}`i=1 is the training set.

• f is a functionIRn → IR belonging to a reproducing kernel
Hilbert spaceH defined by a symmetric and positive definite ker-
nelK, and‖f‖2K is the norm off in this space. See [12, 13] for a
number of kernels. The classification is done by taking the sign of
this function.

• V (cf(x)) is a loss function whose choice determines different
learning techniques, each leading to a different learning algorithm
(for computing the coefficientsαi - see below). In this paper we
assume thatV is monotonic non increasing.

• λ is called the regularization parameter and is a positive constant.

Machines of the form in Eq. (4) have been motivated in the frame-
work of statistical learning theory. Under rather general conditions
the solution of Equation (4) is of the form4

f(x) =

`∑
i=1

αiciK(xi,x). (5)

4 We assume that the bias term is incorporated in the kernelK.

Let us introduce the matrixG defined byGij = K(xi,xj). The
coefficientsαi in Equation (5) are learned by solving the following
optimization problem:

maxαH(α) =
∑m

i=1
S(αi)− 1

2

∑`

i,j=1
αiαjciciGij

subject to : 0 ≤ αi ≤ C, i = 1, . . . , `,
(6)

whereS(·) is a concave function andC = 1
2`λ

a constant. Support
Vector Machines (SVMs) are a particular case of these machines for
S(α) = α. This corresponds to a loss functionV in (4) that is of the
form |1 − cf(x)|+, where|x|+ = x if x > 0 and zero otherwise.
The points for whichαi > 0 are called support vectors.

An important property of kernel machines is that, since we as-
sumedK is symmetric and positive definite, the kernel function can
be re-written as

K(x, t) =

∞∑
n=1

λnφn(x)φn(t). (7)

whereφn(x) are the eigenfunctions of the integral operator associ-
ated to kernelK andλn ≥ 0 their eigenvalues [4]. By settingΦ(x)
to be the sequence

(√
λnφn(x)

)
n

, we see thatK is a dot product
in a Hilbert space of sequences (called the feature space), that is,
K(x, t) = Φ(x) ·Φ(t). Thus, function in Eq. (5) is a linear combi-
nation of features,f(x) =

∑∞
n=1

wnφn(x). The great advantage of
working with the compact representation in Eq. (5) is that we avoid
directly estimating the the infinite parameterswn.

Finally, note that kernelK can also be defined/built by choosing
theφs andλs but, in general, those do not need to be known and can
be implicitly defined byK.

4.2 Bounds on the Leave-One-Out Error

We first introduce some more notation. We define the multiclass mar-
gin (see also [1]) of point(x, y) to be

g(x, y) = −d(My, f(x)) + d(Mr(x,y), f(x))

with
r(x, y) = argminr 6=yd(Mr, f(x)).

Wheng(x, y) is negative, pointx is misclassified. Notice that when
Q = 2 and andL is the linear loss,g(x, y) reduces to the defini-
tion of margin for a binary real valued classification function. The
empirical misclassification error can be written as:

1

`

`∑
i=1

θ (−g(xi, yi)) .

The leave-one-out (LOO) error is defined by

1

`

`∑
i=1

θ
(
−gi(xi, yi)

)
where we have denoted bygi(xi, yi) the margin of examplexi when
the ECOC is trained on the datasetD`\{(xi, yi)}. The LOO error is
an interesting quantity to look at when we want to select/find the op-
timum (hyper)parameters of a classification function, as is an almost
unbiased estimator for the test error and we may expect that his min-
imum will be close to the minimum of the test error. Unfortunately,
computing the LOO error is time demanding when` is large. This



becomes practically impossible in the case that we need to know the
LOO error for several values of the parameters of the machine used.

In the following theorem we give a bound on the LOO error of
ECOC of kernel machines. An interesting property of this bound is
that it only depends on the solution of the machine trained on the full
dataset (so training the machine once will suffice). Below we denote
by fs the s−machine,fs(x) =

∑m

i=1
αsimyisK

s(xi,x), and let
Gsij = Ks(xi,xj).

Theorem 1 Suppose the decoding function uses the linear loss func-
tion. Then, the LOO error of the ECOC of kernel machines is
bounded by

1

`

`∑
i=1

θ

(
−g(xi, yi) + max

t6=yi
Ut(xi)

)
(8)

where we have defined the function

Ut(xi) = (Mt −Mr) · f(xi) +

S∑
s=1

myis(myis −mts)α
s
iG

s
ii

To prove this theorem we first need the following Lemma for bi-
nary kernel machines.

Lemma 4.1 Letf(x) be the kernel machine as defined in Equations
(5) and (6). Letf i(x) be the solution of (4) found when the data point
(xi, ci) is removed from the training set. We have

cif(xi)− αiGii ≤ cif i(xi) ≤ cif(xi). (9)

Proof: The l.h.s part of Inequality (9) was proved in [9]. Note that,
if xi is not a support vector,f = f i and we have a trivial inequal-
ity. Thus suppose thatxi is a support vector. To prove the r.h.s. in-
equality we observe that:H[f ;D`] ≤ H[f i;D`], andH[f ;Di

`] ≥
H[f i;Di

`]. By subtracting the second bound from the first one and
using the definition ofH we obtain thatV (cif(xi)) ≤ V (cif

i(xi)).
Then, the result follows by the monotonically property ofV . 2

We now turn to the proof of Theorem 1. Our goal is to bound the
difference of the multiclass margin off and f i, I = g(xi, yi) −
gi(xi, yi). Let us apply Lemma 4.1 to each SVM trained in the
ECOC procedure. Inequality (9) can be rewritten as

mtsf
i
s(xi) = mtsfs(xi)− λsmyismts (10)

whereλs is a parameter in[0, αsiG
s
ii]. Using this equation we can

transform quantityI to the desired result through the following steps,
where we have definedri = argmint6=yid(Mq, f

i(x)):

I = Myi · f(xi)−Mr · f(xi)−
[
Myi · f

i(xi)−Mri · f
i(xi)

]
= Myi · f(xi)−Myi · f

i(xi) +
[
Mri · f

i(xi)−Mr · f(xi)
]

=

S∑
s=1

(Myis)
2λs + (Mt −Mr) · f(xi)−

S∑
s=1

myisMrisλs

= (Mri −Mr) · f(xi) +

S∑
s=1

myis(myis −mris)λs

Then, bound in Eq. (8) follows by using the definition ofri and by
settingλs = αsiG

s
ii. 2

This theorem enlightens some interesting properties of the ECOC
of kernel machines. First, observe that the larger the margin of an ex-
ample is, the less likely that this point will be counted as a LOO error.

Second, if the number of support vectors of each kernel machine is
small, say less thanν, the LOO error will be at mostS ν

`
. Therefore,

if Sν � ` the LOO error will be small and so will be the test error.
We also notice that, although bound in Eq. (8) only uses the

knowledge about the machine trained on the full dataset, it gives
an estimate close to the LOO error when the parameterC used to
train the kernel machine is “small”. Small in this case means that
C sup`i=1 K(xi,xi) < 1.

4.3 Model Selection Experiments

We now show experiments where we use the bound provided by The-
orem 1 to select optimal kernel parameters. We focused on four of the
largest datasets and searched the best value of the varianceσ of the
Gaussian kernel. To simplify the problem we searched a common
value for all the binary classifiers. Figures 1–3 show the test error
and our LOO estimate for different values ofγ = 1√

2σ2 for the three
ECOC schemes considered.

Figure 1. One-vs-all: Test error and LOO error bound as a function of the
logarithm of the parameter γ for satimage (left) and optdigits (right) datasets.

Figure 2. All-pairs: Test error and LOO error bound as a function of the
logarithm of the parameter γ for satimage (left) and optdigits (right) datasets.

Figure 3. Dense-codes: Test error and LOO error bound as a function of
the logarithm of the parameter γ for satimage (left) and optdigits (right)

datasets.



Results indicate that the minimum of our LOO estimate is very
close to the minimum of the test error, although we often observed a
slight bias towards smaller values of the variance. Experiments with
all ECOC schemes were repeated with such optimal parameters. Ta-
bles 5–7 show that we can improve performance significantly. Notice
that in the case of one-vs-all and dense codes the advantage of using
likelihood decoding is less evident than in experiments in section 3.
We conjecture that this may be due to the fact that likelihood esti-
mates are computed on a 3-fold cross validation, thus the optimal
value of the variance should be computed separately for each fold.
Moreover the bias issues discussed above may further affect such
estimates. We will investigate such problems in future experiments.

Table 5. One-vs-all: Optimizing the variance of the Gaussian kernel

Dataset Hamming Linear Soft-margin Likelihood

Optdigits 79.1 98.1 98.1 98.2
Pendigits 95.5 98.1 98.1 98.0
Satimage 82.9 90.8 90.8 91.0
Segment 89.1 94.8 94.8 94.8

Table 6. All-pairs: Optimizing the variance of the Gaussian kernel

Dataset Hamming Linear Soft-margin Likelihood

Optdigits 97.9 97.2 97.2 98.0
Pendigits 97.7 96.9 97.2 98.1
Satimage 90.6 90.2 90.7 90.9
Segment 94.2 94.3 94.3 95.3

Table 7. Dense-codes: Optimizing the variance of the Gaussian kernel

Dataset Hamming Linear Soft-margin Likelihood

Optdigits 97.3 97.6 97.6 98.1
Pendigits 98.0 97.9 97.9 98.1
Satimage 89.6 90.4 90.4 90.7
Segment 93.8 94.8 94.8 94.9

5 Conclusions

We studied ECOC constructed on margin based binary classifiers un-
der two complementary perspectives: the use of conditional probabil-
ities for building a decoding function, and the use of a theoretically
estimated bound on the leave-one-out error for optimizing kernel pa-
rameters. Our experiments show that transforming margins into con-
ditional probabilities is very effective and improves the overall accu-
racy of multiclass classification in comparison to standard loss-based
decoding schemes. Moreover, fitting Gaussian kernel parameters by
means of our theoretical bound further improves classification accu-
racy of ECOC machines.
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