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Abstract

Background: The progress in mapping RNA-protein and RNA-RNA interactions at the transcriptome-wide level paves
the way to decipher possible combinatorial patterns embedded in post-transcriptional regulation of gene expression.

Results: Here we propose an innovative computational tool to extract clusters of mRNA trans-acting co-regulators
(RNA binding proteins and non-coding RNAs) from pairwise interaction annotations. In addition the tool allows to
analyze the binding site similarity of co-regulators belonging to the same cluster, given their positional binding
information. The tool has been tested on experimental collections of human and yeast interactions, identifying
modules that coordinate functionally related messages.

Conclusions: This tool is an original attempt to uncover combinatorial patterns using all the post-transcriptional
interaction data available so far. PTRcombiner is available at http://disi.unitn.it/~passerini/software/PTRcombiner/.

Keywords: Post-transcriptional regulation, Boolean matrix factorization, RNA binding protein (RBP), Binding site
classification, Kernel machines, miRNA, Translation, CLIP

Background
Control of gene expression is a highly complex process
involving the coordinated activity of multiple and hetero-
geneous biological factors. An underlying and intriguing
general phenomenon is that biological molecules may act
in a variety of different combinations to modulate cellular
activities and to specifically react to changes in the biolog-
ical milieu. To provide coordinated and multiple complex
responses, several mechanisms are known to integrate a
number of molecules in a combinatorial way.

Combinatorial post-translational modifications, such as
methylation, acetylation, phosphorylation, and/or vari-
ations in regulatory trans-factors amounts, can influ-
ence the global regulation of gene expression at different
levels. For example, the combinatorial epigenetic tagging
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of DNA and histones may enforce or reverse chromatin
remodeling, thus playing a fundamental role in a vari-
ety of physiological and diseased cellular states [1,2].
Such combinatorial patterns of epigenomic modifications
were found to be predictive of mRNA and ncRNA gene
expression changes [3]. It is also well known that com-
binatorial control is important for transcription, where
the interaction of transcription factors is critical for gene
regulation [4]. The study of transcription factors combi-
natorics has been approached both on genome-wide [4-7]
and element-specific scales [8,9]. As expected, the combi-
natorial arrangement of transcriptional regulation highly
increases the overall possibilities to fine-tune the cellu-
lar response under different conditions. Out of the 23,000
genes encoded in the human genome, about 70% produce
transcripts that are alternatively spliced. This yields multi-
ple protein isoforms for each single pre-mRNA, increasing
the variability of the proteome in eukaryotes. Cis-acting
RNA sequence elements and enhancer complexes on
pre-mRNA splicing are thought to form a combinatorial
control network that allows exon recognition and splic-
ing to occur [10,11]. Evidence of splicing combinatorial
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mechanisms can be obtained from the parallel analysis
of several genes, but a complete picture of the combi-
natorial rules underlying the control of splicing is still
lacking [12]. This is also true for the post-transcriptional
control of gene expression, which is exerted by both cis-
acting elements on the target mRNA and trans-factors,
such as RNA binding proteins (RBPs) and non-coding
RNAs (ncRNAs). The combined effect of trans-factors
on mRNAs has been hypothesized to organize the so-
called “post-transcriptional RNA operons (or regulons)”
[13], but the global interplay of RBPs and ncRNAs on the
same set of transcripts remains largely unexplored, despite
being of paramount interest.

RBPs play an important role in all the processing
stages of RNA fate, from synthesis to degradation. An
essential step for functionally understanding RBPs is to
identify their RNA substrates and the sites at which
the interactions take place. The recent development of
cross-linking and immunoprecipitation (CLIP) coupled to
RNA-seq and related techniques has made it now pos-
sible to identify direct protein-RNA interactions in vivo
at a very high base resolution [14,15]. These techniques
provide positional information about the binding sites
along the RNA sequence [16]. The combination of CLIP
and RNA-seq provides an unparalleled capability to iden-
tify transcriptome-wide protein-RNA interactions. Mod-
ifications of the original method are also sprouting: the
recent developments include iCLIP [15], PAR-CLIP, incor-
porating photoactivable bases in RNA [17], and CRAC,
an affinity-tag protocol [18]. In 2012, a technique called
global PAR-CLIP (gPAR-CLIP) was introduced, which
allows the whole mRNA-bound proteome and its global
occupancy profile to be identified [19]. The great progress
in mapping protein-RNA interactions using genome-wide
tools represents a fundamental source of information for
post-transcriptional regulation of gene expression, but it
does not specifically address possible combinatorial pat-
terns embedded in RNA-protein and RNA-RNA inter-
actions. Even if still largely incomplete, this binding site
information creates for the first time a volume of data
large enough to use for investigating possible combina-
torial patterns of interactions by using machine learning
techniques. Consequently, we can now start exploring
post-transcriptional combinatorial rules in a systematic
way.

To date, several tools have been developed to inves-
tigate and predict the interactions of transcription fac-
tors, mRNAs and miRNAs. Many of these bioinformatics
approaches focus on predicting transcriptional networks
by: i) modeling the expression level of a gene in terms
of the predicted transcription factors that control its
transcription rate [7,20,21]; ii) identifying clusters of co-
regulated genes [22]; or, more generally iii) inferring por-
tions of regulatory networks (see reviews by Li et al. [23]

and Karlebach and Shamir [24]). Developing automated
approaches to identify rules of combinatorial regulation
at the post-transcriptional level would be of paramount
interest to biologists. A few attempts have focused on
analyzing miRNA-mediated interactions, by identifying
putative feed-forward loops (FFLs), in which a transcrip-
tion factor regulates a miRNA, and they together regulate
a set of target genes [25-27], or miRNA-transcription fac-
tor motifs [28]. This relies on in silico target predictions
coupled to gene expression data [29]. At a more general
level, Krek et al. [30] developed PicTar, a combinatorial
approach to predict the binding affinity of a pre-specified
set of candidate miRNAs on a target mRNA by com-
bining the output of individual miRNA target predictors.
Coronello and Benos [31] refined the combinatorial model
by integrating miRNA expression levels in the scoring
function. Albeit limited to miRNA-mRNA interactions,
these methods can be seen as initial attempts to uncover
the combinatorial nature of post-transcriptional regula-
tions at a genome-wide level. However, both methods
require pre-specifying the set of miRNA to be checked,
thus preventing their general applicability for mining
novel unknown combinatorial patterns. The mining phase
in fact requires an efficient search procedure to explore
the space of possible combinatorial interactions, as a sim-
ple exhaustive enumeration of all combinations is com-
putationally infeasible for all but the smallest sets of
regulators.

Given the assumption that functionally related genes are
more likely to be co-expressed, transcriptome data have
been used to derive potential gene networks. Using a sim-
ilar approach, inference of clusters of co-expressed genes
and potential regulatory programs in post-translational
controls have been developed. Building on the work by
Segal et al. on learning module networks [32], Joshi et al.
[33] developed a probabilistic approach to infer mod-
ule networks in yeast, using both transcriptional and
post-transcriptional regulators. The results obtained in
this work generated interesting sets of hypotheses for
regulatory pathways or processes in specific biological
conditions (i.e. stress conditions). However, the method
requires specific translational profiling time series as
input.

Here we propose a method, called PTRcombiner, to
study the combinatorial nature of post-transcriptional
trans-factors. The method takes as input a collection of
binding interactions and returns groups of factors sharing
a conspicuous number of mRNA targets. It also analyzes
the factors belonging to the same cluster in term of struc-
tural similarity of their binding sites. The identification
of clusters is cast as a Boolean matrix factorization prob-
lem over the interaction matrix between trans-factors
and mRNAs. This allows the simultaneous identification
of multiple and possibly overlapping groups of factors
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that jointly cover as many interactions as possible. While
Boolean matrix factorization has been employed in the
data mining community to identify pattern sets, its appli-
cation to the bioinformatics domain and especially to
interaction data analysis is completely novel. Analyzing
the trans-factors binding compatibility is cast as a binary
classification problem aimed at discriminating between
pairs of trans-factors in terms of their binding site similar-
ity. The classifier employs state-of-the-art graph kernels
[34] that account for predicted RNA secondary structure
in addition to sequence information.

Thus, despite the still incomplete and noisy map of
RNA-protein interactions, this Python-based tool will
prove valuable in elucidating complex post-transcrip-
tional networks.

Results and discussion
PTRcombiner (standing for Post-Transcriptional Regula-
tion combinatorial miner) is a new tool composed of
multiple modules that infer meaningful combinatorial
relationships between mRNAs and their regulatory ele-
ments (trans-factors), namely RBPs and ncRNAs. This
goal is achieved by extracting combinatorial informa-
tion through a pattern-set mining approach and a meta-
analysis of genome-wide data. PTRcombiner is divided
into two activity components. The first, “mining combi-
natorial features” (orange panel in Figure 1), represents
interaction data with a mathematical model. The model
involves an approximate Boolean matrix factorization
(BMF) of the interaction matrix, which identifies groups
of regulatory elements acting on common mRNA UTRs,
which we call clusters. The second, “analyzing combina-
torial features” (blue panels in Figure 1), evaluates the
biological characteristics of the clusters identified by the
pattern-set miner. Each cluster is evaluated in terms of
global biological meaning by Gene Ontology (GO) analy-
sis over its mRNA targets and the binding site compatibil-
ity between the individual trans-factors in the cluster.

Description of the dataset
The tool has been applied to the set of post-transcriptional
interactions in human contained in the Atlas of UTR
Regulatory Activity 2 (AURA 2) database (http://aura.
science.unitn.it/, see [35], see Additional file 1). AURA
2 is a manually curated and comprehensive catalog of
mRNA untranslated regions (UTRs) and their regula-
tory annotations, including interactions with trans-factors
(mainly RBPs and miRNAs). To date, AURA 2 is the
largest dataset of UTR-centered regulatory annotations
taken from the whole range of existing experimental tech-
niques, such as CLIP, RIP, SELEX, and RNAcompete. A
subset of these techniques, namely CLIP and its vari-
ants followed by high-throughput sequencing, allows the
positional annotation of the binding sites along the UTRs,

Figure 1 PTRcombiner workflow scheme. PTRcombiner is
composed of two main methodological parts. The first, called
“Mining combinatorial features” (orange panel), identifies groups
(clusters) of regulatory elements (trans-factors) that act on common
mRNAs. The second, called “Analyzing combinatorial features” (blue
panels), explores the identified clusters to evaluate their biological
characteristics in terms of commonly regulated mRNAs, Gene
Ontology enrichments, and compatibility of binding sites among
trans-factors belonging to the same cluster.

while the others (RIP and its variants followed by microar-
ray analysis or high-throughput sequencing) can only
detect the presence of an interaction between a transcript
and a trans-factor without the positional information of
the specific binding site.

As a working example for PTRcombiner, we considered
the whole set of human interactions annotated in AURA 2.
The available number of UTRs bound by each trans-factor
ranges from 1 to 34,616, with median of 13 and a mean
of 695 (trans-factors with more than 750 targets are dis-
played in Figure 2A). Symmetrically, the available number
of trans-factors bound to the same UTR ranges from 1
to 64, with median 3 and mean 6 (the distribution is dis-
played in Figure 2B). Using these data, we built a Boolean
matrix C with 67,962 rows (corresponding to the set of
human UTRs, either 5’ or 3’, with at least one interaction)
and 569 columns (corresponding to the set of annotated
trans-factors, namely RBPs and miRNAs), where Cij = 1 if
the jth trans-factor interacts with the ith UTR, and Cij = 0

http://aura.science.unitn.it/
http://aura.science.unitn.it/
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Figure 2 Interaction maps annotated in AURA 2. (A) Human trans-factors (RBPs and miRNAs) were ordered according to the number of
annotated target UTRs. Trans-factors with less than 750 distinct UTR targets are not shown. (B) Distribution of the number of distinct trans-factors
bound to the same UTR. (C) Graphical representation of the Boolean interaction matrix, derived from the input pairwise interactions. Each row
corresponds to a trans-factor, each column to a UTR. Positive interactions are displayed in red.

otherwise (Figure 2C). The annotated interactions are col-
lectively 395,395 (see Additional file 1), thus the sparsity
of the interaction matrix is 0.01.

Mining combinatorial features
After obtaining the interaction matrix, the first step of
the analysis was to identify clusters of trans-factors (RBPs
and/or miRNAs) that bind the same set of UTRs. Each of
these clusters could be a candidate combinatorial member
of a post-transcriptional regulatory code. This step thus
aims to identify multiple overlapping clusters, which col-
lectively cover most of the known interactions between
trans-factors and UTRs. Boolean matrix factorization [36]
provides this requirement by decomposing the matrix of
known interactions (the Boolean matrix) in the product
of two Boolean matrices. One of the matrices represents

the clusters of the trans-factors, while the other, the UTRs
in terms of their interactions within the clusters. The
algorithm takes two arguments: the number of clusters to
return (k), and a threshold (τ , ranging from 0 to 1). The τ

value controls the minimal amount of shared UTRs inside
a cluster. The higher the threshold, the more target UTRs
should be shared among trans-factors in order for these
to be considered as a cluster. The algorithm returns a list
of clusters ordered by coverage, i.e. the number of interac-
tions associated to each cluster (see Methods for a more
detailed description).

To analyze the behavior of the algorithm when vary-
ing its parameters, we produced a surface parameter
graph (Figure 3A) where the average number of trans-
factors belonging to each cluster (cluster size) was calcu-
lated using various combinations of k and τ values (see
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Figure 3 Mining combinatorial features: identifying trans-factor clusters. The average size (i.e. the number of trans-factors members) of the
identified clusters is displayed at different combinations of k and τ values. (A) The white spot marks the configuration of the parameters selected to
extract the clusters in the presence of recurrent trans-factors. (B) For each trans-factor, the number of occurrences in the identified clusters is
plotted on the x axis, against the number of bound UTRs on the y axis. Recurrent trans-factors occurring in more than one cluster are labeled in
orange. (C) After all the recurrent trans-factors were removed from the analysis, the average size of the identified clusters was displayed on the y axis
at different combinations of k and τ values. The white spot identifies the configuration of parameters selected to extract the clusters of sporadic
trans-factors. (D) The proportions among the number of recurrent, sporadic, and absent trans-factors are shown. (E) The proportions among the
number of interactions associated with recurrent, sporadic, and absent trans-factors are shown.

Additional file 2). Given a certain τ , different values of
k do not affect the average cluster size, which appears
to be mainly τ dependent. We chose the τ value giving
an average cluster size equal to the average number of
trans-factors bound to a single UTR (Figure 2C). We thus
considered a τ of 0.6, resulting in clusters composed of an
average of six trans-factors. Interestingly, this value points
to a stable region of the k and τ surface, in which the
number of trans-factors for each cluster does not change
drastically in the surrounding area (Figure 3A, circle).
Table 1 shows the clusters obtained with the selected
threshold. The first nine clusters are composed exclu-
sively of RBPs, as well as the clusters R11 to R19, R22 and
R25. The first cluster displaying co-occurrence of RBPs

and miRNAs was R10, followed by clusters R20, R21, R23
and R24. No cluster uniquely composed of miRNAs was
present. We would like to stress that 5 out of 25 clus-
ters do not represent real combinations, as they comprise
only one trans-factor. We refer to these one-element clus-
ters as “singletons”. Recalling that the algorithm aims to
cover as many interactions as possible with the set of
clusters, a singleton can be extracted by the algorithm
whenever a trans-factor has many interactions that are not
shared with any other trans-factor for which experimental
interaction data are available.

As detailed in the previous section, different trans-
factors have highly different numbers of annotated inter-
acting UTRs. Being driven by coverage, the algorithm
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Table 1 List of the inferred clusters in the presence of
recurrent trans-factors

Class Cluster Trans-factors

RBP Clust R01 AGO1, AGO2, ELAVL1, FMR1_iso1, FMR1_iso7,
FXR2, LIN28A, LIN28B, MOV10, TIA1, TIAL1,
ZC3H7B

RBP Clust R02 AGO1, AGO2, ELAVL1, IGF2BP1, IGF2BP2,
IGF2BP3, TIAL1

Singleton Clust R03 AGO1

RBP Clust R04 ELAVL1, HNRNPD

RBP Clust R05 AGO1, AGO2, ELAVL1, EWSR1, FMR1_iso1,
FUS, LIN28A, LIN28B, TAF15, TIA1, TIAL1,
ZC3H7B

RBP Clust R06 AGO1, ELAVL1, TIA1, TIAL1

RBP Clust R07 AGO1, FMR1_iso1, FMR1_iso7

RBP Clust R08 AGO1, AGO2, CAPRIN1, ELAVL1, FMR1_iso1,
FMR1_iso7, LIN28B, TIA1, TIAL1, ZC3H7B

RBP Clust R09 AGO1, AGO2, C22ORF28, ELAVL1, FMR1_iso1,
FMR1_iso7, LIN28B, TIA1, TIAL1, ZC3H7B

RBP-miRNA Clust R10 LIN28A, LIN28B, hsa-miR-221*

RBP Clust R11 AGO1, HNRNPH

RBP Clust R12 AGO1, AGO2, ELAVL1, FMR1_iso1, HNRNPC,
TIA1, TIAL1

Singleton Clust R13 PUM1

RBP Clust R14 AGO1, AGO2, ELAVL1, FMR1_iso1, FMR1_iso7,
HNRNPU, TIA1, TIAL1

RBP Clust R15 AGO1, AGO2, ELAVL1, FMR1_iso1, FMR1_iso7,
HNRNPF, TIA1, TIAL1

RBP Clust R16 AGO1, AGO2, ELAVL1, EWSR1, FMR1_iso1,
FMR1_iso7, FXR1, FXR2, LIN28A, LIN28B, TIA1,
TIAL1, ZC3H7B

RBP Clust R17 AGO1, AGO2, ELAVL1, FMR1_iso1, IGF2BP1,
IGF2BP2, IGF2BP3, PUM2, TIA1, TIAL1

Singleton Clust R18 PABPC1

Singleton Clust R19 U2AF2

RBP-miRNA Clust R20 AGO1, AGO2, ELAVL1, FMR1_iso1, IGF2BP1,
IGF2BP2, IGF2BP3, TIA1, TIAL1, hsa-miR-130a,
hsa-miR-130b, hsa-miR-148a, hsa-miR-148b,
hsa-miR-301a, hsa-miR-301b

RBP-miRNA Clust R21 AGO1, AGO2, ELAVL1, FMR1_iso1, IGF2BP1,
IGF2BP2, IGF2BP3, TIA1, TIAL1, hsa-miR-15a,
hsa-miR-15b, hsa-miR-16, hsa-miR-424

Singleton Clust R22 DGCR8

RBP-miRNA Clust R23 AGO1, AGO2, ELAVL1, FMR1_iso1, IGF2BP1,
IGF2BP2, IGF2BP3, TIA1, TIAL1, hsa-miR-106b,
hsa-miR-17, hsa-miR-20a, hsa-miR-320,
hsa-miR-93

RBP-miRNA Clust R24 AGO1, AGO2, ELAVL1, IGF2BP1, IGF2BP2,
IGF2BP3, TIAL1, hsa-let-7a, hsa-let-7b,
hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f,
hsa-let-7g, hsa-let-7i

RBP Clust R25 AGO1, AGO2, ELAVL1, FMR1_iso1,
HNRNPA2B1, TIA1, TIAL1

Clusters were classified according to their composition: “RBP” for those
composed exclusively of RBPs; “miRNA”, composed exclusively of miRNAs;
“RBP-miRNA”, composed of both RBPs and miRNAs; and “Singleton”, composed
of only one trans-factor.

is inherently biased towards clusters of “widely inter-
acting” trans-factors. Therefore, when we analyzed the
composition of the clusters, we observed that some trans-
factors are present in multiple clusters. For example,
the Argonaute proteins AGO1 and AGO2, and the well-
known RBP ELAVL1/HuR, occur in 19, 15 and 17 out of
25 clusters, respectively. AGO1 and AGO2 are compo-
nents of the RNA-induced silencing complex (RISC), the
protein complex which is responsible for down-regulating
mRNAs [37]. These proteins bind different classes of small
ncRNAs, such as miRNAs and small interfering RNAs
(siRNAs), leading the Argonaute proteins to their specific
targets through sequence complementarity, thus silenc-
ing their targets. Therefore, it is not surprising to find
AGO1 and AGO2 in almost all of the clusters, given the
widespread activity of these proteins. Moreover, in accor-
dance with our results, AGO1 and AGO2 have been found
to interact with ELAVL1/HuR [38]. Despite this inter-
action, the two proteins avoid any binding overlap on
the target mRNAs: AGO proteins preferentially bind the
boundaries of UTRs, while ELAVL1/HuR binds uniformly
along UTRs and disappears toward the stop codon and the
polyadenylation site [39]. ELAVL1/HuR, a member of the
ELAV family, is known to be broadly expressed in tissues
and to bind AU-rich elements in the 3’ UTRs of thousands
of mRNAs [39-41]. Moreover, it has been demonstrated
that ELAVL1/HuR displays competitive and cooperative
interactions with miRNAs/RISC [42,43], that these inter-
actions may depend on the proximity between the protein
and miRNA binding sites [39,44] and that it is part of a
complex mRNA network for coordinating gene expres-
sion [45]. These results are in agreement with the cluster
composition in Table 1 and support our finding that the
elements displaying the highest number of interactions
(orange dots in Figure 3B) are those that most frequently
occur across the clusters. For this reason, we called these
elements “recurrent trans-factors” and these clusters “Rk”
(R standing for recurrent and k standing for cluster num-
ber and ranging from 1 to 25).

To explore trans-factors that have a narrower spectra
of interactions and thus occur less frequently in the clus-
ters, we removed all recurrent trans-factors (i.e. those
found in more than one cluster) and ran a second iter-
ation of the algorithm. This second iteration focused on
trans-factors that appeared in none or only one of the
clusters of the previous analysis. We termed these trans-
factors “sporadic”. Again, we studied the behavior of the
algorithm when the k and τ parameters were varied, in
order to select the most appropriate combination of val-
ues (see Additional file 3). In this case, the best choice
of τ was 0.4 (Figure 3C). This value returned clusters
comprised of an average number of three trans-factors,
which corresponds to the average number of sporadic ele-
ments bound to each UTR. We called these clusters “Sk”
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(S standing for sporadic and k standing for cluster num-
ber and ranging from 1 to 25) (Table 2). It is clear that
the majority of the clusters (15 out of 25) are singletons.
In contrast to results obtained when recurrent factors
were included, we observed that four clusters were formed
exclusively by miRNAs (namely, S09, S14, S16 and S22).
Interestingly, PUM2, which was also found as a member
of the recurrent clusters, formed two distinct clusters with

Table 2 List of the inferred clusters composed of sporadic
trans-factors

Class Cluster Trans-factors

Singleton Clust S01 HNRNPD

RBP Clust S02 CAPRIN1, FUS, FXR1, MOV10, TAF15

Singleton Clust S03 HNRNPH

RBP Clust S04 C22ORF28, CAPRIN1, MOV10

Singleton Clust S05 HNRNPC

Singleton Clust S06 HNRNPU

Singleton Clust S07 HNRNPF

Singleton Clust S08 PUM1

miRNA Clust S09 hsa-miR-15a, hsa-miR-15b, hsa-miR-16,
hsa-miR-424

RBP-miRNA Clust S10 PUM2, hsa-miR-130a, hsa-miR-130b,
hsa-miR-148a, hsa-miR-148b, hsa-miR-19a,
hsa-miR-19b, hsa-miR-301a, hsa-miR-301b

Singleton Clust S11 HNRNPA2B1

Singleton Clust S12 PABPC1

Singleton Clust S13 U2AF2

miRNA Clust S14 hsa-miR-106b, hsa-miR-17, hsa-miR-20a,
hsa-miR-93

RBP Clust S15 MOV10, PUM2

miRNA Clust S16 hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d,
hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i

Singleton Clust S17 DGCR8

Singleton Clust S18 C17ORF85

Singleton Clust S19 TARDBP

RBP Clust S20 FUS, MOV10, TAF15

RBP-miRNA Clust S21 PUM2, hsa-miR-103, hsa-miR-107,
hsa-miR-183, hsa-miR-221, hsa-miR-222,
hsa-miR-23b, hsa-miR-25, hsa-miR-27a,
hsa-miR-27b, hsa-miR-32, hsa-miR-92a,
hsa-miR-96

miRNA Clust S22 hsa-miR-103, hsa-miR-107, hsa-miR-15a,
hsa-miR-15b, hsa-miR-16, hsa-miR-29a,
hsa-miR-29b, hsa-miR-29c, hsa-miR-424

Singleton Clust S23 CELF1

Singleton Clust S24 hsa-miR-124

Singleton Clust S25 hsa-miR-1

Clusters were classified according to their composition, as for Table 1.

different sets of miRNAs (S10 and S21). In line with this,
some evidence has suggested that PUM2 associates with
miRNAs. PUM2 is known to act as a translational repres-
sor in several organisms, contributing to dendritic RNA
localization and silencing [46] and regulating synaptic for-
mation [47]. Moreover, an extensive interaction between
PUM1 and PUM2 with the miRNA regulatory system has
been suggested [48], indicating that interactions between
the RBPs and the miRNAs in translational regulation may
be more frequent than previously thought. In addition,
a recent computational analysis suggested that specific
groups of miRNA binding sites localize within 50 nt from
PUM2 binding sites, giving support to a possible cooper-
ativity between PUM2 and miRNA in mRNA degradation
[49] and to the biological meaning of our clusters where
PUM2 acts on mRNAs in combination with different miR-
NAs. In particular, hsa-miR-221 and hsa-miR-222, which
are part of cluster S21 together with PUM2, appear to
colocalize with this RBP [49].

Despite that only a small fraction of known trans-factors
occur in the clusters (Figure 3D), the vast majority of the
existing interactions is covered by the identified clusters
(Figure 3E). The fact that the most of the trans-factors
are not part of any cluster is due to the paucity of avail-
able information, i.e. the overall number of experimental
data obtained until now for many of the trans-factors is
still far from being complete. This is not surprising given
the novelty of the experimental techniques involved. It
is clear that more data are needed to obtain a reliable
and exhaustive description of all the possible combina-
torial interactions in human. The availability in the next
future of high-throughput experimental data covering an
increasingly larger amount of trans-factors will open up
new possibilities to uncover new and more reliable clus-
ters and to obtain new combinatorial information.

Analyzing combinatorial features - step 1: biological
annotation
The first step in analyzing the clusters obtained from the
mining module was to measure how much they differ
in terms of: a) target mRNAs (Target mRNAs Overlap
module, Figure 1); b) enriched ontological terms (biolog-
ical process, molecular function, and cellular component
in Gene Ontology Enrichments module, Figure 1); and
c) similarity among ontological terms (Gene Ontology
Similarity module, Figure 1).

Overall, we expected to obtain a large amount of reg-
ulated genes that form clusters in the presence of recur-
rent trans-factors from the mining module, because they
display the highest number of annotated interactions
(Figure 3B). In fact, the module Target mRNAs Overlap
revealed that several hundred genes were co-regulated by
recurrent trans-factors (Figure 4A and Additional file 4).
The average number of HGNC genes regulated by the
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first five clusters (excluding singletons) was 2,206, ranging
from 592 for cluster R05 to 4,724 for cluster R06. The
number of target genes was markedly reduced in the
clusters of sporadic trans-factors, as expected given their
greater specificity (Figure 4B and Additional file 5). The
average number of HGNC genes regulated by the first five
clusters was 442, ranging from 66 for cluster S10 to 827
for cluster S04.

We then explored the possibility of finding the same
mRNA targets in different clusters, by calculating the

overlap among the populations of genes grouped in differ-
ent clusters using the Jaccard similarity (see Methods). For
the clusters including recurrent trans-factors, the over-
lap was 21% on average (Figure 4C). This result suggests
that the method is able to group sets of specific target
mRNAs even if they share common trans-factors. How-
ever, some leakage is present: for example, cluster R01
and cluster R05 share 43% of their targets. This is not
surprising as careful inspection of the elements form-
ing these clusters revealed that R01 and R05 share seven
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RBPs and are individually characterized only by FXR1
and FUS, respectively. The same is observed for clus-
ters R02 and R06, which share 60% of their targets. In
this case, cluster R06 shares with R02 almost all its own
trans-factors (AGO1, ELAVL1, and TIAL1). Focusing on
clusters of sporadic elements revealed that the average
overlap decreased to 7%, one-third of that from the previ-
ous analysis (Figure 4D). In this case, the maximum over-
lap was between clusters S02 and S04, which share 27%
of their targets. Both of these clusters comprise CAPRIN1
and MOV10, while they do not share FUS, FXR1, TAF15
and C22ORF28 (see Table 2). These results confirm the
effectiveness of the repeated run of analysis in identifying
distinct, small-sized sets of genes, uniquely regulated by
specific sets of sporadic trans-factors.

The Gene Ontology Enrichment module of the tool
allowed us to study the biological relevance of the mined
clusters. The module attempts to identify parts of com-
mon and biologically coordinated mechanisms or pro-
cesses that govern coherent cellular outcomes and that
could be characterized by the identified groups of pref-
erential interactions. In this module, the analysis is
expanded from single genes to more general biological
annotations, allowing the inferred clusters of trans-factors
to be compared by the gene ontology (GO) enrichment
analysis of their target mRNAs. An initial and effective
way to compare enrichments is to display the top enriched
GO terms for each cluster. Such a comparison is shown
in Figure 4E for the top five non-singleton Rk clusters,
using the molecular function (MF) branch of GO as exam-
ple (see Additional file 6 for all the enrichment results).
The modular blocks of enriched terms scattered along
the columns of the heatmap clearly indicate that the
clusters have marked and distinct molecular function con-
sensuses. Similarly to what we observed for the mining
module results, the modularity of the enrichments was
further reinforced in the top five non singleton Sk clus-
ters (Figure 4F and Additional file 7). Here, the occurrence
of terms enriched in multiple clusters is an infrequent
event. Clusters S02 and S04 share the most similar enrich-
ment signature, mirroring the strong similarity observed
between the two clusters (see above and Figure 4D).

After comparing the enrichment of different clusters,
we next assessed how the ontological enrichment of
genes regulated by one cluster differs from the ontological
enrichments of genes regulated by the individual trans-
factors forming the cluster. This intra-cluster comparison
allowed us to potentially identify “emergent enrichments”,
i.e. to detect GO terms enriched exclusively in a set
of genes regulated by a set of trans-factors forming a
cluster. An example of this analysis is shown for clus-
ter S02 (Figure 5). The target genes in this clusters were
specifically enriched for the biological process (BP) term
“cell division”, the cellular component (CC) term “nuclear

speck”, and the molecular function (MF) term “transcrip-
tion corepressor activity”. These results strongly suggest
that the clusters have emergent and specific combinatorial
properties, as expected for combinatorial mechanisms.

To further estimate the similarity between the onto-
logical enrichments associated with each cluster, the tool
is able to calculate the semantic similarity values, which
account for semantic similarity relationships between
non-identical ontological terms (see Methods). The mod-
ule Gene Ontology Similarity calculates the semantic sim-
ilarity values for all the three branches of GO and between
both each pair of clusters (inter-cluster semantic similar-
ity) and the single trans-factors belonging to the same
cluster (intra-cluster semantic similarity). In Figure 5, the
top rows of each panel list the semantic similarity values
between enriched terms associated to single trans-factors
and enriched terms associated to cluster S02. Here, the
stronger semantic similarities are observed among the CC
enrichments, while the weakest values lie among the BP
enrichments. This analysis can also help to rank the onto-
logical distance between a cluster and its trans-factors
according to the semantic similarity values. For exam-
ple, FXR1 globally shows the highest similarity with the
enrichment of cluster S02 (Figure 5).

Analyzing combinatorial features - step 2: classifying
RBP-binding sites
To suggest some potential binding mechanisms based on
the available experimental data [35], the second step of
the analysis focuses on the RBPs forming the previously
identified clusters. The underlying idea is that whenever
two RBPs (in the same cluster) are characterized by similar
binding sites over the mRNA, then a concurrent binding,
either competitive or cooperative, has occurred.

Although experimental methods (e.g., CLIP-seq) can be
used to gather information about the proximity of bind-
ing sites for specific RBPs, the resulting information is
corrupted by several types of noise sources: 1) a consider-
able fraction of binding sites can remain undetected (false
negatives) because the methods are applied on cells of a
particular type and in specific growth conditions, in which
not all the potential bound mRNAs are expressed; 2) inter-
actions that are transient can be mistakenly identified as
stable (false positives); and 3) post-processing analysis,
such as mapping and peak detection, can increase the
number of false negatives due to the difficulty of dealing
with splice sites and the stringent thresholds needed for
a confident detection, respectively. Computational mod-
els for RBP target detection are therefore valuable tools
in dealing with the low signal-to-noise ratio of current
experimental techniques. Such models can significantly
increase the precision with which target sites are resolved
and can uncover sites that would be otherwise missed
by experimental protocols. To determine if two RBPs are
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Figure 5 Analyzing combinatorial features, step 1: intra-cluster enrichment analysis. For cluster S2, the first column of the heatmap displays
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are likely to interact in a cooperative or competitive fash-
ion, we first compiled an equivalent in silico model of the
preferred RBP target sites. Given a cluster of RBPs and
their binding sites, the module trains a machine learning
algorithm to discriminate between binding sites of two
different RBPs, for all possible pairwise combinations of
proteins belonging to the same cluster. Two proteins are
likely to have different binding sites when the algorithm
effectively distinguishes between their binding areas. In
contrast, compatible binding sites are more likely to lead
to a difficult discrimination task. Discrimination is based
on a kernel machine binary classifier [50] capable of com-
puting similarity between base sequences in terms of their
respective putative secondary structures [34] and thus

of the spatial conformation of their binding sites (see
Methods for a detailed description of the classifier). The
structural component of this discrimination has a strong
biological significance, since RNA interactions are not
exclusively driven by sequence specificities.

We report the results of the classification analysis per-
formed on the first two clusters of sporadic trans-factors
(excluding singletons), namely, the cluster S02 that com-
prises CAPRIN1, FUS, FXR1, MOV10, and TAF15, and
the cluster S04 that comprises C22ORF28, CAPRIN1, and
MOV10 (see Table 2). For each RBP, we randomly selected
2,500 mRNA UTR stretches (of 20–70 nt) from available
binding coordinates of large-scale experiments (CLIP-seq
and related techniques) stored in the AURA 2 database
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(see Additional file 8). The classification performances
for clusters S02 and S04 are displayed in Figure 6A and
Figure 6B, respectively. Performance is computed with the
AUROCC and F1-score measures. AUROCC is an aggre-
gate measure that evaluates the quality of a classifier when
varying the threshold, to decide when a prediction should
be considered positive. An AUROCC value of 0.5 corre-
sponds to a random predictor, while an AUROCC value
of 1 indicates perfect discrimination. The F1 score is the
harmonic mean between precision and sensitivity, trad-
ing off the two complementary measures (see Methods for
the detailed explanation of these performance measures).
Considering the cluster S02, the classifier discriminates
the binding sites of only a subset of the RBPs in the
cluster (Figure 6A). The most specific binding sites were
observed for CAPRIN1 (with an average AUROCC of 0.92
and an average F1 of 0.85) and MOV10 (with an average
AUROCC and F1 of 1.0). FUS and TAF15 seem to have
more compatible binding sites. An AUROCC of 0.56 is in
fact very close to the performance of a random predictor,
suggesting that these proteins share a similar if not iden-
tical set of binding sites. Indeed, these two proteins are
known paralogues, both belonging to the FET family of
RNA-binding proteins [51]. Higher AUROCC values were
achieved when distinguishing the binding sites of FXR1
from those of FUS and TAF15 (0.66 and 0.72, respec-
tively), and maximal AUROCC values were found for
MOV10, suggesting different binding sites. Classification
performances of cluster S04, displayed in Figure 6B, were

generally high, suggesting that the UTR stretches that
are bound by the RBPs forming the cluster (C22ORF28,
CAPRIN1 and MOV10) are different. Figures 6C and 6D
show the distribution of the distances between couples of
binding sites lying on the same mRNA and targeted by
distinct RBPs, for cluster S02 and S04 respectively. The
distances between the binding sites of FUS and TAF15 are
much lower than those of the other distributions, indi-
cating that the two proteins tend to bind to the same or
very close regions. The average distance between FXR1
and FUS or TAF15 is also low, but it has a much larger
spread. A large average distance is observed for the other
cases and indicates a high discrimination capacity of the
classifier.

These examples show how we can start to use in silico
modeling of RBPs interactions to investigate their collab-
orative and/or competitive effects. This type of modeling
is effective when the experimental data is affected by
noise, since it recovers missed interactions (false nega-
tives) and filters out accidental interactions (false posi-
tives). A related predictive system was used in [52], where
it was shown that a model trained on a set of AGO2
HITS-CLIP sites could effectively identify binding sites
missed by the high-throughput experiment. These find-
ings have been verified comparing the predicted AGO2
targets with changes in transcript expression levels upon
AGO2 knockdown. Conversely this type of trend was
not observed for the original HITS-CLIP-detected sites
indicating a significant impact of false negatives in the
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experimental setting. The upgrade to predictive models
capable of this level of accuracy will allow more sophisti-
cated investigations, such as those warranted by the com-
binatorial analysis presented in this work. For instance, a
competitive effect can be hypothesized if two RBPs, found
in the same cluster, exhibit a compatible preference for
the same target region, even when the experimental data
are incomplete and do not report overlapping interaction
areas. Conversely, if the target regions are predicted to be
sufficiently close but not overlapping, a cooperative effect
can be hypothesized, even when experimental data cannot
resolve the distinct areas and these are therefore reported
as overlapping.

Alternative workflows
1 - Filtering interactions by experimental technique
PTRcombiner allows a selection of the source interaction
data to be use, thereby taking into account the different
experimental approaches currently available for mapping
protein-RNA interactions [16] and producing technically
homogeneous results. This method-selection feature of
PTRcombiner can be employed to exclude from the anal-
ysis the interactions obtained from techniques that are
considered more unreliable or inopportune for specific
analyses. As an example of the method-selection tool,
we filtered the human interactions annotated in AURA
2 according to the evidence type, identifying three sub-
sets of the original dataset. The first subset considered
only PAR-CLIP experiments and includes a total of 28
trans-factors (all RBPs) and 44,445 UTRs, with an average
number of interactions per UTR of 4.64 (206,065 anno-
tated interactions). The second subset considered all the
other CLIP experiments, namely CLIP, CLIP-seq, HITS-
CLIP and iCLIP. It includes a total of 12 trans-factors (all
RBPs) and 45,478 UTRs, with an average number of inter-
actions per UTR of 2.39 (108,528 annotated interactions).
The third subset used only interactions found by RNA
immunoprecipitation RIP. To date, it includes a total of 22
trans-factors (all RBPs) and 21,951 UTRs, with an average
number of interactions per UTR of 1.4 (30,755 annotated
interactions).

In the first subset (PAR-CLIP), we observed the pres-
ence of clusters composed exclusively of RBP (summa-
rized in the Additional file 9: Table S1). The clusters are
similar to those observed when the whole set of interac-
tions was analyzed, excluding trans-factors with none or
few interactions based on PAR-CLIP (e.g., for AGO1, only
one-tenth of annotated interactions originated from PAR-
CLIP experiments). Considering only the RBP interac-
tions obtained with PAR-CLIP experiments, the similarity
with the clusters analyzed and described in the previous
paragraphs is 0.78 (measured as the average Jaccard dis-
tance among corresponding clusters). After filtering for
the CLIP, CLIP-seq, HITS-CLIP, and iCLIP (other-CLIP)

interaction data, too few RBPs (12) were left in the dataset
to extract a reasonable number of clusters, so that no com-
parative analysis with the clusters obtained considering
the whole set of interactions could be performed. Finally,
the clusters extracted from the third dataset (RIP) had, on
average, very few associated genes (83). We expect that
this lack of large scale interaction data will be overcome
once more datasets are made available.

Overall, these results suggests that, to date, the main
component driving the selection of clusters is the set of
interactions measured by PAR-CLIP experiments.

2 - Filtering targets and regulators by expression level
So far, we have used PTRcombiner with a dataset that
comprised all the binding evidence from multiple experi-
ments in different biological systems that shared only the
“human” source. The biological interpretation of results
would greatly benefit from combining interaction data
with other sources of information, such as expression
data when available, in order to generate more specific
hypotheses. To integrate PTRcombiner with expression
data, we introduced the possibility to filter interactions
according to: a) the expression levels of mRNA targets;
and b) the expression levels of the regulators. In this way,
the interactions can be filtered according to the specificity
of the biological system being studied.

To show this functionality, we chose a well-studied cell
line (HeLa) and filtered the AURA dataset by selecting:
a) the transcripts known to be highly expressed in HeLa
(based on RNA-seq data from [53]); and b) RNA bind-
ing proteins and miRNA known to be present in HeLa
(based on SILAC data from [53] and small RNA-seq data
from [54], respectively). The filtered dataset now com-
prises 53,560 UTRs (79% of the whole set of 67,962 UTRs),
81 RBPs (76% of the whole set of 106 RBPs), and 133
miRNAs (29% of the whole set of 463 miRNAs). We ran
PTRcombiner on this filtered dataset, with the optimal τ

parameter corresponding to 0.65. The resulting clusters
are displayed in Additional file 9: Table S2. The majority
of the clusters are composed of RBPs, with the exception
of six singleton clusters and three mixed clusters of miR-
NAs and RBPs. To analyze the effect of the cell-specific
filter on the resulting clusters, we compared these clus-
ters (termed HeLa clusters) with those obtained in the
first analysis that lacked any gene expression-abased fil-
ter (termed general clusters). The comparison is shown
in Additional file 9: Table S3, where each HeLa-cluster is
matched to the general-cluster with maximal Jaccard sim-
ilarity. The average Jaccard similarity was 0.73 and ranged
from nearly identical clusters (with a maximum similar-
ity of 0.93) to clusters sharing half of their members (with
a minimum similarity of 0.50). Interestingly, one-third of
the general clusters (excluding the singletons R04, R05,
R07, R09, R10, R17, and R24) could not be associated with
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any HeLa cluster. This is not surprising since these clusters
are mainly composed of trans-factors or corresponding
targets that are not expressed in HeLa cells. HeLa clusters
therefore represent a subset of the general clusters.

3 - Balancing the trans-factor sample size
An additional alternative workflow supported by
PTRcombiner regards the mining step of the algorithm
and arises from the previously discussed bias of the
algorithm towards “widely interacting” trans-factors (see
Mining combinatorial features). Introducing a balanced
trans-factor association score is a possible way to reduce
this bias. The difference between the standard version
of PTRcombiner (called “unbalanced PTRcombiner”)
and the proposed alternative workflow (called “balanced
PTRcombiner”) is the way in which the pool of possible
clusters is selected. The standard version of the algorithm
incrementally extracts clusters of trans-factors by taking
each candidate trans-factor as a “seed” and computing
its association score with other trans-factors. The asso-
ciation score is the number of shared targets between
the two factors, normalized by the number of targets of
the seed (see Methods for details). This implies that the
seed is required to have a significant fraction of targets in
common with another trans-factor for that trans-factor
to be included in the seed’s cluster. By construction, this
score is asymmetric and tends to associate trans-factors
with many interactions (e.g., AGO1) together with those
with fewer interactions (which act as seeds) that share a
significant fraction of targets with them. Here, we used
a novel, alternative version of the association score nor-
malized by the square root of the product of the target
number for each trans-factor (cosine normalization, see
Methods), thereby rebalancing the interaction data to
cope with factors having a widely different number of
targets. Note that the optimal threshold τ in this case is
different from the unbalanced one (i.e. 0.25 vs 0.6), as
the alternative association score strongly affects clusters
sizes. Clusters obtained with the balanced score covered
a larger number of trans-factors (88, comprising 39 RBPs
and 49 miRNAs) than did the standard (unbalanced) ver-
sion of the algorithm (with 56 trans-factors, comprising
32 RBPs and 24 miRNAs) (Table 1 and Additional file 9:
Table S4, respectively). Although the average length of
the clusters was the same, the balanced PTRcombiner
produced more singleton clusters (namely, 12 out of 25,
as compared to 5 out of 25 for the unbalanced) and a few
very large clusters. Intuitively, the larger the cluster, the
fewer its associated genes (as they need to be targeted
by all trans-factors in the cluster). For this reason, the
number of genes associated to the non-singleton clusters
in the balanced case is lower than that in the unbalanced
case (Figure 7A,B). Also, the Jaccard similarity between
clusters, calculated over their trans-factors, is lower in

the balanced case (Figure 7C,D). Clusters in the balanced
case are thus more specific. Indeed, heat maps of the
enriched GO terms have less overlap with respect to the
unbalanced case (Figure 7E,F). A possible drawback of
the balanced workflow is a tendency to create clusters
that pick elements with a similar number of interac-
tions. This excludes for instance clusters with miRNAs
and RBPs that emerge from the standard workflow even
after removing recurrent trans-factors (e.g., PUM2 plus
miRNAs). The two procedures thus have different char-
acteristics, allowing users to discover different types of
interesting combinatorial associations and to alternatively
analyze the data according to their specific needs.

Comparison to related work
PTRcombiner is a novel approach mining combinatorial
post-transcriptional regulation patterns from interaction
data at the genome-wide level. As mentioned in the
Background, previous attempts have been made in recent
years to develop automated approaches to identify combi-
natorial aspects of post-transcriptional regulation. Several
computational tools have been developed for miRNA tar-
get prediction using a number of different approaches,
such as TargetScan [55], miRanda [56], TargetBoost [57],
PITA [58], MAGIA2 [29], miRTar Hunter [59]. Target site
predictions for different miRNAs have been combined in
the tools PicTar [30] and ComiR [31] to identify poten-
tial groups of interacting miRNAs. By using simple model
systems such as S. cerevisiae, some published studies have
attempted to develop computational and experimental
methods that identify functional modules based on com-
binatorial (or concurrent) RNA-protein interactions. For
example, Joshi and coworkers [33] developed a probabilis-
tic method for inferring regulatory module networks from
expression profiles. In the following, we provide a more
in-depth comparison with these approaches, highlighting
the differences with respect to our proposed method and
reporting comparative quantitative analyses on bench-
marks for which these alternative approaches can be run.

1 - Comparison to PicTar
PicTar is a probabilistic predictive method that computes
the probability of multiple miRNAs co-binding to the
same target mRNA by combining the binding scores for
each candidate miRNA. Albeit focusing on combinatorial
interactions, the algorithm differs from PTRcombiner in
many aspects. First, it explores the combinatorial inter-
action of miRNAs only. Second, it relies on predictive
methods for detecting potential binding sites rather than
using experimental data. The predictive approach can be
reasonably accurate for miRNAs but are still far from
satisfactory for RBPs. The third and main caveat of the
method is that it lacks a mining procedure that allows
to efficiently search the combinatorial space of possible
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Figure 7 Analyzing combinatorial features: comparison between unbalanced and balanced normalization. The number of HGNC genes
targeted by the top five ranking clusters obtained using unbalanced normalization (A) or balanced normalization (B) are displayed. Jaccard
similarities among the target genes of the top five ranking clusters obtained with unbalanced normalization (C), or those with balanced
normalization (D) are shown. Heatmap showing the top enriched Molecular Function GO terms associated to the lists of genes targeted by the top
five ranking clusters obtained with unbalanced normalization (E) or balanced normalization (F) are given. Singletons were excluded from the
analyses.

clusters. Rather, it either requires the user to specify a set
of miRNA to be jointly evaluated, or it needs to try all pos-
sible combinations in order to identify the high scoring
ones. PTRcombiner takes a different perspective, imple-
menting a mining approach to efficiently explore the com-
binatorial space of candidate clusters of miRNA and/or
RBP, guided by their coverage of observed interactions
with the target mRNAs. As discussed in the Conclusions,

we plan to adapt the method to deal with weighted inter-
actions, e.g., the score of a predicted binding or the
confidence of a certain experimental technique.

In order to quantitatively compare the two approaches,
we analyzed clusters of miRNA found by PTRcombiner
using PicTar. We focused on the clusters S09 and S14
(Table 2) because they are composed of only four
miRNAs, and evaluating larger clusters with PicTar is
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too computationally expensive. For each cluster, we took
the set of its target genes, i.e. the genes which interact
with all miRNAs in the cluster, and computed the PicTar
interaction score of each of them with the cluster (see
Additional file 10). The score is computed as the maxi-
mum value of the product of the binding scores of the
miRNAs in the cluster, with the constraint that binding
sites of different miRNAs should not overlap. If this con-
straint cannot be satisfied, or one or more miRNAs do
not have predicted binding sites on the target, the score
was set to zero. Binding scores for miRNAs were down-
loaded from the Dorina database [60]. We then compared
these cluster-target scores with those obtained by run-
ning the same procedure on the entire set of genes (12,713
genes found in the Dorina dataset) using the Welch’s
two samples t-test. The results of the statistical tests are
presented in Additional file 10. For both clusters, the dif-
ference between cluster-target scores and general scores
was statistically significant, with a confidence of approx-
imately 99%. The fact that the average on the former set
is significantly higher than the average on the latter set
is not a trivial information. In fact, it indicates that also
PicTar estimated the clusters of trans-factors to be rele-
vant exactly to the specific set of genes used to cluster
them together, confirming the relevance of the clusters
mined by PTRcombiner.

2 - Comparison to ComiR
ComiR [31] is a web tool for combinatorial miRNA target
prediction. It uses miRNA expression levels in combina-
tion with thermodynamic modeling and machine learning
techniques to make combinatorial predictions. ComiR
sums up the weighted (according to expression levels)
scores of the single miRNAs, computed according to the
four different scoring schemes of miRanda [56], PITA [58],
TargetScan [55], and mirSVR [61]. These scores are com-
bined through a support vector machine (SVM), which
outputs the likelihood that the set of miRNAs targets
a specific gene. As for PicTar, the main difference with
PTRcombiner is the lack of a mining procedure that would
identify the clusters of miRNA to be evaluated.

Using ComiR, we analyzed all clusters composed only
of miRNAs extracted by PTRcombiner, namely, S09, S14,
S16, and S22 (Table 2). In computing scores, we gave no
expression level to ComiR, resulting in uniform level for
all miRNAs. As for the PicTar case, we compared cluster-
target scores with scores for the entire set of genes, i.e.
all genes in ComiR output (Additional file 10). Welch’s
two sample tests confirmed the statistical significance of
the difference between cluster-target and general scores
for all clusters, with a confidence of approximately 100%
(Additional file 10). Similarly to the comparison to PicTar,
this result confirms the relevance of the clusters mined by
PTRcombiner.

3 - Comparison to LeMoNe
LeMoNe [62,63] is a probabilistic method for inferring
regulatory module networks from expression profiles. The
module network model was introduced in the work by
Segal et al. [32] as a probabilistic bi-clustering approach,
extracting co-clusters of genes and conditions from a
matrix of gene expression levels under different experi-
mental conditions. A co-cluster contains a subset of genes
and conditions, such that the genes have similar expres-
sion levels under the selected conditions. The subset of
genes represents a regulatory module, while each subset
of conditions for the same module is an expression state
for the module. LeMoNe introduces an ensemble aver-
aging strategy to generate more coherent modules from
multiple runs of the module network inference process.
The approach was later adapted to infer transcriptional
and post-transcriptional modules from both transcrip-
tome and translatome expression profiles in S. cerevisiae
[33]. As already discussed, this approach detects puta-
tive regulatory modules that characterize specific biologi-
cal conditions (i.e. stress conditions), while PTRcombiner
targets more general purpose, genome-wide combinato-
rial interactions. Nonetheless, it is interesting to study
the relationship between clusters detected by the two
methods, when both are applicable (i.e. if the translatome
expression profiles are available). To compare this method
with PTRcombiner, we ran our computational tool on the
yeast dataset employed in [33].

The interaction dataset [64] contains RIP-chip experi-
ments involving 43 RBPs and 5,118 genes. We obtained
a list of interacting RBPs and their relative number of
target genes (Figure 8A). The distribution of the num-
ber of distinct trans-factors bound to the same gene
are shown in Figure 8B. In total, the dataset contains
15,391 annotated interactions, with the interaction matrix
sparsity value of 0.07 (Figure 8C). From the interaction
matrix, PTRcombiner (with optimal τ set to 0.4) extracted
the clusters composed exclusively of RBPs (Additional
file 9: Table S5). These clusters were then compared with
the sets of RBPs whose targets were enriched in post-
transcriptional modules generated by LeMone. The list of
RBP sets was extracted from the supplementary materials
of [33] (Additional file 9: Table S6).

PTRcombiner clusters were then compared with
LeMoNe clusters, according to the Jaccard similarity
maximized by matching each PTRcombiner cluster with
a LeMoNe cluster (Additional file 9: Table S7). Reassur-
ingly, the agreement between the two methods is high,
with half of the top ten PTRcombiner clusters identical to
LeMone clusters.

Conclusions
In this paper we present a computational tool for the
combinatorial analysis of post-transcriptional regulation
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Figure 8 Interaction maps annotated for S. cerevisiae. (A) Yeast trans-factors (41 RBPs) were ordered according to the number of their
annotated target genes. Trans-factors with less than 100 distinct targets are not shown. (B) Distribution of the number of distinct trans-factors
bound to the same gene. (C) Graphical representation of the Boolean interaction matrix, derived from the input pairwise interactions. Each row
corresponds to a trans-factor, each column to a gene. Positive interactions are displayed in red.

patterns involving multiple trans-factors. This tool, called
PTRcombiner, was tested on two sets of experimen-
tal interactions between post-transcriptional trans-factors
and target mRNAs, in human and yeast. PTRcombiner
enables the user to: a) detect groups of regulators that
share a conspicuous amount of mRNA targets; b) charac-
terize the clusters biologically; and c) identify concurrent
binding sites of trans-factors belonging to the same clus-
ter. Further, the underlying Boolean matrix factorization
approach allows the user to identify multiple overlap-
ping clusters of trans-factors that jointly account for as
many interactions as possible, casting the problem into
an approximate interaction coverage task. This method
naturally addresses the limitations of most clustering and
motif mining approaches, which typically return non-
overlapping clusters (of trans-factors), clusters covering
non-overlapping sets (of mRNAs), or long lists of highly
redundant clusters. Our tool is an original and com-
prehensive attempt to provide a computational pipeline
for elucidating complex post-transcriptional combinato-
rial rules on a genome-wide level. By integrating expres-
sion profiles of both trans-factors and target mRNAs,
the tool can also be used to mine combinatorial pat-
terns in specific experimental conditions. We plan to
extend the method to deal with uncertainty in the inter-
action information, such as putative interactions from
predictive algorithms, and to incorporate the binding

strength by properly weighting the contribution of each
interaction.

Importantly, PTRcombiner is a versatile tool that is
not limited to post-transcriptional regulation analysis. In
fact, it can be easily adapted to mine transcriptional and
combined transcriptional/post-transcriptional regulation
patterns. An inherent limitation in the analyses that can
be conducted with the tool is given by the paucity of inter-
action data available to date. However, given the fast rate
at which high-throughput interaction detection experi-
ments are conducted, this tool may have the potential
to unveil the complex mosaic of interactions underlying
post-transcriptional regulation in the near future.

Methods
Data extraction
Interaction data used to build the human interaction
matrix and to classify RBP binding sites were extracted
from the AURA 2 database (/http://aura.science.unitn.
it/download/). AURA 2 collects experimental post-
transcriptional interactions from different techniques as
annotated in published literature, storing also positional
binding information if available, without introducing
additional data manipulation steps (apart from mapping
coordinates to the hg19 genome assembly).

Interaction data used to build the yeast interaction
matrix were extracted from [64].

http://aura.science.unitn.it/download/
http://aura.science.unitn.it/download/
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Boolean matrix factorization
The Mining module factorizes a n × m Boolean matrix C
representing the interaction maps in the available dataset.
Formally:

Cij =
{

1 if trans-factor j interacts with target i
0 otherwise

For example, in the case of the interaction maps taken
from AURA 2 [35], the interaction matrix C represents
trans-factor—UTR interactions (where trans-factors can
be either RBPs or miRNAs), while in the case of interac-
tion maps on yeast [64], it represents RBP-gene interac-
tions. Even so, the mining module can analyze any dataset
containing interaction maps.

The mining module uses the Boolean matrix factor-
ization algorithm developed by Miettinen et al. [36] to
identify clusters of trans-factors which bind the same
set of targets. Let m be the number of different trans-
factors, and n the number of targets. Let C be a n × m
Boolean matrix which represents trans-factor—target
interactions. The rows of the matrix (observations) repre-
sent the targets, and the columns (attributes) represent the
trans-factors. A basis vector represents a set of correlated
attributes, i.e. a cluster of trans-factors. Boolean matrix
factorization aims to discover the clusters of trans-factors
that are present in the dataset and how the interactions
of each target can be expressed by a combination of these
clusters.

Let S and B be binary matrices of dimensions n × k
and k × m, respectively. The n × m matrix S ◦ B repre-
sents the Boolean product of S and B, with the addition
defined as 1+1 = 1. In a more intuitive way, B is the basis
vector matrix that contains the information about which
trans-factors appear in each cluster, and S is the usage
matrix that contains the information about which clusters
of trans-factors appear in each target.

Given the binary n × m interaction matrix C and a
positive integer k ≤ min{n, m}, the Boolean matrix fac-
torization procedure finds an n × k matrix S and a k × m
binary matrix B that minimize

|C − S ◦ B| =
n∑

i=1

m∑
j=1

|Cij − (S ◦ B)ij|

Since the exact factorization of the matrix C is an NP-
hard problem, the algorithm greedily builds an approxi-
mate solution to the factorization problem. It constructs
the basis matrix B (and accordingly, the usage matrix S)
to try to cover the ones in the interaction matrix C in a
greedy manner, giving the priority to the denser rows of
the matrix (with a high proportion of ones). The basic idea
behind the greedy algorithm is to exploit the correlation
between the columns (the trans-factors). First, the asso-
ciations between pairs of trans-factors are computed and

used as candidate basis vectors. Second, k of these basis
vectors are selected in a greedy fashion. Let A be an m×m
Boolean matrix that contains m candidate basis vectors.
Aij = 1 if the correlation between trans-factor i and trans-
factor j is τ -strong, which means that it is no less than a
certain threshold value τ ≤ 1, and 0 otherwise.

In this work, two different approaches to estimate the
association score between trans-factors are presented.
The standard version of the algorithm [36] uses an unbal-
anced score, i.e. the association of the i-th trans-factor
with the j-th one is defined as c(i ⇒ j) = 〈c.i, c.j〉/〈c.i, c.i〉,
where 〈·, ·〉 is the inner product between vectors, and in
general c(i ⇒ j) �= c(j ⇒ i). The resulting association
matrix is an m × m asymmetric Boolean matrix. The i-th
row of A, which corresponds to the i-th candidate basis
vector (cluster) is determined using the i-th trans-factor
as seed. This means that Aij = 1 if the number of com-
mon targets between the i-th and the j-th trans-factor is
at least a fraction τ of the number of targets of the i-th
trans-factor, and 0 otherwise. The score is thus normal-
ized only according to the number of targets of the seed
trans-factor. As a consequence, trans-factors with many
targets tend to have a high association score with many
trans-factor seeds, when these have few interactions, and
thus to appear in multiple clusters. This allows to identify
combinatorial interactions between trans-factors with dif-
ferent degree of specificity (e.g. RBPs and miRNAs). On
the other hand, clusters of purely specific trans-factors
tend to be discarded by the selection procedure, which
aims at maximizing the interaction coverage.

To address this bias, we implemented an alternative
balanced association score given by the vector cosine sim-
ilarity, i.e. c(i ⇔ j) = 〈c.i, c.j〉/√〈c.i, c.i〉 · 〈c.j, c.j〉. The
resulting association matrix is symmetric and produces
more homogeneous clusters in terms of the number of
targets of their trans-factors.

The two association scores have different characteris-
tics, allowing the discovery of different types of interesting
combinatorial associations.

Biological characterization
Jaccard similarity
The Jaccard similarity between two lists is defined as the
ratio between the size of the intersection and the size of
the union of the two lists. This measure ranges from 0
(i.e. the two lists do not have any common element) to 1
(i.e. the two lists are identical).

Gene ontology enrichment analysis
Gene Ontology enrichment analysis was performed
with the bioconductor package topGO (http://www.
bioconductor.org/packages/2.13/bioc/html/topGO.html),
using the Fisher’s exact test statistics and the “elim”
method for dealing with the GO graph structure. The

http://www.bioconductor.org/packages/2.13/bioc/html/topGO.html
http://www.bioconductor.org/packages/2.13/bioc/html/topGO.html
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significance of over-representation is determined at a 0.05
P value threshold. Enrichment analysis was performed
on the list of HGNC genes regulated by each cluster of
trans-factors. Inside each cluster, enrichment analysis was
performed also on the list of HGNC genes interacting
with each trans-factor, in order to compare enrich-
ments associated with targets of single trans-factors with
enrichments associated to targets of clusters.

Semantic similarity
Semantic similarity between two lists of enriched GO
terms was calculated with the bioconductor package
GOsemsim [65] (http://bioconductor.org/packages/2.12/
bioc/html/GOSemSim.html), using Wang’s method to
calculate pairwise semantic similarities between GO
terms and the BMA (best-match average) method to com-
bine semantic similarity scores of multiple GO terms.

RBP-binding site classifier
Often, RBP-binding sites are modeled taking into account
only sequential information. In contrast, we acknowledge
here that the distribution of regions available for interac-
tion with RBPs is significantly influenced by the presence
of self-interacting base pairs on the surrounding mRNA
region. Moreover, RBPs are known that exhibit a spe-
cific binding preference for double-stranded RNA. Our
key idea was to model interaction sites as RNA sequences
that are free to self-interact and fold into stable structures.
We therefore needed to: 1) reliably compute the folded
structure of a mRNA sequence; and 2) develop predictive
models that can accept such complex structures as input.
For these reasons, our RBP Site Pairwise Classification
module is implemented as a kernel machine binary classi-
fier [50] using a graph kernel on predicted RNA secondary
structures [34].

Kernelized learning algorithm is a popular machine
learning approach in which the development of a suit-
able similarity function, called the kernel, allows compu-
tations to be performed over arbitrary data structures.
Specifically, graph kernels allow predictive algorithms,
like Support Vector Machines (SVM), to operate over
graph instances. Using a machine learning method that
is designed to work on data structures that are as flexi-
ble as graphs allows us to model the structure of RNA in
a natural way, with vertices representing nucleotides and
edges representing the different types of bonds between
nucleotides, i.e. backbone phosphate bonds and base-
pairing bonds. Moreover, recent advances in graph kernels
[34] coupled with fast stochastic algorithms [66] allow
the learning problem to be scaled to datasets comprising
hundreds of thousands graphs, paving the way to -omics
applications.

The core idea for the graph kernel that we use (called
Neighborhood Subgraph Pairwise Distance Kernel or

NSPDK in short) [34] is to generalize (gapped) k-mers
string kernels to graphs. Instead of determining the sim-
ilarity between two strings measuring the fraction of
common k-mers (i.e. small contiguous subsequences), we
determined here the similarity between two graphs by
counting the shared fraction of a special type of compact
subgraphs, called neighborhood subgraphs. A neighbor-
hood subgraph is induced by all vertices which are at a
distance not greater than a specified radius from a given
root vertex (where the distance between two vertices is
taken as the length of the shortest path between the ver-
tices). Since checking whether two graphs are identical
is more difficult than checking whether two strings are
identical, an efficient approximation was proposed in [34],
based on hashing a quasi-canonical graph representation.

In [67], the authors have shown how to apply NSPDK
to a graph representation of RNA folding structures. The
key idea is to not rely only on a single structure (e.g.,
the minimum free energy configuration), which is known
to be error prone, but rather use efficient dynamic pro-
gramming algorithms [68] to sample the set of all possible
structures for the given sequence, taking a small number
of representatives that are both structurally diverse and
energetically stable. Finally, all of the structures relative to
a single RNA sequence are considered simultaneously in a
comprehensive disconnected graph.

The RBP Site Pairwise Classification module uses all
these ideas in a unified framework: given a region of the
mRNA, 1) a sample of highly stable but diverse folding
structures is computed and encoded in a graph [67]; this
graph is then 2) processed by the NSPDK kernel [34] and
a corresponding feature representation is extracted; and
3) finally, binding sites of different RBPs are discrimi-
nated via a SVM which takes in input the mRNA regions
encoded in the aforementioned feature representation.
The SVM model is efficiently trained using the stochastic
gradient descent technique of [66].

Performance measures
The performance of classification tasks can be evaluated
through a variety of values. Each example in the dataset
has an observed label (positive or negative in the case of
binary classification) that represents its actual class, and
a predicted label (again, either positive or negative) that
is predicted by the classifier. Comparing these two labels
makes it possible to define the True Positives (TP) as the
positive examples that were predicted as positive, the True
Negatives (TN) as the negative examples that were pre-
dicted as negative, the False Positives (FP) as the negative
examples that were predicted as positive, and the False
Negatives (FN) as the positive examples that were pre-
dicted as negative. The Precision value is the True Positive
rate, which is the fraction of True Positives with respect to
the total amount of examples predicted as positive, while

http://bioconductor.org/packages/2.12/bioc/html/GOSemSim.html
http://bioconductor.org/packages/2.12/bioc/html/GOSemSim.html
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the Sensitivity is the fraction of TP with respect to the total
amount of positive examples. The two measures are com-
plementary, so that an increase in one typically results in
a decrease in the other. The F1-score is defined as the har-
monic mean between precision and sensitivity, trading off
the two. This measure requires the classifier to output a
hard decision for each example, i.e. either a positive or a
negative prediction. Many classifiers provide a confidence
for their predictions, so that a user can choose a thresh-
old over which a prediction is considered as positive. By
varying the threshold one can obtain a spectrum of pre-
dictions, from very conservative (only the most confident
predictions are positive) to very tolerant. The AUROCC
(Area Under the Receiver Operative Characteristic Curve)
is an aggregate measure evaluating the performance of
a classifier over the whole spectrum of possible thresh-
olds. It is obtained by plotting the TP rate vs the FP rate
(i.e. the fraction of negative examples predicted as pos-
itive) when varying the threshold value, and computing
the area under the resulting curve. An AUROCC value
of 0.5 indicates that the classifier is completely unable to
discriminate between the two classes, performing as a ran-
dom predictor, while an AUROCC value of 1 indicates
perfect discrimination.

Availability of supporting data
The data sets supporting the results of this article are
included within the article (and its Additional files 1
and 8).

Additional files

Additional file 1: A zip archive containing the interaction map sets
used to discuss the performance of PTRcombiner in this paper.

Additional file 2: A zip archive containing the outputs of the mining
module of PTRcombiner at different combinations of k and τ ,
including recurrent trans-factors.

Additional file 3: A zip archive containing the outputs of the mining
module of PTRcombiner at different combinations of k and τ ,
considering the sporadic trans-factors.

Additional file 4: A table of two columns containing the associations
between HGNC genes and clusters of trans-factors obtained
including recurrent trans-factors.

Additional file 5: A table of two columns containing the associations
between HGNC genes and clusters of sporadic trans-factors.

Additional file 6: A zip archive containing the ontological enrichment
results generated by PTRcombiner analyzer module step 1 for the top
five ranking clusters obtained including recurrent trans-factors.

Additional file 7: A zip archive containing the ontological
enrichment results generated by PTRcombiner analyzer module step
1 for the top five ranking clusters of sporadic trans-factors.

Additional file 8: A zip archive containing the binding site
coordinates for all the RNA binding proteins annotated in AURA 2.

Additional file 9: A zip file containing supplementary Figure S1 and
supplementary Tables S1–S7.

Additional file 10: A zip archive containing the PicTar and ComiR
scores used for confrontation with our method.
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