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1 Introduction

Proteins are polymer chains composed of twenty simpler molecules, called
amino acids, that carry out most of the molecular functions in living or-
ganisms. Although a protein can be first characterized by its amino acid
sequence, or primary sequence, most proteins fold into three-dimensional
(3D) structures that determine their function in living organisms. After the
completion of several genome-sequencing projects, well over a million pro-
tein sequences are known and the sequence-structure gap has dramatically
increased. Experimental methods for structure determination, X-ray crys-
tallography and NMR spectroscopy, are costly and time consuming and do
not keep pace with sequencing speed: at the beginning of 2004, the ratio
of known structures to known sequences is approaching 1:50. Prediction of
structure and function of novel proteins thus represents a strategic research
frontier: bridging the gap between sequence and structure would increase our
understanding of biological processes and our ability to enhance the quality
and span of our lives. The ability to provide effective computational tools
for protein structure prediction is a key to overcome experimental problems
and to guide part of the future scientific effort in molecular biology.

In spite of four decades of intensive research effort, reliable protein struc-
ture prediction from sequence is far from being achieved, mainly because no
comprehensive theory of folding exists and a global search in the conforma-
tional space of proteins is inherently intractable.

Only recently, this task has been aided by the development of intelligent
tools borrowed from machine learning approaches. These methods extract
relevant pieces of information from databases of known structures in order
to focus the search on more tractable problems. So far, research has mainly
focused on intermediate local structural descriptions (e.g. secondary struc-
ture, relative solvent accessibility etc.). These are commonly referred to as
one-dimensional (1D) features, as they can be represented with linear strings
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Figure 1: Amino Acids: (a) chemical structure; (b) peptide bond.

of symbols, and have proven to be a valuable aid for the prediction of full
3D structure. Machine learning has an intrinsic appeal because it represents
the best theoretical and practical framework for building reliable statistical
models, especially in presence of large amounts of data. Moreover, learning
applications can be orders of magnitude faster than the alternatives.

This chapter is intended to give an overview of traditional and more
recent approaches used for protein structure prediction. The focus is on
applications that rely on the machine learning paradigm. The chapter is
organized as follows. Section 2 and 3 provide basic elements of structural
biology and a sketch of the important concept of alignment. These sections
serve as an introduction to those computer scientists with no background in
structural genomics and related computational tasks. In section 4 we elab-
orate on the concept of learning from examples. In order to understand the
ideas forming the basis of this paradigm, we introduce to the field of statisti-
cal learning theory, the framework that studies the mathematical properties
of learning machines. The section concludes with a discussion of connec-
tionist (e.g. neural networks) and kernel-based methods, the most popular
learning approaches used to solve structural biology problems. The folding
problem is introduced in section 5 together with an outline of the context
in which traditional prediction techniques (knowledge based methods and
de novo algorithms) can and cannot be reliably applied. We conclude with
a survey of applications of traditional and more recent learning algorithms
related to important problems in structural genomics.
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Glycine Gly (G) Lysine Lys (K)
Alanine Ala (A) Arginine Arg (R)
Valine Val (V) Tryptophan Trp (W)
Leucine Leu (L) Serine Ser (S)
Isoleucine Ile (I) Threonine Thr (T)
Methionine Met (M) Cysteine Cys (C)
Proline Pro (P) Tyrosine Tyr (Y)
Phenylalanine Phe (F) Asparagine Asn (N)
Aspartic acid Asp (D) Glutamine Gln (Q)
Glutamic acid Glu (E) Histidine His (H)

Table 1: The twenty different amino acids that occur in proteins.

2 Protein Structural Principles

Proteins are polymer chains composed of twenty simpler molecules, called
amino acids, that carry out most of the molecular functions in living or-
ganisms. All amino acids share the same chemical structure as shown in
Figure 1 (a). There is a central carbon atom (Cα) attached to an hydrogen
atom, an amino group (NH2), a carboxyl group (COOH) and a side chain or
residue (R) that discriminate one amino acid from the others. The twenty
possible residues that occur in proteins are listed in Table 1, together with
their standard 3-letters and 1-letter code. The table groups the amino acids
according to the chemical nature of their side chain. Belong to the class of
the hydrophobic side chains the amino acids from Alanine to Phenylalanine.
The class of charged residues goes from Aspartic Acid to Arginine, whereas
the group from Tryptophan to Hystidine comprises those with polar side
chains. The side chain of Glycine has simply a hydrogen atom and it is
neither hydrophobic nor charged nor polar. During the synthesis process,
proteins are sequentially assembled through the formation of peptide bonds
(Figure 1 (b)), where the carboxyl group of one amino acid is joined with the
amino group of another to release water. From a biochemical point of view, a
protein is thus represented as a polypeptide chain formed by a backbone (the
sequential repetition of the NH-CαH-C=O basic unit) and a side chain (the
sequence of residues attached to the backbone). Conventionally, the struc-
ture of proteins is hierarchically represented with three levels of description:
primary, secondary and tertiary structure. The primary structure is the
amino acid sequence of the polypeptide chain. Formally, it can be modeled
as a string from a finite alphabet Σaa where |Σaa| = 20 (the one-letter codes
of table 1). These strings form the basic information stored in biological
data repositories, such as the Swissprot archive [BA00].

Higher level descriptions provide more information about the structure
of a protein. This is mainly formed by a hydrophobic core and an hy-
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Figure 2: A fragment of protein primary and secondary structure.

drophilic surface exposed to the solvent environment (mainly water). The
hydrophobic core is formed packing hydrophobic side chains into the interior
part of the molecule. This task is accomplished through the formation of
a set of regular local structural patterns, the secondary structure, char-
acterized by hydrogen-bonding between the main chain polar groups (NH
and C=O) of different residues. There are two main patterns: α-helix (H)
and β-strand (E). An α-helix is built up from one continuous region in the
sequence through the formation of hydrogen bonds between C=O group of
residue in position i and NH of residue i + 4. The periodicity of the helix
is 3.6 residues per turn. The π-helix and 310 helix represent other types
of observed helices, in which bonds are formed from residue i to residues
i+5 and i+3, respectively. They are not energetically favorable and rarely
occur. Similarly to helices, a β-strand is a fragment of consecutive residues,
but it does not represent an isolated structural element: hydrogen-bonds
are formed with one or more β-strands (that can be distant in sequence) to
form a pleated sheet called β-sheet. Strands in a β-sheet are aligned adja-
cent to each other such that their amino acids have the same biochemical
direction (parallel β-sheet) or alternating directions (anti parallel β-sheet).
α-helices and β-strands are often connected by loop regions or coils (C),
which can significantly vary in length and structure and have no fixed reg-
ular shape as the other two elements. For the majority of known protein
structures, the hydrophobic core is built up from a combination of helices
and strands and it provides the rigid stable structural framework. On the
other hand, loop regions are generally found at the surface of the protein
and usually act as functional (binding or active) sites. Every amino acid in
the sequence belongs to one of the three structural types, and the secondary
structure can be flattened to a string from an alphabet Σss = {H,E,C} and
having the same length of the primary structure. Figure 2 is an example of
representation of primary and secondary structure of a protein segment.

It has been observed that simple geometrical arrangements of few sec-
ondary structure elements occur in most of the proteins. They act as basic
structural or functional building blocks and are called motifs. These mo-
tifs are formed by packing side chains from adjacent α-helices or β-strands
close to each other. Two or more motifs combine to form compact globular
structures, called domains [BT99]. One polypeptide chain can be arranged
into one or several domains and a domain might act independently or in
combination with other domains to define a functional unit.

The term tertiary structure refers to the three-dimensional arrange-
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Figure 3: 3D structure of neurotrophic growth factor from rat, PDB code
1agq. Primary structure composed of four identical chains of 135 amino
acids.

ment of backbone and side chain atoms of a polypeptide chain composed
of one or several domains. It is the result of the combination of secondary
structure elements due to interactions between the amino acids and the sol-
vent environment. The protein universe can be roughly partitioned into
single-chain (monomeric) proteins and molecules composed of two or more
distinct polypeptide chains (multimeric proteins). Chains of a multimeric
protein are often called protein sub-units. The quaternary structure is
the term adopted to describe the complex spatial conformation of multi-
meric proteins. Figure 3 shows an example of schematic representation of
tertiary and quaternary protein structure. The protein is composed of two
identical molecules, each one being formed by two independent amino acid
chains. Secondary structure is composed of eight α-helices (H, in purple)
and several β-sheets formed by pairing two β-strands (E, in yellow). Loop
regions connect consecutive strands and helices.

3 Algorithmic Processing of Evolution

Evolution at molecular level is commonly modeled as a process in which
currently observed sequences have been selected from a common ancestral
sequence. This process is guided by casual and deterministic events: random
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mutations preserving structural and functional features occur on sequences;
those products that present an environmental advantage are then selected.
Chains can be roughly grouped into homology classes, where homology is
defined as similarity of structure, physiology, development and evolution of
organisms based upon common genetic factors [BT99]. Usually, two pro-
teins are considered to be homologous when they have identical amino acid
residues in a significant number of of sequential positions along the polypep-
tide chains. However, it is frequently found that two proteins with sequence
identity below the level of statistical significance have similar functions and
structures. Sequence similarity can be inferred with the so called alignment
algorithms. These algorithms usually employ dynamic programming tech-
niques to compute string matching between two or more sequences. Sim-
ilarity of the sequences is inferred when the level of sequence identity is
above some manually derived threshold. We can distinguish between pair-
wise and multiple sequence alignment algorithms depending whether two or
more sequences are super posed for the match. If we compute matching
between entire sequences or only between substrings, the alignment is said
to be global or local, respectively.

Computational molecular biology programs are often designed to elabo-
rate evolutionary information. Concerning proteins structure prediction, it
is known that protein structure is more conserved than sequence and similar
sequences share similar structure [BB01, Ros96]. Suppose we are given a se-
quence s with unknown structure. To predict its structure, we can directly
exploit the information contained into s. However, if we can find a set of
sequences that present high similarity once aligned with s, we can think
that this set contains more structural information than s itself. The success
of the most effective predictive systems is largely based upon this empirical
argument and then on their ability to process the information provided by
multiple alignments.

The evolutionary information contained into a multiple alignment of say
N sequences and L positions is usually compressed to a profile, that is
a 20 × L matrix P (PSSM, Position Specific Scoring Matrix), where for
each position l = 1, . . . , L the column vector Pl contains the frequency of
each amino acid in that position. This representation is more suitable for
automatic numerical processing and still contains valuable information. For
instance, in every position of the profile we can immediately recognize the
degree of conservation of each residue or the mutations that are compatible
with a correct structure.

4 Machine Learning

In its most general (and difficult) formulation, protein fold prediction from
sequence amounts at predicting the three dimensional structure of a protein
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given its primary structure. More formally, we can see this task as a mapping
problem in which the input is given by the sequence of amino acids and the
output is represented by the sequence of coordinates triplets (one triplet for
each amino acid). Other simplified problems in structural genomics admit
similar formulations of the predictive task: given a set of instances the
task consists in predicting the unknown characteristics (the output) of each
instance given the known ones (the input).

In the machine learning framework, such problem is addressed with the
development of algorithms capable of approximating the true (and unknown)
mapping on the basis of experience provided by a set of training examples.
In supervised learning, an algorithm is trained with a set of instances repre-
sented by input-output pairs, while in unsupervised learning only the input
is made available to the algorithm. We will focus on the former approach,
as it is the most common situation in protein structure prediction. In order
to clarify the theoretical framework underlying the development of machine
learning algorithms, we will start by introducing the basic principles of sta-
tistical learning theory, and will then present some of the most popular
algorithms highlighting their characteristics within such framework.

4.1 Statistical Learning Theory

Learning from examples amounts at approximating an unknown function
given a finite number of (possibly noisy) input-output pairs. A learning
algorithm is characterized by the set of candidate functions, also called the
hypothesis space, and the search strategy within this space. The sparseness
and finiteness of training data poses the problem of generalization over un-
seen instances, e.g. the ability of the learned function to predict the correct
output for an unseen input. A learning algorithm which simply outputs
the function that best fits training data, this function being chosen from
the set of all possible functions from the input to the output space, would
simply memorize training examples without really developing a model of
the underlying target function. In other words, the learner fails to gener-
alize to unseen cases. Moreover, the problem is ill-posed, as there is no
unique solution. The problem of avoiding overfitting [MP92] training data
is typically addressed by restricting the set of allowed candidate functions,
either by directly reducing the hypothesis space, by acting on the search
strategy, or both, and is termed in different ways, such as bias-variance
dilemma [GBD92], inductive bias [Mit97] or capacity control [GVB+92]. In
regularization theory, turning an ill-posed problem into a well-posed one is
done by adding a regularization term to the objective function [Tik63]. In
the learning framework this corresponds to modifying the search strategy
by trading off between fitting of training data and limiting the complexity
of the learned function. We will now give a more formal representation of
these concepts.
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Loss Function and Risk Minimization

Let Dm = {(xi, yi) ∈ X × Y}mi=1 be a training set, whose data are in-
dependently drawn and identically distributed with respect to an unknown
probability distribution P (x, y). Suppose we have a set of functions Fα with
parameters α, such that for each value of α we have a function fα : X → Y.
The set Fα is called hypothesis space and is the space of candidate hypothe-
ses. This space will be searched by the learning algorithm looking for the
best hypothesis according to its search strategy. Let us give a formal defi-
nition of the loss incurred by the function fα at example (x, y), that is the
penalty the function should pay for predicting fα(x) instead of y.

Definition 4.1 (Loss Function) Given a triplet (x, y, fα(x)) containing a
pattern x , its observation y and a prediction fα(x), we define loss function
any map ` : X × Y × Y → [0,∞] such that `(x, y, y) = 0 for all x ∈ X and
y ∈ Y.

The choice of the loss function typically depends on the type of learning
task addressed. For binary classification problems, where Y = {−1, 1},
common choices are the misclassification error:

`(x, y, fα(x)) =

{

0 if y = fα(x)
1 otherwise

(1)

and the soft margin loss function [BM92] (see fig.4(a)):

`(x, y, fα(x)) = |1− yfα(x)|+ =

{

0 if yfα(x) ≥ 1
1− yfα(x) otherwise

(2)

which takes into account the confidence of the prediction. In the case
that the function fα outputs a class conditional probability, that is fα(x) =
pα(Y = 1|X = x), a common choice for the loss function is the cross entropy,
typically employed in the log form:

`(x, y, fα(x)) = −

(

1− y

2
log(1− fα(x)) +

1 + y

2
log(fα(x))

)

. (3)

For regression tasks (Y = IR), common losses are the square error:

`(x, y, fα(x)) = (y − fα(x))
2 (4)

and the extension of soft margin loss called ε-insensitive loss (see fig.4(b)):

`(x, y, fα(x)) = |y − fα(x)|ε =

{

0 if |y − fα(x)| ≤ ε
|y − fα(x)| − ε otherwise

(5)
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Figure 4: Confidence-based losses for binary classification (a) and regression
(b).

which does not penalize deviations up to ε from the target value, and gives
a linear penalty to further deviations. Note that all these losses only depend
on x by fα(x), whereas definition 4.1 is more general.

Given a loss function weighting errors on individual patterns, we can
define the expectation of the test error for a trained function on the entire
set of possible patterns.

Definition 4.2 (Expected Risk) Given a probability distribution P (x, y)
of patterns and observations, a trained function fα : X → Y and a loss
function ` : X × Y × Y → [0,∞), the expected risk for fα is defined as

R[fα] =

∫

X×Y

`(x, y, fα(x))dP (x, y). (6)

The expected risk is also known as generalization error or true error. An
ideal learning algorithm should be able to choose the hypothesis which min-
imizes such value. However, we cannot directly minimize the expected risk,
as the probability distribution P (x, y) is unknown. The only error we can
actually measure is the mean error rate on the training set Dl, also called
the empirical risk.

Definition 4.3 (Empirical Risk) Given a training set Dm = {(xi, yi) ∈
X × Y}mi=1 of patterns and observations a trained function fα : X → Y and
a loss function ` : X × Y × Y → [0,∞), the empirical risk for fα is defined
as

Remp[fα] =
1

m

m
∑

i=1

`(xi, yi, fα(xi)). (7)
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Minimizing this risk alone, however, does not give any guarantee on the
value of the expected risk itself, especially if the size of the training set is
small compared to the dimension of the hypothesis space. If we choose the
set of functions Fα to be the set of all functions from X to Y, we can always
find a function which has zero empirical error, but large generalization error.
For instance, a function mapping each training pattern xi to its observation
yi, and that maps every other pattern xj , j > m to a fixed value, does not
achieve any learning at all.

In order to generalize to unseen patterns, we have to restrict the set of
possible learning functions, taking into account the complexity or capacity
of such set with respect to the learning task and the number of training
examples available.

4.2 Examples of learning algorithms

Given a particular predictive task (i.e. binary classification), a learning
algorithm is characterized by its hypothesis space, that is the set of all
possible functions it can implement, and the search strategy within this
space. The search strategy typically consists in minimizing a loss function
over the set of training examples, while the problem of generalization can
be addressed by reducing the hypothesis space and/or by modifying the
search strategy in various ways in order to prefer simpler hypotheses as
well as more suitable hypotheses given the prior knowledge available. In
the following we will introduce two of the most popular learning algorithms,
focusing on their characteristics in terms of hypothesis space, search strategy
and generalization capabilities.

Kernel Machines

The concepts of statistical learning theory were investigated by Vapnik in
the late Seventies [Vap79] and led to the development of the Support Vector
Machine [Vap95] learning algorithm, later generalized to Kernel Machines.
In the case of classification tasks, Kernel Machine algorithms learn a decision
function which separates examples with a large margin, possibly accounting
for training errors, thus actually trading off between function complexity
and fitting the training data. Versions of the algorithm have been devel-
oped for tasks different from classification, such as regression [Vap95], clus-
tering [BHHSV01] and ranking [FSS98, CD02], and have been successfully
applied to a vast range of learning tasks, from handwritten digit recogni-
tion [CV95] to text categorization [Joa98].Many tutorials and books have
been written on Kernel Machines (see for example [Bur98, SS02, CST00]).

Kernel Machines can be viewed in the framework of statistical learning
theory as the problem of minimizing a regularized risk functional. Capac-
ity control is thus implemented by modifying the search strategy, adding
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to the empirical risk a regularization term which penalizes more complex
hypotheses.

Recall the problem of empirical risk minimization (see section 4.1), where
we have a training set Dm = {(xi, yi) ∈ X × Y}mi=1, a set of functions
Fα from X to Y, and a loss function ` : X × Y × Y → [0,∞]. Assume
for simplicity that Y ≡ IR. Assume also that Remp[fα] is continuous in
fα

1. Regularization theory deals with the problem of restricting Fα in
order to make it a compact set, thus obtaining a well-posed minimization
problem [Tik63, Vap98]. Instead of directly specifying a compact set for
Fα, which would cast the problem into a complex constrained optimization
task, we add a regularization term Ω[fα] to the objective functional, such
that Ω[fα] ≥ 0 for all fα, and the sets

Fα,c = {fα : Ω[fα] ≤ c}, c ≥ 0,

are all compact. This results in a regularized risk functional

Rreg[fα] = Remp[fα] + λΩ[fα]. (8)

giving a well-posed minimization problem [Tik63, Vap98]. Here the reg-
ularization parameter λ > 0 trades the effect of training errors with the
complexity of the function, thus providing a mean to control overfitting. By
choosing Ω to be convex, and provided Remp[fα] is also convex, the problem
has a unique global minimum.

When Fα is a reproducing kernel Hilbert space H [Aro50, BCR84] asso-
ciated to a kernel k, the representer theorem [KW71] gives an explicit form
of the minimizers of Rreg[fα]:

fα(x) =
m
∑

i=1

αik(xi, x). (9)

The theorem states that regardless of the dimension of the RKHS H, the
solution lies on the span of the m kernels centered on the training points.
Different choices of the loss function ` and the regularization functional Ω
give rise to different Kernel achines. Support Vector Machines for binary
classification [CV95, Vap95, Vap98], for example, employ the soft margin
loss function (eq. 2), which as a cumulative loss becomes

`((x1, y1, fα(x1)), . . . , (xm, ym, fα(xm))) =
1

m

m
∑

i=1

|1− yifα(xi)|+, (10)

and a regularizer of the form λΩ[fα] =
λ
2 ||fα||

2. For λ → 0 we have hard
margin SVM where all training patterns have to be correctly classified. Note
that the decision function for SVM is actually sign(fα).

1This doesn’t hold for the misclassification loss (eq. (1)), which should be replaced by
a continuous approximation such as the soft margin loss (eq. (2)).
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Figure 5: A schematic representation of the kind of processing performed
by a neural network unit.

Neural Networks

Neural networks represent a popular framework for learning arbitrarily com-
plex functions from examples. They are among the most effective learning
methods currently used for structural biology applications (see section 5.2).
Briefly, neural networks are built out of a set of interconnected simple units,
where each unit processes a number of real-valued input (which may be the
output of other units) and outputs a single value, which may be the input
to other units. Figure 5 represents the computation performed by a generic
simple unit. Given a vector x̄ = (x1, x2, . . . , xn) of real-valued inputs, the
unit computes a weighted linear combination of these inputs and outputs
the function σ(w̄ · x̄+ w0), where w̄ = (w1, . . . , wn) is the vector of weights
of the linear combination and plays a central role in the learning procedure.
σ(·) is called the activation function and can be of different types: linear,
σ(x) = x, perceptron, σ(x) = sign(x), sigmoid, σ(x) = 1/(1 + e−αx) or
hyperbolic tangent, σ(x) = tanh(x).

Typically, individual units are interconnected in layers that form a di-
rected acyclic graph. Connections run from every unit in one layer to every
unit in the next layer. The edge connecting unit i in layer k − 1 to unit
j in layer k is labeled by the weight wij which represents the strength of
the corresponding connection. Figure 6 shows an example of a feed-forward
network having two layers of weights. Networks of this form are called multi-
layered perceptrons (MLP). Intermediate units between input and output
units are called hidden units and their corresponding layer is called hid-
den layer. The network of Fig. 6 has n inputs and m outputs and can
be seen as a representation of a multivariate mapping between a set of n
input variables and a set of m output variables. Depending of the type
of unit activation functions, networks of this form can approximate arbi-
trarily complex functions. A three-layer network with threshold activation
functions (i.e. perceptron) can represent an arbitrary decision boundary to
arbitrary accuracy. Essentially any continuous functional mapping can be
represented to arbitrary accuracy by a network having two layers of weights
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Hidden Layer

Output Layer

Input Layer
x1 x2 xn

y1 ym

Figure 6: A feed-forward network having two layers of adaptive weights.
The bias parameters (i.e. weights w0 as in Fig.5) for hidden and output
units are not shown.

with sigmoidal hidden units.
In MLPs, model parameters (i.e. the weights) are adaptive and can

be adjusted to adapt the behavior of the model according to the training
data. The key idea of network training is to use gradient descent to search
the hypothesis space of possible weight vectors to find the weights that
best fit the training examples. Gradient descent provides the basis for the
popular backpropagation algorithm, which can learn networks with many
interconnected units. Training is achieved by minimizing the empirical risk
over the training set. For regression estimation, the criterion usually chosen
is the Mean Squared Error (see loss in eq. 4)

Remp[f ] =
1

m

m
∑

i=1

(yi − f(xi))
2

and for classification the Cross-Entropy (see loss in eq. 3)

Remp[f ] = −
1

m

m
∑

i=1

(

1− yi
2

log(1− f(xi)) +
1 + yi

2
log(f(xi))

)

.

Controlling the generalization ability of MLPs (i.e. avoiding overfitting)
is usually achieved in two different ways. The first and more principled
method consists in the minimization of the regularized risk functional of
eq. (8). A popular approach is known as the weight decay strategy, where
the regularization term is a convex function of model parameters (i.e. the
weights)

Ω[f ] =
‖w‖2

2

that simply corresponds at penalizing solutions with high values of the
weights. The underlying idea is that if the weights are kept small, the unit
activation functions are almost linear, hence with low complexity or capacity.
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Differently from Kernel Machines, the problem of minimizing Rreg[f ] usu-
ally does not have a unique global optimum, because the network in general
can represent an arbitrarily complex and possibly non-convex functional.

The second method is the use of early stopping, that is stopping training
before reaching a local optimum, usually according to an estimate of gener-
alization error on a independent “validation” set. Early stopping prevents
tuning the weights to fit noise in the training data or unrepresentative char-
acteristics of the particular training sample. Clearly, it can be applied only
when enough data is available to provide an extra validation set.

5 Landscape of Protein Fold Prediction

After completion of the synthesis of its sequence, a protein assumes spa-
tial structure with a process called protein folding. This process transforms
the one-dimensional (linear) structure of the polypeptide chain into a three-
dimensional (native) conformation which determines the biological function
of the protein. According to the experimentally confirmed Anfinsen’s hy-
pothesis [Anf73], the amino acid sequence together with the solution en-
vironment contain all the information that is necessary to determine the
native fold of a protein. This gave rise to the protein folding problem,
the prediction of protein’s tertiary structure from its amino acid sequence.

Finding a solution to the folding problem is one of the most difficult and
challenging open problem in structural proteomics. Despite many decades
of intensive research efforts, the problem has not a general solution yet.
An evidence for this claim is the rapidly increasing sequence-structure gap.
The number of proteins for which the sequences are known is well over
a million [BA00], whereas the number of protein structures deposited in
public databases is slightly more than twenty thousand [B+77]. Excluding
experimental difficulties, the reason for this impressive difference is largely
due to the lack of a comprehensive theory of folding. At present, we only
know a few reliable facts about the folding mechanism. Thus, it is still not
possible to simulate protein folding (in a reasonable amount of time) 2 and
generate the three-dimensional structure of any protein from its amino acid
sequence.

In the absence of any useful theory of folding and automated high through-
put structure determination projects, structure prediction tools play an in-
creasing significant role. The development of new reliable and powerful
prediction techniques represent one of most active research area in the field.
In the following, we survey techniques and applications employed for protein

2In Molecular Dynamics, simulations compute folding trajectories using the physical
laws of motion in appropriately devised potential fields. Unfortunately, protein folding
can be simulated only for a negligible amount of time (nano or micro seconds). In vivo or
in vitro, the process goes on for seconds or minutes.
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fold prediction. Tools are mainly distinguished depending if the task is to
predict directly 3D structure or instead simplified lower dimensional (1D or
2D) representations.

5.1 Prediction in three-dimensional space

The most accurate tools used to predict protein structure are the so called
knowledge-based methods, i.e. comparative (homology) modelling and thread-
ing. These methods rely on the observation that many different sequences
have similar folds, and in this case we say that they are homologous [BT99].
We are aware that the precise definition prescribes that two sequences are
homologues if they have a common progenitor. Here we use the term homol-
ogy in the context of structural similarity. Assuming that an input sequence
with unknown structure is homologue to a protein with known fold, the tar-
get fold can be modelled using the structure of the homologue as a template.
The existence and detection of homologous proteins with known structure
is a necessary requirement for the application of these techniques.

Comparative (Homology) modelling

Empirical findings suggest that proteins whose percentage of sequence iden-
tity is more than 25-30% have similar 3D structures [MR03, Ros98, AB97].
Comparative modelling techniques such as [SS97] start from this argument
to infer structural homology. Moreover, it is generally assumed that the
unknown target and the template folds have identical backbones and very
similar core regions3 built up from a combination of secondary structure
patterns. By this, model building is the problem of predicting conformation
of the side-chain and the structure of loop regions, after having adjusted the
input sequence to match the core of the template fold. Loop regions of the
unknown structure are modelled using a database of side-chain orientations
from proteins of known structure (rotamer libraries). Finally, conforma-
tion of the side-chain is predicted by energy refinement of the model with
molecular dynamics simulations.

The accuracy of homology modelling clearly depends on the amount of
sequence identity of the target and template structures. With high levels
of sequence identity (≥ 60%), homology-derived models are as accurate as
experimental structure methods. When similarity is between 40% and 60%,
energy refinement is successfully applied to find higher quality models only
if it starts from an almost correct structure. An additional problem is the
large computational time due to the increasing number of loop regions that
have to be modeled. When the levels of sequence similarity are in the range

3An analysis of the relation between sequence similarity and 3D structure of the core
region of homologous proteins revealed that proteins with high sequence identity are almost
identical in structure (RMSD ≤ 2Å) [CL86].

15



25-30%, homology modeling can only find coarse-grained solutions. The
main limitation of comparative modelling is its range of application. The
requirement that sequence identity needs to be ≥ 25-30% confines model
building by homology to the prediction of 3D structure for 10-30% of all
protein sequences [Ros98].

Fold Recognition (Threading)

As previously observed, high sequence similarity allows to reliably infer
structural similarity, but the majority of proteins with similar three-dimensional
structures and functions have low sequence identity. In this case, two pro-
teins are said to be remote homologous (i.e. structurally related). Similarly
to homology modeling, threading or fold recognition methods build a model
of an unknown fold according to the template of its (remote) homologue, but
additional tasks must be solved. The first goal is to detect the existence and
identity of a remote homologue or whether there is no known fold to which
the input sequence belongs. This is a difficult task, given the large num-
ber of possible unrelated sequences with low sequence identity. If the first
pass can be solved, the query sequence and the detected remote homologue
have to be correctly aligned. These problems are usually solved together.
Given a library of folds, which consists of a collection of structural templates
derived from experimentally solved protein structures, for each fold in the
library the input sequence is thread onto the known structure (sequence-
structure alignment). It then follows an assessment of how well the query
sequence fits each structural template using either amino acid structural
propensities [FE96] or mean-force (statistical) potentials [Sip95, JTT94b].
To speed up the fold recognition phase, other methods have been proposed.
A prediction-based threading technique is employed in [Ros95], where the
alignment is made between the predicted strings of secondary structure and
solvent accessibility and those extracted from the fold library. In [Jon99a],
profile-based sequence alignments are used to align the query sequence and
the sequence of the candidate template. Feed-forward neural networks are
then used to score the structural similarity of the two proteins.

The SCOP database [HMBC97] is a database of structural classifica-
tion of proteins. It contains proteins structures hierarchically grouped into
domains, families, superfamilies and folds. Such database can be used to
assess performance of remote homology detection algorithms, as proteins of
different families but in the same superfamily are likely to be remote ho-
mologues. Therefore, a method able to detect a protein of a given family
when trained on proteins of other families sharing its same superfamily is
actually recognizing a remote homologue. This framework have been cast
into a discriminative problem by Jaakkola et al. [JDH00], who paved the
way for the use of kernel methods with excellent results. They employed
state-of-art HMM methods [KBH98] to generate models of a given protein
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superfamily, and used them to train a Fisher kernel [JH98a, JH98b], which
is a kernel designed to measure the similarity between the generative pro-
cesses underlying two instances, thus allowing to combine generative and
discriminative approaches into a single learning method. The algorithm
is trained to discriminate between examples belonging to the given super-
family and examples belonging to all other superfamilies. A wide range of
kernels have been developed to the same aim after their work. The spectrum
kernel [LEN02] compares two sequences by counting the occurrences of all
common substrings of size k. Later variants included allowing mismatches
in the common substrings [LEWN03] as well as deletions [LKE04]. Weight
matrix [HH91] or regular expression [SSB03] motif databases derived from
multiple alignments have been employed in [LMS+01, BHB03]: a sequence
is mapped to the feature space of all the comparisons with a motif of the
database, and the inner product is computed in such space. Most of these
methods employ efficient data structures such as suffix trees [Ukk95] or tries
in order to be computationally feasible. A natural way to represent an ob-
ject belonging to a given set is by its similarity to other elements of the
set. This idea is implemented in the kernel framework by the empirical
feature map [Tsu99], where each example is mapped to the vector of the
similarities with all other reference examples. Liao and Noble [LN03] em-
ployed pairwise sequence similarity scores obtained by the Smith-Waterman
algorithm [SW81]. The feature map for a sequence is thus represented by
a vector of pairwise sequence similarities with positive examples (from the
superfamily to be modeled) and negative examples (from the other super-
families), and the size of this vectorization set heavily affects the efficiency of
the algorithm. For a detailed treatment of kernel methods for remote protein
homology, as well as for other tasks in computational biology, see [Nob04].

Threading methods are very promising but their predictions of 3D struc-
ture are not yet reliable. In most of the cases, predictions have to be manu-
ally processed by experts to correct false positives. As previously said, they
require the remote homologue to exist and to be detectable: assuming all
remote homologous could be recognized, threading is in principle applicable
for about another 10-20% of newly available sequences.

De novo methods

Overall, it is estimated that knowledge based methods can be applied only
for about 20-50% of novel proteins. In the majority of cases, the structure
of a novel protein must be assigned ab initio, not relying on the protein
having a fold similar to a known one. De novo or ab initio approaches
[BS01, BTR+01] predict 3D structure using stochastic optimization algo-
rithms. These procedures employ some energy function to search a globally
optimal (minimal energy) configuration in the space of allowable structural
conformations. Unfortunately, the problem is inherently intractable due to
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the exponential number of local minima. Exact numerical calculations are
beyond the possibilities of present and near future computers and locally-
optimal results can be obtained only for small proteins and coarse repre-
sentations, e.g. using only Cα atoms of the backbone. Moreover, the cost
function is often manually designed and its parameters are estimated from
statistical considerations. Even if it is possible to find a global optima, this
could be different from the native configuration, because the energy func-
tion contains some inaccuracies. However, it has been frequently observed
that knowledge of topological constraints and other structural features (e.g.
secondary structure) can greatly improve the efficiency4 and performance of
de novo approaches.

5.2 Prediction in one and two-dimensional space

As we have seen, the most effective methods for protein fold prediction
are comparative modelling and threading techniques. These methods as-
sume that an homologue can be detected, an event estimated to occur for
less than half the sequences of newly available genomes. Reliable protein
structure prediction from sequence using de novo methods is far from be-
ing achieved, mainly because a global search in the conformational space of
proteins is inherently intractable. Only recently, this task has been aided
by the development of intelligent tools borrowed from machine learning
(ML) approaches. These methods extract relevant pieces of information
from databases of known structures in order to focus the search on more
tractable problems: instead of three-dimensional coordinates, their goal is
to predict the values of intermediate and simplified one-dimensional (1D)
or two-dimensional (2D) protein structural descriptions, i.e. those aspects
of a protein that can be represented as a linear strings of symbols or two-
dimensional matrices. Using the rich diversity of information in current
biological archives it is possible to predict at some extent of success many
structural features, such as:

1D – Secondary structure;

– Solvent accessibility;

– Topology and topography of transmembrane proteins;

– Residue coordination numbers;

– Cysteines bonding state

2D – Residues distance and contact maps;

– β-sheet partners;

– Disulphide connectivity patterns

4The ratio of number of sampled conformations to the number of random configurations
necessary to find a good structure [FL01, RFS98].
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Figure 7: Basic template scheme based on feed-forward neural networks for
predicting structural features from amino acid sequences.

There are many advantages in using these features for protein fold predic-
tion, although they represent a partial description of the structure. Firstly,
predictions can be obtained in a short amount of time and constitute im-
portant steps towards 3D determination. For instance, predicted secondary
structure segments can be arranged in space as rigid bodies thus simplify-
ing molecular dynamics simulations or allowing for a combinatorial assess-
ment of a limited number of possibly stable globular folds [CP96]. Pre-
dicted features can be used to assist X-ray crystallography during the early
stage of structure determination or in molecular biology experiments. Pre-
dicted solvent accessibility together with secondary structure is employed in
prediction-based threading techniques to produce an alignment of the query
sequence with the folds deposited in the library of known structures [Ros95].
Concerning de-novo protein structure prediction, one and two-dimensional
structural descriptions represent additional information that can be conve-
niently exploited to reduce the number of sampled conformations and to
guide the conformational search. Knowledge of topological constraints can
also assist experimental work in laboratory during the early stage of struc-
ture determination and provide guidance for subsequent experiments.

In the context of machine learning, these predictive problems are mod-
elled as learning (i.e. inferring) mappings from input to output spaces. The
input space is the domain of the strings of amino acids. In the case of
1D predictions, instances of the output space are also given by sequences
represented by strings of symbols. Each symbol represents the predicted
structural property of the residue in the same position. 2D predictive sys-
tems can be seen as computing representations of relations between the input
elements, hence they can be seen as learning a mapping from sequences to
graphs. Depending on the problem, an edge in these graphs indicates the
presence of some form of relation between the adjacent nodes, e.g. residues,
secondary structure segments etc.
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Training and prediction of many one-dimensional predictive systems rely
on specific variations of a basic scheme, as depicted in Figure 7, where in this
case the learner is represented by a feed-forward neural networks. Other al-
gorithms, such as Support Vector Machines are applied in a similar fashion.
The figure shows a common approach for solving sequential translation (i.e.
predictive) problems in structural genomics: the learner is moved along the
input sequence and outputs at each step a vector that encodes the struc-
tural class of the residue in current position (Y or Tyrosine in figure). It
is usually assumed that structural properties of a residue are affected by
its local context (i.e. the neighboring residues). For this reason, the input
vector is usually formed by taking a window centered at a given position
and replacing each residue in the window with an encoding formed by a
fixed size numerical vector. Concerning the connectionist realization of the
scheme of Figure 7, the set of adjustable architectural parameters includes
the number of output units, the number of hidden layers and units, input
encoding and window size. Clearly, the number of output units depends on
the number of classes that we decide to model for the specific prediction
task. A kernel-based realization of the previous translation task requires to
choose among different architectural details, such as the type of machine
(e.g. binary or multi-class classifier), the type of kernel (e.g. linear, polyno-
mial or Gaussian) with its corresponding hyper-parameters (e.g. the degree
of the polynomial or the Gaussian width) and the regularization parameter.
Concerning the input, there are two main types of representation for a posi-
tion in the sequence: one-hot and profile-based. Suppose sequence position
i contains the j-th amino acid, j = 1, . . . , 20. Then, in one-hot encoding the
input at position i is represented by a binary vector with the j-th component
equal to 1 and 0 elsewhere. Instead of a binary vector, profile-based encod-
ing uses the 20 dimensional vector extracted from the PSSM of a multiple
alignment (see section 3). The size w of the input window (w = 3 in figure)
controls the amount of contextual information that is considered for local
predictions. Ideally, one could expect that the larger is w, the more is the
information given to the predictor, hence performance should necessarily
increase. Unfortunately, it is frequently observed that increasing w beyond
some limit corresponds to a decrease of the signal to noise ratio. In other
words, the amount of (distant) information is negligible with respect to the
noise that is introduced. A typical size of the input window goes from 9 to
25 residues.

Secondary structure

Secondary structure prediction was the first important structural biology
problem solved by machine learning techniques. Its significance can be un-
derstood by observing the variety of prediction systems that were developed
over the last three decades. We can roughly distinguish between first, second
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and third generation methods. First generation methods were those making
predictions using only single residue information. The input for each residue
was represented either in the form of its statistical propensity to appear in
an α-helix, β-strand and coil region [GOR78], or in the form of explicit bio-
logical expert rules [Lim74]. Average accuracy of these methods (known as
Q3 index) was not higher than 55%. Second generation methods were those
applying the connectionist architecture described in Figure 7. Local inter-
actions were taken into account by means of a sliding window and one-hot
encoding. Values in the output layer discriminate each residue as belonging
to one of the three states: α-helix (H), β-strand (E) and coil (C). The first
original work [QS88] reported an accuracy of 62.7%. In [RK96], techniques
were used to reduce overfitting and to incorporate prior knowledge, improv-
ing accuracy to 66.3%. One of the major difficulties of these methods is the
correct location of β-strands, because they are predominantly determined by
long-ranged interactions5. By this, it is generally assumed that only ≈65%
of secondary structure depends on local interactions.

Last generation methods started exploiting evolutionary information.
The basic observation is that the secondary structure within a family of
evolutionary related proteins is more conserved than primary structure. In
other words, the evolutionary pressure to conserve function has favored mu-
tations that preserve relevant structural characteristics. This information
is first processed doing a multiple alignment between a set of similar se-
quences and extracting a matrix of profiles (PSSM). Each matrix column
represents the input given to the network for the corresponding sequence
position. PHD [Ros96] was the first method to incorporate profile-based
inputs and achieved an accuracy above 70%. The system is composed of
cascading networks: the first one (sequence-structure) is similar to that of
Figure 7; a second network (structure-structure) takes as input a window
sliding on the previous outputs and refines the output probabilities of the
first network. A final stage takes a jury decision by averaging the out-
puts from independently trained models. Other well-known profile-based
methods are PSI-PRED [Jon99b], that uses two neural networks to analyze
the profiles generated from a PSI-BLAST search [AMS+97], JNet [CB00]
and SecPred. An alternative adaptive model is employed in [BBF+99] to
realize bi-directional recurrent neural networks, a non-causal connectionist
architecture that exploits contextual knowledge represented by upstream
and downstream dependencies (long-range information) stored into hidden
state variables. At present, almost all connectionist-based methods achieve
performance levels in the range 76-78%.

There are other predictors of secondary structure that are not strictly
based on neural network implementations. A nearest-neighbor approach is

5A residue in a β-strand has an hydrogen-bonding partner in some other strand that
can be distant in sequence.
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employed by NNSP [SS95], where the secondary structure state of a test
residue is assigned by scoring the information coming from different tem-
plates according to their similarities. Template segments are those of pro-
teins with known 3D structure. The web-server JPred [C+98] integrates six
different structure prediction methods and returns a consensus based on the
majority rule. The program DSC [KS96] combines several explicit param-
eters in order to get a meaningful prediction. It runs the GOR3 algorithm
(an evolution of GOR1 based on information theory applied to local inter-
actions) on each sequence, to provide mean potentials for the three states.
A linear combination of the different attributes gives an output which is
subsequently filtered. The program PREDATOR [FA97] is based on calcu-
lated propensities of the 400 amino acid pairs to interact inside an α-helix
or one upon three types of β-bridges. It then incorporates non-local interac-
tion statistics and propensities for α-helix, β-strand and coil derived from a
nearest-neighbor approach. In order to use information of homologous pro-
teins, PREDATOR relies on local pairwise alignments. Accuracy is claimed
to be 75%. In principle, Hidden Markov Models could be effectively used
for prediction of secondary structure, thus allowing for the incorporation of
syntactic restraints on the form of the output strings. At present, no HMM
based method is able to outperform neural networks. Not surprisingly, the
literature reports an improvement on the distribution of the length of pre-
dicted segments (SOV, or segment overlap), but not of the Q3 accuracy
measure.

Kernel Machines have entered quite recently [HS01] the arena of sec-
ondary structure prediction, and the necessary multiclass extension was
either realized with combinations of binary classifiers [HS01, WMBJ03,
CFPV03a] or multiclass Support Vector Machines (MSVM) [NR03, GPE+04].
No clear evidence emerged in favour of SVM compared to Neural Networks,
taking into account the much higher computational time required. This can
be partially explained by the fact the both are local classifiers fed with the
same inputs, and the great amount of data available make the usual SVM
advantages less evident. However, a few recent works [NR03, GPE+04] un-
derlined the effectiveness of multiclass SVM as a filtering stage, to be fed
with the output of other predictive methods (which can be MSVM them-
selves). A simple and effective refinement stage was proposed in [CFPV03a]
in order to remove inconsistencies of predicted sequences, that is violations
of the constraints that can be imposed from the distribution of observed
consecutive secondary structure labels. The method builds a finite state
automata (FSA) representing all allowed sequences, and turns a predicted
labelling sequence into the maximum likelihood sequence given the grammar
and the predictions.

All the SVM approaches proposed so far employ standard kernels, such
as polynomial or Gaussian ones. The first attempt to develop a kernel espe-
cially modeled for secondary structure prediction was presented in [GLV04].
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Firstly, it employs a dot product between residues (or profiles) mediated by
a substitution matrix, which compares residues according to their biochem-
ical similarity. The substitution matrix was derived from [LRG86] and is
especially designed for secondary structure prediction tasks. Secondly, it
introduces an adaptive weighting of the window around the target residue,
with weights learned by a version of kernel target alignment [CSTEK02]
extended to the multiclass case [Ver02]. The proposed kernel was proved
superior to a standard MLPs, but given its computational overhead, its us-
age as a module in big architectures, such as those currently employed for
secondary structure prediction [Jon99c, PPRB02, PLN+00], is not straight-
forward.

Topology and topography of membrane proteins

Membrane proteins represent a biologically important class of biomolecules.
Proteins classified into this class are those crossing the outer membrane of
cells, mitochondria and chloroplasts (the latter two being the “energetic de-
vices” of eukaryote cells). Membranes play a key role in cell metabolism:
they act as regulatory interfaces between inside and outside physico-chemical
activities; this role is assured through membrane proteins which form chan-
nels for signal and material exchanges.

In spite of their importance, membrane proteins are more difficult to
crystallize than globular proteins6 because of their lipid environment. More-
over, they are hardly tractable by NMR spectroscopy. For this reason, struc-
tural predictions are even more needed for this class. In this case, the land-
scape of prediction can be partitioned according to: 1. type of membrane
proteins; 2. prediction task; 3. prediction methodology. At present, only a
few structures are known for two types of membrane proteins: α-helical and
β-barrel. Belong to the first type those proteins crossing cytoplasmic mem-
branes with α-helices. The second type groups proteins which cross the outer
membrane of bacteria with β-strands organized into a sort of cask; there are
findings supporting their presence in mitochondria and chloroplasts. Ge-
ometrical and physical restraints of membranes allow for the definition of
two basic structural problems: prediction of topology and topography. The
topology of a membrane protein is the location (inside or outside) of the
N- and C-terminus7 with respect to the membrane bilayer. The topogra-
phy is the location along the protein sequence of transmembrane segments.
Knowledge of topology and topography of membrane proteins is important
because their structure and function is closely related to the number and
location of membrane spanning segments. For instance, the greater is the
number of transmembrane segments, the larger is the channel width for ac-

6Hartmut Michel won the Nobel prize in 1987 for the first successful attempt in mem-
brane protein crystallization.

7Sequence fragments respectively at the beginning and end of sequence.
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tive ion transport. Another problem is of great practical importance: to
identify if a protein belongs to the membrane class.

Concerning methodologies, we can still distinguish among first, second
and third generation methods. There are systems based on statistical ap-
proaches, neural networks and probabilistic graphical models like HMMs.
Here we focus on techniques which use sequence profiles. For the prediction
of protein topography the outputs discriminate whether a residue is in a
transmembrane (TM) or non-transmembrane (NTM) segment. Several neu-
ral network-based predictors are available for transmembrane helices: PHD-
htm and MEMSAT-2 rank among the most effective ones. PHDhtm follows
the basic template scheme of Figure 7 and corrects the length of membrane
helices with the introduction of cut-off filters. By using sequence profiles it
achieves 95% accuracy in topography prediction [RaPFS95]. It is able to pre-
dict protein topology at 86% accuracy [RCF96] using dynamic programming
procedures to post-process network outputs. MEMSAT-2 is the profile-based
version of MEMSAT [JTT94a] and achieves a success rate of 93%. Signifi-
cant results can also be obtained with HMMs [KLvHS01, SvHK98]. In this
case, topography is predicted with the computation of the optimal Viterbi
path. Each state in the probabilistic transition automata is associated ei-
ther to NTM or TM state of a secondary structure segment.[SvHK98] and
HMMTOP.

Prediction of TM β-barrel strands is a more complex task. As previously
noted, this depends on the difficulty related to prediction of β-strands and in
particular those of membrane proteins. The available methods are based on
statistical, neural network and Hidden Markov models. The neural network
used in [JFPC01] predicts strands in TM state filtering spurious assign-
ments with dynamic programming constrained optimization and achieves
78% accuracy. Similarly to the methods discussed in [JFPC01, JTT94a], in
[MFKC02] an algorithm based on dynamic programming uses HMM outputs
to locate the transmembrane β-strands along the protein sequence by model
optimization. The HMM is trained with information derived from multiple
sequence alignments and can be used to discriminate outer membrane pro-
teins from other protein types. The overall accuracy per residue is as high
as 83%.

Solvent accessibility and coordination number

Residue solvent accessibility (RAcc) is defined as the relative degree to which
an amino acid interacts with molecules of the solvent environment. Solvent
accessibility can be used to assist prediction of functional sites and sub-
cellular localization. Moreover, it can help threading techniques during the
structural alignment of the input string [Ros95]. For this problem, residues
are normally classified in two classes: buried (RAcc < 16%) or exposed
(RAcc ≥ 16%).
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Prediction of relative solvent accessibility has been solved using neural
networks with single-sequence input [HMK90] or evolutionary information
[RS94], Bayesian techniques [TG96] and simple statistical methods using
residue substitution matrices [PPBA98] and residue propensity of exposi-
tion [RB99]. The latter and simplest approach achieved accuracy levels
(69-71%) comparable to those of other more sophisticated methods that use
single-sequence information. Neural networks and Bayesian analysis were
able to achieve an accuracy of 75%, showing again the wealth of evolution-
ary information and the ability of non-linear models to exploit the features
provided by this information. Support Vector Machines have been recently
applied [YBM02, KP04] with both single sequence and profile based inputs
as well as feature weighting schemes, claiming an accuracy as high as 80%.

A related problem involves prediction of residue coordination number,
defined as the number of contacts that a residue has in the folded protein.
The number of contacts corresponds to the number of spatial neighbors. It
is usually assumed that solvent accessibility can be used to predict coordi-
nation numbers (less exposed residues tend to belong to the hydrophobic
compact core, and have a large number of neighbouring residues). How-
ever the two measures show different distributions [FC00], and individual
predictors have been often developed. The method in [FC00] is based on
the profile-based neural network of Figure 7 and correctly predicts in 69%
of the cases whether a residue has a number of contacts lower or higher
than its average distribution value, as measured a non-redundant selection
of protein structures. State-of-art performances were obtained with ensem-
bles of BRNN [PBFC02] similar to those employed for secondary structure
prediction (see relative paragraph).

Contact maps

As previously discussed, learning algorithms can be trained to predict topo-
logical features that are both translation and rotation invariant and that
constrain the space of structural conformations. Such features are based
on intermediate simplified structural representations, such as the distance
matrix (DM). The Distance Matrix flattens the set of atom coordinates to a
symmetric square matrix where the element in position (i, j) represents the
distance among atoms in position i and j. An interesting property of DMs
is the independence from the coordinates frame. Unfortunately, predicting
DMs is known to be very difficult and no effective method is available. For
this reason, a reduced representation is typically considered, known as the
(fine-grained) residue contact map (CM). The contact map of a protein with
N amino acids is defined as a symmetric N ×N matrix C, with the element
Cij defined as:

Cij =

{

1 if amino acid i and j are in contact

0 otherwise
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Figure 8: Fine-grained contact map of streptococcal protein g (pdb code:
2igd).

The notion of contact is closely related to a spatial proximity relation and
many definitions are possible. Typically, two amino acids are said to be in
contact if their distance is below a given threshold (in Å). Commonly used
distance definitions are between Cα-Cα (7-9 Å), Cβ-Cβ (6.5-8 Å) atoms,
or the minimal distance between two atoms belonging to the side-chain or
backbone of the two amino acids (4.5 Å). Figure 8 is an example of binary
contact map defined at residue level. In contact maps, α-helices appear as
thick bands of contacts along the diagonal (residues 28-41) and β-sheets as
bands parallel or orthogonal to the diagonal (residues 18-25 and 56-60).

The appeal of the contact map representation in the context of fold-
ing is essentially due to the possibility of reconstructing 3D atom coordi-
nates from contact maps. Methods for reconstructing 3D coordinates from
contact/distance maps have been developed in the NMR literature and else-
where using distance geometry and stochastic optimization algorithms. Ven-
druscolo [VKD97] has shown that even partial or noisy knowledge of the CM
may be sufficient for recovering the real structure. In the case of NMR spec-
troscopy, information about residue-residue contacts can be inferred from
experimentally derived 2D NOESY peaks. On the other hand, fold predic-
tion methods cannot rely on experimental data and contact maps need to
be predicted.

Algorithms have been developed for the prediction of protein distance
constraints and contact maps [AGT95, AGT95, GLAB99], in particular us-
ing neural networks [FC99, FOVC01, PB02], and Hidden Markov Models
[ZJB00, SB03]. An important feature of contact map prediction is the con-
cept of correlated mutations [SKS94, PHCAV97, OV97]. Correlated muta-
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tions attempt to model long-ranged residue interactions using constraints
on the type of amino acids that can be substituted without the removal of
contacts. At the CASP4 competition [LCH01], one of the best method re-
ported a precision of ≈ 21% correct predictions of long-range contacts (i.e.
restricting the analysis to pairs whose sequence distance is more than four
residues) using neural networks and correlated mutations [FC99, FOVC01].
Correlated mutations are also used in [SVB02] to derive contact likelihood
scores for all possible amino acid pairs and then to use these scores to predict
contacts. The method in [ZJB00] uses Hidden Markov Models to extract
folding initiation sites and to model interactions between those sites. It
then applies an A-priori like algorithm to mine association rules between
input patterns and contacts. Reported precision is comparable to that of
the former method. Since typical predicted contact maps are ambiguous or
physically impossible, a variation of this method is applied in [SB03]. In
this case, for a given protein sequence an HMM computes the inter-residue
contact potentials that are used to align the target to templates. The result-
ing map is then filtered using a folding pathway method. Another approach
is described in [PB02] and is based on a two-dimensional generalization of
bidirectional recurrent neural networks [BBF+99]. The method is tested at
different distance cutoffs: reported levels of precision are above 50% for the
complete map, i.e. not restricting the analysis to pairs that are distant more
than a given number of residues.

Contact map representations can be derived not only at the level of
amino acids, but also considering contacts between secondary structure seg-
ments. Such representations are called coarse-grained contact maps. Con-
tacts in coarse maps are associated with a spatial neighborhood relation on
the set of secondary structure segments of a given protein. A coarse map can
be strongly informative about the shape of the unknown fold. Hence, the
information it provides could be conveniently exploited by de novo 3D re-
construction procedures because it represents additional sets of constraints.
Of equal importance is the fact that prediction of residue contact maps is far
from being successful. The main advantage of working at the coarse resolu-
tion is to obtain a significant dimensionality reduction allowing better but
more costly algorithms to be employed8. In this perspective, first attempts
for predicting protein coarse maps are presented in [VF03, PBVF02] and
[BP03]. One of these methods looks at a contact map as an adjacency matrix
of an undirected graph whose vertices are secondary structure segments and
the edge set is the contact relation defined on pairs of segments. Graphical
representations of candidate contact maps are then processed (i.e. scored) by
means of a connectionist methods that can deal with structured data. The

8An analysis of the Protein Data Bank archive (PDB) [B+77] reveals that the average
segment length is about seven residues. Therefore, coarse contact maps are roughly 2%
the size of the corresponding residue contact maps.
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Figure 9: Ball-&-stick representation of a disulphide bridge: the bridge is
drawn as a cylinder connecting the sulphur atoms of two oxidized cysteines.

network is trained to score candidate graphs according to a similarity metric
with respect to the correct pattern. During prediction, the score computed
by the network is used to greedily explore the space of candidate graphs. A
second method [BP03] uses the more direct approach introduced in [PB02]
to predict inter-residue contact maps and shows comparable performance
with respect to the alternative method.

Cysteine bonding state and disulphide connectivity

Cysteine (Cys) is one of the twenty amino acids that constitute proteins (see
Table 1) and it owns a unique feature. Proteins whose sequence contains
cysteine residues are subject to post-translational covalent modifications and
cysteines can occur either in oxidized or reduced (thiol) form. Two oxidized
cysteines uniquely pair to form a covalent bond, known as disulphide bridge
(see fig. 9), whose formation can be described by the following reaction:

2CH2SH + 1/2O2 ⇀↽ CH2SSCH2 +H2O

Such reactions require an oxidative environment in order to occur. They
involve complex pathways in which particular enzymes (oxidoreductases)
catalyze oxidation, reduction and isomerization reactions. The required
environmental conditions depend on the ratio of the oxidized to reduced
form of such enzymes which in turn depends on the sub-cellular localiza-
tion of the protein. For instance, cytoplasmic and nuclear proteins usually
do not have disulphide bridges. The relative rarity of disulphides in cy-
toplasmic proteins appears to be dependent upon a disulphide-destruction
machine [RB01]. Two pivotal cogs in this machine are the thioredoxin and
glutathione reductases. The formation of disulphide bridges normally takes
place in the periplasm of prokaryotes and in the endoplasmic reticulum (ER)
of higher eukaryotes [FG03]. Dedicated enzymatic systems that catalyze the
formation of disulphides have been discovered in the periplasm of prokary-
otes. Disulphide bond formation in Escherichia coli is catalyzed by at least
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Figure 10: The topological arrangement of the linear chain can be strongly
influenced by the location of disulphide bridges. In the example, four cys-
teines (in green) are oxidized and connect each other to form two intra-chain
disulphide bonds.

three ’Dsb’ (Disulphide Bond formation facilitator) proteins: Dsb(A-B-C)
[Bar94]. The lumen of the ER is a compartment specialized for protein
folding; proteins destined for secretion, or for compartments accessed via
the secretory pathway, enter the ER lumen unfolded, but only exit when
correctly folded and assembled. Protein folding in this context is often asso-
ciated with the formation of native disulphide bonds, and this is facilitated
by the enzyme protein disulphide isomerase (PDI) [BT99, KRDF98].

Disulphides are often vital for the folding and stability of proteins. The
incidence that disulphide bridges have on protein structure has been rec-
ognized at several levels. Simulations [AS00], experiments in protein en-
gineering [M+89, CF93, KWTR00] and theoretical studies [Bet93, DS95,
WWNS00] indicate the importance of a disulphide bond in stabilizing the
native state of proteins. Evolutionary models [Dem00] postulate the selec-
tive advantage that the introduction of disulphide bonds confers to proteins
with unstable folded states.

The stabilizing role of disulphide bonds derives from a reduction of
the number of conformational states, thus of the entropic cost of folding
a polypeptide chain into its native state [HS94a, WWNS00]. Not only disul-
phide bridges constitute an important factor in the energetics of folding
dynamics. Depending on their number and location, these covalent links
can also contribute to catalytic activities of biomolecules [KWTR00]. More
importantly, they may connect very distant portions of the sequence, thus
representing a set of strong structural constraints in the form of long-range
interactions (see Figure 10).

Knowledge of the correct location of native disulphide bridge (S-S) topol-
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ogy is of considerable importance for several important reasons:

• Disulphide-rich protein families, such as EGF-like, defensin-like and
plant protease inhibitors, represent a large number of proteins with a
biological relevance (growth factors, hormones, toxins etc.). The cor-
rect disulphide bridge topology is indispensable for their final structure
and function [MAMR+98, Bet93].

• Knowledge of (S-S) topology may assist and speed-up experimental
work in laboratory during the early stage of structure determination
and provide guidance for subsequent experiments. For instance, struc-
ture determination by NMR spectroscopy is an iterative process in
which previous structures are used to correct and complete NOE as-
signments. The information provided by S-S connectivity can improve
the quality of initial structures and allows a reliable assignment of
ambiguous NOEs [BBSM00].

• Small disulphide-rich (SDFs) protein folds represent a class of proteins
having in general mostly irregular secondary structure content [HS96].
In spite of their current success, predictors of secondary structure can-
not reliably infer structural regularities for SDFs. For this reason, pre-
dicting 3D structure for SDF proteins using fold-recognition (thread-
ing) approaches is likely to be difficult, as these algorithms usually
exploit the information provided by (predicted) secondary structure.

• It has been observed [CCY+03] that knowledge of disulphide bonds can
be used to detect remote (structural) homologues for a given chain.
Therefore, knowledge of S-S topology enlarges the range of applica-
bility of threading approaches, because it can be used to discriminate
structure similarity.

• Topological constraints provided by S-S connectivity enhance the per-
formance of de novo 3D reconstruction algorithms. This information
has been observed to improve the quality of predicted structure and to
dramatically decrease the sampling rate of the conformational space
[FL01, HSP99, LHBB96].

• Correct Cys-Cys pairing is of importance for determining and exploit-
ing the folds which can be used as scaffolds for medical, pharmaceutical
and agronomical applications [DKG+99, VVD+98, OFA+98, FSO+97].
The stability of these folds is largely dependent on the formation of
disulphide bonds.

It is therefore clear how knowledge of disulphide bridges could give con-
siderable help to virtually all methods for protein 3D structure prediction
(threading or fold recognition, de novo algorithms). Yet, disulphide bonds
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can generate insights into the structure-function relation of many proteins
of interest.

Finally, recent researches enlightened the role of cysteines in determining
both prokaryotes and eukaryotes response to oxidative stress (see [LJ03] for
a review), which is a major factor of ageing [FH00] as well as of various
diseases including cancer [KJ01].

Disulphide bridges prediction can be divided in two steps. Firstly, the
bonding state of each cysteine in a given sequence is predicted, as either
reduced or oxidized, the latter meaning that it is involved in a disulphide
bridge. Secondly, the connectivity pattern between oxidized cysteines is
predicted, pairing each bonded cysteine with its correct partner.

Actually not all bonded cysteines form disulphide bridges, and many
other post-translational modifications have been observed or supposed for
cysteines [GWG+03], the most important being the binding of ligands, that
is the formation of bonds between cysteines and various ligands typically
containing metal groups [KH04], such as heme groups and iron-sulfur clus-
ters. While in the following paragraphs we will focus on disulphide bridges
prediction, an attempt to discriminate between ligand bound and disulphide
bound cysteines was recently described in [PF04].

Cysteine Bondind State Prediction The first step in predicting disul-
phide bridges in a given protein is that of identifying oxidized cysteines
which are involved in disulphide bridge formation. This can be cast to a
binary classification task, that is for each cysteine in a given protein, pre-
dict whether it is involved in a disulphide bridge or not. This is an active
research field, and many different learning algorithms have been developed
so far.

The program CYSPRED developed by Fariselli et al. [FRC99] (acces-
sible at http://gpcr.biocomp.unibo.it/predictors/cyspred/), uses a
neural network with no hidden units, fed by a window of 2k + 1 residues
centered around the target cysteine. Each element of the window is a vector
of 20 components (one for each amino acid) obtained from multiple align-
ment profiles. This method achieved 79% accuracy (correct assignment of
the bonding state) measured by 20-fold cross validation and using a non-
redundant set of 640 high quality proteins from PDB Select [HS94b] of
October 1997. Accuracy was boosted to 81% using a jury of six networks.
Still, the bonding state of each cysteine is assigned independently.

Fiser & Simon [FS00] later proposed an improvement based on the obser-
vation that cysteines and half cystines9 rarely co-occur in the same protein.
In their algorithm, if a larger fraction of cysteines are classified as belonging
to one class, then all the remaining cysteines are predicted in the same state.
The accuracy of this method is as high as 82%, measured by a jack-knife pro-

9A cystine is the dimer formed by a pair of disulphide-bonded cysteines.
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cedure (leave-one-out applied at the level of proteins) on a set of 81 protein
alignments. This result suggests that a good method for classifying proteins
in two classes is also a good method for predicting the bonding state of each
cysteine, even though in this way the accuracy for proteins containing both
cysteines and half cystines is sacrificed. The program, called CYSREDOX, is
accessible at http://pipe.rockefeller.edu/cysredox/cysredox.html.

Later, Mucchielli-Giorgi et al. [MGHT02] have proposed a predictor that
exploits both local context (a window centered around the target cysteine)
and global protein descriptors. Interestingly, they found that in absence
of evolutionary information, prediction of covalent state based on global
descriptors was more accurate (77.7%) than prediction based on local de-
scriptors alone (67.3%). Their best predictor, based on a multiple classifier
reaches almost 84% accuracy measured by 5-fold cross-validation on a set of
559 proteins from Culled PDB.

A different approach was developed in [FPV02, CFPV03b] for exploiting
the key fact that cysteines and half cystines rarely co-occur. Prediction in
this case is achieved by using two cascaded classifiers. The first classifier
predicts the type of protein based on the whole sequence. Classes in this
case are “all”, “none”, or “mix”, depending whether all, none, or some of
the cysteines in the protein are involved in disulphide bridges. The second
binary classifier is then trained to selectively predict the state of cysteines for
proteins assigned to class “mix”, using as input a local window with multiple
alignment profiles. The method achieves an accuracy of 85% as measured
by 5-fold cross validation, on a set of 716 proteins from the September 2001
PDB Select dataset [CFPV03b].

Shortly after, Malaguti et al. [MFMC02] have proposed yet another ap-
proach where the disulphide bonding state is predicted as in CYSPRED but
predictions are then refined using a Hidden Markov Model [Rab89] trained
to recognize the stochastic language that describes the alternate presence
of bonding and non-bonding cysteines along the sequence. This improved
method achieved the performance level of 88% correct prediction measured
by 20-fold cross validation on a non redundant dataset.

Similar results were obtained by adding to the architecture described in
[CFPV03b] a global refinement stage [CFPV04] either by bi-directional re-
current neural networks (BRNN) or by the HMM employed in [MFMC02].
In the case of BRNN refinement, a final stage with a finite state automata
(FSA) was also employed to force consistent predictions (even number of
bonded cysteines in a given chain, interchain bonds not predicted), reach-
ing the best performances to date. The program is accessible at http:

//neural.dsi.unifi.it/cysteines and can be used in combination with
the disulphide connectivity predictor.
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Figure 11: 3D structure (top) and schematic picture of disulphide connectiv-
ity (bottom) for the 81 AAs chain of Intestinal Toxin 1 (PDB code: 1imt).

Overview of disulphide connectivity prediction Similarly to the more
general protein folding problem, determination of disulphide connectivity
can be approached with experimental or algorithmic methodologies. Reli-
able biochemical techniques have been developed, but they are characterized
by high degree of complexity and need a significant amount of experimental
time [BBSM00, Gra93]

Existing algorithmic (i.e. predictive) approaches provide significant speed
gains at the cost of less reliable predictions. Straightforward methods based
on the alignment of the protein under study with homologous proteins can
be used to detect the location of disulphide bridges. Unfortunately, they
require sufficiently high levels of sequence similarity, an event estimated to
occur for less than half the sequences from newly available genomes.

Usually, the location of disulphide bridges is predicted starting from
knowledge of bonded cysteines. Differently from the problem of predicting
the bonding state, this task has received relatively scarce attention in the
research community, mainly because of the combinatorial explosion of the
problem as the number of bonds increases. Figure 11 shows an example of
a protein structure with five disulphide bridges. In this case, a prediction
algorithm should be able to discriminate the correct topology among a total
of 945 possible alternatives.

Existing predictive approaches make use of stochastic global optimiza-
tion [FC01, BBSM00], combinatorial optimization [KF03] and hybrid ma-
chine learning techniques [FMC02, VF04]. The method in [FC01] represents
the set of potential disulphide bridges in a sequence as a complete weighted
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undirected graph. Vertices are oxidized cysteines and edges are labeled by
the strength of interaction (contact potential) in the associated pair of cys-
teines. First, simulated annealing is used to find an optimal set of weights.
After a complete labeled graph is obtained, candidate bridges are located
by finding the maximum weight perfect matching10. The problem can be
solved in polynomial time using linear programming, but the computation of
contact potentials is computationally demanding. In a subsequent improve-
ment [FMC02], neural networks were used to learn the contact potentials
and then for labeling edges as above, increasing the predictive accuracy and
concomitantly reducing training time. This method achieves satisfactory re-
sults for the simplest but not trivial case of four oxidized cysteines, assuming
perfect knowledge of the set of bonded cysteines.

Another alternative method is described in [KF03]. Finding the location
of disulphide bridges is part of a more general protocol aimed at predict-
ing the topology of β-sheets in proteins. The approach assumes hydrophobic
rather than hydrogen interactions as the main driving force of β-sheet forma-
tion. Residue-to-residue contacts (including Cys-Cys bridges) are predicted
solving a series of integer liner programming problems in which customized
hydrophobic contact energies must be maximized. Model constraints define
allowable sheets and disulphide connectivity configurations. The interesting
part of the proposed framework relies on its ability to predict cysteine-
cysteine contacts independently from the knowledge of disulphide bonding
state of cysteines. Unfortunately, performance of this method is not consis-
tently assessed. The authors report validation results only for two relatively
short polypeptides with a small number of bonds (2 and 3). Therefore, it is
not possible to compare this method with our and other approaches.

In the approach proposed in [BBSM00], disulphide bridges are predicted
with an iterative simulated annealing protocol. The applied reconstruction
algorithm uses distance restraints derived from NMR spectroscopy and be-
tween any Cys-Sγ atom and all other Cys-Sγ atoms. This method shares
advantages and drawbacks of the approach in [KF03]: knowledge of the
disulphide bonding state of cysteines is not required, but assessment of the
procedures is reported only for six small polypeptides. Furthermore, the
method requires experimental NMR data and the success of the procedure
can be strongly affected by the amount and quality of these data.

An alternative and more recent method is proposed in [VF04]. The core
of the method is the use of Recursive Neural Networks (RNNs) [FGS98], a
class of connectionist models that allows to solve classification and regression
tasks on structured data. The model employed in [VF04] is adapted to
process arbitrary undirected structured data, like the graphs representing
disulphide connectivity patterns. The methodology was first introduced

10A perfect matching of a graph (V,E) is a subset E ′
⊆ E such that each vertex v ∈ V

is met by only one vertex.
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in [VF03] and proved to be effective for the prediction of protein coarse
contact maps. It can be seen as a generalization of bi-directional recurrent
neural networks for dealing with graphs instead of merely sequential data.
The network is trained to score candidate graphs according to a similarity
metric with respect to the correct pattern. Vertices of the graphs are labeled
by fixed-size vectors of multiple alignment profiles in the local half-cystine
environments. During prediction, the score computed by the network is
used to exhaustively explore the space of candidate graphs. This approach is
tested on the same experimental data as used in [FC01, FMC02] and achieves
state-of-the-art results. Similarly to [FC01, FMC02], the complexity of the
search procedure prevent the application of the algorithm to chains with
more than ten oxidized cysteines. In spite of being limited by the number
of predictable disulphides, the method can easily incorporate and effectively
exploit evolutionary information and it is shown how it can reliably deal with
a broad spectrum of sequences for the disulphide bridge prediction problem.

6 Conclusions

The rapid progress of biological sequencing projects impose the need to
assign native 3D conformation to novel proteins both reliably and quickly.
X-ray crystallography and NMR spectroscopy are reliable methods, but find-
ing structures in laboratory is extremely difficult, cost prohibitive and can
take months in some cases. For these reasons, at the beginning of 2004 the
ratio of known 3D conformations to known sequences is approaching 1:50. In
the absence of comprehensive theories of folding and high-throughput struc-
ture determination projects, prediction tools play an increasingly significant
role. Knowledge-based methods (homology modelling and threading) speed
up structural assignments and can be very reliable. However, they can only
be applied in the presence of detectable sequence or structural similarity,
an event estimated to occur for less than half the sequences from newly
available genomes. A large fraction of novel proteins can only be processed
with de novo methods which are computationally demanding and are still
far from being successful. In this scenario, another class of methods mainly
based on Machine Learning receives increasing attention. The goal of these
methodologies is to predict simplified descriptions of protein 3D conforma-
tions. Besides their limited computational requirements, statistical learning
methods can take advantage of the huge amount of data deposited in public
databases to produce accurate models of important structural characteris-
tics of proteins. Exploiting all these information represents an attractive
and promising way for bridging the sequence-structure gap.
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