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ABSTRACT

DISULFIND is a server for predicting the disulfide
bonding state of cysteines and their disulfide con-
nectivity starting from sequence alone. Optionally,
disulfide connectivity can be predicted from
sequence and a bonding state assignment given as
input. The output is a simple visualization of the
assigned bonding state (with confidence degrees)
and the most likely connectivity patterns. The server
is available at http://disulfind.dsi.unifi.it/.

INTRODUCTION

Disulfide bridges play a major role in the stabilization of
the folding process and, consequently, in studies related to
structural and functional properties of specific proteins.
In addition, knowledge about the disulfide bonding state of
cysteines may help the experimental structure determination
process and may be useful in other genomic annotation tasks.

DISULFIND uses a combination of machine learning algo-
rithms to predict intrachain bridges from sequence alone.
Similar to many other tools of this kind, it solves the pre-
diction problem in two steps. First, the disulfide bonding
state of each cysteine is predicted by a binary classifier;
second, cysteines that are known to participate in the forma-
tion of bridges are paired to obtain a connectivity pattern.

RELATED WORKS

Early work on bonding state employed representations based
on local-window multiple alignment profiles and neural net-
works for discrimination (1,2). Mucchielli–Giorgi et al. (3)
introduced the idea of adding a global descriptor to improve
prediction accuracy. Ceroni et al. (4) proposed a method based
on a combination of string and vector kernels in conjunc-
tion with support vector machines (SVMs). Song et al. (5)

applied a linear discriminant using dipeptides as features.
Martelli et al. (6) suggested the use of hidden Markov models
to refine local predictions obtained via neural networks.
SVMs are also used in the method presented in (7).

Prediction of connectivity patterns was pioneered in (8)
with a method based on weighted graph matching, implemen-
ted in the prediction server DCON. Vullo and Frasconi (9)
introduced the use of multiple alignment profiles by means
of recursive neural networks (RNNs). In this approach, (that
still underpins DISULFIND) a global score is assigned to
an entire connectivity pattern. In the DAG RNN approach
described in (7,10), the probability for a disulfide bond is
computed for each pair of cysteines. The associated DIpro
server (which also predicts bonding state) is described in
(11). Taskar et al. (12) formulated disulfide connectivity as
a structured-output prediction problem and solved it using a
generalized large-margin machine. Ferrè and Clote (13)
proposed a feedforward neural-network architecture with hid-
den units associated with cysteine pairs and inputs encoding
secondary structure; the method is behind the prediction
server DiANNA (14). Zhao et al. (15) confirmed that the pro-
file of distances between bonded cysteines is an important
feature for prediction of connectivity patterns. This idea has
been further exploited in conjunction with SVMs to develop
the method behind the prediction server PreCys (16). Finally,
CysView (17) is a server that predict patterns by comparison
of a query sequence to annotated data bases.

MATERIALS AND METHODS

Multiple alignment profiles

Prediction of protein structural properties is typically more
accurate when incorporating evolutionary information
encoded in multiple alignment profiles. Profiles are used
in DISULFIND both in bonding state and connectivity
prediction. They are calculated by using one iteration of the
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PSI-BLAST program run on Swiss-Prot and TrEMBL using
the BLOSUM62 matrix and an E-value cutoff of 0.005.

Prediction of disulfide bonding state

DISULFIND employs an SVM binary classifier to predict
the bonding state of each cysteine, followed by a refinement
stage that classifies all the cysteines in a chain in a collective
fashion (18), that is, by deciding the overall bonding state
assignment of an entire chain rather than making several
independent predictions (one for each cysteine). The overall
architecture is shown in Figure 1. The SVM receives as
input both local and global features [see also (3)]. Local
features consist of a window of position specific conserva-
tions derived from multiple alignment, centered around the
target residue. Global features (amino acid composition,
chain length, number of cysteines and average cysteine con-
servation) provide information about the bonding class of the
entire chain (all cysteines bonded, none or mix), which is
strongly correlated with the subcellular compartment where
the protein resides (reducing versus oxidizing environments).

The refinement stage is motivated by the observation that
single cysteines are not independently sampled. Linkage
occurs between pairs forming a disulfide bridge but also
among sets of cysteines that coordinate a metal ion. A second
source of linkage is due to the fact that bonding state is very
often a global property of the protein chain and not a local
property of individual cysteines (2,3). The effects of correla-
tion are mitigated in two ways. First, we trained a bidirec-
tional recurrent neural network (BRNN) (19) to predict a
globally correct sequence of bonding state assignments,
given a (possibly incorrect) sequence of locally calculated
predictions. At each cysteine position i, the BRNN output is
computed using the logistic function and can be therefore
interpreted as the conditional probability p(di) that the

cysteine is disulfide-bonded given the input sequence. A
position-specific prediction confidence is then defined as

ci ¼ 2ðmaxfpðdiÞ‚1 � pðdiÞg � 0:5Þ: 1

Second, we enforce the number of bonded cysteines to be
even (interchain bridges are ignored) using a finite state auto-
maton (shown in Figure 2). Given the sequence of bonding
state probabilities (computed by the BRNN), the most likely
sequence of bonding states is obtained by running a Viterbi
algorithm. Similar ideas (but using a hidden Markov models
rather than an automaton) were presented in (6).

Prediction of disulfide connectivity

We assume in this subsection that disulfide-bonding state of
cysteines is given (either entered manually by the user or pre-
dicted using the method described above). The method used
in DISULFIND is fully detailed in (9) and briefly summarized
here.

A connectivity pattern can be conveniently represented as
an undirected graph whose vertices are cysteines and edges

Figure 1. Architecture of the bonding state predictor. The lower level provides independent cysteine predictions based on a local kernel kl on local attributes, and a
global kernel kg on the entire sequence. The upper level is a BRNN (represented here schematically by its graphical model) that outputs a disulfide-bonding
probability p(di) for each cysteine, based on all SVM predictions.
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Figure 2. Finite state automaton used in the final stage of bonding state
prediction.
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are disulfide bridges. The problem thus consists of mapping
an input sequence with annotated cysteines into an output
graphs representing disulfide connectivity. This structured
output prediction problem can be cast in the traditional super-
vised learning setting by introducing a regression problem
defined as follows. The input is formed by the annotated
sequence and a candidate connectivity pattern. The target is
a real valued score, defined as the fraction of correctly
assigned bridges. During training the target score is known
and we use it to train a recursive neural network in regression
mode. Prediction is carried out by running the trained network
on all possible connectivity patterns and choosing the one
yielding maximum score. The number of possible disulfide
patterns connecting 2B cysteines is (2B�1)!! where the dou-
ble factorial n!! is defined as the product of all odd integers
that are less or equal to n.

In order to limit computational efforts, DISULFIND can
assign at most five disulfide bridges (in this case the number
of candidates to be evaluated is 945). Two remarks are rel-
evant to this limitation. First, chains with more than five
bridges are rare (no more than 10% of the Swiss-Prot chains
annotated with disulfide bridges). Second, the prediction
accuracy is already lowfor chains having five bridges
because of a limited number of available training examples;
hence prediction of patterns with six or more bridges would
be very inaccurate.

IMPLEMENTATION

DISULFINDis available both as a standalone service at
http://disulfind.dsi.unifi.it/ and as part of PredictProtein (20).

The current version (DISULFIND 1.1, released in February
2006), incorporates some improvements in the presentation
interface.

Interface

The input to the predictor is entered via an HTTP form using
the SEND method. The main fields (see Figure 3) are the
following.

Email address The address were results will be sent if the
email output option is selected.

Query name An optional field that allows to label the
sequence with an user provided identifier.

Amino acid sequence The protein sequence using stand-
ard amino acid one-letter codes. Spaces and newlines are
automatically stripped.

Predict options In its normal behavior, DISULFIND pre-
dicts both bonding state and connectivity. If the bonding state
is known in advance, users may check the corresponding
option in the user interface and after the form is submitted
they will be presented a screen where the bonding state of
each cysteine can be manually assigned. In this case only
predicted connectivity will be returned.

Output options There are two possible output operation
modes. In email mode, after the form is submitted, a job is
scheduled in the server and results are returned in ASCII for-
mat to the indicated email address. In browser mode, results
are returned to the HTTP client (see Figure 4).

Alternatives By default DISULFIND only returns the
most likely connectivity pattern. By setting the number of
alternatives to an integer k in the range (1,3), the k best
ranking patterns will be returned.

Figure 3. Screenshot of the DISULFIND input form.
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The output presented to the user consists of the original
sequence annotated with predictions as shown in Figure 4.
The following items are returned in the output screen:

AA The original amino acid sequence;
DB_state Predicted disulfide bonding state (1 ¼ disulfide

bonded, 0 ¼ not disulfide bonded);
DB_conf Confidence of disulfide bonding state prediction

(0 ¼ low to 9 ¼ high); a red color means that the Viterbi
aligner overruled the SVM predition for that residue in
order to achieve a consistent prediction at the chain level
(i.e. an even number of disulfide bonded cysteines, as inter-
chain bonds are ignored);

Conn_conf Confidence of connectivity assignment given
the predicted disulfide bonding state. The confidence in this
case is the predicted score associated with the connectivity
pattern, i.e. the fraction of correcly assigned bridges—see
details in (9). Although the score is a number in (0,1), it
should not be confused with the probability that the pattern
is correct.

The above output is repeated if multiple alternative patterns
are requested. Since all the alternatives share the same bond-
ing state prediction, fields DB_state and DB_conf are only
shown in the output presentation of the most likely pattern.

Performance

Under regular load conditions, a query can be answered in
about 30–60 s. CPU time depends on the sequence length
and the number of disulfide bridges. Most CPU time is used
by PSI-BLAST for calculation of multiple alignment profiles.
The 20-fold cross validation performance of the bonding state
prediction stage is reported in Table 1. In order to assess the
significance of the confidence score (see Equation 1), we
report in Figure 5 the accuracy and rejection rate of the

bonding state classifier that abstains when the confidence is
lower or equal to a given cutoff. It can be seen, for example,
that accuracy improves to Q2 ¼ 92.7% at a rejection rate of
15.0% for a confidence cutoff of 0.5.

Table 1. DISULFIND bonding state predictor: experimental results on a

20-fold cross validation procedure (PDB Select July 2005)

Method Q2 Qp

Loc29 86 ± 1 73 ± 2
BRNN Loc29+f 88 ± 1 82 ± 2
BRNN Loc29+f FSA 88 ± 1 83 ± 2

Rejection rate
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Figure 5. Accuracy versus rejection rate of the abstaining bonding state
predictor for different confidence cutoff values (the rejection rate is the fraction
of cysteines that are predicted at a confidence level below the cutoff value
shown at the right of each point in the curve).

Figure 4. DISULFIND output.
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Concerning disulfide connectivity, leave-one-out estimates
of prediction accuracy on a set of 446 Swiss-Prot Sequences
(9) are reported in Table 2 [note that results reported in (9)
were based on a 4-fold cross validation]. Qp is the fraction
of correctly assigned patterns, while Qc is the fraction of
correctly predicted bridges. If multiple alternative are
selected, the probability that a correct pattern is included
increases. Results obtained considering the top k ¼ 3 config-
urations are Qp ¼ 66.3, Qc ¼ 69.5.

Statistics

DISULFIND has served a total of over 7000 tasks from
almost 50 national domains since April 2003 and is currently
serving an average of 60 queries per week. Hundreds of
queries per month have been served via PredictProtein since
July 2004.

ACKNOWLEDGEMENTS

The authors would like to thank Rita Casadio and Piero Fariselli
for useful discussions and the anonymous reviewers for their
suggestions. This research is supported by EU STREP APrIL II
(contract no. FP6-508861) and EU NoE BIOPATTERN
(contract no. FP6-508803). The work of A.V. is supported
by an Embark Fellowship from the Irish Research Council
for Science, Engineering and Technology. The Open Access
publication charges for this article were waived by Oxford
University Press.

Conflict of interest statement. None declared.

REFERENCES

1. Fariselli,P., Riccobelli,P. and Casadio,R. (1999) Role of evolutionary
information in predicting the disulfide-bonding state of cysteine in
proteins. Proteins, 36, 340–346.

2. Fiser,A. and Simon,I. (2000) Predicting the oxidation state of cysteines
by multiple sequence alignment. Bioinformatics, 16, 251–256.

3. Mucchielli-Giorgi,M.H., Hazout,S. and Tuffèry,P. (2000) Predicting
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Number of bridges Number of chains Qp Qc
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All 446 54.5 60.2
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