
Learning with Kernels and Logical
Representations

Paolo Frasconi and Andrea Passerini

Machine Learning and Neural Networks Group
Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze, Italy
Web: http://www.dsi.unifi.it/neural/

Abstract. In this chapter, we describe a view of statistical learning in
the inductive logic programming setting based on kernel methods. The
relational representation of data and background knowledge are used
to form a kernel function, enabling us to subsequently apply a number
of kernel-based statistical learning algorithms. Different representational
frameworks and associated algorithms are explored in this chapter. In
kernels on Prolog proof trees, the representation of an example is ob-
tained by recording the execution trace of a program expressing back-
ground knowledge. In declarative kernels, features are directly associated
with mereotopological relations. Finally, in kFOIL, features correspond
to the truth values of clauses dynamically generated by a greedy search
algorithm guided by the empirical risk.

1 Introduction

Kernel methods are one of the highly popular state-of-the-art techniques in ma-
chine learning [1, 2]. They make it possible to design generic learning algorithms,
abstracting away details about data types, a trait that makes them especially
appealing in relational domains for dealing with structured objects such as se-
quences [3–6], trees [7, 8], or graphs [9–14]. When using kernel machines, in-
stances are mapped to a Hilbert space commonly called the feature space, where
the kernel function is the inner product. In principle, there is no need to explicitly
represent feature vectors as an intermediate step, as it happens for example with
many propositionalization schemes [15, 16]. This trick has often been exploited
from the algorithmic point of view when the kernel function can be computed
efficiently in spite of very high-dimensional feature spaces.

In the simplest supervised learning settings (such as classification and re-
gression with independent examples), all representational issues are dealt with
by the kernel, whereas the learning algorithm has mainly a statistical role. This
also means that background knowledge about the problem at hand should be
injected into the learning process mainly by encoding it into the kernel function.
This activity is sometimes carried out in an ad-hoc manner by guessing inter-
esting features. However, if domain knowledge has been encoded formally (e.g.
in a declarative fashion using first-order logic, or by means of ontologies), then

it makes sense to use these representations as a starting point for building the
kernel. An example along these lines is the work by Cumby & Roth [16] that uses
description logic to specify features and that has been subsequently extended to
specify kernels [17].

Within the field of inductive logic programming (ILP), a related area of re-
search is the definition of distances in relational domains [18–20]. For every kernel
function (intuitively, a kernel corresponds to a notion of similarity) elementary
geometry allows us to derive an associated distance function in the feature space.
Turning distances into valid (positive semi-definite) kernels, however, is not pos-
sible in general as the axiomatic definition of distance imposes less constraints.
Thus, work on distance-based relational learning cannot be immediately trans-
lated into equivalent kernel methods

In this chapter, we describe a number of methods based on the combination
of logical representations, kernel machines, and statistical learning. There are
several reasons why seeking links between kernel methods and probabilistic log-
ical learning can be interesting. First, background knowledge about a domain
may be already available and described in a logical representation language. As
we noted above, kernels are usually the main entry point for plugging back-
ground knowledge in the learning process. Therefore, from an engineering point
of view, developing a flexible and systematic approach to kernel design starting
from logical representations seems to be a natural choice. Second, learning algo-
rithms based on kernel machines are very efficient from a computational point
of view. After the Gram matrix has been computed, learning often consists of
finding the (unique) solution of a convex numerical optimization problem. Addi-
tional efficiency can be gained by exploiting the sparsity of the structure of the
solution, as it happens for example with support vector machines [21]. This sce-
nario contrasts with the computational requirements of many ILP schemes that
need to search hypotheses in a complex discrete space of logical programs [22].
Third, several types of learning problems, besides classification, can be solved
under a uniform framework, including regression [23], ranking (ordinal regres-
sion) [24], novelty detection (one-class classification) [25], clustering [26], and
principal component analysis [27]. Logic-based learning, on the other hand, has
mainly focused on classification while other tasks such as regression often need
ad-hoc solutions, except perhaps in the case of decision trees [28, 29]. Fourth,
kernel based learning algorithms can be naturally linked to regularization the-
ory, where the complexity of the function calculated by a learning algorithm can
be controlled via its norm in the so-called reproducing kernel Hilbert space [30].
Regularization restores well-posedness in learning algorithms based on empirical
risk minimization, i.e. it ensures that the solution to the learning problem is
unique and stable (small perturbations in the data lead to small variations of
the learned function). Of course, uncertainty can also be handled using other
probabilistic logic learning schemes, like those extensively presented elsewhere
in this book, but from a different and complementary angle. Kernel-based ap-
proaches can be seen as taking the discriminant direction of learning, i.e. they
attempt to identify the optimal prediction function (i.e. the well known Bayes

function in the case of binary classification). Theory shows that machines based
on regularized empirical risk minimization, such as the support vector machine
(SVM), do converge to the optimal function as the number of examples goes to
infinity [31, 32]. This is a major difference with respect to other probabilistic ILP
approaches that take the generative direction of modeling. Generative models re-
quire more knowledge about the structural form of the probability densities than
their discriminant counterparts. If the underlying assumptions are wrong, they
may converge to a sub-optimal asymptotic error, although faster than discrim-
inant models constructed on the same model space of probability distributions
(a classic propositional example is the model pair formed by Naive Bayes and
logistic regression [33]).

There are, on the other hand, disadvantages when embracing the above
framework, compared to learning with other probabilistic logic representations.
Since the learning process only focuses on the discriminant function, it does not
discover any new portion of the theory explaining the phenomena that underly
the data. Additionally the learned function does not provide any easily under-
standable explanations as to why certain predictions are associated with the
input.

This chapter is a detailed review of several approaches that have been devel-
oped within APrIL II for statistical learning with kernels in the ILP setting. We
start in Section 2 explaining some basic concepts about the statistical and the
logical learning settings, in order to clarify our assumptions and for the benefit of
readers who are not familiar with both areas. In Section 3 we present kernels on
Prolog ground terms [34], a specialization to first-order logic of kernels on logical
individuals introduced by Gaertner et al. [35]. In Section 4, we describe declara-
tive kernels, a general approach for describing knowledge-informed kernels based
on relations related to decomposition into parts and connection between parts.
In Section 5, we present kernels based on Prolog proof trees [36], an approach
where first a program is ran over instances, to inspect interesting features, and
then program traces are compared by means of a kernel on ground terms. In Sec-
tion 6, we describe kFOIL [37], an algorithm that is especially interesting from
the point of view of the understandability of the learned solution. It constructs a
kernel from data using a simple inductive logic programming engine (FOIL [38])
to generate the clauses that define the kernel. Finally, in Section 7, we report
about two real-world applications that have been tackled with these techniques:
information extraction from scientific literature, and prediction of protein folds.
For the latter application, we also report novel results and comparisons for the
task of multiclass protein fold classification.

2 Notation and Background Concepts

2.1 Supervised Learning in the Statistical Setting

In the typical statistical learning framework, a supervised learning algorithm
is given a training set of input-output pairs D = {(x1, y1), . . . , (xm, ym)}, with
xi ∈ X and yi ∈ Y, sampled identically and independently from a fixed but

unknown probability distribution ρ. The set X is called the input (or instance)
space and can be any set. The set Y is called the output (or target) space; in
the case of binary classification Y = {−1, 1} while the case of regression Y is the
set of real numbers. The learning algorithm outputs a function f : X 7→ Y that
approximates the probabilistic relation ρ between inputs and outputs. The class
of functions that is searched is called the hypothesis space.

2.2 Supervised Learning with Kernel Machines

A kernel is a positive semi-definite (psd) symmetric function K : X × X 7→ IR
that generalizes the notion of inner product to arbitrary domains [2]. Positive
semi-definite here means that for all m and all finite data sets of size m, the
Gram matrix with entries K(xi, xj), i, j = 1, . . .m has nonnegative eigenvalues.
Each instance x is mapped to a corresponding element φ(x) in a Hilbert space
commonly called the feature space. For example, a feature of a graph may be
associated with the existence of a path with certain node labels; in this way, a
graph is mapped to a sequence of booleans, each associated with a string over the
node labels alphabet. Given this mapping, the kernel function is, by definition,
the inner product K(x, x′) = 〈φ(x), φ(x′)〉. Mercer’s theorem ensures that for
any symmetric and psd function K : X × X 7→ IR there exists a mapping in a
Hilbert space where K is the inner product.

When using kernel methods in supervised learning, the hypothesis space,
denoted FK , is the so-called reproducing kernel Hilbert space (RKHS) associated
with K [30]. Learning consists of solving the following Tikhonov regularized
problem:

f = arg min
h∈FK

C

m∑
i=1

V (yi, h(xi)) + ‖h‖K (1)

where V (y, h(x)) is a positive function measuring the loss incurred in predicting
h(x) when the target is y, C is a positive regularization constant, and ‖·‖K is the
norm in the RKHS. Popular algorithms in this framework include support vector
machines [21], obtained using the “hinge” loss V (y, a) = max{1− ya, 0}, kernel
ridge regression [39, 40], obtained using the quadratic loss V (y, a) = (v − a)2,
and support vector regression [23], obtained using the ε-insensitive loss V (y, a) =
max{|y− a| − ε, 0}. The representer theorem [41] shows that the solution to the
above problem can be expressed as a linear combination of the kernel basis
functions evaluated at the training examples:

f(x) =
m∑
i=1

ciK(x, xi) (2)

where ci are real coefficients expressing the solution of Eq. (1). The above form
also encompasses the solution found by other algorithms not based on Eq. (1),
such as the kernel perceptron [42].

2.3 Convolution Kernels for Discrete Structures

Suppose the instance space X is a set of composite structures and for x ∈ X let
~x = x1, . . . , xD denote a tuple of “parts” of x, with xd ∈ Xd (the d-th part type)
for all i ∈ [1, D]. This decomposition can be formally represented by a relation
R on X1 × · · · × XD × X . For each x ∈ X , R−1(x) = {~x ∈ ~X : R(~x, x)} denotes
the multiset of all possible decompositions of x.

In order to complete the definition of convolution kernels, we assume that a
kernel function Kd : Xd × Xd → IR is given for each part type Xd, d = 1, . . . , D.
The R-convolution kernel [43] is then defined as follows:

KR,⊗(x, z) =
∑

(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D∏
d=1

Kd(xd, zd). (3)

In the above formulation, a tensor product has been used to combine kernels
between different part types. Haussler [43] showed that the tensor product is
closed under positive definiteness and, therefore, R-convolution kernels that use
tensor product as a combination operator are positive definite, provided that all
Kd are. The result also holds for combinations based on other closed operators,
such as direct sum, yielding

KR,⊕(x, z) =
∑

(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D∑
d=1

Kd(xd, zd). (4)

Convolution or decomposition kernels form a vast class of functions and need to
be specialized to capture the correct notion of similarity required by the task
at hand. For example, several kernels on discrete structures have been designed
using D = 1 and defining a simple concept of part. These “all-substructures
kernels” basically count the number of co-occurrences of substructures in two
decomposable objects. Plain counting can be easily achieved by using the exact
match kernel

δ(x, z) =
{

1 if x = z
0 otherwise. (5)

Interesting discrete data types that have been thoroughly studied in the litera-
ture include sequences [44, 5, 6], trees [45, 8], and graphs [11, 9]. The set kernel
[2] is a special case of convolution kernel that will prove useful in defining logical
kernels presented in this chapter and that has been also used in the context
of multi-instance learning [46]. Suppose instances are sets and let us define the
part-of relation as the usual set-membership. The kernel over sets Kset is then
obtained from kernels between set members Kmember as follows:

Kset(x, z) =
∑
ξ∈x

∑
ζ∈z

Kmember (ξ, ζ). (6)

2.4 Normalization and Composition

In order to reduce the dependence on the dimension of the objects, kernels
over discrete structures are often normalized. A common choice is that of using
normalization in feature space, i.e., given a convolution kernel KR:

Knorm(x, z) =
KR(x, z)√

KR(x, x)
√
KR(z, z)

. (7)

In the case of set kernels, an alternative is that of dividing by the cardinalities
of the two sets, thus computing the mean value between pairwise comparisons1:

Kmean(x, z) =
Kset(x, z)
|x||z|

. (8)

Richer families of kernels on data structures can be formed by applying compo-
sition to the feature mapping induced by a convolution kernel. For example, a
convolution kernel KR can be combined with a Gaussian kernel as follows:

K(x, z) = exp
(
−γ
(
KR(x, x)− 2KR(x, z) +KR(z, z)

))
. (9)

2.5 A Framework for Statistical Logical Learning

One of the standard ILP frameworks is that of learning from entailment. In this
setting, the learner is given a set of positive and negative examples, D+ and D−,
respectively (in the form of ground facts), and a background theory B (as a set of
definite clauses) and has to induce a hypothesis H (also a set of definite clauses)
such that B∪H covers all positive examples and none of the negative ones. More
formally, ∀p(x) ∈ D+ : B ∪ H |= p(x) and ∀p(x) ∈ D− : B ∪ H 6|= p(x). Note
that the meaning of term hypothesis in this context is related but not coincident
with its meaning in statistical learning, where the hypothesis space is a class of
functions mapping instances to targets.

We now develop a framework aiming to combine some of the advantages of
the statistical and the ILP settings, in particular: efficiency, stability, generality,
and the possibility of describing background knowledge in a flexible declara-
tive language. As in the ILP setting, we assume that a background theory B
is available as a set of definite clauses. This background theory is divided into
intensional predicates, BI , and extensional predicates, BE , the former relevant
to all examples, and the latter that specify facts about specific examples. As
in [48], examples will simply be individuals, i.e., first-order logic objects, syntac-
tically denoted by a unique identifier. This means that we shall effectively refer
to the examples by their identifier x rather than use the associated set of exten-
sional clauses, p(x) ⊂ BE . The instance space X is therefore a set of individuals
1 Note that normalizations such as those of Equations (7) and (8) can give indefinite

results iff one of the two arguments (say x) is the null vector of the feature space
associated to the original kernel (i.e., KR or Kset). In such a case, we will define
Knorm(x, z) = Kmean(x, z) = 0 ∀z ∈ X , z 6= x.

N

OO

N
O

O

Cl

d26_1

atm(d26,d26_1,c,22,-0.093).
atm(d26,d26_2,c,22,-0.093).
atm(d26,d26_3,c,22,-0.093).
atm(d26,d26_4,c,22,-0.093).
atm(d26,d26_5,c,22,-0.093).
atm(d26,d26_6,c,22,-0.093).
atm(d26,d26_7,h,3,0.167).
atm(d26,d26_8,h,3,0.167).
atm(d26,d26_9,h,3,0.167).
atm(d26,d26_10,cl,93,-0.163).
atm(d26,d26_11,n,38,0.836).
atm(d26,d26_12,n,38,0.836).
atm(d26,d26_13,o,40,-0.363).
atm(d26,d26_14,o,40,-0.363).
atm(d26,d26_15,o,40,-0.363).
atm(d26,d26_16,o,40,-0.363).

bond(d26,d26_1,d26_2,7).
bond(d26,d26_2,d26_3,7).
bond(d26,d26_3,d26_4,7).
bond(d26,d26_4,d26_5,7).
bond(d26,d26_5,d26_6,7).
bond(d26,d26_6,d26_1,7).
bond(d26,d26_1,d26_7,1).
bond(d26,d26_3,d26_8,1).
bond(d26,d26_6,d26_9,1).
bond(d26,d26_10,d26_5,1).
bond(d26,d26_4,d26_11,1).
bond(d26,d26_2,d26_12,1).
bond(d26,d26_13,d26_11,2).
bond(d26,d26_11,d26_14,2).
bond(d26,d26_15,d26_12,2).
bond(d26,d26_12,d26_16,2).

d26_2

d26_3

d26_4

d26_5

d26_6

d26_7

d26_8

d26_9

d26_10 d26_11

d26_12

d26_13 d26_14

d26_15

d26_16

nitro(Drug,[Atom0,Atom1,Atom2,Atom3]) :-
 atm(Drug,Atom1,n,38,_),
 bondd(Drug,Atom0,Atom1,1),
 bondd(Drug,Atom1,Atom2,2),
 atm(Drug,Atom2,o,40,_),
 bondd(Drug,Atom1,Atom3,2),
 Atom3 @> Atom2,
 atm(Drug,Atom3,o,40,_).

mutagenic(d26).

Extensional predicates

Intensional predicates

bondd(Drug,Atom1,Atom2,Type) :-
 bond(Drug,Atom1,Atom2,Type).
bondd(Drug,Atom1,Atom2,Type) :-
 bond(Drug,Atom2,Atom1,Type).

benzene(Drug,Ring_list) :-
 atoms(Drug,6,Atom_list,[c,c,c,c,c,c]),
 ring6(Drug,Atom_list,Ring_list,[7,7,7,7,7,7]).

ring6(Drug,[Atom1|List],[Atom1,Atom2,Atom4,Atom6,Atom5,Atom3],
 [Type1,Type2,Type3,Type4,Type5,Type6]) :-
 bondd(Drug,Atom1,Atom2,Type1), memberchk(Atom2,[Atom1|List]),
 bondd(Drug,Atom1,Atom3,Type2), memberchk(Atom3,[Atom1|List]),
 Atom3 @> Atom2,
 bondd(Drug,Atom2,Atom4,Type3), Atom4 \== Atom1,
 memberchk(Atom4,[Atom1|List]),
 bondd(Drug,Atom3,Atom5,Type4), Atom5 \== Atom1,
 memberchk(Atom5,[Atom1|List]),
 bondd(Drug,Atom4,Atom6,Type5), Atom6 \== Atom2,
 memberchk(Atom6,[Atom1|List]),
 bondd(Drug,Atom5,Atom6,Type6), Atom6 \== Atom3.

Fig. 1. Example from the mutagenesis domain [47] illustrating the framework for sta-
tistical logic learning we use in this chapter.

contained in the overall universe of discourse U . As in the statistical setting, we
assume that a fixed and unknown distribution ρ is defined on X × Y and that
training data D consist of input-output pairs (xi, yi) sampled identically and
independently from ρ. Note that the latter assumption is reasonable in the case
of relational domains with independent examples (such as mutagenesis) but not,
in general, when examples are linked by extensional predicates and collective
prediction schemes are required (e.g. [49, 50]).

In Figure 1 we exemplify our framework in the well known mutagenesis do-
main [47]. The extensional predicates are in this case atm/5 and bond/4, describ-
ing the input portion of the data. The predicate mutagenic/1 is also extensional.
It describes the target class y and is not included in B. The instance identifier in
this case is d26, while p(d26), the extensional clauses associated with example
d26 ∈ X , are listed in the upper right box of Figure 1. Intensional predicates
include, among others, nitro/2 and benzene/2, listed in the bottom box of
Figure 1.

The output produced by statistical and ILP-based learning algorithms is also
typically different. Rather than having to find a set of clauses that, added to the
background theory, covers the examples, the main goal of a statistical learn-

ing algorithm is to find a function f that maps instances into their targets and
whose general form is given by the representer theorem as in Eq. (2). Concerning
the methods reviewed in this chapter, when the kernel function is fixed before
learning, (as it happens in the methods presented in Sections 3, 4, and 5), pre-
dictions on new instances will be essentially opaque. However, when the kernel
is learned together with the target function (see Section 6), the learning process
also produces a collection of clauses, like an hypothesis in the ILP setting.

2.6 Types

A finer level of granularity in the definition of some of the logic-based kernels
presented in this chapter can be gained from the use of typed terms. This extra
flexibility may be necessary to specify different kernel functions associated with
constants (e.g. to distinguish between numerical and categorical constants) or
to different arguments of compound terms.

Following [51], we use a ranked set of type constructors T , that contains
at least the nullary constructor ⊥. We allow polymorphism through type pa-
rameters. For example listα is a unary type constructor for the type of lists
whose elements have type α. The arity of a type constructor is the number of
type parameters it accepts. The set T is closed with respect to type variable
substitution. Thus if τα1, . . . , αm ∈ T is an m-ary type constructor (with type
variables α1, . . . , αm) and τ1, . . . , τm ∈ T then ττ1, . . . , τm ∈ T .

The type signature of a function of arity n has the form τ1×, . . . ,×τn 7→ τ ′

where n ≥ 0 is the number of arguments, τ1, . . . , τk ∈ T their types, and τ ′ ∈ T
the type of the result. Functions of arity 0 have signature ⊥ 7→ τ ′ and can be
therefore interpreted as constants of type τ ′. The type signature of a predicate
of arity n has the form τ1×, . . . ,×τn 7→ Ω where Ω ∈ T is the type of booleans.
We write t : τ to assert that t is a term of type τ .

A special case is when T = {τ1, . . . , τn} is a partition of U . In this case T can
be viewed as an equivalence relation =T as follows: ∀x, y ∈ U x =T y iff ∃τi ∈
T s.t.(x : τi ⇔ y : τi). Another interesting situation is when type names are
hierarchically organized in a partial order≺T⊂ T ×T , with σ≺T τ meaning that
σ is a τ (e.g. dog≺T animal).

3 Kernels on Prolog Ground Terms

3.1 Motivations

We begin linking statistical and logic learning by introducing a family of ker-
nels for Prolog terms. Convolution kernels over complex individuals have been
recently defined using higher order logic abstractions [52]. The functions defined
in this section can be seen as a specialization of such kernels to the case of Prolog
and are motivated by the following considerations. First, Prolog and first-order
logic representations provide a simpler representational framework than higher
order logics. Second, Prolog expressiveness is sufficient for most application do-
mains (for example, higher order structures such as sets can be simulated and

types can also be introduced). Third, Prolog is a widespread and well supported
language and many inductive logic programming systems and knowledge bases
are actually based on (fragments of) first order logic. Finally, no probabilistic
logic representations (like those thoroughly discussed elsewhere in this book) are
yet available for higher-order logics.

The kernels introduced here have of course interesting connections to rela-
tional distances such as those described in [53, 54]. It should be noted, however,
that a distance function can trivially obtained from a kernel just by taking the
Euclidean distance in feature space, while a metric does not necessarily map into
a Mercer kernel.

3.2 Untyped Terms

We begin with kernels on untyped terms. Let C be a set of constants and F a
set of functors, and denote by U the corresponding Herbrand universe (the set
of all ground terms that can be formed from constants in C and functors in F).
Let f/n ∈ F denote a functor having name f and arity n. The kernel between
two terms t and s is a function K : U × U 7→ IR defined inductively as follows:

– if s ∈ C and t ∈ C then
K(s, t) = κ(s, t) (10)

where κ : C × C 7→ IR is a valid kernel on constants;
– else if s and t are compound terms and have different functors, i.e., s =
f(s1, . . . , sn) and t = g(t1, . . . , tm), then

K(s, t) = ι(f/n, g/m) (11)

where ι : F × F 7→ IR is a valid kernel on functors;
– else if s and t are compound terms and have the same functor, i.e., s =
f(s1, . . . , sn) and t = f(t1, . . . , tn), then

K(s, t) = ι(f/n, f/n) +
n∑
i=1

K(si, ti) (12)

– in all other cases K(s, t) = 0.

Functions κ and ι are atomic kernels that operate on non-structured symbols.
A special but useful case is the atomic exact match kernel δ defined in Eq. (5).

3.3 Typed Terms

The kernel between two typed terms t and s (see Section 2.6) is defined induc-
tively as follows:

– if s ∈ C, t ∈ C, s : τ , t : τ then

K(s, t) = κτ (s, t) (13)

where κτ : C × C 7→ IR is a valid kernel on constants of type τ ;

– else if s and t are compound terms that have the same type but differ-
ent functors or signatures, i.e., s = f(s1, . . . , sn) and t = g(t1, . . . , tm),
s : σ1×, . . . ,×σn 7→ τ ′, t : τ1×, . . . ,×τm 7→ τ ′, then

K(s, t) = ιτ ′(f/n, g/m) (14)

where ιτ ′ : F ×F 7→ IR is a valid kernel on functors that construct terms of
type τ ′

– else if s and t are compound terms and have the same functor and type
signature, i.e., s = f(s1, . . . , sn), t = f(t1, . . . , tn), and s, t : τ1×, . . . ,×τn 7→
τ ′, then

K(s, t) =

κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ T

ιτ ′(f/n, f/n) +
n∑
i=1

K(si, ti) otherwise
(15)

where T ⊂ T denotes a (possibly empty) set of distinguished type signatures
that can be useful to specify ad-hoc kernel functions on certain compound
terms, and κτ1×,...,×τn 7→τ ′ : U × U 7→ IR is a valid kernel on terms having
distinguished type signature τ1×, . . . ,×τn 7→ τ ′ ∈ T .

– in all other cases K(s, t) = 0.

Positive semi-definiteness of these kernels follows from their being special
cases of decomposition kernels (see [55] for details). Variants where direct sum-
mations over sub-terms are replaced by tensor products are also possible.

3.4 A Guided Example: Alkanes

We demonstrate here the use of kernels over logical terms in a simple appli-
cation of quantitative structure-property relationship (QSPR) consisting in the
prediction of boiling point of alkanes [56]. Alkanes (except cycloalkanes, which
are not considered here) are naturally represented as trees and a root can be
chosen using a very simple procedure. The resulting rooted trees are encoded as
Prolog ground terms. Figure 2 shows an example of molecule encoding, where we
actually employed a reversed ordering of the children of each node with respect
to the procedure described in [56], in order to have the backbone of the molecule
on the right hand side of the tree.

We designed a kernel on untyped terms by using exact match for comparing
functors (carbon atoms), and the null function for comparing constants (hydro-
gen atoms). The resulting kernel counts the number of carbon atoms in corre-
sponding positions of two alkanes. As an additional source of information, we
extracted the depths of the trees representing the molecules, and summed their
product to the term kernel, obtaining a more informed kernel K ′. The resulting
function was composed with a Gaussian kernel.

The above kernel was used in conjunction with ridge regression to solve the
boiling point prediction problem. Performance was evaluated by a ten fold cross

C

CH3 C

CH3

CH3

CH3CH3

CH3

 c(h,h,h,c(c(h,h,h),c(h,h,h),c(c(h,h,h),c(h,h,h),c(h,h,h))))

C C C C

H

C C

CC

HH

HH

H

H

H

H

H

H

H

H

HH

H

H

H

Fig. 2. An alkane, its canonical representation as a rooted tree, and the corresponding
Prolog ground term.

validation procedure, removing the methane compound from the test results as
suggested in [56], being it an outlier with basically no structure. Hyperparame-
ters (namely, the Gaussian width and the regularization parameter), were chosen
by a hold-out procedure on the training set of the first fold, and kept fixed for the
successive 10 fold cross validation procedure. When using kernel K we obtained
an average mean square error of 4.6 Celsius degrees while using K ′ the error can
be reduced to 3.8 degrees. These results are comparable to those produced by
the highly tuned neural networks developed in [56].

4 Declarative Kernels

We present in this section a logical framework for kernel specification that pro-
vides a simple interface for the incorporation of background knowledge. The
relational feature generation process is controlled by an additional set of facts
and axioms, developed on the basis of the available background theory B. Al-
though, in general, any set of relational features could be used, we start from a
specific setting in which these additional facts and axioms refer to special and
germane relations for reasoning about parts and places.

4.1 Mereotopology

The parthood relation has been formally investigated by logicians and philoso-
phers for almost a century since the early work of Leśniewski [57] followed by
Leonard & Goodman’s calculus of individuals [58]. The axiomatic theory of
parts is referred to as mereology (from the Greek µερoζ, “part”). It has obvi-
ous connections to decomposition of data structures in convolution kernels (see
Section 2.3). The theory can be enriched with additional topological predicates
and axioms aiming to describe wholeness. As pointed out by Varzi [59], topology
is much needed because “mereological reasoning by itself cannot do justice to
the notion of a whole (a one-piece, self-connected whole, such as a stone or a
whistle, as opposed to a scattered entity made up of several disconnected parts,

such as a broken glass, an archipelago, or the sum of two distinct cats).” These
ideas can be also leveraged in machine learning to increase the kernel expressive-
ness with respect to pure decompositional approaches like the all-substructures
kernels discussed in Section 2.3 that are only based on the notion of parts.

We formally introduce two special predicates:�P and Connected, with the
following intended meaning. For any two objects x and y, x�P y declares x to be
a part of y and Connected(x, y) declares x to be connected to y. Well-behaved
definitions of parthood and connection should satisfy some given axiomatic struc-
ture [59]. In the context of knowledge representation, it is widely accepted that
�P should be a partial order, i.e. ∀x, y, z ∈ U

x�P x (P1)
x�P y ∧ y�P x⇒ y=P x (P2)
x�P y ∧ y�P z ⇒ x�P z (P3)

The theory defined by the above axioms is referred to as ground mereology.
Interestingly, the above theory immediately provides us with a natural identity
predicate =P that may be used as a basic elementary operator for comparing
parts. Additional useful relations are supported by the theory, in particular

x≺P y iff x�P y ∧ ¬y�P x proper part (16)
Overlap(x, y) iff ∃z.(z�P x ∧ z�P y) overlap (17)

Underlap(x, y) iff ∃z.(x�P z ∧ y�P z) underlap (18)

The supplementation axiom, if added to the theory, supports the notion of ex-
tensionality:

∀z.(z�P x⇒ Overlap(z, y))⇒ x�P y. (P4)

Following [59], the following axioms characterize topology and its link to mere-
ology:

Connected(x, x) (C1)
Connected(x, y)⇒ Connected(y, x) (C2)
x�P y ⇒ ∀z.(Connected(z, x)⇒ Connected(z, y)) (C3)

Additional useful relations are supported by the theory, in particular

Externally Connected(x, y) iff Connected(x, y) ∧ ¬Overlap(x, y) (19)

Mereotopology can be used to enrich the given background theory in the hope
that it will generate further instances of the parthood and connection relations
that will be useful for learning. It may also serve the purpose of checking the
correctness of the declared parts and connections. When used for generating new
instances of mereotopological relations, axioms should be used wisely to avoid
an explosion of uninteresting parts and connections. Thus, depending on the
application domain, axioms can be selectively omitted — for example (P4) will
be typically avoided.

4.2 Mereotopological Relations

Several mereotopological relations (MR) can be introduced to characterize an
instance x, for example:

i) the proper parts of x: RP (x) = {y : y≺P x};
ii) the connected proper parts of x: RC(x) = {(y, z) : y ≺P x ∧ z ≺P x ∧

Connected(y, z)};
iii) the overlapping parts in x, along with their common proper parts:
RI(x) = {(y, z, w) : y 6= z ∧ y≺P x ∧ z≺P x ∧ w≺P y ∧ w≺P z};

iv) the externally connected parts in x along with the associated linking termi-
nals:

RL(x) = {(y, z, u, v) : z≺P x∧y≺P x∧¬Overlap(z, y)∧u≺P z∧v≺P y∧Connected(u, v)}.

Additional MRs can be defined if necessary. We denote by M the set of
declared MRs. As detailed below, a declarative kernel compares two instances
by comparing the corresponding MRs, so adding relations to M plays a crucial
role in shaping the feature space.

4.3 The Contribution of Parts

The kernel on parts, denoted KP , is naturally defined as the set kernel between
the sets of proper parts:

KP (x, x′) =
∑

y∈P(x)

∑
y′∈P(x′)

kP (y, y′) (20)

where kP denotes a kernel function on parts, defined recursively using KP . Types
(see Section 2.6) can be used to fine-tune the definition of kP . It types can be
viewed as an equivalence relation (T is a partition of U), then

kP (y, y′) =

 ι(y, y′) if y =T y
′ and y,y′ are atomic objects;

KP (y, y′) + ι(y, y
′) if y =T y

′ and y,y′ are non atomic objects;
0 otherwise (i.e. y 6=T y

′).
(21)

In the above definition, ι(y, y′) is a kernel function that depends on properties
or attributes of y and y′ (not on their parts).

If types are hierarchically organized, then the test for type equality in Eq. (21)
can be replaced by a more relaxed test on type compatibility. In particular, if
y : τ , y′ : τ ′ and there exists a least general supertype σ : τ≺T σ, τ ′≺T σ, then we
may type cast y and y′ to σ and evaluate κ on the generalized objects σ(y) and
σ(y′). In this case the function ι(y, y′) depends only on properties or attributes
that are common to y and y′ (i.e. those that characterize the type σ).

4.4 The Contribution of other MRs

The kernel on connected parts compares the sets of objects RC(x) and RC(x′)
as follows:

KC(x, x′) =
∑

(y,z)∈RC(x)

∑
(y′,z′)∈RC(x′)

KP (y, y′) ·KP (z, z′). (22)

The kernel on overlapping parts compares the sets of objects RI(x) and RI(x′)
as follows:

KI(x, x′) =
∑

(y,z,w)∈RI(x)

∑
(y′,z′,w′)∈RL(x′)

KP (w,w′)δ(y, y′)δ(z, z′) (23)

where δ(x, y) = 1 if x and y have the same type and 0 otherwise. The kernel
KL(x, x′) on externally connected parts is defined in a similar way:

KL(x, x′) =
∑

(y,z,u,v)∈RL(x)

∑
(y′,z′,u′,v′)∈RL(x′)

KP (u, u′)KP (v, v′)δ(y, y′)δ(z, z′).

(24)

4.5 The General Case

Given a setM of MRs (such as those defined above), the final form of the kernel
is

K(x, x′) =
∑
M∈M

KM (x, x′). (25)

Alternatively, a convolution-type form of the kernel can be defined as

K(x, x′) =
∏
M∈M

KM (x, x′). (26)

To equalize the contributions due to different MRs, the kernels KM can be nor-
malized before combining them with sum or product. Positive semi-definiteness
follows, as in the case of convolution kernels, from the closeness with respect to
direct sum and tensor product operators [43].

4.6 Remarks

The kernel of Eq. (25) could have been obtained also without the support of
logic programming. However, deductive reasoning greatly simplifies the task of
recognizing parts and connected parts and at the same time, the declarative
style of programming makes it easy and natural to define the features that are
implicitly defined by the kernel.

Declarative kernels and Haussler’s convolution kernels [43] are intimately re-
lated. However the concept of parts in [43] is very broad and does not necessarily
satisfy mereological assumptions.

type(instance).
type(atm).
type(benzene).

obj(X,atm) :-
 atm(Drug,X,_,_,_).
obj(X,benzene) :-
 benzene(Drug,X).

has_part(B,Drug) :-
 obj(Drug,instance),
 benzene(Drug,B).

partof(X,X) :- % P1 axiom
 obj(X,_SomeType).
equalp(X,Y) :- % P2 axiom
 partof(X,Y), partof(Y,X).

a b

c

partof(X,Y) :- % P3 axiom (base)
 has_part(X,Y).
partof(X,Y) :- % P3 axiom (induction)
 has_part(X,Z), partof(Z,Y).

ppartsof(Parts,Y) :- % MR i)
setof(X,ppartof(X,Y),Parts).

ppartof(X,Y) :- % (proper part)
partof(X,Y), \+ partof(Y,X).

Fig. 3. Code fragments for the guided example (see text).

4.7 A Guided Example: Mutagenesis

Defining and applying declarative kernels involves a three-step process: (1) col-
lect data and background knowledge; (2) interface mereotopology to the available
data and knowledge; (3) calculate the kernel on pairs of examples. We illustrate
the process in the mutagenesis domain. The first step in this case simply consists
of acquiring the atom-bond data and the ring theory developed by Srinivasan
et al. [47], that comes in the usual form described in Figure 1. The second step
consists of interfacing the available data and knowledge to the kernel. For this
purpose, we first need to provide a set of declarations for types, objects, and basic
instances of mereotopological relations. Objects are declared using the predicate
obj(X,T) meaning that X is an object of type T. For example types include
atoms and functional groups (see Figure 3a).

Then we declare basic proper parts via the predicate has_part(X,Y) that
is true when Y is known to be a proper part of X . For example if an instance D
(a molecule in this case) contains a benzene ring B, then B≺P D (Figure 3b).

Note that the use of a predicate called has_part (rather than partof) is
necessary to avoid calling a recursive predicate in the Prolog implementation.
The third step is independent of the domain. To calculate the kernel, we first
make use of mereotopology to construct the MRs associated with each instance
(for example, the code for computing proper parts is shown in Figure 3c). The
resulting sets of ground facts are then passed to a modified version of SVMlight

[60] for fast kernel calculation.
We can construct here an example where connected parts may produce in-

teresting features. Let us denote by x the molecule, by y the benzene ring,
by v the nitro group consisting of atoms d26 11, d26 13, and d26 14, and
by w the nitro group consisting of atoms d26 12, d26 15, and d26 16. Then
(y, v, d26 4, d26 11) ∈ RL(x) and (y, w, d26 2, d26 12) ∈ RL(x).

To show how learning takes place in this domain, we run a series of 10-
fold cross-validation experiments on the regression friendly data set of 188 com-
pounds. First, we applied a mature ILP technique constructing an ensemble of
25 Aleph theories [61]. Aleph parameters search, evalfn, clauselength and nodes
were set to be bf, coverage, 4 and 20000 respectively. The two tunable parameters
minacc and voting threshold were selected by applying 3-fold cross validation in

the training set of the first fold. Voting threshold ranges from 1 to the size of
the ensemble and the set of values for minacc are given by {0.75, 0.9}. We ob-
tained accuracy .88 ± .07 using atom-bond data and .89 ± .05 by adding the
background ring theory. Next we applied declarative kernels with support vec-
tor machines (SVM), obtaining accuracy .90 ± .07. CPU time was of the order
of minutes for the declarative kernel and days for the Aleph ensemble. Finally,
we compared the expressive power of ground mereological relations with that
of the full mereotopological theory. Figure 4 reports LOO accuracy for different
values of the regularization parameter C, for both mereological and mereotopo-
logical kernels, showing the latter achieves both better optimal accuracy and
more stable performances.

LO
O

 a
cc

ur
ac

y

.92

.90

.88

.86

.84

Regularization parameter C
400300200100 5000

Mereological
kernel

Mereotopological
kernel

Fig. 4. LOO accuracy on the regression friendly mutagenesis data set.

5 Kernels on Prolog Proof Trees

The main idea behind this family of kernels is the exploitation of program traces
to define the kernel function. Traces have been extensively used in ILP and pro-
gram synthesis (e.g. [62–66]). Kernels on Prolog proof trees are based on a new
framework for learning from example-traces. The main assumption is that we are
given a target program (called the visitor), that reflects background knowledge
and that takes single examples as its input. The task consists of learning from
the training set of traces obtained by executing the visitor program on each ex-
ample. Hence, the statistical learning algorithm will employ a kernel on program
traces rather than using directly a kernel on examples. The visitor acts therefore
as a knowledge-based mediator between the data and the statistical learning al-
gorithm. The bottom line is that similar instances should produce similar traces
when probed with programs that express background knowledge and examine

characteristics they have in common. These characteristics can be more general
than parts. Hence, trace kernels can be introduced with the aim of achieving a
greater generality and flexibility with respect to various decomposition kernels
(including declarative kernels). These ideas will be developed in detail for logic
programs, although nothing prevents, in principle, to use them in the context of
different programming paradigms and in conjunction with alternative models of
computation such as finite state automata or Turing machines.

Formally, a visitor program for a background theory B and domain X is a set
V of definite clauses that contains at least one special clause (called a visitor) of
the form V ← B1, . . . , BN and such that

– V is a predicate of arity 1
– for each j = 1, . . . , N , Bj is declared in B ∪ V;

Intuitively, if visit/1 is a visitor in V, by answering the query visit(ex)? we
explore the features of the instance whose constant identifier ex is passed to the
visitor. Having multiple visitors in the program V allows us to explore different
aspects of the examples and include multiple sources of information.

The visitor clauses should be designed to “inspect” examples using other
predicates declared in B, keeping in mind that the similarity between two ex-
amples is the similarity between the execution traces of visitors. Thus, we are
not only simply interested in determining whether certain clauses succeed or fail
on a particular example, but rather to ensure that visitors will construct useful
features during their execution. This is a major difference with respect to other
approaches in which features are explicitly constructed by computing the truth
value for predicates [67].

The learning setting can be briefly sketched as follows. The learner is given
a data set D = {(x1, y1), . . . , (xm, ym)}, background knowledge B, and a visitor
program V. For each instance xi, a trace Txi

(see Eq. 28) is obtained by running
the visitor program. A kernel machine (e.g., an SVM) is then trained to form
the function f : X 7→ Y defined as

f(x) =
m∑
i=1

ciK(Txi
, Tx).

In the following, we give some details about the definition of traces and kernels
between traces.

5.1 Traces and Proof Trees

In order to record a trace, we should store all steps in the proofs of a given visitor
goal called on a given example. We may think that SLD-trees are a rather obvious
representation of proofs when using Prolog. A path in an SLD-tree is indeed an
execution sequence of the Prolog interpreter. Unfortunately, SLD-trees are too
complex for our purposes, containing too many details and prone to generate
irrelevant features such as those associated with failed paths. In order to obtain

simple and still useful traces we prefer proof trees (see e.g. [68]). Given a program
P and a goal G, the proof tree for G is empty if P 6|= G or, otherwise, it is a tree
t recursively defined as follows:

– if there is a fact f in P and a substitution θ such that Gθ = fθ, then Gθ is
a leaf of t.

– otherwise there must be a clause H ← B1, ..., Bn ∈ P and a substitution θ′

such that Hθ′ = Gθ′ and P |= Bjθ
′ ∀j, Gθ′ is the root of t and there is a

subtree of t for each Bjθ
′ that is a proof tree for Bjθ′.

A second aspect is that we would like to deal with ground traces in order to
simplify the definition of the kernel. On the other hand, proof trees may contain
free variables. There are at least three ways of ensuring that proof trees are
ground: first, we can use skolemization (naming existentially quantified variables
with a specific constant symbol). A second option is to require that all clauses
be range-restricted. Finally, we can make specific assumptions about the mode
of head variables not occurring in the body, ensuring that these variables will be
instantiated when proving the goal.

Goals can be satisfied in multiple ways, thus each query generates a (possibly
empty) forest of proof trees. Since multiple visitors may be available, the trace
of an instance is actually a tuple of proof forests. Formally, let N be the number
of visitors in V and for each l = 1, . . . , N let Tlj,x denote the proof tree that
represents the j-th proof of the goal Vl(x), i.e., a proof that B ∪ V |= Vl(x). Let

Tl,x = {Tl1,x, . . . , Tlsl,x,x} (27)

where sl,x ≥ 0 is the number of alternative proofs of goal Vl(x). The trace of an
instance x is then defined as the tuple

Tx = [T1,x, . . . , TN,x]. (28)

A proof tree can be pruned to remove unnecessary details and reduce the
complexity of the feature space. Let us explain this concept with an example
based on mutagenesis (see Figure 1). In this domain, it may be useful to define
visitors that explore groups such as benzene rings:

atoms(X,[]). visit_benzene(X):-

atoms(X,[H|T]):- benzene(X,Atoms),

atm(X,H,_,_,_), atoms(X,Atoms).

atoms(X,T).

If we believe that the presence of the ring and the nature of the involved atoms
represent a sufficient set of features, we may want to ignore details about the
proof of the predicate benzene by pruning the corresponding proof subtree. This
can be accomplished by including the following fact in the visitor program:

leaf(benzene(_,_)).

5.2 Kernels on Traces

A kernel over program traces can be defined in a top-down fashion. First, let us
decompose traces into parts associated with different visitors (i.e., the elements
of the tuple in Eq. (28)). The direct sum decomposition kernel of Eq. (4) applied
to these parts yields:

K(Tx, Tz) =
N∑
l=1

Kl(Tl,x, Tl,z). (29)

We always compare proofs of the same visitor since there is a unique decomposi-
tion of Tx and Tz. By definition of trace (see Eq. (28)), Tl,x and Tl,z, l = 1, . . . , N ,
are proof forests. Hence, the set kernel of Eq. (6) yields:

Kl(Tl,x, Tl,z) =
sl,x∑
p=1

sl,z∑
q=1

Ktree(Tlp,x, Tlq,z). (30)

We now need to introduce a kernel Ktree over individual proof trees. In prin-
ciple, existing tree kernels (e.g. [7, 8]) could be used for this purpose. However,
we suggest here representing proof trees as typed Prolog ground terms. This
option allows us to provide a fine-grained definition of kernel by exploiting type
information on constants and functors (so that each object type can be com-
pared by its own sub-kernel). Moreover, the kernel on ground terms introduced
in Section 3 is able to compares sub-proofs only if they are reached as a result
of similar inference steps. This distinction would be difficult to implement with
traditional tree kernels. A ground term can be readily constructed from a proof
tree as follows:

– Base step: if a node contains a fact, this is already a ground term.
– Induction: if a node contains a clause, then let n be the number of arguments

in the head and m the number of atoms in the body (corresponding to the
m children of the node). A ground compound term t having n+1 arguments
is then formed as follows:
• the functor name of t is the functor name of the head of the clause;
• the first n arguments of t are the arguments of the clause head;
• the last argument of t is a compound term whose functor name is a Prolog

constant obtained from the clause number2, and whose m arguments are
the ground term representations of the m children of the node.

At the highest level of kernel between visitor programs (Eq. (29)), it is advisable
to employ a feature space normalization using Eq. (7). In some cases it may also
be useful to normalize lower-level kernels, in order to rebalance contributions
of individual parts. In particular, the mean normalization of Eq. (8) can be
applied to the kernel over individual visitors (Eq. (30)) and it is also possible to

2 Since numbers cannot be used as functor names, this constant can be simply obtained
by prefixing the clause number by ’cbody’.

normalize kernels between individual proof trees, in order to reduce the influence
of the proof size. Of course it is easy to gain additional expressiveness by defining
specific kernels on proof trees that originate from different visitors.

In order to employ kernels on typed terms (see Section 3), we need a typed
syntax for representing proof trees as ground terms. Constants can be of two
main types: num (numerical) and cat (categorical). Types for compounds terms
include fact (leaves) clause (internal nodes), and body (containing the body
of a clause).

A number of special cases of kernels can be implemented in this framework.
The simplest kernel is based on proof equivalence (two proofs being equivalent if
the same sequence of clauses is proven in the two cases, and the head arguments
in corresponding clauses satisfy a given equivalence relation): Kequiv(s, t) = 1 iff
s ≡ t.

The functor equality kernel can be used when we want to ignore the argu-
ments in the head of a clause. Given two ground terms s = f(s1, . . . , sn) and
t = g(t1, . . . , tm), it is defined as:

Kf (s, t) =

0 if type(s) 6= type(t)
δ(f/n, g/m) if s, t : fact
δ(f/n, g/m) ? K(sn, tm) if s, t : clause
K(s, t) if s, t : body

(31)

where K is a kernel on ground terms and the operator ? can be either sum
or product. Note that if s and t represent clauses (i.e., internal nodes of the
proof tree), the comparison skips clause head arguments, represented by the
first n− 1 (resp. m− 1) arguments of the terms, and compares the bodies (the
last argument) thus proceeding on the children of the nodes. This kernel allows
to define a non trivial equivalence between proofs (or parts of them) checking
which clauses are proved in sequence and ignoring the specific values of their
head arguments.

5.3 A Guided Example: Bongard Problems

One nice example showing the potential of learning from program traces is a very
simple Bongard problem [69] in which the goal is to classify two-dimensional
scenes consisting of sets of nested polygons (triangles, rectangles, and circles).
In particular, we focus on the target concept defined by the pattern triangle-
Xn-triangle for a given n, meaning that a positive example is a scene containing
two triangles nested into one another with exactly n objects (possibly triangles)
in between. Figure 5 shows a pair of examples of such scenes with their rep-
resentation as Prolog facts and their classification according to the pattern for
n = 1.

A possible example of background knowledge introduces the concepts of nest-
ing in containment and polygon as a generic object, and can be represented by
the following intensional predicates:

inside(X,A,B):- in(X,A,B). % clause nr 1
inside(X,A,B):- % clause nr 2

in(X,A,C),
inside(X,C,B).

polygon(X,A) :- triangle(X,A). % clause nr 3
polygon(X,A) :- rectangle(X,A). % clause nr 4
polygon(X,A) :- circle(X,A). % clause nr 5

A visitor exploiting such background knowledge, and having hints on the target
concept, could be looking for two polygons contained one into the other. This
can be represented as:

visit(X):- % clause nr 6
inside(X,A,B),polygon(X,A),polygon(X,B).

positive(bong1).
triangle(bong1,o1).
circle(bong1,o2).
triangle(bong1,o3).
in(bong1,o1,o2).
in(bong1,o2,o3).

negative(bong4).
triangle(bong4,o1).
rectangle(bong4,o2).
circle(bong4,o3).
triangle(bong4,o4).
in(bong4,o1,o2).
in(bong4,o2,o3).
in(bong4,o3,o4).

Fig. 5. Graphical and Prolog facts representation of two Bongard scenes. The left
and right examples are positive and negative, respectively, according to the pattern
triangle-X-triangle.

visit(1)

inside(1,o1,o2) polygon(1,o1) polygon(1,o2) inside(1,o2,o3)

visit(1)

polygon(1,o2) polygon(1,o3)

in(1,o1,o2) triangle(1,o1) circle(1,o2) in(1,o2,o3) circle(1,o2) triangle(1,o3)

visit(1)

inside(1,o1,o3) polygon(1,o1) polygon(1,o3)

in(1,o1,o2) inside(1,o2,o3)

in(1,o2,o3)

triangle(1,o1) triangle(1,o3)

Fig. 6. Proof trees obtained by running the visitor on the first Bongard problem in
Figure 5.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

Nesting Level

(a)

SVM LOO
Progol train

Tilde train
 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

Nesting Level

(b)

SVM LOO
Progol train

Tilde train

Fig. 7. Comparison between SVM leave-one-out error, Progol and Tilde empirical error
in learning the triangle-Xn-triangle for different values of n, for data sets corresponding
to m = 10 (a) and m = 50 (b).

Figure 6 shows the proofs trees obtained running such a visitor on the first
Bongard problem in Figure 5. A very simple kernel can be employed to solve
such a task, namely an equivalence kernel with functor equality for nodewise
comparison. For any value of n, such a kernel maps the examples into a feature
space where there is a single feature discriminating between positive and negative
examples, while the simple use of ground facts without intensional background
knowledge would not provide sufficient information for the task.

The data set was generated by creating m scenes each containing a series of `
randomly chosen objects nested one into the other, and repeating the procedure
for ` varying from 2 to 20. Moreover, we generated two different data sets by
choosing m = 10 and m = 50 respectively. Finally, for each data set we obtained
15 experimental settings denoted by n ∈ [0, 14]. In each setting, positive exam-
ples were scenes containing the pattern triangle-Xn-triangle. We run an SVM
with the above mentioned proof tree kernel and a fixed value C = 10 for the reg-
ularization parameter, on the basis that the data set is noise free. We evaluated
its performance with a leave-one-out (LOO) procedure, and compared it to the
empirical error of Tilde and Progol trained on the same data and background
knowledge (including the visitor). Here we focus on showing that ILP algorithms
have troubles finding a consistent hypothesis for this problem, hence we did not
measure their generalization.

Figure 7(a) plots results for m = 10. Both Tilde and Progol stopped learning
the concept for n > 4. Progol found the trivial empty hypothesis for all n > 4
apart from n = 6, and Tilde for all n > 9. While never learning the concept
with 100% generalization accuracy, the SVM performance was much more stable
when increasing the nesting level corresponding to positive examples. Figure 7(b)
plots results for m = 50. Progol was extremely expensive to train with respect
to the other methods. It successfully learned the concept for n ≤ 2, but we
stopped training for n = 3 after more than one week training time on a 3.20
GHz PENTIUM IV. Tilde stopped learning the concept for n > 8, and found
the trivial empty hypothesis for n > 12. Conversely, the SVM was almost always

able to learn the concept with 100% generalization accuracy, regardless of its
complexity level.

Note that in order for the ILP algorithms to learn the target concept re-
gardless of the nesting level, it would be necessary to provide a more informed
inside predicate, which explicitly contains such nesting level as one of its ar-
guments. The ability of the kernel to extract information from the predicate
proof, on the other hand, allows our method to be employed when only par-
tial background knowledge is available, which is typically the case in real world
applications.

6 kFOIL

The above approaches for combining ILP and kernel can be expected to be highly
effective from several points of view, in particular stability (i.e. robustness to
noise), uniformity (i.e. classification and regression tasks can be handled in a
uniform way) and expressivity (a rich hypothesis space is explored in domains
consisting of independent relational objects). However, the function determined
by these methods as a solution to the supervised learning problem is opaque,
i.e. does not provide human-readable insights. In addition, although the feature
space is rich, its definition must be specified before learning takes place. The
idea behind kFOIL is radically different from this point of view. Unlike previous
approaches, the feature space in kFOIL is dynamically constructed during learn-
ing (using a FOIL-like [38] covering algorithm) and can be effectively seen as
an additional output of the learning problem (besides the prediction function).
In this sense, kFOIL is similar to a recently introduced probabilistic ILP algo-
rithm, nFOIL, that combines Naive Bayes and FOIL [70]. While nFOIL takes
the generative direction of modeling, kFOIL is based on regularized empirical
risk minimization (e.g. support vector machine learning). kFOIL preserves all
the advantages of previously introduced kernels, in particular uniformity of rep-
resentation across different supervised learning tasks, stability and robustness
with respect to noise, expressivity of the representation language, and ability to
reuse declarative background knowledge. The strength of kFOIL is its ability to
provide additional explanations about the domain that can be read in the set of
constructed clauses. However, since FOIL is used as an internal subroutine, the
efficiency of other kernel based learning approaches cannot be preserved.

6.1 The Feature Space of kFOIL

In the kFOIL setting, the output of the learning process consists of both a
prediction function f (as in Eq. (2)) and a kernel function K between examples.
Each example x ∈ X is a first-order individual and p(x) denotes the associated
extensional clauses, as explained in Section 2.5. The function K is represented
by means of a collection of clauses

H = {c1, . . . , cn}

that play the same role of a hypothesis in the learning from entailment ILP
setting. In particular, the feature space associated with K consists of Boolean
vectors, indexed by clauses in the current hypothesis H. Formally, the feature
space representation can be written as φH(x) = φH,1(x), . . . , φH,n(x) where

φH,i(x) =
{

1 if BI ∪ {ci} |= p(x)
0 otherwise

The feature space representation is defined by the clauses in the current hy-
pothesis and each feature simply check whether p(x) is logically entailed by
background knowledge and one given clause.

In this way, the kernel between two examples x and x′ is simply the num-
ber of clauses firing on both examples, in the context of the given background
knowledge:

KH(x, x′) = #entH(p(x) ∧ p(x′)) (32)

where #entH(a) = |{c ∈ H|BI ∪ {c} |= a}|. The prediction function f has the
standard form of Eq. (2), using KH as kernel.

6.2 The kFOIL Learning Algorithm

The hypothesis H is induced by a modified version of the well-known FOIL
algorithm [38], which essentially implements a separate-and-conquer rule learning
algorithm in a relational setting.

kFOIL(D,B, ε)
1 H := ∅
2 repeat
3 c := “pos(x)←”
4 repeat
5 c := arg maxc′∈ρ(c) Score(D,H ∪ {c′},B)
6 until stopping criterion
7 H := H ∪ {c}
8 until score improvement is smaller than ε
9 return H

The kFOIL algorithm, sketched in the above pseudo-code, is similar to the
general FOIL algorithm. It repeatedly searches for clauses that score well with
respect to the data set D and the current hypothesis H and adds them to the
current hypothesis. The most general clause which succeeds on all examples is
“pos(x) ←” where pos is the predicate being learned. The “best” clause c is
found in the inner loop according to a general-to-specific hill-climbing search
strategy, using a refinement operator ρ(c) that generates the set of all possible
refinements of clause c. In the case of kFOIL, each refinement is obtained by
simply adding a literal to the right-hand side of c. Different choices for the

scoring function Score have been used with FOIL. The scoring function of
kFOIL is computed by wrapping around a kernel machine (such as an SVM).
Specifically, Score(D,H,B) is computed by training a kernel machine on D and
measuring the empirical risk

Score(D,H,B) =
∑

(xi,yi)∈D

V (yi, f(xi))

being V a suitable loss function (that depends on the specific kernel machine,
see Eq. (1) and following). kFOIL is stopped when the score improvement be-
tween two consecutive iterations falls below a given threshold ε. This a smoothed
version of FOIL’s criterion which is stopped when no clause can be found that
cover additional positive examples. Finally, note that the data set size is reduced
at each iteration of FOIL by removing examples that are already covered. How-
ever, this step is omitted from kFOIL as the kernel machine needs to be retrained
(with a different kernel) on the entire data set.

In the case of kFOIL, a significant speedup can be obtained by working
explicitly in a sparse feature space, rather than evaluating the kernel function
according to its definition. This is because, especially at the early iterations,
many examples are mapped to the same point in feature space and can be
merged in a single point (multiplying the corresponding contribution to the loss
function by the number of collisions).

b c

anitro(mol30, [atom1,atom2,atom3], [atom4]).
methyl(mol32, [atom1,atom2,atom3.atom4], [atom5]).bond(mol1,atom1,atom2,1).
atm(mol1,atom1,h,0,0).
logP(mol1, 0.35).
mweight(mol1,0.258).

gt(X,Y):− X > Y.
lt(X,Y):− X < Y.

num(N):−
 member(N,[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]).
sbond(Mol,Atom1,Atom2,Bondtype):−
 bond(Mol,Atom1,Atom2,Bondtype);bond(Mol,Atom2,Atom1,Bondtype).

rmode(lt(+,N)):−numrmode(lt(+,N)):−num(N).
type(nitro(compound,struct1,struct2)).
type(lt(number,number)).
rmode(atom(+,+−,c)).
rmode(nitro(+,−,−)).

Fig. 8. Code fragments for the kFOIL guided example on biodegradability.

6.3 A Guided Example: Biodegradability

In order to apply kFOIL to a certain learning task, three steps have to be accom-
plished: (1) collect data and background knowledge; (2) write the inductive bias
that will determine all possible refinements of clauses; (3) run kFOIL. We will
show an example of such process on a real world task concerning biodegradabil-
ity of molecules. Degradation is the process by which chemicals are transformed

Table 1. Result on the Biodegradability dataset. The results for Tilde and S-CART
have been taken from [71]. 5 runs of 10 fold cross-validation have been performed,
on the same splits into training and test set as used in [71]. We report both Pearson
correlation and RMSE as evaluation measures. • indicates that the result for kFOIL is
significantly better than for other method (unpaired two-sided t-test, p = 0.05).

Evaluation measure kFOIL Tilde S-CART

Correlation 0.609± 0.047 0.616± 0.021 0.605± 0.023
Root Mean Squared Error 1.196± 0.023 1.265± 0.033• 1.290± 0.038•

into components which are not considered pollutants. A number of different path-
ways are responsible for such process, depending on environmental conditions.
Blockeel et al. [71] conducted a study focused on aqueous biodegradation under
aerobic conditions. Low and high estimates of half life time degradation rate were
collected for 328 commercial chemical compounds. In this application domain,
one is interested in the half-life time of the biodegradation process. The regres-
sion task consists in predicting the natural logarithm of the arithmetic mean
of the low and high estimate for a given molecule. Available data include the
atom/bond representation of molecules as well as global physico-chemical prop-
erties such as weight and logP. Rings and functional groups within a molecule
are also represented as facts3, where each groups is described by its constituent
atoms as well as the atoms connecting it to the rest of the molecule. Figure 8(a)
shows extracts of such data4. Additional background knowledge (see Figure 8(b)
for an extract) includes comparison operators between numbers (lt, gt) and the
set of allowed numerical values (num) as well as a predicate (sbond) defining sym-
metric bonds. The second step consists of writing the configuration file for the
FOIL part of the algorithm, as a combination of type and mode declarations.
Figure 8(c) contains an extract of such configuration. The final step consists of
running kFOIL in regression mode providing as inputs data, background knowl-
edge and configuration files. Note that the first two steps are independent of the
type of task to be learned (e.g. binary classification or regression), which will
only influence the type of kernel machine to be employed in computing the score
of a given clause and in producing the output for a test example (e.g. SVM or
Support Vector Regression).

Table 1 shows the regression performance of kFOIL on the Biodegradability
dataset, as compared to the results reported in [71] for Tilde and S-CART. As
our aim here is showing that kFOIL is competitive to other state-of-the-art tech-
niques, and not to boost performance, we did not try to specifically optimize any
parameter. We thus used default settings for the FOIL parameters: maximum

3 Intensional predicates representing functional groups were saturated on the examples
in this dataset, thus generating extensional predicates.

4 Note that we are not considering facts representing counts of groups and small
substructures, which were also included in [71], as they slightly degrade performances
for all methods in almost all cases.

number of clauses in a hypothesis was set to 25, maximum number of literals
in a clause to 10 and the threshold for the stopping criterion to 0.1%. However,
we performed a beam search with beam size 5 instead of simple greedy search.
The kernel machine employed was support vector regression, with regularization
constant C = 0.01 and ε tube parameter set to 0.001. A polynomial kernel of
degree 2 was used on top of the kernel induced by the learned clauses. The re-
sults obtained show that kFOIL is competitive with the first-order decision tree
systems S-CART and Tilde at maximizing correlation, and slightly superior at
minimizing RMSE.

7 Applications

7.1 Declarative Kernels for Information Extraction

In these experiments we apply declarative kernels to the extraction of relational
information from free text. Specifically, we focus on multi-slot extraction of bi-
nary relations between candidate named entities. Our experiments were carried
out on the yeast protein localization data set described in [72] and subsequently
used as a testbed for state-of-the-art methods based on ILP [73]. The task con-
sists of learning the relation protein_location between two named entities rep-
resenting candidate protein names and cell locations. Instances are ordered pairs
of noun phrases (NP) extracted from MEDLINE abstracts and with stemmed
words. An instance is positive iff the first NP is a protein and the second NP is
a location, for example:

protein_location("the mud2 gene product", "earli spliceosom assembl",pos).

protein_location("sco1", "the inner mitochondri membran", pos).

protein_location("the ept1 gene product","membran topographi",pos).

protein_location("a reductas activ", "the cell", neg).

protein_location("the ace2 gene", "multipl copi", neg).

The data set is a collection of 7, 245 sentences from 871 abstracts, yielding
1, 773 positive and 279, 154 negative instances. The data is enriched by a large
body of domain knowledge, including relations about the structure of sentences
and abstracts, lexical knowledge, and biological knowledge derived from sev-
eral specialized vocabularies and ontologies such as MeSH and Gene Ontology.
For simplicity, only a fraction of the available knowledge has been used in our
experiments. The main data types in this domain are: instance (pairs of can-
didate NP’s); cp_NP (candidate protein NP); cl_NP (candidate location NP);
word_p (word in a protein NP); word_l (word in a location NP). Basic part-
hood rules in the ontology declare that phrases (cp_NP and cl_NP) are parts
of instances and words are parts of phrases. For this task we used a minimal
mereological kernel with no connections and no axiomatic theory to avoid explo-
sion of features due to words appearing both as part of NP’s and instances. We
compared declarative kernels to state-of-the-art ILP-based system for this do-
main: Aleph and Gleaner [73]. We used the same setting as in [73], performing a

Gleaner

Declarative
kernel

.2 .4 .6 .8 1

.2

.4

.6

.8

1

Recall

Pr
ec
is
io
n

0

Fig. 9. Comparing Gleaner and the declarative kernel on the information extraction
task (fold 5).

five-fold cross validation, with approximately 250 positive and 120, 000 negative
examples in each fold (split at the level of abstracts), and measuring the quality
of the predictor by means of the area under the recall-precision curve (AURPC).
As reported in [73], Aleph attains its best performance (area .45) by learning on
the order of 108 rules, while Gleaner attains similar performance (.43± .6) but
using several orders of magnitude less rules [74]. We trained five SVMs using the
declarative kernel composed with a Gaussian kernel. Gaussian width and the
regularization parameter were selected by reserving a validation set inside each
fold. The obtained AURPC was .47± .7. Figure 9 compares the recall precision
curve reported in [73], which is produced by Gleaner using 1, 000, 000 candidate
clauses on fold five, with that obtained by the declarative kernel. The result is
very encouraging given that only a fraction of the available knowledge has been
used. Training took less than three hours on a single 3.00GHz Pentium while
Aleph and Gleaner run for several days on a large PC cluster on the same task
[74].

7.2 Proof Tree Kernels for Protein Fold Classification

Binary classification. In our first experiment, we tested our methodology
on the protein fold classification problem studied by Turcotte et al. [75]. The
task consists of classifying proteins into Scop folds, given their high-level log-
ical descriptions about secondary structure and amino acid sequence. Scop is
a manually curated database of proteins hierarchically organized according to
their structural properties. At the top level Scop groups proteins into four main
classes (all-α, all-β, α/β, and α + β). Each class is then divided into folds that
group together proteins with similar secondary structures and three-dimensional
arrangements. We used the data set made available as a supplement to the pa-

per by Turcotte et al. [75]5 that consists of the five most populated folds from
each of the four main Scop classes. This setting yields 20 binary classification
problems. The data sets for each of the 20 problems are relatively small (from
about 30 to about 160 examples per fold, totaling 1143 examples).

b

ec

a dvisit_global(X):-
 normlen(X,Len),
 normnb_alpha(X,NumAlpha),
 normnb_beta(X,NumBeta).

visit_adjacent(X):-
 adjacent(X,A,B,PosA,TypeA,TypeB),
 normcoil(A,B,LenCoil),
 unit_features(A),
 unit_features(B).

visit_unit(X):-
 sec_struc(X,A),
 unit_features(A)

unit_features(A):-
 normsst(A,_,_,_,_,_,_,_,_,_,_),
 has_pro(A).

leaf(adjacent(_,_,_,_,_,_)).
leaf(normcoil(_,_,_)).

unit_features(A):-
 normsst(A,_,_,_,_,_,_,_,_,_,_),
 not(has_pro(A)).

Fig. 10. Visitors for the protein fold classification problem.

We relied on the background knowledge provided in [75], to design a set
of visitors managing increasingly complex information. Visitors are shown in
Figure 10. The “global” visitor visit global/1 is meant to extract protein level
information, such as its length and the number of its α or β secondary structure
segments. A “local” visitor visit unit/1 explores the details of each of these
segments. In particular, after determining the secondary structure element, it
explores the general features of the element using normsst/11 and checks for
the presence of proline (an amino acid that is known to have important effects on
the secondary structure). Note that since traces are recorded as proof trees, the
first clause of the predicate unit features/1 above produces information only in
the case a proline is present. Finally, the “connection” visitor visit adjacent/1
inspects pairs of adjacent segments within the protein.

Numerical values were normalized within each top level fold class. The kernel
configuration mainly consisted of type signatures aiming to ignore identifiers
and treat some of the numerical features as categorical ones. A functor equality
kernel was employed for those nodes of the proofs which did not contain valuable
information in their arguments.

Following [75], we measured prediction accuracy by 10-fold cross-validation,
micro-averaging the results over the 20 experiments by summing contingency
tables. The proof-tree kernel was combined with a Gaussian kernel (see Eq. (9))
in order to model nonlinear interactions between the features extracted by the
visitor program. Model selection (i.e., choice of the Gaussian width γ and the
SVM regularization parameter C) was performed for each binary problem with
a LOO procedure before running the 10-fold cross validation. Table 2 shows
comparisons between the best setting for Progol (as reported by [75]), which
5 Available at http://www.bmm.icnet.uk/ilp/data/ml 2000.tar.gz.

Tilde Progol SVM

All-α:
Globin-like 97.4 95.1 94.9
DNA-binding 3-helical bundle 81.1 83.0 88.9
4-helical cytokines 83.3 70.7 86.7
lambda repressor-like DNA-binding domains 70.0 73.4 83.3
EF Hand-like 71.4 77.6 85.7

All-β:
Immunoglobulin-like beta-sandwich 74.1 76.3 85.2
SH3-like barrel 91.7 91.4 93.8
OB-fold 65.0 78.4 83.3
Trypsin-like serine proteases 95.2 93.1 93.7
Lipocalins 83.3 88.3 92.9

α/β:
beta/alpha (TIM)-barrel 69.7 70.7 73.3
NAD(P)-binding Rossmann-fold domains 79.4 71.6 84.1
P-loop containing nucleotide triphosphate hydrolases 64.3 76.0 76.2
alpha/beta-Hydrolases 58.3 72.2 86.1
Periplasmic binding protein-like II 79.5 68.9 79.5

α+ β:
Interleukin 8-like chemokines 92.6 92.9 96.3
beta-Grasp 52.8 71.7 88.9
Ferredoxin-like 69.2 83.1 76.9
Zincin-like 51.3 64.3 79.5
SH2-like 82.1 76.8 66.7

Micro average: 75.2 78.3 83.6
±2.5 ±2.4 ±2.2

Table 2. Protein fold classification: 10-fold cross validation accuracy (%) for Tilde,
Progol and SVM for the different classification tasks, and micro averaged accuracies
with 95% confidence intervals. Results for Progol are taken from [75].

uses both propositional and relational background knowledge, results for Tilde
using the same setting, and SVM with our kernel over proof trees. The difference
between Tilde and Progol is not significant, while our SVM achieves significantly
higher overall accuracy with respect to both methods. The only task where our
predictor performed worse than both ILP methods was the SH2-like one (the
last one in Table 2). It is interesting to note that a simple global visitor would
achieve 84.6% accuracy on this task, while in most other tasks full relational
features produce consistently better results. This can suggest that even if SVMs
are capable of effectively dealing with huge feature spaces, great amounts of
uninformative or noisy features can also degrade performance, especially if only
few examples are available.

Multiclass classification. We additionally evaluated our proof tree kernels on
the multiclass setting of the protein fold prediction task as described in [76].
The problem is based on the same 20 SCOP folds previously used for binary
classification, but the data set contains only the chains considered as positive
examples for one of the SCOP folds in the binary classification problems. Four
independent multiclass classification problems are defined, one for each of the
main fold classes in SCOP. A single multiclass problem consists of discriminating
between chains belonging to the same fold class, by assigning each of them to one
of the five main folds in the fold class. The statistics of the dataset are reported
in Table 3, and show the unbalancing of the distribution of examples between
folds. We employed a one-vs-all strategy to address each multiclass classification
task: we trained a number of binary classifiers equal to the number of classes,
each trained to discriminate between examples of one class and examples of all
other classes; during testing, we presented each example to all binary classifiers,
and assigned it to the class for which the corresponding binary classifier was the
most confident, as measured by the margin of the prediction for the example.
We employed the same 5-fold cross validation procedure as reported in [76] and
used exactly the same CV folds. Model selection (Gaussian width and regular-
ization parameter) was conducted by a preliminary LOO procedure as in the
case of binary classification, but using the F1 measure (the harmonic mean of
precision and recall) as a guiding criterion. We kept the same visitors developed
for the binary setting. Table 4 reports accuracies with standard errors for the
four multiclass problems, microaveraged on the CV folds, and overall accuracy
microaveraged on CV folds and multiclass problems. Reported results include
our SVM with proof tree kernels together to the results obtained by a stochastic
logic program (SLP) and ILP with majority class prediction as reported in [76].

Results show that both the SLP and the kernel machine outperform the non-
probabilistic ILP approach. In three out of four SCOP folds the SVM obtained a
higher microaveraged accuracy than the SLP although the data sets have small
size and the standard deviation is rather high. Interestingly, the SLP seems
to perform better on smaller data set, which might indicate a faster rate of
convergence of the SLP to its asymptotic error.

Table 3. Number of examples for each multiclass problem (fold class) both divided by
single class (fold) and overall.

fold class fold1 fold2 fold3 fold4 fold5 overall

all-α 13 30 10 10 14 77
all-β 90 32 40 42 28 116
α/β 55 21 14 12 13 115
α+ β 9 12 26 13 13 73

Table 4. Microaveraged accuracies with standard errors for the four multiclass prob-
lems and overall accuracy microaveraged over problems: comparison between SVM,
SLP and ILP with majority class.

fold class SVM SLP ILP + majority class

all-α 80.5±4.5 (62/77) 76.6±4.8 (59/77) 71.4±5.2 (55/77)
all-β 87.1±3.1(101/116) 81.0±3.6 (94/116) 69.8±4.3 (81/116)
α/β 61.7±4.5 (71/115) 51.3±4.7 (59/115) 44.4±4.6 (51/115)
α+ β 60.3±5.7 (44/73) 82.2±4.5 (60/73) 80.8±4.6 (59/73)

overall 73.0±2.3 (278/381) 71.4±2.3 (272/381) 64.6±2.5 (246/381)

8 Conclusions

In this chapter we have pursued the construction of a bridge between two very
different paradigms of machine learning: statistical learning with kernels, and
inductive logic programming. In particular, we have shown in several ways that
the use of stable (robust to noise) machine learning techniques are applicable
in the ILP setting without resorting to propositionalization. This is especially
interesting in cases where the feature space needed for representing the solution
has a dimension that is not known in advance. The artificial Bongard data set
shows this clearly. Of course one could have solved the Bongard problem even
with traditional ILP techniques by adding to the background theory a predi-
cate counting the number of polygons nested one inside another, but kernels on
program traces can effectively discover this concept without the additional hint.

The algorithmic stability achieved by combining ILP with regularization can
be seen as an interesting alternative to fully fledged probabilistic ILP where
structure and parameters of a stochastic program are learned from data. Em-
pirical evidence on real-world problems such as the protein fold classification
task demonstrates that proof tree kernels can achieve better accuracy than non
probabilistic ILP and similar accuracy as learning stochastic logic programs. Of
course the solution found by the kernel machine in this case lacks interpretabil-
ity. However, computational efficiency is another factor that in some cases needs
to be taken into account. For example, problems like the information extraction
task presented in Section 7.1 can be solved in a fraction of the time required by
a state-of-the-art ILP system.

kFOIL is perhaps the less developed and tested method but at the same
time very promising. Its approach to propositionalization is effectively dynamic
and can be interpreted in close connection to methods that attempt to learn
the kernel matrix from data [77–79]. Moreover, the solution found by kFOIL
combines the advantages of kernel machines and ILP systems. It consists of
both a robust decision function and a kernel function defined by interpretable
first-order clauses. This is a direction of research that certainly deserves more
investigation since interpretability is one of the weak aspects of many statistical
learning methods.

Finally, some of the ideas seeded here may deserve more study from an engi-
neering perspective, as the availability of languages for feature description (like
declarative kernels) can help leveraging machine learning into routine software
development. One of the main obstacles towards this goal is maybe the difficulty
of integrating machine learning capabilities in a typical programming environ-
ment. The recent growth of interest in knowledge representation and ontologies
suggests that logic-based representations may be much more widespread in the
future, and that the attention to learning modules that can take advantage of
data and existing knowledge with minimal programmer intervention could in-
crease.

Acknowledgments

We would like to thank Luc De Raedt, Niels Landwehr, and Stephen Muggleton,
with whom we collaborated in the development of the methods presented in this
chapter (in particular, we collaborated with LDR on kernels on Prolog proof
trees, with SM on declarative kernels, with LDR and NL on kFOIL; NL also
carried out the experiments reported in Section 6.3). A special thanks goes to
Alessio Ceroni, Fabrizio Costa, Kristian Kersting, Sauro Menchetti, and Jan Ra-
mon, who helped us in numerous occasions with fruitful discussions. This work
was supported by the European Union, contract number FP6-508861, Applica-
tions of Probabilistic Inductive Logic Programming II.

References

1. Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge, MA
(2002)

2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

3. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. J. Mach. Learn. Res. 2 (2002) 419–444

4. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. In: Advances in Neural Information Processing Systems 11, Cambridge, MA,
USA, MIT Press (1999) 487–493

5. Leslie, C.S., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for svm
protein classification. In: Pacific Symposium on Biocomputing. (2002) 566–575

6. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. Jour-
nal of Machine Learning Research 5 (2004) 1035–1062

7. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: Proceedings of the Fortieth
Annual Meeting on Association for Computational Linguistics, Philadelphia, PA,
USA (2002) 263–270

8. Viswanathan, S., Smola, A.J.: Fast kernels for string and tree matching. In
S. Becker, S.T., Obermayer, K., eds.: Advances in Neural Information Process-
ing Systems 15. MIT Press, Cambridge, MA (2003) 569–576

9. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations
Newsletter 5(1) (2003) 49–58

10. Schölkopf, B., Warmuth, M., eds.: Kernels and Regularization on Graphs. In
Schölkopf, B., Warmuth, M., eds.: 16th Annual Conference on Computational
Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003. Volume 2777
of Lecture Notes in Computer Science., Springer (2003)

11. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of ICML’03. (2003)

12. Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginal-
ized graph kernels. In Greiner, R., D. Schuurmans, A.P., eds.: Proceedings of
the Twenty-first International Conference on Machine Learning, Banff, Alberta,
Canada (2004) 552–559

13. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM Press (2004) 158–167

14. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Pro-
ceedings of the Twenty-second International Conference on Machine Learning, New
York, NY, USA, ACM Press (2005) 585–592

15. Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational
data mining. In: Relational Data Mining. Springer-Verlag (2000) 262–286

16. Cumby, C.M., Roth, D.: Learning with feature description logics. In Matwin, S.,
Sammut, C., eds.: Proceedings of the Twelfth International Conference on Induc-
tive Logic Programming. Volume 2583 of LNAI., Springer-Verlag (2002) 32–47

17. Cumby, C.M., Roth, D.: On kernel methods for relational learning. In: Proceedings
of ICML’03. (2003)

18. Ramon, J., Bruynooghe, M.: A Framework for Defining Distances Between First-
Order Logic Objects. In: Proc. of the 8th International Conf. on Inductive Logic
Programming. (1998) 271–280

19. Kirsten, M., Wrobel, S., Horváth, T.: Distance based approaches to relational
learning and clustering. In: Relational Data Mining, Springer (2001) 213–230

20. Ramon, J.: Clustering and instance based learning in first order logic. AI Com-
munications 15(4) (2002) 217–218

21. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20 (1995)
1–25

22. De Raedt, L.: Logical and Relational Learning: From ILP to MRDM. Springer
(2006)

23. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
24. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal

regression. Artificial Neural Networks, 1999. ICANN 99. Ninth International Con-
ference on (Conf. Publ. No. 470) 1 (1999)

25. Tax, D., Duin, R.: Support vector domain description. Pattern Recognition Letters
20 (1999) 1991–1999

26. Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V.: Support vector clustering.
Journal of Machine Learning Research 2 (2001) 125–137

27. Schölkopf, B., Smola, A., Müller, K.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation 10(5) (1998) 1299–1319

28. Kramer, S.: Structural regression trees. Proceedings of the Thirteenth National
Conference on Artificial Intelligence (1996) 812–819

29. Kramer, S.: Prediction of Ordinal Classes Using Regression Trees. Fundamenta
Informaticae 47(1) (2001) 1–13

30. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin (New
Series) of the American Mathematical Society 39(1) (2002) 1–49

31. Lin, Y.: Support Vector Machines and the Bayes Rule in Classification. Data
Mining and Knowledge Discovery 6(3) (2002) 259–275

32. Bartlett, P., Jordan, M., McAuliffe, J.: Large margin classifiers: convex loss, low
noise, and convergence rates. Advances in Neural Information Processing Systems
16 (2003)

33. Ng, A., Jordan, M.: On Discriminative vs. Generative classifiers: A comparison of
logistic regression and naive Bayes. In: Neural Information Processing Systems.
Volume 14. (2001)

34. Passerini, A., Frasconi, P.: Kernels on prolog ground terms. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK (2005) 1626–1627

35. Gärtner, T., Lloyd, J., Flach, P.: Kernels for structured data. In Matwin, S., Sam-
mut, C., eds.: Proceedings of the 12th International Conference on Inductive Logic
Programming. Volume 2583 of Lecture Notes in Artificial Intelligence., Springer-
Verlag (2002) 66–83

36. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical
learning in the ILP setting. Journal of Machine Learning Research 7 (2006) 307–
342

37. Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: Learning simple
relational kernels. In Gil, Y., Mooney, R., eds.: Proc. Twenty-First National Con-
ference on Artificial Intelligence (AAAI-06). (2006)

38. Quinlan, J.: Learning Logical Definitions from Relations. Machine Learning 5
(1990) 239–266

39. Saunders, G., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in
dual variables. Proc. 15th International Conf. on Machine Learning (1998) 515–521

40. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of
the American Mathematical Society 50(5) (2003) 537–544

41. Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. The Annals of Mathematical Statis-
tics 41 (1970) 495–502

42. Freund, Y., Schapire, R.: Large margin classification using the perceptron algo-
rithm. Machine Learning 37(3) (1999) 277–296

43. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, University of California, Santa Cruz (1999)

44. Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using
string kernels. In: Advances in Neural Information Processing Systems. (2000)
563–569

45. Collins, M., Duffy, N.: Convolution kernels for natural language. In: NIPS 14.
(2001) 625–632

46. Gärtner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In
C.Sammut, Hoffmann, A., eds.: Proceedings of the 19th International Conference
on Machine Learning, Morgan Kaufmann (2002) 179–186

47. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for muta-
genicity: A study in first-order and feature-based induction. Artificial Intelligence
85(1-2) (1996) 277–299

48. Lloyd, J.: Logic for learning: learning comprehensible theories from structured
data. Springer-Verlag (2003)

49. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, San Francisco, CA, Morgan Kaufmann (2002)

50. Neville, J., Jensen, D.: Collective classification with relational dependency net-
works. Proceedings of the Second International Workshop on Multi-Relational
Data Mining (2003) 77–91

51. Lakshman, T.K., Reddy, U.S.: Typed prolog: A semantic reconstruction of the
mycroft-O’keefe type system. In Saraswat, Vijay; Ueda, K., ed.: Proceedings of
the 1991 International Symposium on Logic Programming (ISLP’91), San Diego,
CA, MIT Press (1991) 202–220

52. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Ma-
chine Learning 57(3) (2004) 205–232

53. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10) (2001) 765–780

54. Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with
lists and terms. Machine Learning 43(1/2) (2001) 53–80

55. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical
learning in the ILP setting. Journal of Machine Learning Research 7 (2006) 307–
342

56. Bianucci, A., Micheli, A., Sperduti, A., Starita, A.: Application of cascade corre-
lation networks for structures to chemistry. Appl. Intell. 12 (2000) 117–146

57. Leśniewski, S.: Podstawy ogólnej teorii mnogości. Moscow (1916)
58. Leonard, H.S., Goodman, N.: The calculus of individuals and its uses. Journal of

Symbolic Logic 5(2) (1940) 45–55
59. Casati, R., Varzi, A.: Parts and places: the structures of spatial representation.

MIT Press, Cambridge, MA and London (1999)
60. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,

C., Smola, A., eds.: Advances in Kernel Methods – Support Vector Learning. MIT
Press (1998) 169–185

61. Srinivasan, A.: The Aleph Manual. Oxford University Computing Laboratory.
(2001)

62. Biermann, A., Krishnaswamy, R.: Constructing programs from example computa-
tions. IEEE Transactions on Software Engineering 2(3) (1976) 141–153

63. Mitchell, T.M., Utgoff, P.E., Banerji, R.: Learning by experimentation: Acquir-
ing and refining problem-solving heuristics. In: Machine learning: An artificial
intelligence approach. Volume 1. Morgan Kaufmann (1983) 163–190

64. Shapiro, E.: Algorithmic program debugging. MIT Press (1983)
65. Zelle, J.M., Mooney, R.J.: Combining FOIL and EBG to speed-up logic programs.

In: Proceedings of the Thirteenth International Joint Conference on Artificial In-
telligence, Chambéry, France (1993) 1106–1111

66. De Raedt, L., Kersting, K., Torge, S.: Towards learning stochastic logic programs
from proof-banks. In: Proceedings of the Twentieth National Conference on Arti-
ficial Intelligence (AAAI’05). (2005) 752–757

67. Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.: Support vector inductive logic
programming. In: Proceedings of the Eighth International Conference on Discovery
Science. Volume 3735 of LNAI. (2005) 163–175

68. Russell, S., Norvig, P.: Artifical Intelligence: A Modern Approach. 2nd edn.
Prentice-Hall (2002)

69. Bongard, M.: Pattern Recognition. Spartan Books (1970)
70. Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Na¨ive Bayes and

FOIL. In: Proc. of the 20th National Conf. on Artificial Intelligence. (2005) 795–800
71. Blockeel, H., Dzeroski, S., Kompare, B., Kramer, S., Pfahringer, B., Laer, W.:

Experiments in Predicting Biodegradability. Applied Artificial Intelligence 18(2)
(2004) 157–181

72. Ray, S., Craven, M.: Representing sentence structure in hidden Markov models for
information extraction. In: Proceedings of IJCAI ’01. (2001) 1273–1279

73. Goadrich, M., Oliphant, L., Shavlik, J.W.: Learning ensembles of first-order clauses
for recall-precision curves: A case study in biomedical information extraction. In:
Proc. 14th Int. Conf. on Inductive Logic Programming, ILP ’04. (2004) 98–0115

74. Goadrich, M. Personal communication (2005)
75. Turcotte, M., Muggleton, S., Sternberg, M.: The effect of relational background

knowledge on learning of protein three-dimensional fold signatures. Machine Learn-
ing 43(1,2) (2001) 81–96

76. Chen, J., Kelley, L., Muggleton, S., Sternberg, M.: Multi-class prediction using
stochastic logic programs. In Muggleton, S., Otero, R., eds.: Post-conference pro-
ceeding of ILP’06, Santiago de Compostela, Spain 24-27 August, 2006, Springer
LNAI (2007)

77. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learn-
ing the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5
(2004) 27–72

78. Ong, C.S., Smola, A.J., Williamson, R.C.: Hyperkernels. In: Adv. in Neural Inf.
Proc. Systems. (2002)

79. Micchelli, C.A., Pontil, M.: Learning the Kernel Function via Regularization.
Journal of Machine Learning Research 6 (2005) 1099–1125

