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Abstract
Defining appropriate distance functions is a crucial aspect of effective and efficient
similarity-based prediction and retrieval. Relational data are especially challenging in
this regard. By viewing relational data as multi-relational graphs, one can easily see
that a distance between a pair of nodes can be defined in terms of a virtually unlimited
class of features, including node attributes, attributes of node neighbors, structural
aspects of the node neighborhood and arbitrary combinations of these properties. In
this paper we propose a rich and flexible class of metrics on graph entities based on
earth mover’s distance applied to a hierarchy of complex counts-of-counts statistics.
We further propose an approximate version of the distance using sums of marginal
earth mover’s distances. We show that the approximation is correct for many cases
of practical interest and allows efficient nearest-neighbor retrieval when combined
with a simple metric tree data structure. An experimental evaluation on two real-world
scenarios highlights the flexibility of our framework for designingmetrics representing
different notions of similarity. Substantial improvements in similarity-based prediction
are reported when compared to solutions based on state-of-the-art graph kernels.
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1 Introduction

Nearest-neighbor search is a fundamental problem that appears in many different
contexts. In machine learning, the labels of nearest neighbors for a test case are used
to predict its unknown label. In information retrieval, nearest neighbors of a query
object are returned as the most relevant matches for the query. In all contexts, there are
two important aspects to nearest neighbor approaches: first, a suitable distancemeasure
has to be defined, so that nearby neighbors according to this metric provide accurate
classifications, or relevant retrieval results. Second, for the given metric, suitable data
structures and algorithms have to be designed for an efficient retrieval of the nearest
neighbors of a query object.

In this paper we consider similarity and search in attributed, multi-relational graphs,
which provide a useful, common abstraction level for relational databases on the one
hand, and network data on the other. For a given query object (node), we want to find
similar objects in the data graph. Our first major concern is to define a powerful and
flexible framework for defining distancemetrics. The particular challenge of graphdata
lies in the fact that two nodes may be compared based on an essentially unlimited and
complex class of features: one can take into consideration the attributes of the nodes
itself, attributes of graph neighbors, structural properties of the graph neighborhood,
where for the latter one can take into account neighborhoods of different radii around
the nodes being compared.

Our approach is distinguished by the fact that it takes complex quantitative aspects
of relational neighborhoods into account. Specifically, we base our distancemetrics on
counts-of-counts features we introduced by Jaeger et al. (2013), that represent detailed
quantitative information about relational neighborhoods. To illustrate the basic idea
of counts-of-counts features, consider the case of a bibliographic database containing
authors and papers, an author_of relation between authors and papers, and a cites
relation between papers.Wemay then compare different persons in the database based
on their citation profile, perhaps using a bibliometric index like h-index or i10-index.
In both cases, the comparison is based on the counts-of-counts statistic that for each
possible count of citations i provides the count n(i) of papers with i citations. Note
that in this paper we use the term “counts-of-counts” for an arbitrary nested structure
of counts, from simple counts (e.g. the number of papers written by an author), to
multiple nesting levels of counts (an example for three levels of counts will be given
below in Sect. 8.1.1 and Fig. 8a).

Measuring similarity of authors based on a bibliometric profile will be appropriate
in certain contexts, e.g., when evaluating candidates for an academic position. In other
contexts, such as searching for potential scientific collaborators, a similarity measure
based on the number of publications in certain subject areas will be more useful. In all
cases, however, we focus on scenarios where the absolute numbers of related entities
matter. This contrasts with scenarios where only the existence of certain relationships
matter, which can be captured by logical rules with existential quantification such as:
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1256 M. Jaeger et al.

classify a person as an academic, if there exists a scientific article of which the person
is an author.

In this paper we introduce a very flexible framework for specifying customized
notions of similarity in graph data. The framework first supports to specify what
counts-of-counts statistics should be considered, and then provides a parametric class
of distance metrics on the given statistics. Figure 1 illustrates an application of our
approach.Herewe are considering amovie database containing information onmovies
and actors. We first are interested in actor similarity based on the genre profile of the
movies they have appeared in. The first row in the figure contains graphical represen-
tations of the relevant relational neighborhood data for this purpose: the central node
is the actor in question, the inner circle of blue nodes represents the movies the actor
had a role in, and the outer colored nodes represent the different genres with which the
movies are labeled. In total, 20 different genres are considered, each represented by a
different color. A movie can be associated with more than one genre, and our metric
will distinguish, e.g., between the case where an actor has appeared in a movie that is
both a romance and a comedy, and the casewhere the actor has appeared in amovie that
is a romance, and another one that is a comedy. Based on this similarity concept, the
most similar actor found for the query actor Humphrey Bogart is Eddie Graham. This
relatively little known actor has a very similar profile to Bogart in terms of the number
of movies and their genres. We next consider similarity based on financial/business
characteristics of an actor. The bottom rowofFig. 1 illustrates relevant relational neigh-
borhood data selected for this purpose: central nodes are again the actor; the inner blue
nodes are again the movies the actor has appeared in, now shaded dark/light/medium
according to whether the actor had a leading/supporting/unspecified role in the movie.
Movies are connected to a budget attribute represented by a dark/medium/light green
node according to whether the movie had a large/medium/small budget (budget data
is not available for all movies, so movies need not be connected to a budget node).
In terms of these business statistics, Graham now is rather dissimilar to Bogart, since
the status of his roles are all unspecified, and there is no budget data for most of his
movies. In terms of business similarity, the closest actor for Bogart now is Tony Curtis.
The numbers underneath the graphs for Graham and Curtis are the actual distances to
Bogart according to our genre-based and business-based metrics.

We use our earlier type extension tree framework (Jaeger et al. 2013) for specifying
suitable counts-of-counts features. This paper makes the following new contributions:

– We introduce a parametric class of logistic evaluation functions that transfoms a
combinatorial counts-of-counts value into a hierarchical numerical structure. This
transformation can be understood as the evaluation of a neural network, and we
exploit this analogy by using backpropagation techniques to learn the parameters
of the evaluation function.

– We show how to approximate the hierarchical numerical structure obtained from
the logistic evaluation function by a collection of multi-dimensional histograms,
and define an earth-mover’s-distance based metric on these histograms. Via a
suitable choice of the underlying counts-of-counts features, and adaptation of the
parameterization of the evaluation function, this metric becomes highly flexible
and adaptable for different datasets and applications.
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Humphrey Bogart Eddie Graham

0.201

1.574

Tony Curtis

0.461

0.343

Fig. 1 Nearest neighbors of Humphrey Bogart according to genre-/business-based similarity (Color figure
online)

– We introduce an approximation to the earth-mover’s distance onmulti-dimensional
histograms using sums of marginal distances, and show that for many instances of
our metrics the approximation is exact.

– It is shown how the approximate distance computation in conjunctionwith ametric
tree data structure supports efficient retrieval of nearest neighbors.

– An experimental evaluation shows that the introduced framework is efficient and
effective for nearest neighbor retrieval under diverse notions of similarity, and
allows to address similarity-based prediction tasks with substantial improvements
over alternative similarity-based approaches.

A simple precursor of the metric introduced in this paper was already described
by Jaeger et al. (2013). That metric was defined directly on the raw counts-of-counts
feature values, and did not permit the kind of problem-specific adaptation we now
obtain through the logistic evaluation function.

2 Counts-of-counts features

Our approach to defining similarity between graph objects is feature based: we use
a highly expressive and flexible framework for defining features for graph entities,
and then compare entities by comparing their feature values, based on suitable feature
metrics. For feature definition, we use the type extension tree (TET) framework, which
we introduced by Jaeger et al. (2013).
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Fig. 2 TET examples author(A)

author of(A,P )

cites(P ′,P )

P ′

P

(a)

movie(M)

comedy(M) romance(M)

(b)

Type extension trees represent complex “counts-of-counts” features that describe
the combinatorial structure of a graph entity’s neighborhood. A TET feature defines
which relations to follow for assembling the relevant neighborhood, andwhat attributes
of neighboring nodes to consider. In the following we summarize in a somewhat
streamlined and simplified form the precise definitions of Jaeger et al. (2013).

The data model underlying our approach is that of an attributed, multi-relational
graph, which is given by a set of entities (nodes) E , a set of attributes A = {a1, . . . , al}
defined on the entities, and binary relations R = {r1, . . . , rm} between the entities. For
the purpose of this paper we make the restriction that all attributes and relations are
Boolean. Generalizations to arbitrary categorical and especially numerical attributes
and relations are not difficult in principle, but are omitted for now.

If e, e′ are entities, then ai (e) and r j (e, e′) are ground atomic statements or simply
ground atoms that are either true or false for a given data graph. An atomic statement
or atom is an expression of the form ai (X) or r j (X , Y ), where X , Y are variable
symbols. We remark that the graphs shown in Fig. 1 are not data graphs or subgraphs
of a data graph, because the nodes in these graphs do not represent entities, but ground
atoms. Thus, for example, one of the colored nodes on the periphery of Bogart’s genre
graph stands for the ground atom drama(Casablanca).

Definition 1 A type extension tree (TET) is a rooted tree whose nodes are labeled with
atoms, and whose edges can be labeled with variables.

To simplify notation and subsequent definitions, we here give a slightly simplified
definition of TETs. The more general definition of Jaeger et al. (2013) also allows for
conjunctions of atoms at the nodes of the tree, and we will make use of this option in
one of our experiments in Sect. 8.3.3.

Figure 2 shows twoexamples ofTETs.TET (a) is for bibliographic data that includes
the attribute author, and the relations author_of and cites. This TET is also
shown in Fig. 3a, which in b shows the data sub-graph of the relational neighborhood
of an author (blue (dark) central node) with his/her authored papers (5 inner yellow
(light) nodes connected by solid edges to author), and other papers citing these (outer
yellow (light) nodes connected by dashed edges). The value of the TET feature (to be
formally defined below) will provide a complete picture of this sub-graph’s structure.

The TET in Fig. 2b is for a movie database that contains the attribute movie
and genre attributes comedy and romance. This movie TET does not contain any
relations, or variables as labels on the edges. It defines a feature for movie entities,
only as a function of the entities’ attribute values. The feature value corresponds to
a complete cross-classification of whether the movie is a comedy and/or a romance.
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1 1

0.56 0.3 0.43 0.56 0.43

1 1 1 1 1 1 1 11

0.54

(b)

(c)

(a)
{t:3}

{{t:3}:2, {t:2}:2, {t:1}:1}

{t:1} {t:2} {t:3} {t:2}

t t t t t t t t t tt

(d1)

(d2)

0.03

0.93 0.0001 0.04 0.93 0.04

1 1 1 1 1 1 1 1 1 11

β=(−14.7,5.8)

β=(−1.38,0.55)

author(A)

author of(A,P )

cites(P ′,P )
P ′

P

Fig. 3 Overview: illustration of Definitions 2, 3 and 4. a TET specification T (A); b relational neighborhood
of example author a (blue (dark) node); c TET value V (T (a)) (Definition 2); d1, d2 two different numeric
evaluations of V (T (a)) (Definition 4) with different parameterizations β (Definition 3) (Color figure online)

The pure counts-of-counts features as represented by Fig. 2a, and attribute features
represented by Fig. 2b can be combined and nested in arbitrary ways. Examples of
such combinations will be used in our experiments (cf. Fig. 8b and c).

Type extension trees are evaluated for graph entities. A TET may define a feature
for single entities, for pairs of entities, or any number of entities. The “arity” of a
TET is determined by the number of free variables contained in the TET, where a free
variable is any variable that appears in an atom at one of the nodes v, such that this
variable does not appear as the label on any edge on the path from v to the root. In
particular, all the variables appearing at the root of a TET are free, and very often these
are precisely the free variables of the TET. In Fig. 2, (a) has a single free variable A,
and (b) the single free variable M . Any sub-tree of a TET is itself a TET. The sub-tree

author_of(A, P)
P ′−→ cites(P ′, P) (1)

has two free variables A, P . A TET with k free variables defines a feature for k-tuples
of entities. Thus, both TETs in Fig. 2 define features for single entities (of type author,
respectivelymovie). Sub-tree (1) defines a feature for pairs of author and paper entities.

In the following definition we consider tuples of variables X = X1, . . . , Xk , and
corresponding tuples e = e1, . . . , ek of graph entities. Given a subset Z ⊆ X of
variables, we then denote by e[Z] the corresponding selection of elements from e. We
use α(X) as a generic expression for an atom of either the form ai (X) or r j (X , Y ).
The definition now defines the counts-of-counts feature value defined by a TET for
a specific tuple e of entities. The precise mathematical structure that encodes our
“counts-of-counts” values are nested multisets, where counts now correspond to the
multiplicities with which a given element (itself potentially a nested multiset) occurs
in a multiset. Thus, TET values according to the following definition are complex,
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structured objects, not simple scalars (distilling these complex values into scalars will
be the task we address in Sect. 3).

Definition 2 Let T (X) be a TET with free variables X = X1, . . . , Xk . Let e =
e1, . . . , ek be a k-tuple of graph entities. The value of the TET feature T (X) for e,
denoted V (T (e)), is inductively defined as follows:

i Letα(Z) (Z ⊆ X) be the atomat the root of T . Ifα(e[Z]) = false, thenV (T (e)) =
false (if the root of the tree evaluates to false, then there is no further recursive
evaluation of the TET).

ii If T (X) consists of the single node α(X), then V (T (e)) = α(e) ∈ {true, false}
(leaves are directly evaluated by the Boolean value of their atom).

iii If neither case i nor case ii applies, then T (X) has m ≥ 1 children that are roots of
sub-trees Th(Zh) with free variables Zh (h = 1, . . . , m). V (T (e)) then is defined
as a tuple (μ1, . . . , μm), where μh is a multiset of values of Th . To define μh for
sub-tree Th we distinguish two cases:

– the edge leading to Th is not labeled by a variable; then Zh ⊆ X , and we define

μh = {V (Th(e[Zh])}. (2)

(the multiset contains only a single element in this case).
– the edge leading to Th is labeled by a variable Yh ; then Zh = (Z̃h, Yh) for

some Z̃h ⊆ X , and we define

μh = {V (Th(e[Z̃h], e′)) | e′ ∈ E} (3)

This is to be understood as a multiset, counting the multiplicities of identical
values obtained for different e′ ∈ E .

We write {γ1 : n1, . . . , γl : nl} to denote a multiset that contains ni copies of the
value γi (i = 1, . . . , l).

Example 1 Evaluating the TET T (M) in Fig. 2b for an entity that is not amovie returns
the value false. If m is a movie, then V (T (m)) is one of ({ f }{ f }), ({t}{ f }), ({ f }{t}),
or ({t}{t}), depending on whether or not m is a comedy and/or a romance.

Example 2 Todemonstrate a recursive value computation for theTET inFig. 2awefirst
consider the sub-TET T1(A, P) shown in (1). This is evaluated for pairs of entities
(a, p), and returns false if author_of(a, p) is false. Otherwise, V (T1(a, p)) is
{true : k, false : l}, where k is the number of papers p′ citing p, and l is the number
of entities p′ for which cites(p′, p) is false. The number l includes the papers that
do not cite p, and even domain entities that are not of type paper. The count of
occurrences of false values is often semantically not very meaningful, and it will have
no influence on the further processing of TET values that we introduce in the following
sections. We therefore typically suppress false counts in the notation for TET values,
and we here would abbreviate {true : k, false : l} as {true : k}.

Turning to the evaluation of the full TET of Fig. 2a for an author a, we obtain the
value V (T (a)) as the multiset {{true : ki } : zi }, where zi is the number of papers p
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by author a with ki citations (again omitting the count of false values generated by
domain entities p for which author_of(a, p) is false).

Figure 3c shows a tree representation of the value of the TET from Fig. 2a evaluated
for the author a represented by the data sub-graph of Fig. 3b. The tree shows the final
value V (T (a)) at the root, and its decomposition into values of the sub-tree (1) (middle
layer of the tree), and values of the leaf node cites(P ′, P) (leaves of the tree). In
this figure we also have omitted the false values. Including them would add to every
node {t : k} of the middle layer n − k additional children labeled with f , where n is
the total number of entities in the domain (authors and papers).

3 Logistic evaluation function

The evaluation of a TET T (X) as V (T (e)) as defined in Sect. 2 leads to a complex
nested multiset structure of Boolean values. In Jaeger et al. (2013), we presented
two approaches for using these values as the basis for prediction tasks and similarity
measures:

– by defining a discriminant function f that maps TET values V (T (e)) to real
numbers, and that can be used for binary classification tasks;

– by defining a metric d(V (T (e)), V (T (e′))) on TET values that can be used for
distance-based methods such as nearest-neighbor prediction.

In Jaeger et al. (2013), we tested both approaches on the artificial problem of
classifying authors in a bibliographic database according to the binary attribute of
whether their h-index is greater than 7. We note that this is an artificial task, since the
h-index is a deterministic function of the data, and knowing the definition of h-index,
one can always “predict” it with certainty. The challenge here is to “discover” the
definition of the (h > 7)-attribute from examples of authors labeled as (h > 7) or
(h ≤ 7). In Jaeger et al. (2013) we reported F1 scores of 61.3% and 91.2% for this
prediction task when using the discriminant function and nearest-neighbor prediction,
respectively.

These results indicate that the discriminant function and metric definition of Jaeger
et al. (2013) are not flexible and powerful enough to fully exploit the information given
by a TET value V (T (a)) to learn how to solve the (h > 7) prediction task with 100%
accuracy. We will greatly refine and unify these previous approaches by

– defining a rich class of evaluation functions lβ thatmapTETvalues to real numbers
and that are parameterized by an adjustable vector β;

– defining a metric on the nested multiset structure of real numbers that is generated
by the recursive evaluation of lβ on a TET value V (T (e)).

Thus, our evaluation functions lβ will be used directly as discriminant functions for
prediction, and as the basis for defining metrics dβ that can be customized to represent
specific similarity concepts by adjusting the parameters β of the underlying function.

We first define a parameterization of a TET:
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Definition 3 Let T (X) be a TET. A weight assignment β for T assigns a nonnegative
real number to all non-leaf nodes and all edges of T . A weight assignment can be
written as (βr

0, β
r
1, . . . , β

r
m,β1, . . . ,βm), where βr

0 is the weight assigned to the root,
βr

i is the weight assigned to the edge from the root to its i th child, and β i is the weight
assignment to the i th sub-tree.

Given a weight assignment for TET, we define a function on TET values γ via a
recursive definition over the nested multiset structure of γ :

Definition 4 For a TET T with weight assignment β the logistic evaluation function
lβ is defined as follows. Let γ = V (T (e)) be a value.
Base cases:

– If γ = false, define lβ(γ ) := 0.
– If γ = true, define lβ(γ ) := 1.

Recursion:

– If γ = (μ1, . . . , μm), with multisets μi of values of sub-trees Ti , define:

lβ(γ ) := σ

⎛
⎝βr

0 +
m∑

i=1

βr
i

∑
γ ′∈μi

lβi (γ ′)

⎞
⎠

where σ is the sigmoid function σ(x) = 1/(1 + e−x ).

The recursive logistic evaluation of aTETvalueγ leads to a nestedmultiset structure
of real numbers that follows the structure of γ . We refer to this structure as the logistic
evaluation tree, denoted Lβ(γ ).

Example 3 Consider the TET value γ shown in Fig. 3c, and let β be the weight assign-
ment that assigns β0 = − 14.7 to both non-leaf TET nodes, and β1 = 5.8 to both
edges. Thus, β = (−14.7, 5.8, (−14.7, 5.8)) when properly expanded in the notation
of Definition 3 (which is represented in a simplified manner in Fig. 3). The evaluation
of each leaf node representing a true value returns a 1. The leaf nodes labeled with
false which are omitted in the figure all evalute to 0. Now consider a sub-value {t : 3}
at the middle level of γ . We obtain:

l(−14.7,5.8)({t : 3}) = σ(−14.7 + 5.8 · (1 + 1 + 1)) = 0.937

The omitted false values have no impact on this calculation, since they would only
add a number of 0 terms to the inner sum. Similarly, l(−14.7,5.8)({t : 2}) = 0.0431, and
l(−14.7,5.8)({t : 1}) = 0.0001. Note that here, and in the following computation, we
have m = 1, since the underlying TET has no branching. For the top-level evaluation
we then obtain:

l(−14.7,5.8,(−14.7,5.8))(γ ) = σ(−14.7 + 5.8 · (0.93 + 0.0001 + 0.04 + 0.93 + 0.04))

= 0.03

Figure 3d1 shows the logistic evaluation tree Lβ(γ ) induced by this computation of
lβ(γ ). The final value lβ(γ ) is the root of the tree.

123



Counts-of-counts similarity for prediction and search in relational data 1263

Example 4 In the preceding example, the weights β were chosen so that σ(−14.7 +
5.8x) is an approximation to a threshold function at x = 3. The resulting logistic
evaluation function then is a good discriminant function for identifying authors with an
h-index at least 3.An alternativeweight assignmentβ = (−1.38, 0.55, (−1.38, 0.55))
is designed so that σ(−1.38 + 0.55x) varies more gradually over a larger range of
count values x . The resulting logistic evaluation for the TET value of Fig. 3c is shown
in Fig. 3d2

3.1 Neural network perspective and weight learning

In the preceding examples we have computed the recursively defined lβ(γ ) by an
inductive bottom-up propagation of sub-values. These computations are similar to
forward propagation in a neural network with sigmoid activation functions. Indeed,
one can think of γ as defining a neural network structure, and β as defining neural
networkweights and biases. A given TET T with logistic evaluation parameters β then
can be seen as a template for the construction of example-specific neural networks,
and the TET formalism represents a highly flexible and expressive way to define
such templates. Under this neural network perspective, then Fig. 3d1 and d2 show the
activations of neural networks defined by the structure (c) induced by example (b),
and two different weight settings β. Note that here the inputs to the neural network
are always equal to 1 at all input (leaf) nodes.

Given a supervised learning objective expressed by a differentiable loss function
on the logistic evaluation values lβ(γ ) = lβ(V (T (e))), one can apply standard back-
propagation rules to compute the gradient of the loss for a single example e with
respect to β, and learn β using any of the many available (stochastic) gradient descent
techniques. Our experimental evaluation shows that parameter learning by backprop-
agation is quite effective when combined with the appropriate supervision (see results
on h-index classification in Sect. 8.3.2).

4 Histogram approximation

The nested multiset structures of Lβ(V (T (e)) gives a detailed description of e in
terms of quantitative features of its relational neighborhood, as defined by T and the
parameters β of the logistic evaluation function. We now aim to use this description
as a basis for defining distances between entities e, e′. In large and highly connected
graphs, the full structure Lβ(V (T (e)) will become very large, and not suitable to
support fast distance computations, or to store pre-computed Lβ(V (T (e)) for all e.
We therefore introduce an approximation of Lβ(V (T (e)) by a collection of multi-
dimensional histograms. The approximation will be constant in size for all e, and
independent of the size of the data graph.

As a first step towards this approximation, we approximate the full tree structure
of Lβ(V (T (e)) by multisets of paths. The following definition is a bit technical, and
may obscure the simple nature of what is defined. The reader may first skip forward
to Examples 5 and 6 for a quick illustration of what the definition contains.
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Definition 5 Let v be a node in the TET T , and r = v0, v1, . . . , vk−1, vk = v the path
leading from the root r of T to v. Let γ = V (T (e)) be the value of T for entities e.
A sequence γ0, . . . , γk is a value path for v in γ , if

– γ0 = γ , and γi �= f for all i .
– For i < k: if vi+1 is the j(i)th child of vi in T , and γi = (μi,1, . . . , μi, j(i), . . . ,

μi,mi ), then γi+1 ∈ μi, j(i) with multiplicity ki+1 ≥ 1.

The multiset of value paths for v is the multiset that contains the value path γ0, . . . , γk

with multiplicity
∏k−1

i=0 ki+1.

Example 5 For the TET in Fig. 3a let the three nodes be v0, v1, v2 indexed from top
to bottom. Then the value γ shown in Fig. 3c contains for v2 the value path

{{t : 3} : 2, {t : 2} : 2, {t : 1} : 1}, {t : 2}, t

with multiplicity 4 (each of these paths is induced by one of the 4 papers that cite one
of a’s 2 papers with citation count 2).

Let β be a parameter vector for the logistic evaluation function for T . A sequence
of real numbers t1, . . . , tk is a logistic value path for v if there exists a value path
γ0, . . . , γk for v such that ti = lβ(γi ). The multiset of logistic value paths for v,
denoted M(v) is the multiset that contains the logistic value path t1, . . . , tk with a
multiplicity equal to the sum of multiplicities of value paths γ0, . . . , γk that induce
t1, . . . , tk .

Example 6 Let v0, v1, v2 as in Example 5. Then for the logistic evaluation tree in
Fig. 3d1:

M(v0) = {(0.03) : 1}
M(v1) = {(0.03, 0.93) : 2, (0.03, 0.04) : 2, (0.03, 0.0001) : 1}
M(v2) = {(0.03, 0.93, 1) : 6, (0.03, 0.04, 1) : 4, (0.03, 0.0001, 1) : 1}

We observe that while the value paths of a node vi+1 in some sense extend the
value paths of its parent vi , it is not the case that from M(vi+1) the multiset M(vi )

can be constructed. In the preceding example, from the occurrence of (0.03, 0.93, 1)
with multiplicity 6 inM(v2) we can infer that (0.03, 0.93) must occur inM(v1), but
its multiplicity inM(v1) is not uniquely determined by M(v2).

Values of our logistic evaluation function lie in the interval [0, 1]. The elements of
a logistic value path multiset M(v) are vectors of a fixed length equal to the depth d
of v in T (defining the depth of the root to be 1), and hence are elements of [0, 1]d .
We partition the interval [0, 1] into N equal-width bins, leading to a discretization
of [0, 1]d into N d cells. This leads to an approximate representation of M(v) by a
d-dimensional histogram, which we call the node histogram for v. Arranging the node
histograms for all nodes of T in a tree structure isomorphic to T leads to the node
histogram tree (NHT) as an approximation for the logistic value tree Lβ(V (T (e))).
The granularity N of the histogram representation is a parameter we can choose to
balance accuracy with compactness of the approximation.
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Fig. 4 Overview, continued (cf. Example 7): approximation of logistic evaluation tree by a node histogram
tree with N = 5. A node vi with depth di in the underlying TET is represented by a di -dimensional
histogram whose dimensions correspond to the TET nodes on the path from the root to vi . In this example,
there are 6 values of the v2 node (highlighted in the figure) whose value paths fall into the first bin for the v0
component, and the last bin for the v1 and v2 components. Since all paths start with the same value (0.03)
in the first component, and end with a 1 in the last component, only a single one-dimensional slice in the
bottom 3-dimensional histogram is populated with nonzero counts (Color figure online)

Example 7 Figure 4 gives a graphical illustration of the NHT constructed from the
logistic evaluation tree Lβ(V (T (a))) depicted in Fig. 3d1. The counts contained in
the three histograms here allow for very intuitive explanations: the top histogram just
shows that the overall discriminant value for the entity a is very small, indicating that
the h-index of a is less than 3. The next histogram shows that 2 of a’s papers obtain
a high logistic value on the sub-TET (1), indicating that they have at least 3 citations
each, whereas 3 of a’s papers have fewer citations. The bottom histogram associated
with the leaf node cites(P ′, P) is 3-dimensional. However, since all value paths
end with a leaf value of 1, only the histogram slice corresponding to the maximal bin
in the 3rd dimension is populated with non-zero entries. The counts in this histogram
slice show: the 2 papers with at least 3 citations have a total citation count of 6, and
the 3 papers with less than 3 citations have a total citation count of 5.

5 NHTmetrics

We now proceed to define a metric on NHTs. There can obviously be many different
approaches for defining such a metric, and in the following we make a number of
design choices. We will not be able to prove for each such choice that it is the only
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possible or optimal one. However, they all are supported by a few overall design
objectives that we follow:

– Based on earth mover’s distance (EMD): the earth mover’s distance (see Rubner
et al. 1998) for a standard reference) is a well-established metric on histograms
representing discretized distributions of numerical quantities. Other metrics on
discrete probability distributions (e.g. χ2, Pearson or Bhattacharyya distances) or
generic distances on vectors (e.g. Euclidean or cosine distance) would not take
the similarity of values in nearby bins into account. EMD has proved extremely
effective in tasks like image retrieval (Datta et al. 2008) requiring distances between
quantized distributions. Therefore EMD is the canonical choice for measuring
distances between node histograms.

– Scale invariance: given two NHTs H1, H2: if H ′
1, H ′

2 are obtained by multiplying
all entries in all histograms of H1, H2 by a constant c, then we want to obtain
d(H1, H2) = d(H ′

1, H ′
2). In the context of count data, this seems more appropri-

ate than location invariance (defined as invariance under addition of a common
constant c): two authors who have written 1 and 10 papers, respectively, should be
more different than two authors with 101 and 110 authored papers, but may well
be considered just as different as two authors with 10 and 100 papers, respectively.

– Few parameters: the NHTmetric should depend only on a small number of tunable
parameters and work well under a simple default setting of these parameters. It
is the intention that different behaviors of the final metric can be implemented by
modifying the TET structure and the β weights of the logistic evaluation function.
Adding further tunable parameters to the definition of the NHT metric would to
some extent only duplicate capabilities we already have through the construction
of customized NHTs.

Our construction of the NHT metric has two parts: defining a metric between node
histograms of a common dimension, and combining these individual metrics into a
metric on NHTs.

5.1 Node histogrammetric

The first part is the more important one, as it is here where we have to incorporate the
EMD. EMD ismost naturally defined on histograms that have an equal total number of
counts (usually normalized to a probability distribution over the histogram bins). For
histograms with unequal total mass, the early definition given in Rubner et al. (1998)
does not lead to a proper metric. A modified definition of EMD for distributions with
unequal total mass has been proposed in Pele and Werman (2008) (similarly also
in Ljosa et al. 2006). The modification essentially consists of adding to the histogram
with lower total count a virtual bin that has a constant distance to all other bins, and is
assigned the difference of total counts in the two histograms. Then standard EMD is
applied to the two now equal-sized histograms. If the constant distance of the virtual
bin is at least 1/2 of the maximal distance between any of the original bins, then the
result is again a proper metric (Pele and Werman 2008). This existing approach for
dealing with histograms with unequal counts is not very well suited for our purpose,
since it does not lead to a scale-invariant measure, and in the case of histograms with
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widely different total counts (as often encountered in our applications), the differences
in total counts dominate the computed distance, which then becomes less sensitive to
the differences in the distributions over the histogram bins.

We therefore introduce a different approach for dealing with histograms of unequal
mass that leads to a proper scale-invariant metric, and that allows us to better calibrate
the contributions to the overall distance of differences in total counts, and differences
in the distributional patterns.

In the following, we use h to denote individual node histograms, and H to denote
NHTs. For a histogram h we denote with c(h) the sum of all cell counts in h. Let h1, h2
be two histograms of equal dimensions (i.e., h1, h2 have the same dimensionality, and
the same number of bins in each dimension). Then the relative count distance between
h1 and h2 is defined as:

dr-count(h1, h2) := 1 − min(c(h1), c(h2))√
c(h1) · c(h2)

. (4)

Equation (4) requires that c(h1) and c(h2) are both non-zero. To complete the
definition, we define dr-count(h1, h2) = 1 if exactly one of the c(hi ) is zero, and
dr-count(h1, h2) = 0 if both are zero.

Proposition 1 dr-count is a scale-invariant pseudo-metric with values in [0, 1].
A proof that dr-count is a pseudo-metric can be found in the appendix. It only is a

pseudo metric on histograms, because it is defined as a function of the count values
c(hi ), and obviously, two different histograms can have identical counts, and hence
zero dr-count distance. Seen as a function on the pairs of integers, c(h1), c(h2), dr-count

is a proper metric. The scale-invariance of dr-count is immediate.
Now let h̄ = h/c(h) be the probability distribution on histogram bins obtained by

normalizing h. The earth mover’s distance between these normalized histograms is
defined in terms of an underlying ground distance between histogram bins (Rubner
et al. 1998). We take the Manhattan metric as the ground distance, because this is a
very commonly used distance on histogram bins, and because it supports a computa-
tionally efficient approximation to the EMD that we will introduce in Sect. 5.3 below.
Note however that our exact formulation is generic and can be used with any ground
distance, provided an appropriate normalization is introduced. Indeed, learning the
ground distance matrix from examples (Cuturi and Avis 2014) is a promising direc-
tion for future research, as will be discussed in the conclusion of the paper. To ensure a
common scale for all EMDs, regardless of the dimensionality (D) and granularity (N)
of the histograms involved, we divide the rawManhattan distance by D(N −1), so that
all distances between histogram bins fall into the interval [0, 1]. The EMD distance
demd(h̄1, h̄2) between two normalized histograms then is defined (and computed) as
the solution of a linear program in M2 variables, where M is the number of bins in
each histogram.

Combining the count and the EMD distances via a simple mixture construction, we
define:

dc-emd(h1, h2) := 1

2
(dr-count(h1, h2) + demd(h̄1, h̄2)) (5)
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This definition gives equal weight to the dr-count and demd components. Obviously, the
mixture weights for these two components could be turned into an adjustable param-
eter. However, following our “few parameters” objective, for now we only consider
equal weights (except that in the experimental section we will also consider the two
extreme scenarios of giving all weight to either dr-count or demd).

Proposition 2 dc-emd is a scale-invariant metric with values in [0, 1].
This proposition follows from Proposition 1, the fact that demd on normalized his-

tograms is a proper metric, and the observation that if h1 �= h2 then c(h1) �= c(h2), in
which case dr-count(h1, h2) > 0, or h̄1 �= h̄2, in which case demd(h̄1, h̄2) > 0. Thus,
dc-emd is a metric, even though its components only are pseudo-metrics.

5.2 Histogram treemetric

As the last step we have to combine the node histogram metrics into an overall metric
on histogram trees. This will again simply be amixture construction, but with a slightly
more elaborate construction of mixture coefficients.

Consider two NHTs H1, H2 obtained as approximations of logistic evaluation trees
Lβ(V (T (e1))) and Lβ(V (T (e2))) for entities e1 and e2. Since both trees are derived
from the same underlying TET T with nodes (v1, . . . , vk), they have identical struc-
ture, and consist of node histograms (h1,1, . . . , h1,k) and (h2,1, . . . , h2,k). A plain
summation of per-node histogram distances dc-emd(h1,i , h2,i ) (1 ≤ i ≤ k) would
imply that branches with many children tend to dominate the overall distance. This is
not desirable, especially given that node histograms of the children of a node to some
extent duplicate the information it contains (cf. Example 6). In order to prevent this
effect, we scale dc-emd(h1,i , h2,i ) by a factor 1/si , where si is the number of siblings
of vi in T .1 This leads to the following definition of a metric between NHTs, which
we also denote as dc-emd:

dc-emd(H1, H2) :=
k∑

i=1

1

si
dc-emd(h1,i , h2,i ). (6)

Proposition 3 dc-emd is a scale-invariant metric on node histogram trees.

5.3 Marginal EMD

The computation of dc-emd(H1, H2) with Hi = (hi,1, . . . , hi,k) requires the compu-
tation of k EMDs. For a pair of node histograms the computation of demd(h̄1, j , h̄2, j )

consists of a linear optimization problem in M2 variables, with M the number of bins
in the histograms. Assuming a fixed granularity of N bins in each dimension, this
computation becomes exponential in the dimensionality of node histograms.

In contrast, EMD for 1-dimensional histograms w.r.t. Manhattan distance can be
computed without the use of linear optimization simply by summing over the absolute

1 Preliminary experiments showed that a plain summation indeed achieves poor performance on TETs
where different branches have very different number of children.
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difference of the cumulative distribution function (Chan et al. 2007): for normalized 1-
dimensional histogram h̄1, h̄2 with N cells and cell values h̄i (1), . . . , h̄i (N ) (i = 1, 2),
define the cumulative cell counts fi (k) := ∑k

j=1 hi ( j) (k = 1, . . . , N ; i = 1, 2).
Then

demd(h̄1, h̄2) =
N∑

k=1

| f1(k) − f2(k)|. (7)

We can approximate demd(h̄1, h̄2) by considering the 1 - dimensional marginals of
the h̄i as follows: for a D-dimensional normalized histogram h̄ with N bins in each
dimension, and 1 ≤ k ≤ D let h̄↓k denote the marginal of h̄ in the kth dimension, i.e.,
h̄↓k is the 1-dimensional histogram whose count in the j th bin is the sum of all counts
in h̄ over bins with index j in the kth dimension. For a two-dimensional histogram,
for instance, this corresponds to computing row and column sums.

We then define the marginal EMD distance between h̄1, h̄2 as

dmemd(h̄1, h̄2) :=
D∑

k=1

demd(h̄
↓k
1 , h̄↓k

2 ). (8)

Proposition 4 dmemd is a pseudo-metric with dmemd ≤ demd.

It should be emphasized that the inequality dmemd ≤ demd depends on our use of the
Manhattan distance as the underlying metric in the EMD definition. For other metrics
on histogram bins, this inequality need not hold.

Example 8 Figure 5 shows three 2-dimensional, normalized histograms h̄1, h̄2, h̄3,
together with their 1-dimensional marginals. The pairwise distances between the his-
tograms according to demd and dmemd are shown by the labels on the blue (solid),
respectively green (dashed) edges. Since h̄1 and h̄3 have identical marginals, their
dmemd is zero. In all cases dmemd ≤ demd with equality for the pair h̄2, h̄3.

We next investigate under which condition the equality dmemd = demd holds. The
following is a very natural definition that basically just expresses stochastic indepen-
dence in histogram terms.

Definition 6 A histogram h is a product histogram, if the entries of h are given by
the product of its marginals, i.e., for a bin with indices i = (i1, . . . , iD): h(i) =∏D

k=1 h↓k(ik).

In Example 8, histograms h̄2 and h̄3 are both product histograms.

Proposition 5 If h̄1, h̄2 are product histograms, then dmemd(h̄1, h̄2) = demd(h̄1, h̄2).

The condition of being a product histogram may appear rather strong. How-
ever, there is a special case of product histograms that in our context is quite
important, and which is exemplified by h̄2 in Example 8: we call a D-dimensional
histogram h concentrated in a 1-dimensional slice if there exists 1 ≤ k ≤ D,
and indices i1, . . . , ik−1, ik+1, . . . , iD , such that h(i) �= 0 only for i of the form
i = (i1, . . . , ik−1, j, ik+1, . . . , iD) for j = 1, . . . , N . When h is concentrated in a
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Fig. 5 2-dimensional histograms with their 1-dimensional marginals and pairwise demd (blue, solid arrows)
and dmemd (green, dashed arrows) distances (Color figure online)

1-dimensional slice, then h is a product histogram. Thus, when comparing histograms
that are concentrated in 1-dimensional slices, dmemd is the same as demd. Note that it
is not required that the two histograms whose distance we measure are concentrated
in the same 1-dimensional slice.

The reason that concentration in 1-dimensional slices is encountered quite fre-
quently in our node histograms, is that the value paths represented by a given histogram
all start with the same (root) value, and in case of leaf nodes, all end with the value
1. This implies that all 2-dimensional node histograms associated with nodes at the
second level of the TET are necessarily concentrated in 1 dimension, as are those 3-
dimensional node histograms at the third level that correspond to leaf nodes. Figure 4
illustrates this for our bibliometric TET. Generally, every TET that has height at most
3 only generates node histograms that are concentrated in a 1-dimensional slice.

5.4 Baseline count distance

In the preceding sections we have introduced a quite sophisticated metric that starts
with the underlying counts-of-counts feature represented by the TET value γ , applies
the customizable feature transformation through the logistic evaluation function, and
then uses a combination of count based and distribution based metrics on the his-
togram representations of the resulting logistic value paths. In this section we define a
somewhat simpler baseline metric for comparison in our experiments. The baseline is
just the Euclidean distance on the marginal count values of all node histograms: using
the notation from the previous sections, and in analogy to (4) and (6) define:

db-count(h1, h2) := (c(h1) − c(h2))
2 (9)

123



Counts-of-counts similarity for prediction and search in relational data 1271

db-count(H1, H2) :=
√√√√ k∑

i=1

db-count(h1,i , h2,i ) (10)

Note that even though for convenience we here define the db-count metric via the
node histograms, it is in fact independent of the distribution of counts over the bins
in the histogram, and thereby does not depend on the logistic evaluation function that
induces this distribution. Moreover, db-count disregards the nested counts-of-counts
structure represented in the underlying TET value γ , and only considers “flat” counts.
Based on our bibliometric TET of Fig. 2a, the db-count distance between two authors
a1, a2 is just the Euclidean distance between the vectors (#p1, #c1) and (#p2, #c2),
where #pi stands for the total number of papers of author ai , and #ci for the total
number of citations received by ai . In contrast to the scale-invariance of dc-emd, we
have that db-count is location invariant.

6 Metric tree retrieval

Having defined a metric over NHTs, we are now interested in efficient nearest
neighbor retrieval according to that metric. There is a large body of literature on
efficient exact and approximate nearest-neighbor search, mostly relying on tree-
decomposition (Clarkson 2006) or locality-sensitive-hashing (Wang et al. 2014, 2017)
methods. The vast majority of hashing-based approaches is conceived for Euclidean
spaces (Wang et al. 2014), as designing hash functionswith locality guarantees for non-
standard distances is a hard task. In this paper we rely on a simple metric tree (MT)
structure based on generalized hyperplane decomposition (Uhlmann 1991). Albeit
simple, this solution proved very effective in practice, as shown by our experimental
evaluation. For the type of applications that we have in mind, it will usually not be
imperative that exact nearest neighbors are retrieved. For k-nearest-neighbor predic-
tion, for example, the prediction accuracy will not usually suffer much when k very
close neighbors are used, rather than the exact k nearest neighbors. In information
retrieval scenarios, k very good matches for the query will often be as useful as the k
best matches (noting that the underlying precise distance measure can only approxi-
mately represent user’s preferences to begin with). The procedures for building and
searching MTs are briefly reviewed in “Appendix B”.

7 Related work

Our work is primarily related to other approaches for measuring node similarity in
graphs, and information retrieval and node classification in graph data in a broader
sense. It is also related to previous work on approximating EMD.

Information retrieval from graph data is often framed as the problem of finding for a
given query graph an approximately matching sub-graph in the data graph (Tong et al.
2007; Khan et al. 2011; Mottin et al. 2014). The similarity between query graph and
sub-graph sometimes is defined in terms of pairwise similarities between the nodes
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of the two graphs (Khan et al. 2011). In all these approaches one compares the query
graph only with the sub-graph identified by the matching. Connections of nodes in
this sub-graph to other nodes in the data graph not involved in the matching are not
considered. Thus, a node with a low degree in the query graph can be matched with a
high-degree node in the data graph, without incurring any penalty for their similarity
score. This is in sharp contrast to ourmetric dc-emd, which is based on a full quantitative
evaluation of the nodes’ neighborhoods.

When considering measures for the (dis-)similarity of nodes, one has to carefully
distinguish between measures that define similarity in terms of proximity and con-
nectivity in the graph, and measures based on local structural similarity which do not
require any connectivity for two nodes to be considered similar. Our approach, as well
as node similarity measures used in the context of approximate query graph matching
fall into the second category, and therefore are fundamentally different from, e.g.,
the works of Jeh and Widom (2002), Sun et al. (2011), or Liu et al. (2017), where
similarity is induced by the existence of (short) paths connecting the nodes.

Numerous paradigms exist for defining embeddings that map nodes into a D-
dimensional Euclidean space, where then similarity can be measured by standard
metrics. Such paradigms can be based on probabilistic (Hoff 2009), matrix factoriza-
tion (Newman 2006), or neural network models (Grover and Leskovec 2016). These
approaches share with ours the two stage process of defining node feature vectors
(formally, one could view our node histogram trees as vectors in Euclidean space), on
which then a metric is defined. However, all these embedding approaches are again
fundamentally different from ours in that similarity of feature vectors still is mostly
determined by proximity in the graph. When using such feature vectors as predictors
in node classification problems, one can exploit homophily properties, i.e., the ten-
dency of neighboring nodes to share the same (class) attributes. However, when the
node class does not exhibit homophily, then this type of feature vector will yield poor
predictors.

For node classification in the absence of homophily several approaches developed
in the field of statistical relational learning can be used (Knobbe et al. 1999; Neville
et al. 2003; Assche et al. 2006; Richardson and Domingos 2006). These frameworks
typically extend classic machine learning models such as decision trees to operate on
features extracted from relational neighborhoods. Most similar in spirit to our counts-
of-counts features are perhaps complex aggregate features as considered in Assche
et al. (2006), Vens et al. (2014). These approaches do not define similarity measures
on graph entities, and therefore can not be used for information retrieval tasks.

Similarity-based node classification is mostly treated as a graph classification prob-
lem, applied to a node’s relational k-hop neighborhood or “ego graph”. Thus, in
Yanardag and Vishwanathan (2015), for instance, individual researchers in physics are
classified according to their particular research fields by classifying their ego graphs
in a collaboration network. This is comparable to our approach, in that a node’s TET
value also is derived from its relational neighborhood. However, the graph kernels that
are used in Yanardag and Vishwanathan (2015) and many other approaches (Leicht
et al. 2006; Shervashidze et al. 2011; Neumann et al. 2016) to measure the similar-
ity of (neighborhood) graphs differ from TET-based node similarity measures in that
they do not allow identification of a central node of interest, and similarities of nodes
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is only indirectly obtained as an aggregate of similarities between all the nodes or
sub-structures in their neighborhood graphs.

Most similar in spirit to TET-based similarities are perhaps the Weisfeiler-Lehman
(W-L) Graph Kernels (Shervashidze et al. 2011) which measure similarities between
labeled graphs (i.e., graphs that are equipped with a single node attribute). In an
iterative process, nodes are re-labeled with the multiset of labels of their neighbors.
In the course of several iterations, this implicitly leads to nested multisets of labels
that indirectly encode counts-of-counts statistics. However, W-L graph kernels lack a
graded concept of similarity for these nestedmultiset structures. TheW-L graph kernel
only is based on testing equality of the label multisets. Our experimental evaluation
will show that this limitation produces a substantial reduction of performance with
respect to TET-based similarity in nearest-neighbor based prediction.

We note that while in the present paper we use TETs and logistic evaluation func-
tions to define structure-based similarity, we have in our previous work (Jaeger et al.
2013) also exploited TETs to construct connectivity-based similarity scores: this can
be done using TETs with two free variables, such that a discriminant function score
f (V (T (e1, e2))) defined on a single TET value can be directly used as a similarity
measure for two entities e1, e2. In Jaeger et al. (2013) this approach was used to solve
the entity resolution problem on the CORA dataset, where binary TETs for pairs of
bibliographic records were learned in order to predict whether the two records actu-
ally referred to the same paper. This requires mostly connectivity-based similarity, for
example based on the number of shared words in the title fields of the two records.

Our approach to approximating EMD on high-dimensional histograms as a sum
of marginal EMDs is related to earlier work on obtaining lower bound approxima-
tions for high-dimensional EMD problems by dimensionality reductions via certain
marginalization operations (Ljosa et al. 2006; Wichterich et al. 2008). These earlier
approaches were not specifically designed for EMD on histograms, and therefore did
not exploit the very easy EMD computation for one-dimensional histograms, which
is the cornerstone of our approach.

8 Experiments

We performed a number of experiments to investigate the usefulness of our metrics,
and the quality and efficiency of nearest neighbor retrieval when facillitated by the
MEMD approximation, and the MT data structure.

8.1 Data and experimental setup

8.1.1 Bibliometrics

Ourfirst application domain is bibliometrics.Weemployed theAMiner dataset,2 which
consists of a citation network comprising a total of 1,712,433 authors, 2,092,356 papers
and 8,024,869 citations. From this large dataset, we extracted the 103,658 authors with

2 https://aminer.org/aminernetwork.
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h-index > 2, where the h-index (or Hirsch index) of an author is defined as the largest
number h of papers having received at least h citations each.

We defined two TETs: the one shown in Fig. 2a, representing the basic counts-of-
counts citation statistics for an author, and a second one shown in Fig. 8a, representing
publication statistics of co-authors of a given author. The second TET has depth >3,
so that it induces histogram trees for which demd and dmemd can differ.

8.1.2 IMDb

The second application domain we considered is the Internet Movie Database
(IMDb).3 We collected the version dated February 17, 2017, from which we extracted
tables regarding movies, genres, actors, and business. We built a dataset of 246,285
movies (those having at least one genre attribute), and considered 9,601 actors (those
appearing in more than 20 of those movies). Based on an actor’s billing position
in the movie’s credits we constructed actor-movie relations lead(a, m) if actor a
appears in billing position 1 or 2 of movie m, and support(a, m) if a’s billing
position is greater than 2. Furthermore, we use a generic role(a, m) relation when
a appears in m, whether or not billing information is available. As for the business
information, we assigned each movie having budget information to one of three cat-
egories: large_budget(m) contains movies with a budget in the top 3% within
their decade, medium_budget contains the next 20% of most expensive movies,
and small_budget the remaining movies.

8.1.3 TET parameters

All our experiments require the specification of a TET, and a weight assignment for a
logistic evaluation function. For the experiments in this paper all TET structures are
manually defined (we have shown in Jaeger et al. 2013) how to learn TET structures
in the context of specific supervised learning problems). For the parameter setting we
employ three different methods:

Default: all “bias” parametersβ0 are set to 0, and all “weight” parametersβ1, . . . , βm

are set to 1.

Manual: we set weights manually in such a way that logistic evaluations for different
examples at all TET nodes are spread over the whole available interval [0, 1], and not
clustered at one of the saturation points 0 or 1 of the sigmoid function. In this way
we obtain a more fine-grained input for the dc-emd and dc-memd metrics with counts
distributed over a wide range of histogram bins, rather than being concentrated at the
extreme ends of histograms. While the heuristics we use to find these manual settings
could be made quite formal and even automated, we do not pursue this in greater depth
for this paper, since in future work we plan to rather pursue a metric learning approach
to supersede this heuristic approach.

3 http://www.imdb.com/.
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Learned: we learn parameters according to a given supervised learning objective as
described in Sect. 3.1. The learning objective can be a classification task, in which case
we use cross entropy as the loss function, or a regression task, in which case we use
mean squared error loss. We have implemented ADAM (Kingma and Ba 2015) as the
stochastic gradient descent technique, setting the maximum number of iterations to
200 and performing 20 random restarts, keeping 10% of the training set for validation.

8.1.4 Methods used

We are considering a number of different methods for prediction and retrieval.
Table 1 gives an overview of methods and notation. The different weight assignments
discussed in the preceding section are summarized in the first block of Table 1. The
second block summarizes the different distance metrics we have introduced. The last
two of these (BCOUNT and WL-GK) are baselines that do not use TETs. Then C-
MEMD+MT (man), for example, stands for themethodwherewe use nearest-neighbor
prediction based on the dc-emd metric induced by a TETwithmanual parameter setting,
and using a metric tree for approximate nearest-neighbor retrieval. C-MEMD (man) is
the same, but nearest neighbors are found by exhaustive search over all training exam-
ples. We also consider alternativemethods where only the logistic evaluation function
value lβ(γ ) is directly used for prediction. In classification settings we then classify
an example as positive if lβ(γ ) > 0.5, and in regression settings we use lβ(γ ) directly
as the estimate. Clearly, these methods are most naturally combined with parameter
learning under the corresponding objective, giving us CLA (l-cla) and REGR (l-mse).
However, some other combinations are also included in the experiments.

8.1.5 Experimental setup

In our experiments we are retrieving nearest neighbors for certain test entities from
a given training dataset. For the AMiner dataset, we split our whole set of 103,658
authors into 2/3 (69,106) for training, and 1/3 (34,552) for testing. For IMDb, we
manually selected 50 different test actors, optimizing for diversity in the test set, while
preferring better known actors in order to improve interpretability of the retrieval
results. The remaining 9,551 actors constituted the training set. For all the experiments,
we used N = 5 as the number of histogram bins. For the MT, we used dmax =
12 as the maximum tree depth, and nmax = 30 as the maximal bucket size (see
“Appendix B”). We run experiments on a server with Intel Xeon E5-2640 v4 2.4GHz
with 128GB of RAM. For earth mover’s distance, we employed the FastEMD Java
implementation.4 The source code of our implementation is freely available at https://
github.com/andreapasserini/TET.

8.2 Efficiency of MEMD andMT approximations

In a first set of experiments, we assess the benefits of the MEMD and MT approxima-
tions for retrieval efficiency, both individually, and in combination. We considered the

4 https://github.com/dkoslicki/EMDeBruijn/tree/master/FastEMD/java.
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problem of retrieving nearest neighbors for each of the four data/TET combinations
described in Sect. 8.1, using C-MEMD and C-EMD distances, with or without the use
of the MT. Parameters were set manually for these experiments.

Table 2 reports in the first eight columns the average time (t) per test case for
retrieving the nearest neighbor, and the average total number of comparisons per
test case (nc). Comparing the time measurements for C-EMD vs. C-MEMD shows a
reduction of 2–4 orders of magnitude due to the use of the MEMD approximation.
Comparing the time and nc values for the versions with and without the MT data
structure shows a significant gain from the use of MTs. We also investigated how
balanced the constructed MTs turn out to be. For each internal node of anMTwe have
recorded the split ratio (size of the smaller of the two subsets into which the data is
split, divided by the size of the larger subset). For each of the eight MTs constructed
in this experiment, the split ratio averaged over all its nodes was between 0.4 and 0.5,
showing that a typical split in the construction has a ratio of about 2:1. This indicates
a robust tendency for fairly balanced splits, and an expected exponential reduction
in the number of required comparisons from the use of MTs. Jointly, the MEMD
approximation and the MT data structure lead to a retrieval time of 1ms or less for the
nearest neighbor of a test example. The following two columns of Table 2 show the
times needed for the construction of the MTs. Due to the many distance computations
involved in the construction, building aMT based on C-MEMD is orders of magnitude
faster than based on C-EMD. However, in both cases, first the TET values and NHTs
for all training cases have to be computed. The time required for this is given in the
last column, and turns out to be the same order of magnitude as the C-EMD-basedMT
construction. Therefore, the advantage of MEMD over EMD is mostly with regard to
retrieval cost, and less with respect to MT construction.

In summary, we find that both the MEMD and the MT approximations lead to
speedups of several orders of magnitude in nearest neighbor retrieval. However, due to
the cost of the always required initial node histogram tree computations, these speedups
will mostly make a difference when amortized over many retrieval operations for a
fixed dataset and MT.

8.3 Effectiveness of C-MEMDmetric for prediction and retrieval

In this section we test the effectiveness of C-MEMD based nearest neighbor compu-
tations for a range of supervised learning and data retrieval tasks. Before we consider
specific tasks, we first investigate in the following subsection how good an approxi-
mation C-MEMD+MT is of the “gold standard” retrieval method C-EMD.

8.3.1 Quality of MEMD andMT approximation

In Sect. 8.2 we found that the MEMD andMT approximations lead to very significant
improvements in retrieval speed. We now evaluate how well the nearest neighbors
obtained under these approximations correspond to the nearest neighbors found with-
out approximation techniques, i.e., C-EMD.
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We measure the quality of the retrieved (approximate) nearest neighbors with two
metrics: Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen
2000) to compare the rankings defined by sorted lists of nearest neighbors, andAverage
Ratio Error (ARE) (Arya et al. 1998) to compare the actual distances to the test entity
of true and retrieved nearest neighbors. Given a ranking of k elements defined by the
sorted list of approximate nearest neighbors, DCG is defined as:

DCGk =
k∑

i=1

πi

log2(i + 1)

where πi is a relevance measure of the i-th element in the ranking, which we simply
define as the reciprocal of the position of this element in the true ranking. For example,
if the k = 3 nearest neighbors retrieved by an approximate method are the 3rd, 4th
and 7th element in the true ranking, then we will have DCG3 = (1/3)/ log2(2) +
(1/4)/ log2(3)+(1/7)/ log2(4) = 0.562. This metric is typically normalized to range
between 0 and 1, and then called NDCG. Our 3/4/7 example would have an NDCG
of 0.380. To define ARE, let dB be the distance of the true nearest neighbor to a test
example, and dp the distance of the returned approximate nearest neighbor. Then ARE

is dp−dB
dB

averaged over all test examples. Parameters were again set manually for these
experiments.

First we want to assess the impact of the approximations introduced by using
C-MEMD instead of C-EMD, without the use of MTs. Among our four data/TET
combinations, only the co-author TET for the AMiner data can produce histograms
where MEMD and EMD differ, so we can only use this setting for this experiment.
Since we compare two different metrics, only NDCG is a meaningful error measure.
For 50 randomly selected test authors we retrieve the 3 nearest neighbors according
to C-MEMD from among the full set of 69,106 training authors, and determine their
positions in the “true” ranking defined by C-EMD. We obtain an average NDCG3
value of 0.955, indicating a near perfect approximation of C-EMD via C-MEMD.

From now on we focus on C-MEMD, and next consider the loss of retrieval accu-
racy induced by the use of the MT data structue, i.e., we compare C-MEMD against
C-MEMD+MT. Table 3 reports the NDCG and ARE error measures for the 4 differ-
ent data/TET combinations. The average NDCG scores are consistently very good,
indicating that a typical retrieval result is at least as good as returning the 2nd/3rd/4th
true nearest neighbors (which would correspond to an NDCG of 0.563). The ARE
values, in comparison, appear relatively high, corresponding in 3 out of 4 settings
to an average 10–20% larger distance of the returned than the true nearest neighbor.
Note, however, that the ratio error for a single example is not bounded by 1, so that
the averages here can be greatly influenced by outliers.

In summary, we find that the nearest neighbors found with C-MEMD+MT approxi-
mate the C-EMD nearest neighbors very well. For the MEMD approximation this was
already partly known from Proposition 5, which implies that for most of our settings
the MEMD approximation is exact.
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Table 3 Retrieval accuracy of
nearest neighbors of
C-MEMD+MT with respect to
C-MEMD

TET NDCG ARE

AMiner author 0.72 0.08

AMiner coauthor 0.63 0.22

IMDb genre 0.51 0.14

IMDb business 0.65 0.21

8.3.2 Classification and regression

We next evaluate our metrics and nearest neighour retrieval in predictive tasks.
Classification Following our earlier work (Jaeger et al. 2013) we first consider the

binary classification task of predictingwhether an author has an h-index greater than 7,
using the citation TET of Fig. 2a with different methods for setting its weights. For this
task the manually defined weights are set to approximate a step function going from
near 0 at x = 7 to near 1 at x = 8 (instead of following the general heuristic described
in Sect. 8.1.3 formanualweight setting), thus allowing to achieve perfect classification.
We performed for the test authors a k-nearest neighbor prediction based on the k = 10
nearest neighbors in the training set, retrieved by C-MEMD+MT. We compare this
approach to several alternatives. Some of these alternatives do not scale to our full
dataset, and we therefore perform some experiments on a reduced dataset containing
10,000 authors for training, and1000 authors for testing.Ourfirst comparison is against
C-MEMD to assess the impact of the MT approximation on the prediction accuracy.
The second comparison is against nearest-neighbor prediction,when nearest neighbors
are determined based on similarity defined by the W-L graph kernel (WL-GK). The
W-L graph kernel expects graphs with a single node attribute and single undirected
edges between node pairs. In order to match this format, we represented the relational
neighborhood information of an author entity that our citation TET exploits as an
undirected graph with nodes representing ground atoms, atom types as node labels
and edges connecting ground atoms according to the TET structure (see Fig. 1 for
examples from the IMDb domain, with node colours representing atom types). The
TET based similarity dc-memd and the W-L kernel based similarity are thus based on
the same selection of raw relational data. We used a publicly available graph kernel
implementation5 for this experiment. We set the number of iterations parameter to 1,
which we found to give the best results. Our third comparison is with the baseline
count metric described in Sect. 5.4. We ran this baseline using both exhaustive nearest
neighbor search (BCOUNT) and metric tree approximation (BCOUNT+MT).

Figure 6 (left) reports classification accuracy of the methods we tested on the
reduced dataset. Thefirst relevant insight is that there is basically no difference between
results of the dc-memd metric using exhaustive or approximate neighbor search. Com-
paring different weight settings, we see that manually adjusted weights give rise to
perfect classification, and that parameter learning finds nearly optimal parameters,
substantially better than default ones. Competitors lag clearly behind. The WL-GK
is performing the worst, most likely because its aggregation strategy fails to compute

5 https://github.com/mahito-sugiyama/graph-kernels.
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Fig. 6 Results on the bibliometrics classification task. We compare the accuracy of the considered methods
on the reduced data set (left) and on the full data set (right). See Table 1 for a definition of the different
methods being compared (note for viewing the figure in a B/W rendering: the top-to-bottom ordering of
the methods in the key corresponds to the left-to-right ordering of the result bars) (Color figure online)

the relevant counts-of-counts statistics. The BCOUNT baselines do a reasonable job,
but are substantially outperformed by the dc-memd metric with an appropriate weight
setting (manual or learned).

Figure 6 (right) reports the results of a second set of experiments where we
use the whole training/test split described in Sect. 8.1.5. In this case we compare
C-MEMD+MTwith different weight settings against three alternatives. The first alter-
native is given by the same count baselines used in the experiments with the reduced
dataset. Results are also very similar,6 with count baselines achieving the same accu-
racy as in the reduced dataset. The second alternative consists of simplified versions of
the metric in which only the counting component (RCOUNT+MT) or only the memd
component (MEMD+MT) is used. In both cases, results are substantially worse than
those achieved with the combined metric, confirming the need for considering both
aspects of the similarity.

Results achieved with the direct classification model CLA and parameter settings
(man) and (l-cla) are very similar to those achieved with nearest-neighbor classifica-
tion. Both of these parameter settings are optimized for using the logistic evaluation
function as a discriminant in this classification task. Under the (def) parameter setting
the logistic evaluation always is≥ 0.5, and therefore CLA (def) classifies all examples
as positive, leading to an accuracy of only 14.2. It is noteworthy that even under this
parameter setting the similarity based method C-MEMD+MT (def) performs reason-
ably well, indicating some robustness of the approach with respect to the parameter
values.

To summarize, the main insights from the classification experiment are:

– The C-MEMDmetric is expressive enough to capture under a suitable parameter-
ization β the concept h-idx > 7 precisely.

– The classification performance of the metric is quite robust under changes of the
parameterization

– Supervised parameter learning under a classification loss function here finds
parameters that lead to high classification accuracy, both in the direct classification
setting (CLA), and in conjunction with C-MEMD nearest neighbor prediction.

6 Note that a classification accuracy of 99.9% corresponds to F1 = 99.9, far higher than the one we achieved
in Jaeger et al. (2013) for the same task (on another data set) with discriminant function and nearest neighbor
retrieval.
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– The counts-of-counts based C-MEMD metric outperforms the flat count metric
BCOUNT, where the margin of difference varies with how well the C-MEMD
parameters are optimized.

Regression We then addressed a regression task, where the goal is to exactly predict
some bibliometric index of an author. We employed h, g, e, and i10 indices (Hirsch
2005; Egghe 2006; Zhang 2009) to investigate the capability of our metric to represent
relevant similarity for a broader range of prediction tasks.As before,we use the citation
TET of Fig. 2a, with different methods for setting its parameters. Note that in the l-mse
weight setting, distinct parameters are learned for each index to be predicted. In the
nearest neighbor based approaches, we predict each bibliometric index by the average
value of the index in the 10 nearest neighbors. We compare this approach with the
same alternatives used for the classification task, both in the reduced and full dataset
settings.

Figure 7 (top) reports the root mean squared error (RMSE) of the methods we
tested on the reduced dataset. A comparison of the performances of C-MEMD and
C-MEMD+MT shows that for this more complex task, the MT approximation does
produce some performance degradation, albeit differences are rather limited. In terms
of weight settings, manual parameters again achieve the best results, and learned
weights are very competitive, with almost undistinguishable results in the exact search
case. In general, the metric is robust with respect to the choice of parameters, as the
default weight setting is also quite competitive. In terms of alternative methods, again
the WL-GK is performing the worst, and the BCOUNT baselines do a reasonable job
but are outperformed by C-MEMD, especially when combined with exact search.

Figure 7 (bottom) reports the root mean squared error (RMSE) of the methods we
tested on the full dataset. In this casewe compare C-MEMD+MTwith different weight
settings againts three alternatives. The first alternative is given by the the same count
baselines used in the experiments with the reduced dataset. Results are also similar,
as C-MEMD+MT with manual parameters outperforms the baselines in all but the
e-idx prediction (where they perform the same). The second alternative consists of the
same simplified versions of the metric used for the classification case. As in that case,
the counting and MEMD components of the metric alone give rise to substantially
inferior performance than those achieved with the combined metric. With the direct
regression approach REGR we only obtain competitive results with the l-mse weight
setting, which substantially outperforms both manual and default parameter settings.
This shows the feasibility ofweight learning by backpropagation.However, even under
this optimized setting of the weights, the performance of REGR is substantially worse
thanwhat we obtain from similarity-based nearest neighbor regression. To summarize,
the main insights from the regression experiment are:

– C-MEMD+MT gives competitive results for all three weight setting approaches,
demonstrating a certain robustness of C-MEMD based prediction under variations
of the weights.

– Similarity-based nearest-neighbor prediction (C-MEMD and BCOUNT) greatly
outperforms direct regression (REGR).
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Fig. 7 Results on the bibliometrics regression task. We compare the RMSE of the considered competitors
on the reduced data set (top) and on the full data set (bottom). See Table 1 for a definition of the different
methods being compared (note for viewing the figure in a B/W rendering: the top-to-bottom ordering of
the methods in the key corresponds to the left-to-right ordering of the result bars) (Color figure online)

– The strong results of C-MEMD+MT under the manual weight setting is evidence
for a potential of further improvements that could be obtained by weight optimiza-
tion using a metric learning (rather than regression) approach.

8.3.3 Retrieval

In this section we present qualitative and quantitative results about the TET frame-
work’s ability to support different similarity concepts that reflect different information
retrieval objectives. Compared to supervised learning tasks as considered in the pre-
vious section, retrieval tasks are much more difficult to evaluate, as there is no simple
ground truth against which one can assess the results. The experiments and evaluations
we present in this section, therefore, partly rely on intuitive judgement, rather than
numeric performance scores.
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Fig. 8 TETs used for AMiner (a) and IMDb data (b, c)

For our retrieval experiments we use the IMDb data. Figure 8b and c shows two
TETs representing an actor’s “genre profile” (b), and “business profile” (c), respec-
tively. For the genre TET (b) we included the 20 most frequent genre labels in the
dataset (the complete list can be seen in Fig. 11).

For both TETs we use a manual weight setting as described in Sect. 8.1.3. For each
of our 50 test actors (cf. Sect. 8.1.5) we retrieved the nearest neighbors according to
the genre and the business TET. We use C-MEMD+MT for retrieval, which means
that there is a certain amount of randomness in the result due to the random elements
in the MT construction. Indeed, we observe some variations in the outcomes, when
re-running the experiment with different random seeds.

The result for test actor Humphrey Bogart is illustrated in Fig. 1 and was already
discussed in Sect. 1. We here remark that the nearest neighbors shown in Fig. 1
were retrieved using the MT data structure, and therefore cannot be guaranteed to be
the precise nearest neighbors. However, as the distance values included in the figure
show, the ranking we obtain is correct: Graham really is closer to Bogart than Curtis
if looking at genres only, while the opposite holds for business similarity. Figure 9
gives the graphical representation for Stan Laurel as the test actor. Not surprisingly,
Oliver Hardy here comes out as a very close neighbor both in terms of business and
genre similarity, but on the latter criterion Hardy is narrowly beaten by Billy Franey
(1889–1940). Franey also often appeared in leading roles, and visually there are no
clear differences between either the genre, or the business feature graphs for all of
these three actors.

Table 4 shows retrieved nearest genre and business neighbors for 5 selected test
actors (the results for all 50 test actors can be found in the appendix). In almost all
cases the nearest business and genre neighbors are distinct.

Recasting We next consider a task where an objective evaluation criterion can
be defined. Named “recasting”, this task is designed as follows: the IMDb website7

lists cases where an actor turned down a role in a major movie, and also states which
other actor subsequently filled that role. We can view this as a retrieval problem for a

7 https://www.imdb.com/poll/p0HuVFrAcR4/.
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Stan Laurel Billy Franey

0.382000

0.291539

Oliver Hardy

0.384518

0.115908

Fig. 9 Stan Laurel’s nearest neighbors (Color figure online)

Table 4 Nearest genre and
business neighbors

Test actor NN genre NN business

Humphrey Bogart Eddie Graham Tony Curtis

Stan Laurel Billy Franey Oliver Hardy

Joseph Stalin Jimmy Carter Tom Herbert

Muhammad Ali John Kerry Justin Ferrari

Kirk Douglas Eli Wallach Burt Lancaster

director or casting agent: find for the initially chosen actor (the query actor) a similar
replacement actor. We denote as target actor the actor that ultimately played the role.
The IMDb website lists a total of 20 of such query/target pairs of male actors. We
omit from our experiments one pair that relates to the casting of a role in a TV series,
rather than a movie, and another pair for which one of the actors is not included in our
preliminary list of 9,601 actors (see Sect. 8.1.2).

The replacement for a query actor will usually match that query actor both with
respect to the type ofmovies they usually perform in, aswell aswith respect to commer-
cial aspects as represented by our business TET. To retrieve replacement candidates,
we therefore construct a TET that simply joins the two TETs of Fig. 8b and c as two
sub-trees under a new root with a vacuous label true. Since candidate replacement
actors should be active in the same time period as the query actor, we need to consider
only movies in a time interval immediately preceding the release date of the query
movie. This can be done by adding a temporal feature to the TET as follows: when
recasting a role in a movie that was released in year yyyy, we add to each node that first
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mentions a movie entity M just introduced by an edge label the additional constraint
that M was released between yyyy-21 and yyyy-1. Thus, for example, when searching
for a replacement actor for Al Pacino in “The Usual Suspects”, which was released in
1995, the first branch of the business sub-TET will be modified as

M−→ lead(A, M),produced_in(M, [1974, 1994]) −→ . . .

Note that while for our experiment this means that we have to construct a customized
TET for each query, this reflects a real-world scenario where a query would always be
evaluated on the current database, and our varying constraints just corresponds to the
fixedpredicate “not older than20years” as defined in the current versionof the database
at (approximately) the time the query would be posed. We use the default parameters
and the C-MEMD metric for this experiment. Nearest neighbors are retrieved by
exhaustive search, without the use of metric tree data structures.

For each query actor we determine the rank of the target actor in the sorted list of
nearest neighbors. The results are shown in Table 5. Considering the large number
of possible replacement actors, and the fact that the eventual replacement actor (our
target) may be the result of many compromises and contingencies faced in the casting
process, one should not expect that the target already appears in the top 10, or so, of
the nearest neighbor list. In our results, in 11 cases the target actor is in the top 10%
of the ranking, whereas in 9 cases he is in the top 5%.

The first case where the target actor fails to make the top 10% of nearest neighbors
is the Reynolds/Ford pair for “Star Wars: Episode IV”. The feature graphs for these
two actors provide a clear explanation for why H. Ford is not considered a very close
neighbor for B. Reynolds: Fig. 10 shows the genre (top) and business (bottom) feature
graphs for the two actors. All graphs are constrained by the release year yyyy=1977.
Obviously, at the production time of Star Wars (IV), Reynolds was a much more
established actor than Ford, with a significantly larger number of movies, including
numerous appearances in leading roles (darkest nodes in inner circle of Reynold’s
business feature graph).

We next compare the results with the C-MEMD based retrieval against the baseline
BCOUNT distance as defined by the same TET. Comparing the ranks of the target
actors assigned by C-MEMD vs. BCOUNT, we find that C-MEMD better ranks the
target actor in 13 cases out of 18. We performed a Wilcoxon signed rank test to
compare the two rankings, and the advantage of C-MEMD over BCOUNT is found
to be statistically significant with p = 0.02685.

To summarize, we found that customizing TETs for different concepts of similarity
in the same domain leads to intuitively meaningful and relevant retrieval results for
the IMDb data. The newly introduced “recasting” problem supports a small-scale
quantitative evaulation of the C-MEMD based similarity concept, which for this task
was found to give more relevant results than the BCOUNT baseline.

9 Conclusion and future work

In this paper we developed a powerful class of metrics over relational data based on
complex counts-of-counts statistics. The framework allows combining features such
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Fig. 10 Feature graphs for Burt
Reynolds and Harrison Ford at
production time of “Star Wars:
Episode IV” (Color figure
online)

Burt Reynolds Harrison Ford

as entity attributes, attributes of the neighbors of an entity and structural properties
of an entity relational neighborhood in a natural and flexible way. Our experimental
evaluation showed how the framework allows one to seamlessly represent diverse
notions of similarity and to address similarity-based prediction tasks substantially
outperforming alternative solutions based on graph kernels.

Our work can be extended in a number of relevant directions. First, in the paper
we only considered categorical (Boolean) attributes at the nodes. A straightforward
extension is to allow numerical data on nodes and edges. A second extension con-
cerns parameter learning. We currently either specify them manually, or learn them
by stochastic gradient descent in a supervised classification/regression setting, with
supervision on the output of the logistic evaluation function. In the h-index > 7
classification task, the approach learns parameters almost as accurate as the manu-
ally tuned ones. For retrieval tasks, one would like to learn the metric parameters from
observed ranking preferences (Bellet et al. 2013), by e.g. adapting existing approaches
for earth’s mover distance learning (Wang and Guibas 2012; Cuturi and Avis 2014).
These approaches focus on learning the ground distance matrix, i.e., the pairwise dis-
tance between bins in a (multidimensional) histogram. We plan to generalize them
to also learn the parameters of the TET over which the metric is defined. Note that
our experiments on bibliometric index regression suggest that this alternative form of
supervision could be beneficial also in some supervised learning tasks.
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Finally, our nearest-neighbor retrieval strategy relies on a simple metric tree struc-
ture based on hyperplane decomposition. The investigation of alternative search
strategies, for instance by designing ad-hoc locality-sensitive hash functions, is an
interesting direction for future research.

In this work we focused on the definition of a metric on NHT. It is interesting to
investigate whether this metric, or variants thereof, can lead to a valid (i.e. positive
definite) kernel. Despite the importance of EMD in areas like computer vision, it is
still unclear whether kernels derived from EMD (by, e.g., simply taking the negated
exponential of the metric) are positive definite (Gardner et al. 2018), and there is
evidence to the contrary when EMD is paired with a Euclidean ground distance (Naor
and Schechtman 2007). A sufficient and necessary condition for this to hold is that the
metric is conditionally negative definite (Berg et al. 1984). It is easy to show that our
MEMD metric is conditionally negative definite, also when combined with the count
metric, and that dc-memd on node histogram trees is conditionally negative definite (see
the Appendix for a formal proof). When positive definiteness cannot be ensured, one
can still rely one existing solutions for dealing with indefinite kernels, most notably
Krein spaces (Loosli et al. 2016; Oglic and Gaertner 2018).We leave this investigation
as an interesting avenue for future research.

A Proofs

Proposition 1 dr-count is a scale-invariant pseudo-metric with values in [0, 1].
Proof The minimum of two counts is a positive semi-definite kernel, called histogram
intersection kernel (Barla et al. 2003). The normalization is called cosine normaliza-
tion, and the result is also a kernel (Schölkopf and Smola 2002). Let us refer to this
kernel as

k(h1, h2) = min(c(h1), c(h2))√
c(h1) · c(h2)

.

A kernel induces a pseudo-metric

d(h1, h2) = √
k(h1, h1) + k(h2, h2) − 2k(h1, h2).

For the normalized histogram intesection kernel we have that 0 ≤ k(h1, h2) ≤ 1 and
k(h1, h1) = k(h2, h2) = 1, thus d(h1, h2) = √

2 − 2k(h1, h2). The count distance
is obtained as dr-count(h1, h2) = 1

2d(h1, h2)
2, a simplified version of the distance

which preserves its properties. Non-negativity and symmetry are trivially preserved.
For triangle inequality d(h1, h3) ≤ d(h1, h2)+ d(h2, h3) implies that αd(h1, h3)

2 ≤
α(d(h1, h2) + d(h2, h3))

2 ≤ αd(h1, h2)
2 + αd(h2, h3)

2 for any α > 0. Finally,
dr-count is a pseudo-metric because any two distinct histograms having same counts
have zero distance. ��
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Proposition 4 dmemd is a pseudo-metric with dmemd ≤ demd.

Proof We recall and introduce the following notation: h̄1, h̄2 are normalized D-
dimensional histograms with N bins in each dimension. Histogram cells are indexed
by index vectors i, j , . . . ∈ N D . The kth component of the index vector i is denoted
i(k).

For k = 1, . . . , D we have that d↓k
memd(h̄1, h̄2) := demd(h̄

↓k
1 , h̄↓k

2 ) (k = 1, . . . , D)

is a pseudo-metric on the D-dimensional histograms h̄1, h̄2, because it is induced by
the metric demd under the non-injective mapping h̄ 
→ h̄↓k . dmemd therefore is a sum
of pseudo-metrics, and therefore also a pseudo-metric.

We denote by E M D(h̄1, h̄2) the constrained optimization problem defining the
earth mover’s distance, i.e., demd(h̄1, h̄2) is the cost of the optimal solution of
E M D(h̄1, h̄2). A feasible solution for E M D(h̄1, h̄2) is a given by f = ( f i, j )i, j ,
where

∑
i

f i, j = h̄1( j),
∑
j

f i, j = h̄2(i)

The cost of a feasible solution is

cost( f ) =
∑
i, j

f i, jd(i, j)

where d is the underlying metric on histogram cells. In our case, d is the Manhattan
distance. However, all we require for this proof is that d is additive in the sense that
there exist metrics d(k) on {1, . . . , N } (k = 1, . . . , D) such that

d(i, j) =
D∑

k=1

d(k)(i(k), j(k)).

In the case of Manhattan distance, d(k)(i(k), j(k)) = |i(k) − j(k)|.
Let f be a feasible solution for E M D(h̄1, h̄2). For k = 1, . . . , D we define the

marginal solutions

f ↓k
i, j :=

∑
i :i(k)=i
j : j(k)= j

f i, j

Then f ↓k = ( f ↓k
i, j ) is a feasible solution solution of E M D(h̄↓k

1 , h̄↓k
2 ), and we have
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cost( f ) =
∑
i, j

D∑
k=1

f i, jd
(k)(i(k), j(k)) =

D∑
k=1

N∑
i, j=1

f ↓k
i, j d(k)(i, j) =

D∑
k=1

cost( f ↓k)

In particular, when f is a minimal cost solution of E M D(h̄1, h̄2), then we have
demd(h̄1, h̄2) = cost( f ), and

D∑
k=1

cost( f ↓k) ≥
D∑

k=1

demd(h̄
↓k
1 , h̄↓k

2 ) = dmemd(h̄1, h̄2)

��
Proposition 5 If h̄1, h̄2 are product histograms, then dmemd(h̄1, h̄2) = demd(h̄1, h̄2).

Proof Let f (k) be feasible solutions for E M D(h̄↓k
1 , h̄↓k

2 ) (k = 1, . . . , D). Define

f i, j :=
D∏

k=1

f (k)
i(k), j(k).

Then f = ( f i, j ) is a feasible solution for E M D(h̄1, h̄2):

∑
i

f i, j =
∑
i

∏
k

f (k)
i(k), j(k) =

∏
k

N∑
i=1

f (k)
i, j(k) =

∏
k

h̄↓k
2 ( j(k)) = h̄2( j),

and similarly
∑

j f i, j = h̄1(i). For the cost of the solutions we obtain:

cost( f ) =
∑
i, j

(∑
k

d(k)(i(k), j(k))

)∏
k

f (k)
i(k), j(k)

=
∑

k

∑
i, j

d(k)(i(k), j(k))
∏

k

f (k)
i(k), j(k)

=
∑

k

N∑
i, j=1

d(k)(i, j)
∑

i :i(k)=i
j : j(k)= j

∏
k

f (k)
i(k), j(k)

=
∑

k

N∑
i, j=1

d(k)(i, j)
∑
i, j

f (k)
i, j =

∑
k

cost( f (k)).

This implies demd(h̄1, h̄2) ≤ ∑
k demd(h̄

↓k
1 , h̄↓k

2 ), which together with Proposition 4
proves the proposition. ��
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Algorithm 1Metric Tree building.
1: procedure MTbuild (dmax ,nmax ,d,data)
2: Initialize node MN
3: if d = dmax ∨ Size(data) ≤ nmax then
4: MN.bucket ← data
5: return MN
6: MN.z1, MN.z2 ← getRandomPair(data)
7: data1, data2 ← splitData(data, MN.z1, MN.z2)
8: MN.left ← MTbuild(dmax ,nmax ,d + 1,data1)
9: MN.right ← MTbuild(dmax ,nmax ,d + 1,data2)
10: return MN

Proposition 6 dc-memd on node histogram trees is conditionally negative definite.

Proof Let us recall the definition of dc-memd on node histogram trees and the definition
of all its components:

dc-memd(H1, H2) :=
k∑

i=1

γ di

si
dc-memd(h1,i , h2,i ) (11)

dc-memd(h1, h2) := 1

2
(dr-count(h1, h2) + dmemd(h̄1, h̄2)) (12)

dmemd(h̄1, h̄2) :=
D∑

k=1

demd(h̄
↓k
1 , h̄↓k

2 ) (13)

demd(h̄1, h̄2) :=
N∑

k=1

| f1(k) − f2(k)| (14)

dr-count(h1, h2) := 1 − min(c(h1), c(h2))√
c(h1) · c(h2)

(15)

Let us prove the statement in a bottom-up fashion:

– dr-count(h1, h2) (Eq. 15) is conditionally negative definite, as
min(c(h1),c(h2))√

c(h1)·c(h2) is pos-
itive semi-definite (see proof of proposition 1), the negation of a p.s.d. function is
conditionally negative definite (Berg et al. 1984), and summing a constant value
does not change conditional negative definiteness.

– demd(h̄1, h̄2) (Eq. 14) is a Manhattan distance and thus it is conditionally negative
definite (the same holds for other distances like the Euclidean one, see (Richards
1985) for a classical proof).

It follows that dc-memd(H1, H2) is conditionally negative definite, as it is a positively
weighted sum of conditionally negative definite functions, and the property is closed
under summation and multiplication by positive scalar. ��
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B Procedures for metric tree building and retrieval

In the following we briefly review the procedures for building and searching MTs,
mostly following (Uhlmann 1991).

A MT is built from a dataset of node histogram trees, by recursively splitting data
until a stopping condition is met. Algorithm 1 describes the procedure for building the
MT. The algorithm has two parameters, the maximal tree depth (dmax ) and the max-
imal bucket size (nmax ) and two additional arguments, the current depth (initialized
at d = 1) and the data to be stored (data), represented as a set of node histogram
trees, one for each entity. A MT is made of two types of nodes, internal ones and
leaves. An internal node contains two entities and two branches. A leaf node con-
tains a set of entities (the bucket). The MT construction proceeds by splitting data
and recursively calling the procedure over each of the subsets, until a stopping con-
dition is met. If the maximal tree depth is reached, or the current set to be splitted
is not larger than the maximal bucket size, a leaf node is returned. If the stopping
condition is not met, two entities z1 and z2 are chosen at random from the set of
data (making sure they have a non-zero distance), and data are splitted according to
their distances to these entities. Data that are closer to z1 go to the left branch, the
others go to the right one, and the procedure recurses over each of the branches in
turn.

Algorithm 2Metric Tree searching.
1: procedure MTsearch (MN,H ,k)
2: if isLeaf(MN) then
3: sorted = sort(MN.bucket, H )
4: return sorted[1:k]
5: if Dist(H ,MN.z1) ≤ Dist(H ,MN.z2) then
6: return MTsearch(MN.left,H ,k)
7: else
8: return MTsearch(MN.right,H ,k)

Once theMT has been built, the fastest solution for approximate k-nearest-neighbor
retrieval for a query instance H amounts to traversing the tree, following at each
node the branch whose corresponding entity is closer to the query one, until a leaf
node is found. The entities in the bucket contained in the leaf node are then sorted
according to their distance to the query entity, and the k nearest neighbors are returned.
See Algorithm 2 for the pseudocode of the procedure. Notice that this is a greedy
approximate solution, as exact search would require to backtrack over alternative
branches, pruning a branch when it cannot contain entities closer to the query than the
current kth neighbor (see Liu et al. 2005) for the details). Here we trade effectiveness
for efficiency as our goal is to quicklyfindhigh quality solutions rather than discovering
the actual nearest neighbors. Alternative solutions can be implemented in the latter
case (Liu et al. 2005; Muja and Lowe 2014).
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Both algorithms have as additional implicit parameter the distance function over
NHTs, which can be the exact EMD-based NHT metric or its approximate version
based on marginal EMD (exact for product histograms, see Proposition 5). Notice that
for large databases, explicitly storing the NHT representation of each entity in the
leaf buckets can be infeasible. In this case buckets only containt entity identifiers, and
the corresponding NHTs are computed on-the-fly when scanning the bucket for the
nearest neighbors. Standard caching solutions can be implemented to speed up this
step.

C Details on actor retrieval results

See Fig. 11.

Mystery Drama Comedy Sci-Fi Family

Movie Horror Biography Musical Crime

Romance Fantasy Western Animation Music

Adventure Action Sport War Thriller

History
Genre graphs

budget_s budget_m budget_l

supporting movie leading

Business graphs
Fig. 11 Color keys to actor feature graphs (Color figure online)
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Test actor NN genre NN business

Muhammad I Ali John III Kerry Justin Ferrari
Kevin I Bacon Lance E. Nichols Charlie Sheen
Christian Bale Channing Tatum Hugh I Grant
Warren I Beatty Art I Howard Christopher Reeve
Humphrey Bogart Eddie I Graham Tony I Curtis
David I Bowie Ethan I Phillips Adam I Baldwin
Adrien Brody Mark I Camacho Kevin I Kline
Steve Buscemi Vincent I Price Keith I David
Michael I Caine Robert De Niro Robert De Niro
David Carradine Clint Howard Rutger Hauer
Jim Carrey Jason I Alexander Jake Gyllenhaal
Vincent Cassel Keith Szarabajka Dougray Scott
James I Coburn Ned Beatty Louis Gossett Jr.
Robbie Coltrane Rene Auberjonois H.B. Warner
Sean Connery Gene Hackman Paul I Newman
Kirk I Douglas Eli Wallach Burt Lancaster
Rupert Everett Brian Blessed Omar Sharif
Henry Fonda Dick I Curtis James I Mason
John I Goodman Christopher I Plummer Ron I Perlman
Al I Gore Jeroen Willems Dwight D. Eisenhower
Dustin Hoffman Rip Torn Pierce Brosnan
Stan Laurel Billy Franey Oliver Hardy
Jude Law Michael I Sheen Omar Sharif
Jack Lemmon Charles Dorety William I Holden
John Malkovich William H. Macy Mickey Rourke
Marcello Mastroianni James I Payne Ajay Devgn
Malcolm I McDowell Clint Howard Martin Sheen
Alfred Molina William H. Macy George I Kennedy
David I Niven Ivan F. Simpson William I Powell
Philippe Noiret Dominique Zardi Pat I O’Brien
Al I Pacino Jeremy Piven Tom Cruise
Chazz Palminteri Bobby Cannavale Norman Reedus
Gregory Peck James Seay Christopher I Lambert
Sean I Penn Andy I Garcia Michael I Douglas
Anthony I Perkins Nicholas I Campbell George C. Scott
Joe Pesci Stephen Marcus Anton Yelchin
Elvis Presley Berton Churchill Lee I Marvin
Robert I Redford Roscoe Ates Michael Keaton
Keanu Reeves Kevin I Pollak Antonio Banderas
Geoffrey Rush Jim I Carter Ian I McShane
Steven Seagal Frank Pesce Marlon Brando
Joseph Stalin Jimmy I Carter Tom I Herbert
Sylvester Stallone Nicolas Cage Johnny Depp
Ben Stiller Bill I Murray Antonio Banderas
David Suchet Danny Nucci James I Nesbitt
John Turturro Danny DeVito Bruce I Dern
Lee Van Cleef Robert I Peters Jack Warden
Christoph Waltz Frank I Gorshin Demin Bichir
Denzel Washington Michael V Shannon Tom Cruise
Orson Welles Donald Pleasence Rod Steiger
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