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Abstract

Background: Mining relevant features from protein mutation data is fundamental for understanding the charac-
teristics of a protein functional site. The mined features could also be used for engineering novel proteins with
useful functions.

Results: We propose a simple relational learning approach for protein engineering. First, we learn a set of
relational rules from mutation data, then we use them for generating a set of candidate mutations that are
most probable to confer resistance to a certain inhibitor or improved activity on a specific substrate. We tested
our approach on a dataset of HIV drug resistance mutations, comparing it to a baseline random generator.
Statistically significant improvements are obtained on both categories of nucleoside and non-nucleoside HIV
reverse transcriptase inhibitors.

Conclusions: Our promising preliminary results suggest that the proposed approach for learning mutations has
a potential in guiding mutant engineering, as well as in predicting virus evolution in order to try and devise
appropriate countermeasures. The approach can be generalized quite easily to learning mutants characterized by
more complex rules correlating multiple mutations.

Background
The mining of relevant features from protein muta-
tion data has its first aim in understanding the prop-
erties of functional sites, for instance, which residues
are more likely to have a functional role. The same
mined information can be used to engineer mutants
of a protein with an improved activity on a certain
substrate or resistance to a certain inhibitor.

Rational design is an engineering technique mod-
ifying existing proteins by site directed mutagenesis.
It assumes the knowledge or intuition about the ef-

fects of specific mutations on the protein function.
The process typically involves extensive trial-and-
error experiments and is also used with the aim
of improving the understanding mechanisms of a
protein behavior and taking the necessary counter-
measures.

In this work we moved the first steps towards the
use of a relational learning approach to protein engi-
neering by focusing on learning relevant single muta-
tions (mutations that change the amino acid type in
the protein sequence) that can affect the behavior of
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a protein. Predicting the effect of single mutations
helps reducing the dimension of the search space for
rational design.

In the proposed approach an Inductive Logic
Programming (ILP) [1] learner is trained to extract
general rules describing mutations relevant to a cer-
tain behavior (e.g. drug resistance of HIV) and the
learned rules are then used to infer novel potentially
relevant mutations.

We focused on learning relevant mutations of the
HIV reverse transcriptase (RT). The HIV RT is a
DNA polymerase enzyme that transcribes RNA into
DNA, allowing it to be integrated into the genome
of the host cell and replicated along with it, and it
is therefore crucial for virus propagation. Viruses
typically have a very high mutation rate and a mu-
tation can confer the mutant resistance to one or
more drugs, for instance by modifying the inhibitor
target site on the protein. In the case of the HIV
drug resistance, which we addressed in the present
work, building artificial mutants that can resist to
the inhibitor could help to early predict the virus
evolution and thus design more effective drugs.

Many machine learning methods have been ap-
plied in the past to mutation data for predicting sin-
gle point mutations on protein stability changes [2]
and the effect of mutations on the protein func-
tion [3] [4] or drug susceptibility [5]. At our knowl-
edge this is the first approach proposal for learning
relational features of mutations affecting a protein
behavior and use them for generating novel relevant
mutations. Furthermore, even if we focus on single
point mutations in our experimental evaluation, our
approach can be quite straightforwardly extended to
multiple point mutations, and we are actively work-
ing in this direction. Conversely, the up-mentioned
predicting approaches would immediately blow up
for the explosion in the number of candidate config-
urations to evaluate.

Results and Discussion
Dataset

We applied our approach to the same dataset of mu-
tations already used in [6] for extracting relational
rules among mutations. The dataset is derived from
the Los Alamos National Laboratories (LANL) HIV
resistance database1 and reports mutations of the
HIV reverse transcriptase (RT). Richter et al. [6] for-

mulated the learning problem as a mining task and
applied a relational association rule miner to derive
rules relating different mutations and their resistance
properties.

In previous work [7] we used the same dataset
for learning a relational model of mutant resistance
with the hierarchical kFOIL algorithm, a statistical
relational learner [8]. Here we use the dataset for in-
ferring rules that can characterize a single mutation
as resistant to a certain class of RT inhibitors. Those
drug classes include: a) Nucleoside RT Inhibitors
(NRTI); b) NonNucleoside RT Inhibitors (NNRTI);
c) NonCompetitive RT inhibitors (NCRTI); d) Py-
rophosphate Analogue RT Inhibitors (PARTI). The
four classes of inhibitors differ in the targeted sites
and rely on quite different mechanisms. NNRTI and
NCRTI inhibit the reverse transcriptase by binding
to the enzyme active site, therefore directly interfer-
ing with the enzyme function. NRTI is instead in-
corporated into the newly synthesized viral DNA for
preventing its elongation. Finally the PARTI targets
the pyrophosphate binding site and it is employed,
as part of a salvage therapy, on patients in which the
HIV infection shows resistance to the other classes of
antiretroviral-drugs. The final dataset is composed
of 164 mutations labeled as resistant over a set of
581 observed mutations (extracted from 2339 mu-
tants). Among the 164 mutations, 95 are labeled as
resistant to NRTI, 56 to NNRTI, 5 to NCRTI and 8
to PARTI.

Learning in first order logic

Our aim is to learn a first-order logic hypothesis for
the target concept, i.e. mutation conferring resis-
tance to a certain drug, and use it to infer novel
mutations consistent with such hypothesis. We rely
on definite clauses which are the basis of the Pro-
log programming language. A definite clause is an
expression of the form h ← b1 AND ... AND bn,
where h and the bi are atoms. Atoms are expres-
sions of the form p(t1, ..., tn) where p/n is a
predicate symbol of arity n and the ti are terms,
either constants (denoted by lower case) or variables
(denoted by upper case) in our experiments. The
atom h is also called the head of the clause, typ-
ically the target predicate, and b1 AND ... AND

bn its body. Intuitively, a clause represents that
the head h will hold whenever the body b1 AND

1http://www.hiv.lanl.gov/content/sequence/RESDB/
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... AND bn holds. For instance, a simple hypothe-
sis like res against(A,ncrti) ← mutation(A,C)

AND close to site(C) would indicate that a muta-
tion C in the proximity of a binding site confers to
mutant A resistance against a ncrti. Learning in
this setting consists of searching for a set of definite
clauses H = {ci, ..., cm} covering all or most positive
examples, and none or few negative ones if available.
First-order clauses can thus be interpreted as rela-
tional features that characterize the target concept.
The main advantage of these logic-based approaches
with respect to other machine learning techniques is
the expressivity and interpretability of the learned
models. Models can be readily interpreted by hu-
man experts and provide direct explanations for the
predictions.

Background knowledge

We built a relational knowledge base for the domain
at hand. Table 1 summarizes the predicates we in-
cluded as a background knowledge. We represented
the amino acids of the wild type with their positions
in the primary sequence (aa/2) and the specific mu-
tations characterizing them (mut prop/4). Target
predicates were encoded as resistance of the muta-
tion to a certain drug (res against/2).

Additional background knowledge was included
in order to highlight characteristics of residues and
relationships between mutations:

color/2 indicates the type of the natural amino
acids according to the coloring proposed in [9].
For example the magenta class includes basic
amino acids as lysine and arginine while the
blue class includes acidic amino acids as as-
partic and glutamic acids.

same type/2 indicates whether two residues belong
to the same type, i.e. a change from one
residue to the other conserves the type of the
amino acid.

same type mut/2 indicates that a residue substitu-
tion at a certain position does not modify
the amino acid type with respect to the wild
type. For example mutation d123e conserves
the amino acid type while mutation d123a does
not (i.e. different type mut/2 holds for it).

Other background knowledge facts and rules
were added in order to express structural relations
along the primary sequence and catalytic propensity
of the involved residues:

close to site/1 indicates whether a specific posi-
tion is distant less than 5 positions from a
residue belonging to a binding or active site.
In our specific case, the background theory in-
corporates knowledge about a metal binding
site and a heterodimerization site.

location/2 indicates in which fragment of the pri-
mary sequence the amino acid is located. Lo-
cations are numbered from 0 by dividing the
sequence into a certain number of fragments.

catalytic propensity/2 indicates whether an
amino acid has a high, medium or low cat-
alytic propensity according to [10].

mutated residue cp/3 indicates how, in a mutated
position, the catalytic propensity has changed
(e.g. from low to high).

Algorithm overview

The proposed approach is sketched in Figure 1.

The first step is the learning phase, in which an
ILP learner is fed with a logical representation of
the data D (the mutations experimentally observed
to confer resistance to a certain inhibitor) and of
the domain knowledge B we want to incorporate,
and it returns a first-order logical hypothesis H for
the concept of mutation conferring resistance to a
certain drug.

The hypothesis is derived using the Aleph (A
Learning Engine for Proposing Hypotheses) ILP sys-
tem2. Aleph allows also to learn from positive ex-
ample only. This is the most suitable approach in
our case as the positive examples are the mutations
experimentally proved to confer resistance to a drug
but no safe claim can be made on the other muta-
tions if there is no sufficient evidence due for example
to the lack of an exhaustive set of laboratory exper-
iments.

Aleph incrementally builds a hypothesis covering
all positive examples guided by a Bayesian evalu-
ation function, described in [11], scoring candidate

2http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
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solutions according to an estimate of the Bayes’ pos-
terior probability that allows to tradeoff hypothesis
size and generality.

In Figure 2 we show an example of learned hy-
pothesis covering a set of examples. The learned hy-
pothesis models the ability of a mutation to confer
the resistance to NCRTIs and is composed of three
first-order clauses, each one covering different sets
of mutations of the wild type as highlighted in col-
ors: blue for the first clause, yellow for the second
and red for the third one. Some mutations are cov-
ered by more than one clause as shown by the color
overlaps.

Our background knowledge incorporates infor-
mation about the RT metal binding site, which is
composed of the aspartic acids D110, D185 and D186
and, about the heterodimerization site composed of
W401 and W414 (in bold in Figure 2).

The second step is the generative phase, in which
the learned hypothesis is employed to find novel mu-
tations that can confer drug resistance to an RT mu-
tant. A set of candidate mutations can be generated
by using the Prolog inference engine starting from
the rules in the learned model. The rules are actu-
ally constraints on the characteristics that a muta-
tion of the wild type should have in order to confer
resistance to a certain inhibitor.

Algorithm 1 details the mutation generation pro-
cedure. We here assume, for simplicity, to have a
model H for a single drug class. The procedure
works by querying the Prolog inference engine for
all possible variable assignments that satisfy the hy-
pothesis clauses. In order to generate novel muta-
tions, the mut prop/4 predicate is modified here in
order to return all legal mutations instead of only
those appearing in the training instances. The set
of mutations identified by the variable assignments
and not present in the training set is ranked accord-
ing to a scoring function SM before being returned
by the algorithm. In this work we defined SM as the
number of clauses in H that a candidate mutation
m satisfies.

Referring to the model in Figure 2 some gen-
erated candidate mutations with highest score are:
101P, 102A, 103F, 103I, 104M, 181I, 181V, 183M,
188L, 188F where for example the notation 101P in-
dicates a change of the wild type amino acid, located
in position 101, into a proline (P). This list includes
also known surveillance mutations [12].

Performance evaluation

We divided the dataset of mutations into a train-
ing and a test set (70/30) in a stratified way, which
means by preserving, both in the train and test set,
the proportion of examples belonging to one of the
four drug classes. The resulting training set is com-
posed of a total of 116 mutations while the test set
is composed of 48 mutations.

We trained the ILP learner on the training set
and we evaluated on the test set the set of muta-
tions generated using the learned model. The evalu-
ation procedure takes the generated mutations and
computes its enrichment in test mutations by count-
ing how many generated mutations are actually ob-
served in at least one test example. We compare the
recall of the approach with the recall of an algorithm
that choose at random a set (of the same cardinality)
of possible mutations among all legal ones.

Recall or sensitivity or TP rate is t+

t++f− where

t+, the true positives, is the number of test set muta-
tions and t++f−, true positives plus false negatives,
corresponds to the number of generated mutations.

Results averaged on 30 random splits of the
dataset are reported in Table 2. On each split we
performed 30 runs of our algorithm and of the ran-
dom generation algorithm in each one of the different
learning tasks (NNRTI, NRTI, NCRTI and PARTI).
For each task we also reported in column 3 and 4
the mean number of generated mutations over the
30 splits and the number of test set mutations for
reference.

We evaluated the statistical significance of the
performance differences between the two algorithms
by paired Wilcoxon tests on the averaged recall re-
ported on each split. We employed a confidence level
α of 0.05.

The improvement of the algorithm with respect
to the random generation of mutations is statistically
significant on the NRTI and NNRTI tasks, which are
the tasks on which we can learn the hypothesis from
a largest set of training examples.

Figure 2 shows the trend of the mean recall over
all splits when cutting the number of generated mu-
tations (from 1 generated mutation to more than
8000). The advantage of our approach remains quite
stable when reducing the set of candidates, produc-
ing almost nine times more test mutations than ran-
dom in the 100 highest scoring ones for NNRTI (Fig-
ure 3 shows the trend of the recall curves of the plot
in Figure 3(a) for the highest ranked 150 mutations).
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We finally learned a model on the whole set of
training mutations in order to generate a single set of
mutations for further inspection. Below we reported
five examples of novel mutations with the highest
rank for each one of the tasks:

NNRTI 90I 98I 103I 106P 179I

NRTI 60A 153M 212L 229F 239I

NCRTI 183V 183L 188V 188F 188I

PARTI 84R 86E 88Y 88V 89N

In [13], the authors found a set of novel muta-
tions conferring resistance to efavirenz and nevirap-
ine, which are NNRTIs. Our mutation generation
algorithm partially confirmed their findings. Muta-
tion 90I was ranked high (5/5), mutation 101H was
generated with a rank of 3/5, mutations 196R and
138Q with rank 1/5, while mutation 28K was not
generated at all by our system as a candidate for
conferring resistance to NNRTI.

Example of learned hypothesis

An example of learned hypothesis is reported in Fig-
ure 5. For instance, according to the model, among
the features a mutation should have for conferring
resistance to a NNRTI, there is the change of a ba-
sic (magenta) residue of the wild type, e.g. lysine
or arginine, into a residue with completely different
phisico-chemical characteristics (rule 16).

Another example for the resistance to NNRTI is
that a non conserved mutation is present in positions
between 98 and 106 of the wild type sequence (rule
8).

Conclusions
In this work we proposed a simple relational learning
approach toward protein engineering. Starting from
HIV reverse transcriptase mutation data we built a
relational knowledge base and we mined relevant re-
lational features for modeling mutant resistance by
using an ILP learner. Based on the learned relational
rules we generate a set of candidate mutations sat-
isfying them.

Albeit preliminary, our results suggest that the
proposed approach for learning mutations has a po-
tential in guiding mutant engineering, as well as in
predicting virus evolution in order to try and devise

appropriate countermeasures. A more detailed back-
ground knowledge, possibly including 3D informa-
tion whenever available, is necessary in order to fur-
ther focus the set of generated mutations, and pos-
sibly post-processing stages involving mutant evalu-
ation by statistical machine learning approaches [2].
In the next future we also plan to generalize the pro-
posed approach to jointly generate sets of related
mutations shifting the focus from single point muta-
tions to entire mutants.
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Algorithms
Algorithm 1 - Mutation generation algorithm.
Algorithm for novel relevant mutations discovery.

Algorithm 1 Mutation generation algorithm.

1: input: dataset of training mutations D, background knowledge B, learned model H
2: output: rank of the most relevant mutations R
3: procedure GenerateMutations(D,B, H)
4: Initialize DM ← ∅
5: A← find all assignments a that satisfy at least one clause ci ∈ H
6: for a ∈ A do
7: m← mutation corresponding to the assignments a ∈ A
8: score← SM (m) . number of clauses ci satisfied by a
9: if not m ∈ D then . discard mutations observed in the training set

10: DM ← DM ∪ {(m, score)}
11: end if
12: end for
13: R ← RankMutations(DM,B, H) . rank relevant mutations
14: return R
15: end procedure

Figures
Figure 1 - Mutation engineering algorithm.
Schema of the mutation engineering algorithm.
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Figure 1: Schema of the mutation engineering algorithm.
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Figure 2 - Model for the resistance to NCRTI
An example of learned hypothesis for the NCRTI task with highlighted examples covered by the hypothesis
clauses.

>wt ...AGLKKKKSVTVLDVG...YQYMDDLYVG...WETWWTEY...WIPEWEFVN...

| | | | | | | |

98 112 181 190 398 405 410 418

D DD W W

mut prop(A,B,C,D) AND location(11.0,C)

mut prop(A,B,C,D) AND mutated residue cp(C,high,small)

mut prop(A,B,C,D) AND color(green,B) AND close to site(C)

Figure 3 - Mean recall by varying the number of generated mutations
Mean recall by varying the number of generated mutations.
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(b) NRTI
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(c) NCRTI
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Figure 2: Mean recall by varying the number of generated mutations.
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Figure 4 - Recall curves of the NNRTI task for the highest ranked mutations.
Detail of the mean recall curves of the NNRTI task for a number of generated mutations below 150.
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Figure 3: Detail of the mean recall curves of the NNRTI task for a number of generated mutations below
150.

Figure 5 - Example of learned model

1-res against(A,nrti) ← mut prop(A,B,C,D) AND color(red,D)

2-res against(A,nrti) ← mut prop(A,B,C,D) AND color(red,D) AND color(red,B)

3-res against(A,nrti) ← mut prop(A,B,C,D) AND location(7.0,C) AND mutated residue cp(C,medium,medium)

4-res against(A,nrti) ← mut prop(A,B,C,D) AND location(7.0,C)

5-res against(A,nrti) ← same type mut(A,B)

6-res against(A,nrti) ← mut prop(A,B,C,D) AND mutated residue cp(C,medium,high)

7-res against(A,nrti) ← mut prop(A,B,C,D) AND mutated residue cp(C,medium,small)

8-res against(A,nnrti) ← different type mut(A,B) AND location(11.0,B)

9-res against(A,nnrti) ← mut prop(A,B,C,D) AND mutated residue cp(C,small,small)

10-res against(A,nnrti) ← same type mut(A,B)

11-res against(A,nnrti) ← mut prop(A,B,C,D) AND aminoacid(B,v)

12-res against(A,nnrti) ← mut prop(A,B,C,D) AND location(15.0,C)

13-res against(A,nnrti) ← mut prop(A,B,C,D) AND aminoacid(D,i)

14-res against(A,nnrti) ← mut prop(A,B,C,D) AND location(11.0,C)

15-res against(A,nnrti) ← mut prop(A,B,C,D) AND color(red,D)

16-res against(A,nnrti) ← mut prop(A,B,C,D) AND color(magenta,B) AND different type mut(A,C)

17-res against(A,nnrti) ← mut prop(A,B,C,D) AND location(21.0,C)

18-res against(A,ncrti) ← mut prop(A,B,C,D) AND location(11.0,C)

19-res against(A,ncrti) ← mut prop(A,B,C,D) AND mutated residue cp(C,high,small)

20-res against(A,ncrti) ← mut prop(A,B,C,D) AND color(green,B) AND close to site(C)

21-res against(A,parti) ← mut prop(A,B,C,D) AND location(9.0,C)
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Tables
Table 1 - Background knowledge predicates
Summary of the background knowledge facts and rules.

Background Knowledge Predicates

aa(Pos,AA) indicates a residue in the wild type sequence

mut prop(MutationID,AA,Pos,AA1) indicates a mutation: mutation identifier, position and
amino acids involved, before and after the substitution

res against(MutationID,Drug) indicates whether a mutation is resistant to a certain drug

color(Color,AA) indicates the type of a natural amino acid

same type(R1,R2) indicates whether two residues are of the same type

same type mut(MutationID, Pos) indicates a mutation to a residue from the same type
different type mut(MutationID, Pos) indicates a mutation changing the type of residue

close to site(Pos) indicates whether a specific position is close to a binding
or active site if any

location(L,Pos) indicates in which fragment of the primary sequence the
amino acid is located

catalytic propensity(AA,CP) indicates whether an amino acid has a high, medium or
low catalytic propensity

mutated residue cp(Pos, CPold, CPnew) indicates how, in a mutated position, the catalytic
propensity has changed (e.g. from low to high)

Table 2 - Results
Statistical comparisons of the performance of the proposed algorithm with an algorithm generating mutations
at random. The average recall has been computed for each one of the learning tasks over the 30 splits by
averaging recall over 30 repeated runs of the two algorithms. Results of a paired Wilcoxon test (α = 0.05)
on the statistical significance of the performance differences are also reported. A black bullet indicates a
statistical significant improvement of our algorithm over a random generator.

Mean recall % on 30 splits
Algorithm Random Generator Mean n. generated mutations n. test mutations

NNRTI 86 • 58 5201 17
NRTI 55 • 46 5548 28
NCRTI 16 8 1042 1
PARTI 49 39 3425 2
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