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Abstract

Predicting the disulfide bonding state of each cysteine is a step towards location of disul-
phide bridges in proteins. The solution proposed here is a refinement of a recently introduced
method based on a two-stage combination of multiple classifiers. In our approach, the first
stage operates at the protein level and attempts to predict whether all, none, or some of the
cysteines in the sequence are oxidized. The second stage is a binary classifier that refines the
previous prediction by exploiting local context (a fixed-size window of residues flanking the
target cysteine). The main contribution of this paper is the (combined) use of a spectrum
kernel and the introduction of evolutionary information in the first stage of the system. We
show that both implements allow to improve prediction accuracy. Our best system correctly
classifies 85% cysteines as measured by 5-fold cross validation, on a set of 716 proteins from
the September 2001 PDB Select dataset.

1 Introduction

Cysteines may form covalent bonds, known as disulfide bridges, that may connect very distant
portion of a protein sequence. Thus, the location of these bonds is a very informative constraint
on the conformational space, and the associated information represents a significant step towards
folding or understanding structural properties of the protein. Before disulfide bridges can be
predicted, it is necessary to determine which cysteines in the sequence are actually oxidized, a
binary classification problem that has received significant and increased attention during the last
few years. Fariselli et al. [5] have proposed a jury of neural networks with no hidden units,
fed by a window of 2k + 1 residues (enriched by evolutionary information), centered around the
target cysteine. This method achieved 81% accuracy (correct assignment of the bonding state)
measured by 20-fold cross validation and using a non-redundant set of 640 high quality proteins
from PDB Select [9] of October 1997. Fiser & Simon [6] later proposed an improvement by
exploiting the observation that cysteines and half cystines rarely co-occur in the same protein.
Thus, if a larger fraction of cysteines are classified as belonging to one oxidation state, then all the
remaining cysteines are predicted in the same state. The accuracy of this method is as high as 82%,
measured by a jack-knife procedure (leave-one-out applied at the level of proteins) on a set of 81
protein alignments. Mucchielli-Giorgi et al. [14] have proposed a predictor that exploits both local
context and global protein descriptors. Interestingly, they found that prediction of covalent state
based on global descriptors was more accurate (77.7%) than prediction based on local descriptors
alone (67.3%). This is not surprising in the light of the results presented in [6] because when using
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global descriptors all the cysteines in a given protein are deemed to be assigned to the same state.
Thus a good method for classifying proteins in two classes is also a good method for predicting
the bonding state of each cysteine. The effect of local context however is not negligible: results in
[14] show that 79.3% accuracy can be achieved by using an input vector joining global and local
descriptors (results in this case are measured by 5-fold cross-validation on a set of 559 proteins from
Culled PDB). Starting from these observations, we have recently proposed a different approach
for exploiting the key fact that cysteines and half cystines rarely co-occur [7]. Classification is
achieved by using two cascaded classifier. The first classifier predicts the type of protein based on
the whole sequence. Classes in this case are “all”, “none”, or “mix”, depending whether all, none,
or some of the cysteines in the protein are involved in disulfide bridges. The second binary classifier
is then trained to selectively predict the state of cysteines for proteins assigned to class “mix”,
using as input a local window with multiple alignment profiles. The best accuracy reported in [7]
was 83.6%, measured by 5-fold cross validation, on a set of 716 proteins from the September 2001
PDB Select dataset. Shortly after, Casadio et al. [3] have proposed yet another approach where
disulfide-bonding state is predicted as in CYSPRED but predictions are then refined using a hidden
Markov model trained to recognize the stochastic language that describes the alternate presence
of bonding and non-bonding cysteines along the sequence. This improved method achieved the
performance level of 88.% correct prediction on PDB select.

In this paper we study two extensions for improving the three-state classifier in the architecture
presented in [7]. First, we use kernel machine based on the spectrum kernel [13] that exploits the
whole protein sequence as input. Second, we introduce evolutionary information in the form
of cystein conservation in multiple alignments. These modifications allow to improve prediction
accuracy to 84.5% on the same test sequences studied in [7].

2 Two-stage classification of cysteines

Let us shortly review the method presented in [7]. We denote by Yi,t a binary random variable
associated with the bonding state of cysteine at position t in protein i, byW k

t the context of cysteine
t, i.e. a window of size 2k + 1 centered around position t (enriched with evolutionary information
in the form of multiple alignment profiles), and by Di a global set of attributes (descriptors) for
protein i.

For each protein, let Ci be a three-state variable that represents the propensity of the protein to
form disulfide bridges. The possible states for Ci are “all”, “none”, and “mix”, depending whether
all, none, or some of the cysteines in the protein are involved in disulfide bridges. We can now
define a model for P (Yi,t = 1|Di,W

k
t ) as follows:

P (Yi,t|Di,W
k
t ) =

∑
Ci

P (Yi,t|Di,W
k
t , Ci)P (Ci|Di,W

k
t ). (1)

We can simplify the above model by introducing some conditional independence assumptions. First,
we assume that the type of protein Ci depends only on its descriptor: P (Ci|Di,W

k
t ) = P (Ci|Di).

Second, we simplify Equation 1 by remembering the semantics of Ci:

P (Yi,t = 1|Di,W
k
t , Ci = all) = 1

P (Yi,t = 1|Di,W
k
t , Ci = none) = 0 (2)

(this can be seen as a particular form of context-specific independence [1]). As a result, the
model in Equation 1 can be implemented by a cascade of two classifiers. Intuitively, we start
with a a multi-class classifier for computing P (Ci|Di). If this classifier predicts one of the classes
“all” or “none”, then all the cysteines of the protein should be classified as disulfide-bonded or
nondisulfide-bonded, respectively. If instead the protein is in class “mix”, we refine the prediction
using a second (binary) classifier for computing P (Yi,t|Di,W

k
t , Ci = mix). Thus the prediction is

obtained as follows (see also Figure 1):

P (Yi,t = 1|Di,W
k
t ) = P (Yi,t = 1|Di,W

k
t , Ci = mix)P (Ci = mix|Di) + P (Ci = all|Di) (3)
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Figure 1: The two-stage system. The protein classifier on the left uses a global descriptor based
on amino acid frequencies. The local context classifier is fed by profiles derived from multiple
alignments.

By comparison, note that the method in [6] cannot assign different bonding states to cysteine
residues in the same sequence.

3 Implementation using probabilistic SVM

Kernel machines, and in particular support vector machines (SVM), are motivated by Vapnik’s
principle of structural risk minimization in statistical learning theory [18]. In the simplest case,
the SVM training algorithm starts from a vector-based representation of data points and searches
a separating hyperplane that has maximum distance from the dataset, a quantity that is know as
the margin. More in general, when examples are not linearly separable vectors, the algorithm maps
them into a high dimensional space, called feature space where they are almost linearly separable.
This is typically achieved via a kernel function that computes the dot product of the images of
two examples in the feature space. The popularity of SVM is due to the existence of theoretical
results guaranteeing that the hypothesis obtained from training data minimizes a bound on the
error associated with (future) test data.

The decision function associated with an SVM is based on the sign of the distance from the
separating hyperplane:

f(x) =
N∑
i=1

yiαiK(x,xi) (4)

where x is the input vector, {x1, . . . ,xN} is the set of support vectors, K(·, ·) is the kernel func-
tion, and yi is the class of the i-th support vector (+1 or -1 for positive and negative examples,
respectively).

3.1 Spectrum kernel

The k-spectrum of a string s is the set of all the subsequences of s having length k. By Φk(s) we
denote the vector associated with s in feature space. The components of Φk(s) count the number of
occurrences of each k-subsequence in s (a “bag-of-subsequences” representation of s). Interestingly,
descriptors based on amino acid frequencies as defined in [14], basically correspond to the use of
a spectrum kernel with k = 1. Augmenting the feature space by incorporating short subsequences
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increases the expressive power of the model and may improve prediction accuracy if k is carefully
chosen and enough training sequences are available. Leslie et al. [13] have recently introduced
an algorithm based on suffix trees for efficiently computing the dot product in the feature space
associated with spectrum kernels (its time complexity is proportional to k and to the sequence
length). The experiments reported below have been carried out using our implementation of suffix
trees [8].

3.2 Probabilistic outputs in SVM

In their standard formulation SVMs output hard decisions rather than conditional probabilities.
However, margins can be converted into conditional probabilities in different ways both in the case
of binary classification [12, 16] and in the case of multi-class classification [15]. The method used
in this paper extends the algorithm presented in [16], where margins in Equation 4 are mapped
into conditional probabilities using a logistic function, parameterized by an offset B and a slope
A:

P (Ci = 1|x) =
1

1 + exp(−Af(x)−B)
(5)

In [16], parameters A and B are adjusted according to the maximum likelihood principle, assuming
a Bernoulli model for the class variable. This is extended here to the multi-class case by assuming
a multinomial model and replacing the logistic function by a softmax function [2]. More precisely,
assuming Q classes, we train Q binary classifiers, according to the one-against-all output coding
strategy. In this way, for each point x, we obtain a vector [f1(x), · · · , fQ(x)] of margins, that can
be transformed into a vector of probabilities using the softmax function as follows:

gq(x) = P (C = q|x) =
eAqfq(x)+Bq∑Q
r=1 e

Arfr(x)+Br
(6)

The softmax parameters Aq, Bq are determined as follows. First, we introduce a new dataset
{(f1(xi), . . . , fQ(xi), zi), i = 1, . . . ,m} of examples whose input portion is a vector of Q margins
and output portion is a vector z of indicator variables encoding (in one hot) one of Q classes. As
suggested in [16] for the two classes case, this dataset should be obtained either using a hold-out
strategy, or a k-fold cross validation procedure. Second we derive the (log) likelihood function
under a multinomial model, and search the parameters Aq and Bq that maximize

` =
∑
i

Q∑
q=1

zq,i log gq(xi) (7)

where zq,i = 1 if the i-th training example belongs to class q and zq,i = 0 otherwise.

3.3 A fully-observed mixture of SVM experts

While the above method yields multiclass conditional probabilities it does not yet implement the
model specified by Equation 3. We now discuss the following general model, that can be seen as
a variant of the mixture-of-experts architecture [10]:

P (Y = 1|x) =
Q∑
q=1

P (C = q|x)P (Y = 1|C = q,x) (8)

In the above equation, P (C = q|x) is the probability that q is the expert for data point x, and
P (Y = 1|C = q,x) is the probability that x is a positive instance, according to the q-th expert.
Collobert et al. [4] have recently proposed a different SVM embodiment of the mixture-of-experts
architecture, the main focus in their case being on the computational efficiency gained by problem
decomposition. Our present proposal for cysteines is actually a simplified case since the discrete
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variable C associated with the gating network is not hidden1. Under this assumption there is no
credit assignment problem and a simplified training procedure for the model in Equation 8 can be
derived as follows.

Let f ′q(x) denote the margin associated with the q-th expert. We may obtain estimates of
P (Y = 1|C = q,x) using a logistic function as follows:

pq(x) = P (Y = 1|C = q,x) =
1

1 + exp(A′qf ′q(x) +B′q)
. (9)

Plugging Equations 6 and 9 into Equation 8, we obtain the overall output probability as a function
of 4Q parameters: Aq, Bq, A

′
q, and B′q. These parameters can be estimated by maximizing the

following likelihood function

` =
m∑
i=1

1− yi
2

log

(
Q∑
q=1

gq(xi)pq(xi)

)
(10)

The margins to be used for maximum likelihood estimation are collected by partitioning the train-
ing set into k subsets. On each iteration all the 2Q SVMs are trained on k − 1 subsets and the
margins computed on the held-out subset. Repeating k times we obtain as many margins vec-
tors (f1(x), · · · , fQ(x), f ′1(x), · · · , f ′Q(x)) as training examples. These vectors are used to fit the
parameters Aq, Bq, A′q, and B′q. Finally, the 2Q machines are re-trained on the whole training set.

4 Data preparation

All the experiments were carried out using a significant fraction of the current representative set
of non homologous protein data bank chains (PDB Select [9]). We extracted the chains in the file
2001 Sep.25 listing 1641 chains with percentage of homology identity less than 25%. From this set
we retained only high quality proteins on which the DSSP program [11] does not crash, determined
only by X-ray diffraction, without any physical chain breaks and resolution threshold less than 2.5
Å. The DSSP program was also used to identify disulfide bonds between cysteines. Proteins with
interchain bonds were not included in the final dataset containing 716 proteins for a total of 4859
cysteines, 1820 of which in disulfide-bonded state and 3039 in nondisulfide-bonded state. In this
dataset, 187 proteins are of type “all”, 478 are of type “none”, and 51 (i.e. only 7%) of type “mix”.

Evolutionary information is derived from multiple sequence alignments, obtained in our case
from the HSSP database [17].

4.1 Input encoding

The descriptor Di described in [7] is real vector with 24 components, similar to the one used in
[14]. The first 20 components are log(N j

i /N
j), where N j

i is the number of occurrences of amino
acid type j in protein i and N j is the number of occurrences of amino acid type j in the whole
training set.The 21st component is log(Ni/Navg) where Ni is the length in residues of sequence
i and Navg is the average length of the proteins in the training set. The next two components
are N cys

i /N cys
max and N cys

i /Ni where N cys
i and N cys

max are respectively the number of cysteines in
protein i and the maximum number of observed cysteines in the training set. The last component
is a flag indicating whether the cysteine count is odd.

The local input window W k
t used by the second stage classifier is represented as the set of

multiple sequence profile vectors of the residues flanking cysteine at position t. In the experiments,
we used a symmetrical window centered at each cysteine varying the window size parameter k from
8 to 10. Note that although the central residue is always a cysteine, the corresponding feature
is still taken into account since the profile in this case indicates the degree of conservation of

1Actually the architecture in Figure 1 for cysteines is even simpler since two of the experts output a constant
prediction.
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the cysteine. For each of the 2k + 1 positions we used a vector of 22 components, enriching the
20-components profile with relative entropy and conservation weight.

4.2 Cysteine conservation

Cysteines tends to be conserved in multiple alignments when they form disulfide bridges. In
the experiments reported below, we made available this information to the three-state classifier
(none-all-mix) in two alternative ways. First, we defined an extended descriptor with H additional
components related to the conservation of cysteines. For h = 0, . . . ,H−1, the h-th extra component
is the fraction of cysteines in the sequence whose multiple alignment conservation falls in the
bin [h/H, (h + 1)/H]. Second, we defined a special sequential representation of proteins that
incorporates evolutionary information. In this representation a protein is a string in an extended
alphabet having 19+Z symbols, where occurrencies of C (cysteine) are replaced by a special symbol
that indicates the degree of conservation of the cysteines in the correspondent positions of multiple
alignments. For example if Z = 2, one symbol encodes highly (¿50%) conserved cysteines and
another one encodes lowly conserved ones.

5 Results

The same settings as in [7] have been used in the present experiments. In particular, polynomial
kernels have been choosen for the local experts. The subsequence length for the spectrum kernel
was set to the best value of k = 5 determined using a validation set. Classification performance
was assessed by a 5-fold cross-validation procedure. Softmax parameters (see equations 6 and 9)
were estimated by 3-fold cross validation (inside each fold of the outer 5-fold cross-validation),
after kernel parameter estimation.

Table 1 reports four types of results obtained on the 716 proteins dataset. Each major column
corresponds to a different size k of the local window (from 7 to 10). Minor columns report classifi-
cation accuracy, precision, and recall. Accuracy (also denoted as Q2 in other papers) is the fraction
of correctly classified cysteines. Precision (or sensitivity) is the fraction of cysteines predicted in
the disulfide-bonded state that are actually bonded. Recall is the fraction of disulfide-bonded
cysteines that are correctly assigned to their state by the predictor.

Results are reported for eight different classifiers. The first method (Desc24) is a global SVM
classifier (RBF kernel) taking as input 24 protein descriptors, trained on a binary classification
task as reported in [7]. In the next row (Spect20) we replaced descriptors by a spectrum kernel
operating on strings of 20 symbols with k = 5. We can see that using frequencies of substrings of
length up to five reduces two-state classification errors by about 7%. The third row (L) corresponds
to a single classifier based on a support vector machine with polynomial kernel, that only takes a
local window of multiple alignments profiles as input.

In the next five experiments, the local classifier is combined with different global classifiers using
the architecture of Section 3.3. In the rows L+Spect20 and L+Desc24 we report results obtained
by combining the local classifier with the two global classifiers mentioned above. In the remaining
three experiments we incorporated evolutionary information in the input to the global classifier
using the two representations explained in Section 4.2. In particular, in L+Desc29 we used a global
descriptor with 5 extra inputs encoding cysteine conservation, while in L+Spect22 and L+Spect24
we used the spectrum kernel with extended alphabets (Z = 3 and Z = 5, respectively). The best
result (85%) is obtained with the spectrum kernel, 5 symbols encoding cysteine conservation, and
a local window of 21 residues.

6 Conclusions

We have shown that global features extracted through a spectrum kernel can improve prediction
accuracy compared to global descriptors based on amino acid frequencies. As the baseline accuracy
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Table 1: Summary of the experimental results.

w15 w17 w19 w21
Method Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

Desc24 75.04 65.42 70.59 75.04 65.42 70.59 75.04 65.42 70.59 75.04 65.42 70.59
Spect20 76.74 70.57 66.35 76.74 70.57 66.35 76.74 70.57 66.35 76.74 70.57 66.35

L 78.11 73.61 65.32 79.27 75.22 67.12 79.40 76.07 66.24 79.80 76.95 66.23

L+Spect20 83.14 82.16 70.58 83.29 82.36 70.80 82.96 82.54 69.43 82.82 81.95 69.75
L+Desc24 83.37 81.80 71.84 84.05 82.61 73.03 83.60 82.10 72.22 83.21 81.64 71.50
L+Spect22 83.72 78.96 77.66 84.45 80.76 77.28 83.94 79.96 76.80 83.86 79.83 76.74
L+Desc29 83.80 84.42 70.10 84.12 85.08 70.26 84.08 85.27 70.00 84.27 85.42 70.37
L+Spect24 84.37 81.66 75.53 84.82 82.70 75.54 84.92 83.75 74.50 85.05 83.60 75.09

obtained by our method is higher compared to neural network based classifiers, it is reasonable to
ask whether HMM refinement of our system will yield overall accuracy over 88%.

We have proposed a novel method for predicting the bonding state of cysteines, achieving state-
of-the-art performance on the most recent set of non-redundant sequences from the Protein Data
Bank. There are several obvious directions for further improving this method. First, we have seen
that reliable detection of proteins that do not contain mixed types of cysteines is very important
for the overall performance. n [14] it was shown that higher prediction accuracy is obtained by
training and testing within groups of homogeneous proteins. This result suggests that a mixture-
of-experts approach, where the gating network is in charge of determining the protein group, is
also likely to yield improved performance.
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