
Learning Modulo Theories for constructive preference

elicitation

Paolo Campigottoa,∗, Stefano Tesob, Roberto Battitib, Andrea Passerinib

aGradient Zero GmbH,
Grnbergstrae 15, 1120 Vienna, Austria.

bDISI - Dipartimento di Ingegneria e Scienza dell’Informazione,
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Abstract

This paper introduces CLEO, a novel preference elicitation algorithm ca-
pable of recommending complex configurable objects characterized by both
discrete and continuous attributes and constraints defined over them. While
existing preference elicitation techniques focus on searching for the best in-
stance in a database of candidates, CLEO takes a constructive approach to
recommendation through interactive optimization in a space of feasible con-
figurations. The algorithm assumes minimal initial information, i.e., a set of
catalog attributes, and defines decisional features as logic formulae combin-
ing Boolean and algebraic constraints over the attributes. The (unknown)
utility of the decision maker is modelled as a weighted combination of fea-
tures. CLEO iteratively alternates a preference elicitation step, where pairs
of candidate configurations are selected based on the current utility model,
and a refinement step where the utility is refined by incorporating the feed-
back received. The elicitation step leverages a Max-SMT solver to return
optimal configurations according to the current utility model. The refine-
ment step is implemented as learning to rank, and a sparsifying norm is used
to favour the selection of few informative features in the combinatorial space
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of candidate decisional features.
A major feature of CLEO is that it can recommend optimal configurations

in hybrid domains (i.e., including both Boolean and numeric attributes),
thanks to the use of Max-SMT technology, while retaining uncertainty in
the decision-maker’s utility and noisy feedback. In so doing, it adapts the
recently introduced learning modulo theory framework to the preference elic-
itation setting. The combinatorial formulation of the utility function coupled
with the feature selection capabilities of 1-norm regularization allow to effec-
tively deal with the uncertainty in the DM utility while retaining high ex-
pressiveness. Experimental results on complex recommendation tasks show
the ability of CLEO to quickly identify optimal configurations, as well as
its capacity to recover from suboptimal initial choices. Our empirical evalua-
tion highlights how CLEO outperforms a state-of-the-art Bayesian preference
elicitation algorithm when applied to a purely discrete task

Keywords: preference elicitation, learning while optimizing, (Maximum)
Satisfiability Modulo Theory, constructive machine learning.

1. Introduction

Automatically discovering the solution preferred by a decision maker
(DM) from a large set of candidate ones is a key component of many systems,
including decision-support, recommendation algorithms and personal agents.
This task is usually referred to as preference elicitation [1]. In principle, one
could first ask the user to express her preferences and then translate them
into a utility function defined over the search space of candidate solutions.
The solution maximizing the utility function would then be recommended to
the DM. However, this approach is impractical, for several reasons [2]:

• The user cannot usually define her preferences upfront, without seeing
any tentative recommendations. Only after seeing and evaluating a few
candidate solutions, she may realize “what is possible” and articulate
her actual objectives;

• The cognitive effort and the time required to the user for completely
specifying her preferences are usually not affordable;

• More generally, formalizing the user’s preferences as a mathematical
model is not trivial: a model should capture the qualitative notion of
preference and represent it as a quantitative function.
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A better alternative is to incrementally refine an initially incomplete
model of the user’s utility by employing an iterative strategy, where a solution
is recommended to the user based on partial preference information [1, 3, 4].
If the user is not satisfied by the tentative solution, she is asked for additional
preference information and a refined solution is suggested. This incremen-
tal process needs techniques that can reason with partially-specified utility
functions and take decisions under uncertain preference information. Fur-
thermore, an efficient approach must elicit as few preference information as
possible to identify the DM preferred configuration. Indeed, human decision
makers have limited patience and bounded rationality. This limits the num-
ber and the complexity of queries asked during the elicitation process, bounds
the time needed for providing recommendations, and forces the recommender
to deal with inaccurate and inconsistent feedback. The main requirements
for practical applicability of preference elicitation are [5]:

1. real-time interaction with the DM, where both the query generation
and the solution recommendation must be accomplished in the order
of few seconds;

2. multi-attribute: the number of options can be vastly larger than the
number of queries that can be reasonably asked to the DM; multi-
attributes utilities are crucial in generalizing local preferences over the
product catalogue;

3. cognitively affordable queries to the user, i.e., comparison queries;

4. robustness to inconsistent feedback from the DM characterizing the
typical human decision making process;

5. scalable methods capable of dealing with high-dimensional solution
spaces.

Different approaches to preference elicitation have been proposed. Usu-
ally, a parametric formulation of the space of possible DM utility functions
is adopted. A set of basis functions are defined on subsets of the attributes,
and the utility model is formulated as a weighted linear combination of these
basis functions. Approaches to preference elicitation can be classified by the
different ways of making recommendations under uncertainty. Uncertainty
in DM utility can be represented for instance by defining a space of feasible
weights, identified by bounds or constraints on the values. These constraints
are learned from the preference information elicited from the DM. This pop-
ular approach, known in the literature as reasoning under strict uncertainty,
is adopted in [6, 7, 8]. In these papers, decisions under uncertainty are taken
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according to the minimax regret criterion: the solution minimizing the worst-
case loss with respect to the feasible utility functions is recommended. On
the other hand, Bayesian approaches maintain a probability distribution over
weight values [9, 5, 10, 11]. Decisions are taken according to this probabil-
ity distribution: the recommended solution is usually the one with greatest
expected utility. Recent work in the field of constraint programming [12] for-
malizes the user preferences in terms of soft constraints. In soft constraints,
a generalization of hard constraints, each assignment to the variables of one
constraint is associated with a preference value. The work in [12] introduces
a preference elicitation strategy for soft constraint problems with missing
preference values.

A major limitation of existing approaches is that they are focused on
finding the best solution among a set of available candidates. While this
setting is reasonable for several applications, like movie or restaurant rec-
ommendation, it becomes infeasible in fully constructive scenarios. Here the
solution to be recommended requires arranging a set of components into a
configuration, subject to some constraints defining the feasible space. Exam-
ples include customizing laptops, adapting recipes or insurance packages, and
many other cases with a combinatorial explosion of candidate configurations.
Existing approaches rely on an exhaustive enumeration of candidates for both
recommendation and preference elicitation, which makes them unusable for
these applications. The problem gets even worse in hybrid domains, charac-
terized by both Boolean and numeric attributes, like designing an apartment
or choosing its furniture [13], and more generally addressing layout synthesis
problems [14, 15]. In this case the number of candidate configurations is
virtually infinite (depending on whether it is reasonable to discretize con-
tinuous attributes) and one needs to formalize the task as a configuration
optimization problem.

This paper introduces a novel algorithm capable of performing construc-
tive preference elicitation in hybrid domains by casting the problem into a
“learning to optimize” framework, while retaining all the main principles for
practical applicability of preference elicitation. The approach adopts a com-
binatorial formulation of the user utility function, modelled as a weighted
combination of first-order logic formulae. Each formula combines predicates
in a certain theory of interest, like linear inequalities for numeric attributes,
by using the logical connectives. The theory fixes the interpretation of the
symbols used in the predicates (e.g., the theory of arithmetic for dealing with
integer or real numbers). For example, consider the case of flight selection.
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The predicate ϕ1 = (A1 + A2 ≤ 5 hours) defines the preference for a travel
duration, calculated as flight duration (continuous attribute A1) plus transfer
time to the departure airport (A2), smaller than five hours. The predicate
ϕ2 = (A3 < 2) states the desirability for a flight with a number of stopovers
(discrete attribute A3) smaller than two. The DM preferences about the
candidate flights are expressed by associating the two predicates ϕ1 and ϕ2

with weights w1 and w2, respectively1. The flight maximizing the sum of the
weights of the satisfied predicates is the one preferred by the DM.

The configuration maximizing the weighted combinations of the first-
order logic formulae is identified by applying a weighted Maximum Satis-
fiability Modulo Theory (Max-SMT) solver [16]. Max-SMT is a powerful
formalism to optimize weighted formulae in a decidable first-order theory.
Max-SMT enables to describe candidate configurations of the preference elic-
itation task by using both discrete and continuous attributes simultaneously
(hybrid search domain), and define costs in terms of weighted formulas over
these attributes. A limitation of the MAX-SMT technology is that costs
cannot incorporate continuous functions of the attributes (e.g., how much
more than 5 hours this travel option takes). While we focus on MAX-SMT
in this paper, our approach is more general and can be combined with solvers
allowing from more expressive cost functions (e.g., OMT solvers [17]).

The approach presented in this paper assumes very limited prior informa-
tion about the task to be solved. The initial knowledge is given by a set of
catalog attributes used to describe the candidate configurations. The combi-
natorial formulation of the DM utility over the catalog attributes is initially
unknown and needs to be learned by interacting with her. For this purpose,
our approach consists of an iterative algorithm, alternating a preference elic-
itation step guided by the currently learned utility function and a refinement
step where the quality of the utility function is improved according to the
feedback received. In the preference elicitation step, two candidate configu-
rations are selected according to the current utility and presented to the DM
for comparison. The refinement step consists of solving a ranking problem
which outputs a refined utility function consistent with the feedback received
(soft consistency is allowed to deal with noisy feedback). The feature space
of the utility function is given by all possible conjunctions of predicates up to

1In this simple example, each formula consists of a single predicate only. In the general
case, composite logic formulae are considered.
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a certain degree. Only a small fraction of these candidate features is actually
part of the unknown utility for a certain DM [18]. A sparsifying norm [19]
is used during training to favour utility functions with few non-zero weights,
thus performing constraint selection in the combinatorial space of candidate
features. In the rest of this paper the algorithm is referred to by the acronym
CLEO, which stands for Combinatorial utility function joint LEarning and
Optimization.

An experimental evaluation on realistic hybrid problems with inaccurate
human feedback demonstrates the effectiveness of CLEO in focusing on an
optimal configuration, its robustness to noisy learning signals and its ability
to recover from suboptimal initial choices. While no competitors exist in
the general case of hybrid domains, we provide an experimental comparison
on the simplified task of learning purely Boolean combinatorial functions.
Thanks to its ability to learn complex non-linear interactions between at-
tributes, CLEO outperforms a state-of-the-art Bayesian preference elicitation
approach [5]. Furthermore, the run time needed by CLEO to perform the
preference elicitation and refinement steps is negligible when compared with
the user response time.

Learning modulo theories was recently introduced [20] as a framework for
adapting structured-output learning to hybrid domains by leveraging Max-
SMT technology. This paper adapts the framework to deal with preference
elicitation tasks, by incorporating Max-SMT in the query selection com-
ponent generating (soft) constraints for the utility learning algorithm. A
preliminary version of CLEO was presented in [21]. This manuscript ex-
tends it in a number of directions. First, it replaces quantitative judgments
asked to the DM with less cognitive demanding queries, consisting of pairwise
preferences of candidate configurations. Second, it extends the experimental
evaluation, including a more realistic recommendation problem. Third, it
provides a deeper comparison with the preference elicitation literature, and
adds an experimental comparison with a state-of-the-art preference elicita-
tion technique.

The organization of the paper is as follows. Section 2 introduces the
terminology and the notation used in the paper, focusing in particular on the
Max-SMT formalism. An introductory example of the preference elicitation
tasks follows (Sec. 3). The CLEO algorithm is introduced in Sec. 4 and its
main properties are analyzed in Sec. 5. Related work is discussed in Sec. 6,
while Section 7 reports the experimental evaluation.
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2. Background

This section provides the necessary background to introduce the CLEO
algorithm. The Satisfiability Modulo Theory (SMT) formalism for solving
decision problems over hybrid domains is explained, followed by its general-
ization (weighted Max-SMT) to handle optimization tasks.

Satisfiability Modulo Theory. Propositional logic considers formulae involv-
ing Boolean variables and logical connectives. The satisfiability (SAT) prob-
lem consists of deciding whether a formula in propositional logic can be satis-
fied by assigning truth value to the Boolean variables. Satisfiability Modulo
Theory (SMT) [22, 23] extends SAT to decide about satisfiability of a first-
order formula with respect to a background theory T , like linear arithmetic
over the reals (LRA) or integers (LIA), or a combination of theories. First-
order logic involves variables, functions and predicates; the theory T fixes
the interpretation of predicate and function symbols. For example, given the
following SMT formula from the theory of arithmetic over integers:

x+ y + z ≤ 4

we are interested in deciding whether there is an assignment of integer values
to the variables x, y and z satisfying the formula. In this paper, SMT(T )
indicates satisfiability modulo theory T , e.g., SMT(LRA) for satisfiability
modulo linear arithmetic over the reals.

Current SMT solvers are based on the so-called lazy approach, where
an outer SAT-solver interacts with one or more specialized T -solvers (one
for each theory) to progressively focus the search towards theory-consistent
solutions or to state the unsatisfiability of the input SMT formula. We refer
the reader to [23, 24] for an overview on lazy SMT solving.

Max-SMT. Max-SMT [25, 26, 27] generalizes SMT in the same way as Max-
SAT does with SAT: rather than searching for an assignment satisfying the
input SMT formula, one maximizes the number of satisfied constraints. The
weighted version of Max-SMT associates a (typically positive) weight to each
constraint, and the task is that of maximizing the weighted sum of the sat-
isfied constraints.

Table 1 summarizes the notation used in the paper.
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Symbol Meaning
>, ⊥ Boolean values true and false

x, y, z, . . . Real variables
A1, A2, . . . , An Catalog attributes (Boolean or real variables)
A Configuration (assignment of values to all catalog

attributes)
Ai ith configuration
ϕ1, ϕ2, . . . , ϕm Constraints. Either atoms (Boolean attributes

or predicates over real attributes, e.g., x+ y < 3)
or logical combinations thereof (e.g.,
¬has car → dist supermarket ≤ θ)

Ik(A) Indicator function for constraint ϕk over A.
It evaluates to one if ϕk is
satisfied, to zero otherwise.

ψk(A) = Ik(A) Feature associated to constraint ϕk

ψ(A) Feature representation of configuration A
w Weights

Table 1: Explanation of the notation used throughout the text.

3. An introductory example

Consider a customer that aims at building her own house. For this pur-
pose, she starts interacting with a real-estate agency and a construction
company. A very clear-headed person could formulate a request like:

I would like to build a house in a safe area, close to my par-
ents and to the kindergarten, with a garden if there are no parks
nearby. Free parking lots close to my house would help. If this is
not possible, a garage should be built together with the house. I
would also like to live close to cycling and walking facilities. Of
course, to fully enjoy these outdoor activities, the area should not
be affected by air pollution. If the house location is close to my
parents and to the kindergarten, cycling and walking facilities gets
really necessary, since I want the option to reach my parents and
bring my kids without car or public transportation. My maximum
budget is 300,000 Euro.
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In addition, the real-estate company states that there are no available lo-
cations within 3 km from both kindergarten and customer’s parents house.
The customer desiderata can be encoded as an SMT problem as follows:

solve:

(ϕ1 ∨ ϕ2) ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ (ϕ8 ∨ ϕ9)∧
(¬ϕ4 ∨ ¬ϕ5 ∨ ϕ6) ∧ (ϕ10 ∨ ϕ11)

subject to:

ϕ1 = A1 ϕ2 = A2

ϕ3 = (A3 < 2) ϕ4 = (A4 ≤ 1)

ϕ5 = (A5 ≤ 1) ϕ6 = A6

ϕ7 = (A7 < 2) ϕ8 = A8

ϕ9 = (A9 ≤ 1) price(A) ≤ 300000

ϕ10 = (A4 > 3) ϕ11 = (A5 > 3)

where the characteristics of the options are defined by the set of catalog
attributes A listed in Table 2, and function price computes the price of
option A based on the values of its attributes.

name description type
A1 garden Boolean
A2 park nearby Boolean
A3 crime rate integer
A4 distance from parents real
A5 distance from kindergarten real
A6 cycling and walking facilities in the neighborhood Boolean
A7 air-pollution index integer
A8 garage Boolean
A9 distance from nearest free parking real
A10 commercial facilities in the neighborhood Boolean
A11 distance from downtown real

Table 2: Catalog attributes for the housing example.

If none of the options available at the agency satisfies all constraints,
above problem has no solution. Indeed, the requirement of proximity to both
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parents and kindergarten (ϕ4 ∧ϕ5) conflicts with the availability constraints
(ϕ10∨ϕ11). A more reasonable alternative consists of solving the optimization
version of above problem, which maximizes the weighted sum of the satisfied
constraints (i.e., a Max-SMT problem):

argmax
A

7∑
i=1

w̄i

subject to:

/* soft constraints */ /* hard constraints */

ϕ1 = (A2 ∨ A1) price(A) ≤ 300000

ϕ2 = (A3 < 2) ϕ7 = ((A4 > 3) ∨ (A5 > 3))

ϕ3 = ((A4 ≤ 1) ∧ (A5 ≤ 1))

ϕ4 = ((A4 > 1) ∨ (A5 > 1) ∨ A6) /* weights definition */

ϕ5 = (A6 ∧ (A7 < 2)) ϕi → (w̄i = wi) ∀i ∈ [1, 7]

ϕ6 = (A8 ∨ (A9 ≤ 1)) ¬ϕi → (w̄i = 0) ∀i ∈ [1, 7]

where each soft constraint ϕi is associated to a weight wi quantifying the
(relative) importance of the constraint. The bound on the price and the
availability constraint (ϕ7) are hard constraints that need to be satisfied,
thus they have no weight.

A fully specified scenario like the one described is however not realistic
when a human DM is involved. An exact specification of the set of relevant
constraints is hard to obtain, let alone their respective weights. A possible
solution consists of an interactive process, with the customer evaluating can-
didate options and the realtor updating her understanding of the customer
preferences according to the feedback received. The rest of this paper intro-
duces the CLEO algorithm, a preference elicitation method that automates
this process.

Let us finally note that not all the catalog attributes describing candidate
options may be relevant for a customer: in above example the customer
decides without considering the last two attributes in Table 2. A large list of
catalog attributes enables both a fine-grained description of the locations and
the interaction with different classes of customers, having different decisional
items. On the other hand, users are expected to take decisions based on a
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limited set of attributes in the large catalogue. This is even more evident
when considering constraints involving combinations of attributes. CLEO
incorporates an implicit feature selection mechanism to account for these
aspects, as will be shown in the next section.

4. The CLEO algorithm

This section introduces the CLEO algorithm, first describing its compo-
nents and then combining them into the overall algorithm.

Configuration space. CLEO assumes a catalogue of attributes which can
be used to describe the configurations. These attributes can be either Boolean
(e.g., park nearby), ordinal (crime rate) or real (distance to parents)
variables. See the examples in Table 2. We define by A the space of candi-
date configurations, where a configuration is an instantiation of all catalogue
attributes.

Feature space. Each configuration is mapped to a feature space, in which
the user utility will be computed, by a feature mapping function Ψ : A →
{0, 1}m, where m is the size of the feature space. Features are defined in terms
of constraints over configuration attributes, each constraint being a logic
formula, by taking the indicator function over the constraint (see Table 1).
Atomic constraints are built by simply evaluating Boolean attributes (i.e.,
ϕi = Ai) and thresholding ordinal or real attributes (i.e. ϕi1 = (Ai <
θi1), ϕi2 = (Ai < θi2), etc), where the number of thresholds determines
the granularity of the discretization and is decided a-priori, for instance
by computing the empirical quantiles of the variables of interest, although
alternatives can be conceived2. We assume that the set of atomic constraints
is given as an input to the algorithm. Arbitrary composite constraints can
be built by combining atomic ones with logical connectives (e.g., distance
to kindergarten < θ ∧ distance to parents < θ, so that a car is not
needed). The space of constructible constraints is clearly exponential in the

2Note that this approximate solution becomes inefficient for a large number of thresh-
olds. We are planning to overcome this limitation by generalizing the approach to deal
with features which are continuous functions of the variables in the constraints. While this
is out of reach of “standard” weighted Max-SMT solvers, a recent technology called Op-
timization Modulo Theory [17] can be leveraged to achieve this goal, as will be discussed
in the conclusion of the paper.
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maximum number of atomic constraints allowed in a composite constraint.
In this work we consider only conjunctions of up to d atomic constraints, d
being a parameter of the algorithm:

ϕI =
∧
i∈I

ϕi

where I ⊆ [1, |A|] : |I| ≤ d identifies any subset of at most d attributes (|A|
is the number of catalogue attributes). The resulting feature space has di-
mension m =

∑d
j=1 |A|j. Note that most of these constraints, as many of the

catalogue attributes, will likely be irrelevant for a certain DM, while others
will have different degrees of relevance. We thus treat all of them as candi-
date soft constraints, whose relevance needs to be discovered in the elicitation
process and which can be traded-off in the search for feasible configurations.
We also assume a set of hard constraints, known in advance, which define the
space of feasible configurations (e.g., customer budget, company constraints
on feasible configurations).

Utility function. The DM utility function is assumed to be a weighted
combination of features associated to the soft constraints [28]:

f(A) = wTψ(A) (1)

where each weight indicates how much the DM likes (or dislikes, if negative)
the corresponding feature, a zero weight indicating irrelevance. Due to their
bounded rationality and limited information-processing capabilities, humans
can handle only a limited number of features to make decisions. Thus only
very few of the candidate soft constraints will be considered by the DM,
resulting in an extremely sparse weight vector w. This sparsity assumption
will be accounted for in the learning stage.

Learning phase. Learning amounts to finding a weight vectorw that makes
the utility function in Eq. 1 match the unknown DM preferences. Asking
quantitative feedback, such as real-valued utility scores, is typically not af-
fordable for a human DM [5]. We thus cast the problem as a form of learning
to rank. Training examples are obtained by asking the DM to rank pairs of
configurations according to her own preferences. We adapt SVM for rank-
ing [29], which learns from pairwise rankings by enforcing a (soft) large mar-
gin between the score of the two candidates. Note however that the feature
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vector contains all possible constraints (up to a certain complexity) for all
catalogue attributes, most of which are likely to be irrelevant for a specific
DM. We favour discarding irrelevant constraints by encouraging sparsity on
w. Therefore, most of the weight mass will be associated to the truly relevant
features. Feature selection is known to improve generalization in data sets
with redundant and irrelevant features [30]. To this end, we replace the stan-
dard 2-norm regularizer of SVM with a sparsifying 1-norm regularizer [31];
this choice will be validated empirically in Section 7. The resulting learning
problem is:

min
w∈IRm,ξ≥0

||w||1 + C
∑

(i,j)∈D ξ
2
ij (2)

s.t. wT (ψ(Ai)−ψ(Aj)) ≥ 1− ξij ∀ (i, j) ∈ D

where the dataset D consists of pairs (i, j) for which the DM prefers con-
figuration Ai over configuration Aj (written as Ai � Aj). The constraints
enforce pairwise rankings to match the DM preferences. A quadratic penalty
ξ2ij is incurred when the utility of a more preferred configuration is not suffi-
ciently larger than that of the less preferred one. The soft ranking constraints
allow to accommodate occasional inconsistencies in the DM feedback. The
objective to be minimized is the combination of two components: the sum of
penalties for not satisfying ranking feedback from the DM, and the 1-norm
of the weights which favours solutions with few non-zero weights. The reg-
ularization parameter C trades-off these two components and is optimized
during the learning process, as discussed at the end of this section when
describing the overall algorithm. Note that weights can also take negative
values, where a negative weight can be interpreted as a DM disliking the
corresponding constraint.

Optimization phase. The goal of the algorithm is to recommend the best
possible configuration given the true DM utility function f . However the
latter is unknown. The preference elicitation phase allows to gather informa-
tion on DM preferences and refine the current approximation f̂ accordingly.
CLEO asks the DM for comparisons between pairs of configurations. Given
the form of the utility function (Eq. 1) and of the underlying features, op-
timizing f̂(A) boils down to solving a weighted MAX-SMT problem (see
also the example in Section 3). To generate two configurations to be com-
pared by the DM, we design two optimization tasks considering the following
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principles:

1. the generation of high-quality configurations, consistent with the learned
DM preferences;

2. the generation of diversified configurations, i.e., alternative possibly
suboptimal configurations with respect to the learned utility f̂ ;

3. the search for catalog attributes relevant to the DM not recovered by
the current approximation f̂ , i.e., attributes not appearing in any of
the soft constraints in f̂ .

The rationale for the first principle is to focus on the relevant areas of the
utility surface, those of interest to the DM. As a matter of fact, a preference
elicitation system that asks to rank low-quality configurations will be likely
considered useless or annoying by the DM [5]. In addition, the goal of CLEO
is the identification of the configuration preferred by the user (learning to
optimize) rather than an accurate global approximation of the DM utility
function (learning per se). This requires to model the relevant areas of the
optimization fitness surface rather than reconstructing it entirely. The second
principle advocates the introduction of some diversification in the search,
by exploring the neighbourhood of the best configuration for the currently
learned preference model f̂ . Finally, as the learned formulation of f̂ may miss
some of the user decisional attributes, their search is explicitly promoted by
the third principle. The need for a set of good and diverse configurations to
be evaluated by the user is suggested also in [32].

Our optimization phase works as follows. First, f̂ is maximized (first
principle), generating the first candidate configuration A∗. Then, a hard
constraint is added to the Max-SMT problem as the disjunction of all soft
constraints not satisfied byA∗, and maximization is run again. This instanti-
ates the second principle, by synthesizing a new configuration A∗∗ which dif-
fers from A∗ by at least one soft-constraint. If A∗ satisfies all soft constraints
in f̂ , the additional hard constraint generated is: (¬A∗1∨¬A∗2 . . .∨¬A∗n) which
excludes A∗ from the set of feasible configurations. Finally, each unassigned
attribute, i.e., catalog attribute not appearing in any hard constraint or soft
constraint with non-zero weight, in both A∗ and A∗∗ is given a random value
in its domain, thus incorporating the third principle. Indeed, if these catalog
attributes are truly irrelevant for the DM, setting them at random should
not affect the evaluation of the candidate configurations. On the other hand,
if some of them are needed to explain the DM preferences, driving their elici-
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1 algorithm CLEO (A, CS, CH , d):
input : Space of configurations A, set of atomic soft constraints CS ,

set of hard constraints CH , maximum size of non-atomic
constraints d

output : Most preferred configuration A∗

// Initialization

2 Build feature map Ψ from A, CS and d
3 Select two configurations at random
4 D ← ranking of configurations by DM
5 C ← 1

// Refinement

6 while termination criterion not satisfied do

7 f̂ ← argminw,ξ≥0 ||w||1 + C
∑

(i,j)∈D ξ
2
ij // learning phase

8 s.t. wT (ψ(Ai)−ψ(Aj)) ≥ 1− ξij
9 ∀ (i, j) ∈ D

10 A∗ = argmaxA∈A f̂(A) // optimization phase

11 s.t. A |= CH
12 if DM satisfied then
13 return A∗

14 end
15 else

// preference elicitation

16 Generate A∗∗ by diversification strategy
17 D ← D ∪ ranking of pair (A∗,A∗∗) by DM

18 end
19 C ← UpdateC(Ψ,D) // Update C by inner CV

20 end
// final recommendation

21 return A∗

Algorithm 1: Pseudocode for CLEO.

tation will reveal the deficiencies of the current approximation f̂ and recover
previously discarded relevant decisional items.

Overall algorithm. The pseudocode of the full CLEO algorithm is shown
in Algorithm 1. It takes as input the space of candidate configurations A,
the set of atomic soft constraints CS, the set of hard constraints CH , and
the maximum size of composite constraints d, and returns the configuration
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which is most preferred by the DM.
During initialization, the DM is asked to compare two configurations cho-

sen from A. The first one is obtained by solving an SMT problem instance
formed by the conjunction of the hard constraints defining A. Indeed, we
have not learned any formulation of the user utility function yet. The sec-
ond one is obtained by optimizing a set of diversification constraints that
both guarantee the generation of a configuration different from the first one
and favour diversity between the two configurations. Then the refinement
loop begins. The refinement of the utility function amounts to solving the
“learning to rank” problem in Eq. (2), where D is the dataset of all pair-
wise preferences collected so far. With a slight abuse of notation, we write
f̂ ← argmin to indicate that f̂ is the function whose weights w are the result
of the minimization. The regularization parameter C is set to one during the
first three iterations, and fine-tuned by an internal three-fold cross validation
procedure on the training set in the following ones. This tuning step, per-
formed by the UpdateC procedure (line 19), works by splitting D in three
equally sized sets, and in turn learning on two sets by solving Eq. (2) and
testing on the left-out set, for different values of C. The ranking loss (i.e.,
the number of incorrect rankings obtained using the learned utility) averaged
on the three resulting test sets is used to select the best C.

After the learning step, a new recommendation is made by selecting the
configuration A∗ maximizing the learned utility function f̂ , subject to the
hard constraints. If the DM is not satisfied with the suggested configuration,
an additional candidate configuration A∗∗ is generated, favouring diversity
between A∗ and A∗∗ based on the diversification strategy defined above (see
the Optimization phase paragraph). The dataset D is then updated by in-
cluding the comparison between A∗ and A∗∗ performed by the DM.

Being an interactive process involving a human DM, the most natural
termination condition is the DM satisfaction with the current recommenda-
tion. Additional conditions could be conceived, for instance, by estimating
the improvement one could expect by further refining the utility function.
We will discuss this and other potential extensions in the conclusion.

5. Features of CLEO

The CLEO algorithm has no free parameters to be manually tuned (ex-
cept for the θ thresholds of the soft constraints, that should be chosen by
the domain expert when compiling the catalogue of attributes). The number
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of iterations does not need to be fixed upfront, as the termination criterion
is represented by the satisfaction of the DM with A∗. The regularization
parameter C in Eq. (2) is set to one in the first three iterations, and fine-
tuned by internal cross-validation on the training set in the following ones.
At each iteration, a single pairwise comparison is asked to the DM. The con-
figurations to be compared at the first iteration are generated by sampling at
random the feasible search space. The evaluation of diverse examples stim-
ulates the preference expression, especially when the user is still uncertain
about her final preference [32]. In particular, the diversity of the proposed
configurations helps the user reveal hidden preferences: in many cases the
decision maker is not aware of all preferences until she sees them violated.
For example, a user does not usually think about preferences for interme-
diate stops until a configuration suggests an airplane change in a place she
dislikes [32].

The human cognitive capabilities bound the number of catalog attributes
and the size d of the soft constraints. The limited size of the Max-SMT
problems generated by CLEO enables the systematic investigation of the
search space by means of a complete solver, which ensures the identification of
a global maximumA∗ of the learned utility model f̂ (completeness property).
However, CLEO cannot guarantee the quality of the model f̂ approximating
the true DM utilities, and therefore the optimality of A∗ (or bounds on its
quality) w.r.t. the true DM utilities cannot be proved. The learning task in
Eq. (2) is convex, and thus guaranteed to converge to its global optimum, but
the consistency of the learning algorithm with the true underlying user utility
is only guaranteed asymptotically (i.e., provided that enough training data is
available). On the other hand, CLEO does not need to learn the exact form of
the DM utility function. The goal of our approach is to elicit as few preference
information from the DM as possible to identify her favourite configuration
(learning to optimize). For example, consider the toy DM utility function
represented by the negation of a single ternary term: ¬(ϕ1 ∧ ϕ2 ∧ ϕ3). The
approximation of the DM utility function consisting of the formula ¬ϕ1 is
sufficient to find one of the favourite DM configurations. In general, only
the shape of the utility function locally guiding the search to the correct
direction is actually needed. The experimental results in Sec. 7 demonstrate
that CLEO rapidly improves the quality of the candidate configurations when
the number of refinement iterations increases (anytime property).

Finally, CLEO satisfies the main requirements for practical applicability
of preference elicitation. In detail:
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1. real-time interaction with the DM. Due to the limited number of pair-
wise preference constraints elicited from the DM, the learning phase
at each refinement step (problem (2)) is accomplished in a time which
is negligible when compared with the user response time3. Analogous
observation holds for the computational effort required by the opti-
mization phase, provided that the feasible space A is defined by a
reasonable number of hard constraints (this is usually the case in pref-
erence elicitation problems4). Proposing a query consists of generating
two candidates to be compared. Each candidate is obtained by a run
of the complete Max-SMT solver. The bounded value of n and the
efficient performance of modern SMT solvers, that can efficiently man-
age problems with thousands of variables and millions of constraints,
enable the completion of the optimization phase in a negligible amount
of time;

2. multi-attribute models. Candidate configurations are described by mul-
tiple decisional attributes. Since these attributes usually vary with
different decision makers, CLEO assumes a set of catalog attributes,
from which the decisional items of a specific DM are automatically se-
lected. Unlike the state-of-the-art methods (see Sec. 6) for preference
elicitation, CLEO can handle both discrete and continuous-valued at-
tributes simultaneously, thanks to the Max-SMT formalism which can
efficiently tackle hybrid domains;

3. user cognitive load. CLEO asks the user just for pairwise comparisons
of candidate configurations. Pairwise comparisons require low cognitive
load for decision makers [33]. Most users are typically more confident in
comparing configurations, providing qualitative judgments like “I prefer
configuration A∗ to configuration A∗∗ ”, rather than in specifying how
much they prefer A∗ over A∗∗.

4. robustness to inconsistent human feedback. Assuming that a user al-
ways provides accurate and consistent preference information is not
realistic. Different factors may generate inconsistent feedback from the
DM, including occasional inattention, embarrassment when compar-
ing very similar configurations or configurations which are very differ-

3Note however that we cannot provide formal guarantees about the optimality of the
learned preference model w.r.t. the actual user utility.

4The adoption of CLEO for tackling large combinatorial problems arising in industrial
applications of combinatorial optimization is discussed in the conclusion of the paper.
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ent from her favourite one, DM fatigue increasing with the number of
queries answered. The adoption of regularized machine learning strate-
gies in CLEO enables a robust approach that can handle inaccurate
(pairwise) comparisons of configurations from the DM.

5. scalability. At each preference elicitation stage, just one candidate
query is considered by CLEO, independently of the cardinality of the
configuration space. The explicit enumeration of candidate soft con-
straints (see the mapping function Φ in Eq. (2)) is tractable only for
a rather limited number of catalog attributes and size d of their com-
bination. However, this will typically be the case when interacting
with a human DM. Research in psychology has shown that humans
cannot handle simultaneously more than few (7± 2) factors [18]. Var-
ious experiments agree on our limited capacity for processing informa-
tion. Baddeley and Hitch [34] present a series of experiments on the
role of memory in reasoning, language comprehension, and learning.
Cowan [35] collects a wide variety of data on capacity limits. In the
conclusion of the paper we discuss about alternative approaches which
could be pursued when the size of the constraint space makes exhaus-
tive enumeration infeasible.

6. Related work

The problem of automatically learning utility functions and eliciting pref-
erences is widely studied within the Artificial Intelligence community [36, 3,
37]. In this section we first compare CLEO to state-of-the-art preference
elicitation methods, roughly classifying them based on how they implement
uncertainty over the utility function. We then briefly discuss the relation-
ship between CLEO and product configuration tools. Finally, we overview
existing query selection strategies used in active learning, which are not de-
signed for interaction with human DMs, and contrast them to the strategy
implemented by CLEO.

6.1. Strict uncertainty

A popular approach to model the uncertain knowledge about the DM
preferences consists of assuming a set of hypotheses, with no belief on their
strength. The set of hypotheses contains the feasible utility functions and
reflects the partial knowledge about the DM preferences. The uncertainty is
decreased by restricting the feasible hypothesis set, when relevant preference
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information is received during the elicitation process. This approach is often
referred to as reasoning under strict uncertainty [36].

The minimax regret criterion [38] from statistical decision theory provides
a way to make decisions under uncertainty. Given a certain decision A, the
maximum regret is the difference in utility between the DM’s most preferred
configuration A∗ and A assuming the worst-case scenario, where the DM
utility is the one in the feasible set for which this difference is maximal. By
adopting the minimax regret criterion, the decision that minimizes this regret
is taken. This criterion identifies a robust decision w.r.t. the worst possible
case. The recent work in [6, 7, 8] introduces an approach to preference
elicitation based on the minimax regret criterion. Queries to be asked to the
DM are selected so as to reduce the minimax regret by restricting the feasible
hypothesis set. An advantage of minimax regret approaches with respect to
our formulation is that they can provide theoretical guarantees in terms of
bounds on the configuration quality and convergence to provably-optimal
results. On the other hand, these approaches assume perfect feedback from
the DM and cannot handle the occasional inconsistencies which are typical of
interactions with human DM. Therefore, they are not suitable for the realistic
preference elicitation tasks considered in this work.

6.2. Bayesian uncertainty

An alternative uncertainty model consists of defining a probability distri-
bution (or belief) over the candidate utility functions [9, 5, 10, 11], which is
incrementally refined as new feedback is obtained. The Bayesian framework
offers a flexible approach, handling the uncertainty in both utility and DM
feedback. The queries are chosen as to increase the posterior probability of
the true utility. A typical query selection strategy consists of selecting the
query with the maximal value of information (VOI). Exact computation of
VOI, as well as exact computation of the posterior distribution, however, are
extremely expensive. The state-of-the-art approaches [9, 5] resort to approx-
imate solutions.

The closest approach to CLEO is the Bayesian method introduced by
Guo and Sanner in [5] (referred to as GSM). In GSM, utility functions are
represented by a weight vector w (distributed according to a multivariate
distribution) which specifies the utility of each possible value for each at-
tribute. Unlike CLEO, this modelling choice assumes preferential indepen-
dence among the set of attributes.
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GSM offers several query selection strategies [5]. The principled informed
VOI strategy requires to compute the VOI of all possible pairwise com-
parisons, and therefore scales quadratically with the number of configura-
tions. Therefore, it quickly becomes unaffordable as the number of options
increases. In [5], informed VOI was empirically shown not to scale to datasets
with more than 20 attributes. The computational load can be decreased by
restricting the set of candidate pairwise comparisons, e.g., by fixing one ele-
ment of each candidate pair to the configuration x∗ with greatest expected
utility (restricted informed VOI strategy). Fixing one configuration in the
query pair to the current optimal configuration x∗ is the approach adopted
also by CLEO. The authors of GSM also suggest an alternative query strat-
egy which does not rely on the VOI criterion, namely the comparison between
x∗ and the configuration xEL maximizing the expected loss of recommending
x∗ instead of xEL (simplified VOI strategy).

Unlike the other techniques discussed in this section, CLEO and GSM
both satisfy [5] all the main principles needed for practical applicability of
preference elicitation (see Sec. 1). Nonetheless, GSM requires the exhaustive
enumeration of candidate configurations, which is infeasible in hybrid search
domains including continuous attributes. In our experiments (Sec. 7), an em-
pirical comparison of CLEO w.r.t. GSM is thus performed over a simplified
experimental setting involving discrete decisional attributes only.

6.3. Constraint-based preference elicitation

The work in [12] articulates the user preferences in terms of soft con-
straints and introduces constraint optimization problems where the DM pref-
erences are not completely known beforehand. The decision variables and
the soft constraint structure are assumed to be known in advance. On the
contrary, CLEO can work even when the structure of the constraints is com-
pletely unobserved: the initial problem knowledge is limited to a set of cata-
log attributes, while the weighted constraints are learned on-the-fly from the
DM feedback.

Another issue with the algorithm in [12] is that it requires the DM to
disclose the score values of her utility function. CLEO instead relies on
pairwise ranking queries, a much more cognitively affordable task. Finally,
the approach in [12] assumes consistent and accurate quantitative feedback
from the DM, and cannot be applied in noisy scenarios.

Conversational, or example critiquing, recommenders are another class
of interactive constraint-based methods. In conversational interaction, the
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user is free to provide the system with critiques to the recommended options.
Newly acquired critiques are used to constraint the search to the high utility
regions of the product catalogue. Few critiquing recommenders model the
user preferences directly. Those that do, like [39] and [40], assume noiseless
user responses. The method proposed in [41] learns a linear utility through
a heuristic multiplicative update, and could in principle deal with imperfect
DMs, but handles discrete configurations only.

6.4. Product Configuration

CLEO is also related to the problem of product configuration [42, 43].
In knowledge-based configuration systems, both the product catalogue and
the taxonomy of product components are encoded in some constraint-based
modelling language. As in CLEO, inference exploits constraint satisfaction
techniques. Most configurators, however, do not tackle the issue of interactive
preference learning: the full specification of the user requirements is assumed
to be available beforehand. This is of course unachievable in recommendation
domains where the system interacts with non-experts (e.g., online sales).

An exception is given by Conditional Preference Networks (CP-nets) [44,
45], a class of graphical models that have been proposed for reasoning with
preferences in product configuration and other contexts. CP-nets leverage
conditional preferential independence assumptions to compactly represent
rich preference relations. Whereas some preference learning approaches for
CP-nets have been devised (see [46], Sec. 3.5), CP-nets cannot represent
continuous numerical attributes, and, unlike CLEO, cannot be applied to
hybrid problem domains.

6.5. Query Diversity

Recommendation and query diversity is a key issue in recommendation [47,
48, 49] and other settings, such as active learning and information retrieval.
The peculiar nature of the recommendation task however poses challenges
for applying diversification strategies proposed in other settings, as explained
below.

Active learning is a hot research area and a broad range of different
approaches has been proposed (see [50, 51] for a review). The simplest and
most common framework is that of uncertainty sampling : the learner queries
the instances on which it is least certain. However, the ultimate goal of
a recommendation or optimization system is selecting the best instance(s)
rather than correctly modeling the underlying utility function. The query
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strategy should thus suggest candidate configurations that are both of good
quality and maximally informative. Such a strategy also addresses the issue
of user engagement. A human DM may decide to leave the elicitation session
when presented with low quality configurations, an issue neglected by active
learning. In CLEO, the quality of the query set is encouraged by maximizing
the (estimated) utility of the two query configurations.

Typical active learning query selection strategies are not designed to deal
with humans. For instance, in linear classifiers, uncertainty sampling boils
down to selecting items close to the margin (although several alternatives are
available [52]). In a pairwise ranking setting, this strategy equates to choos-
ing pairs of configurations with similar utilities. However, distinguishability
is crucial for eliciting meaningul preferences from human DMs: the more sim-
ilar the two query configurations, the more unreliable the user feedback [49].
The inverse correlation between utility difference and noise is also reflected
by many widely used response models, like the Thurstone-Mosteller [53],
Bradley-Terry [54], and Plackett-Luce [55, 56] models. CLEO favors distin-
guishability by perturbing the feature representation of query configurations.

Other related research areas are single- and multi-objective interactive
optimization [57] and information retrieval [58]. The need to trade-off mul-
tiple requirements in this active learning setting is addressed in [59] where
the authors consider relevance, diversity and density in selecting candidates.
Our future research will consider the application of these active learning tech-
niques. The performance of CLEO indeed depends on the trade-off between
the identification of candidate configurations satisfying the DM (i.e., configu-
rations optimizing the current learned preference model) and the generation
of informative training examples for the following refinement of the learned
model.

7. Experimental results

The following empirical evaluation shows that CLEO can handle realistic
preference elicitation tasks defined over hybrid domains and with noisy hu-
man feedback. First, CLEO is tested over two realistic preference elicitation
tasks with the above features. In these experiments, we evaluate the perfor-
mance of CLEO for increasingly complex problems, and the effectiveness of
its sparsifying 1-norm against the classical 2-norm. In a second step, a set
of simplified synthetic problems with discrete decisional variables is intro-
duced, to compare CLEO with the existing preference elicitation algorithms,
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which cannot handle inference with continuous attributes. In particular, we
consider Boolean decisional attributes only and generate a set of synthetic
Maximum-Satisfiability (Max-SAT) benchmarks. In this simplified setting,
benchmarking is the method by Guo and Sanner [5].

For the experiments, the mapping function ψ in CLEO projects config-
urations into the space of all possible conjunctions of up to three atomic
constraints (i.e., d = 3). The Max-SMT tool used is the Yices solver5 with
the LIA and LRA theories. The SVM implementation used to solve the
learning-to-rank problem (2) is the LIBLINEAR package [60].

We model user responses with the classic Thurstone-Mosteller (aka Pro-
bit) model [53], widely used in economics and psychology to describe the
individual choice behaviour of humans [61, 62, 63]. The user ranks configu-
rations based on a latent utility function f . In particular, configuration Ai

is preferred to configuration Aj if and only if f(Ai) > f(Aj). However, each
evaluation fi = f(Ai) is corrupted by additive independent and identically
distributed (IID) Gaussian noise εi ∼ N (0, σ2

noise), resulting in a noisy utility
value yi = fi + εi. Under these assumptions, the probability that the user
prefers Ai to Aj is:

P(Ai � Aj|fi, fj) = P(yi > yj|fi, fj) =

P(fi + εi > fj + εj) = P(εi − εj > fj − fi) (3)

The quantity δ = εi− εj is the difference of two IID Gaussian variables with
zero mean and variance σ2

noise, and therefore follows the Gaussian distribution
N (0, 2σ2

noise). By computing the standardized variable z = δ/(
√

2σnoise),
Eq. (3) can be rewritten as:

P(εi − εj > fj − fi) = 1− Φ

(
fj − fi√
2σnoise

)
where Φ is the cumulative distribution function of the standard normal dis-
tribution. In our experimental setting σ2

noise is fixed to 10, to have noise
values comparable with the latent utility values f(A).

5Version 1.0, available at http://yices.csl.sri.com/.
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7.1. Scheduling problem
Here the problem is that of learning DM preferences about the scheduling

of a set of jobs. A set of five jobs must be scheduled over a given period of
time. Each job has a fixed known duration, the atomic constraints define the
overlap of two jobs or their non-concurrent execution. The user’s unknown
utility function is generated by selecting uniformly at random weighted con-
junctions of atomic constraints. A solution to the problem is a schedule
assigning a starting date to each job and maximizing the utility, where the
utility of the schedule is the sum of the weights of the satisfied constraints
in the user’s utility function. The atomic soft constraints define temporal
constraints by using the difference arithmetic theory. In detail, let si and di,
with i = 1 . . . 5, be the starting date and the duration of the ith job, respec-
tively. If si is scheduled before sj, the constraint expressing the overlap of the
two jobs is sj − si < di, while their non-concurrent execution is encoded as
sj − si ≥ di. By considering the concurrent and non-concurrent execution of
each pair of jobs from the set of five jobs, 40 atomic soft constraints are gen-
erated. A total of m = 10700 soft constraints is obtained by the conjunction
of up to three (d = 3) atomic constraints.

CLEO and its 2-norm variant are tested using a benchmark of randomly
generated utility functions with a given number of atomic soft constraints
and soft constraints. We generate functions with (5, 3), (10, 6), and (15, 9)
soft atomic and atomic constraints, respectively.

The DM utility functions are generated as follows. First, the given num-
ber of atomic soft constraints is selected from the 40 candidate atomic con-
straints. Then, the desired number of soft constraints is constructed from
the selected atomic ones, by including at least two soft constraints with a
size of three. The weights of soft constraints are distributed uniformly at
random in the range [1, 100]. Let us stress once more that utility functions
with more that few factors or factors with many terms are unrealistic when
considering human DMs [18].

The results of the experiments are shown in Figure 1. The y-axis reports
the percentage utility loss measured in terms of deviation from the utility
of the DM preferred configuration, while the x -axis contains the number of
pairwise comparisons asked so far. The curves report the median values
observed over 400 runs, while the shaded area depicts the interquartile range
(IQR) measuring the dispersion around the median.

As expected, the learning problem becomes more challenging for an in-
creasing number of soft constraints. However, results are promising, as a
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Figure 1: Performance of CLEO (solid blue line) and the 2-norm CLEO variant (dotted
green line) on the scheduling problem. The plot shows how the percentage utility loss
(y-axis) changes with increasing number of pairwise comparisons (x-axis). Best viewed in
colour.

substantial improvement in the quality of the recommended configuration is
achieved by CLEO when additional queries are asked to the DM (anytime
property). Furthermore, CLEO identifies the DM preferred configuration in
all cases. In detail, with the realistic cases of three and five soft constraints,
less than 35 pairwise comparisons are asked to the DM to identify her pre-
ferred configuration. With 9 soft constraints, 64 pairwise comparisons are
required on average to recommend the DM preferred configuration. However,
with 40 queries, a percentage utility loss within 5.5% is obtained. The shaded
area shows that CLEO identifies the DM preferred configuration quite con-
sistently when increasing the number of queries (the IQR is within 25% after
35 queries even in the case of nine soft constraints).

The plots also show that CLEO (solid blue line) performs much better
than the 2-norm variant (dotted green line), as expected, thanks to the auto-
matic feature selection property of the 1-norm. For instance, in the simpler
(and denser) (5, 3) case, the 2-norm variant requires more than double the
number of queries to satisfaction than the 1-norm. These results validate the
performance advantage of the 1-norm versus non-sparsifying norms.

7.2. Housing problem

In this second experiment we consider a customer planning to build her
own house by interacting with a real estate agency and a construction com-
pany (henceforth the housing problem). There are different locations avail-
able where the customer may potentially build her house. The locations
are characterized by different housing values, prices, constraints about the
design of the building (e.g., usually in the city center you cannot build a
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family house with a huge garden and pool), etc. The customer may for-
mulate her judgments by considering a description of the characteristics of
the building to be constructed (e.g., house type, presence of a garage or a
parking space) and of the candidate locations (e.g., distance from downtown,
proximity to commercial facilities or green areas). Many of these parameters
may be uninformative, as they do not represent any decisional criterion for
the customer. Furthermore, hard constraints defining the feasible options
may be specified in advance, e.g., cost bounds stated by the user or building
design requirements asserted by the company.

In our experiments, the formulation of the housing problem is as follows.
The set of catalog attributes is listed in Table 3. A set of ten hard constraints

Table 3: Catalog attributes for the housing problem.

num attribute type

1 house type integer
2 garden Boolean
3 garage Boolean
4 commercial facilities in the neighborhood Boolean
5 public green areas in the neighborhood Boolean
6 cycling and walking facilities in the neighborhood Boolean
7 distance from downtown real
8 crime rate integer
9 location-based taxes and fees integer

10 public transit service quality index integer
11 distance from high schools real
12 distance from nearest free parking real
13 distance from working place real
14 distance from parents house real
15 price real

(Table 4) defining feasible options is considered. The hard constraints are
stated by the customer (e.g., cost bounds) or by the company (e.g, constraints
about the distance of the available locations from user-defined points of inter-
est). Let us note that constraints 5, 6, 7 define a linear bi-objective problem
among distances from user-defined points of interest. Prices of potential op-
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tions are defined as a function of the other attributes. For example, price
increases if a semi-detached house rather than a flat is selected or in the case
of green areas in the neighborhood. On the other side, e.g., when crime index
of potential locations increases, price decreases.

Table 4: Hard feasibility constraints for the housing problem. Parameters ρi, i = 1 . . . 13,
are threshold values specified by the user or by the sales personnel, depending on who
states the hard constraint which they refer to.

num hard constraint

1 price ≤ ρ1
2 location-based taxes and fees ≤ ρ2 => not public green areas in the

neighborhood and not public transit service quality index ≤ ρ3
3 commercial facilities in the neighborhood => not (garden and

garage)
4 crime rate ≤ ρ4 => distance from downtown ≥ ρ5
5 distance from working place + distance from parents house ≥ ρ6
6 distance from working place + distance from high schools ≥ ρ7
7 distance from parents house + distance from high schools ≥ ρ8
8 distance from nearest free parking ≤ ρ9 => not public green areas

in the neighborhood
9 distance from parents house ≤ ρ10 => distance from downtown ≥

ρ11 and crime rate ≥ ρ12
10 garden => house type ≥ ρ13

Forty atomic constraints are generated to define the candidate decisional
features of the user. They include the five Boolean attributes in Table 3 and
35 predicates over the integer and real attributes. The predicates discretize
the integer and real attributes into different intervals. For example, by scaling
the distance from downtown Ai in the range [0,10], four predicates Ai = 0
(the location lies in the city center), 1 ≤ Ai < 3, 3 ≤ Ai < 6, and Ai > 6
are generated. The actual user decisional features are an unknown subset of
the 40 predicates. The unknown utility function is the weighted sum of soft
constraints, each soft constraint being the conjunction of two to three atomic
constraints. The maximum number of atomic constraints in a soft constraint
is assumed to be known. The weights of soft constraints are integer values
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Figure 2: Performance of CLEO (solid blue line) and the 2-norm CLEO variant (dotted
green line) on the housing problem. Best viewed in colour.

selected uniformly at random in the range [1, 100]. As in the scheduling
problem, the user utility function is parametrized by the couple (number of
atomic soft constraints, number of soft constraints).

Fig. 2 reports the results over a benchmark of 400 randomly generated
utility functions for each of the following instantiations of the couple (number
of atomic soft constraints, number of soft constraints): {(5, 3), (10, 6), (15, 9)}.
The promising results observed for the scheduling problem are confirmed, in-
cluding the superiority of the 1-norm over the 2-norm in this context, even
though the housing problem is much harder, due to complex non-linear in-
teractions among the decisional attributes. Once again, the 2-norm variant
fails to identify the right soft constraints: whereas in the (15, 9) problem
the 1-norm penalty drives CLEO to uncover around 25 relevant soft con-
straints, the 2-norm wrongly allocates weight larger than 10−4 to more than
3000. This highlights that the choice of norm has a huge impact on the
set of candidate utilities, as expected, which naturally influences the sample
complexity of our learning problem.

When increasing the number of queries asked, the quality of the configu-
ration rapidly improves and CLEO identifies the DM preferred configuration
in all the cases. On average, 22 and 69 queries are needed by CLEO to con-
verge to the DM preferred configuration in the case of three and nine soft
constraints, respectively. Let us note again that utility functions involving
nine soft constraints are quite unrealistic and are considered here just for
testing the scalability of CLEO.

The dispersion of the performance values keeps decreasing when increas-
ing the number of queries asked, showing that CLEO recommends better
quality configuration more consistently. However, in the case of three soft
constraints, the IQR observed when CLEO converges is equal to 70.8%. With
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40 queries, the dispersion decreases down to 45.4%. These values are rather
large. A deeper investigation of CLEO results revealed that the observed data
dispersion is heavily affected by some runs where the configuration quality
does not improve when asking additional feedback to the DM. In these runs
CLEO cannot generate queries informative enough to recover from subop-
timal initial choices. Smarter queries strategies could be studied to tackle
these cases, as discussed in Sec. 8.

7.3. Experimental comparison with the state-of-the-art

Since existing methods cannot handle the preference elicitation tasks over
hybrid domains defined in the previous section, for a comparison with the
state-of-the-art we focus on Boolean attributes only. With this choice, the
atomic constraints are just the Boolean attributes, and more complex soft
constraints expressing the DM preferences are Boolean terms in plain propo-
sitional logic. That is, each soft constraint is the conjunction of (up to three)
Boolean attributes and optimization of the utility function can be cast as a
weighted Maximum Satisfiability (Max-SAT) problem. The benchmarking al-
gorithm is the GSM method [5] described in Sec. 6.2. The parameter setting
for GSM is the same one used by the authors in their experimental evalua-
tion [5]. In particular, the mean and standard deviation of each dimension
of the multidimensional Gaussian prior with diagonal covariance are set to
25 and 25/3, respectively.

A benchmark of random utility functions is generated for (number of
Boolean attributes, number of terms) equal to {(5, 3), (10, 6), (15, 9)}. Each
utility function has two constraints with maximum size (three). Constraint
weights are integers selected uniformly at random in the interval [−100, 0)∪
(0, 100].

All the query selection strategies suggested in [5] for the GSM method
have been tested in our experimental setting. For each of the three test cases
{(5, 3), (10, 6), (15, 9)}, we report here the results of the query strategy with
best performance. However, with more than five attributes, the most sophis-
ticated Bayesian query strategies proposed in [5] are too slow, as pointed out
also by the authors and empirically verified in our preliminary experiments.
They have thus been included in the (5, 3) case only. Based on our results,
the best query strategy are the “restricted informed value of information
(VOI)” for the test case (5, 3) and the “simplified VOI” for both remaining
test cases.
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Figure 3: Performance of CLEO (solid blue line) and GSM (dashed red line) on the
Boolean problem. Best viewed in colour.

Fig. 3 reports the percentage utility loss of the recommended configu-
ration w.r.t. the DM preferred configuration for an increasing number of
pairwise comparisons asked so far. The curves report the median values ob-
served over 200 runs for CLEO and GSM. The shaded areas depict the IQR
measuring the dispersion around the median.

The search space of the simplest problem with five Boolean attributes
contains just 32 candidate configurations, thus any strategy asking more
than few questions is not competitive with näıve exhaustive search. On
average, seven and nine queries are asked to the DM by CLEO and GSM for
discovering her preferred configuration. However, with 12 (or less) queries,
the CLEO and GSM performance are statistically equivalent under a Two-
sided Wilcoxon signed-rank test with a Bonferroni-corrected significance level
of 10−3. With more than 12 queries, there is statistical evidence for better
results by CLEO, due to the much more unstable behavior of the GSM
method: after 14 queries CLEO consistently identifies the DM preferred
configuration with a null IQR, while the IQR of the GSM results remains
above 16.6%.

The more challenging test cases are represented by the problems with 10
and 15 Boolean attributes, where the search space size is 1024 and 32768,
respectively, preventing the application of exhaustive search techniques. In
both these cases, the performance of CLEO is much better than that of GSM.

In detail, with 10 Boolean attributes, CLEO on average asks 25 pairwise
comparisons to the DM for identifying her favourite configuration, while the
average percentage utility loss of the configuration recommended by GSM
remains above 10% even if 50 queries are asked to the DM. With 16 queries,
the CLEO curve is within 2%, against a value of around 19% observed for
GSM. The performance difference between CLEO and GSM is significant at
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10−3 level after eight queries, and the significant level goes to 10−11 after 15
queries.

An analogous situation is observed for the (15, 9) test case. The configu-
ration returned by CLEO has an average loss of less than 2% after 26 queries
and less than 1% after 38 ones. On the other hand, after 50 queries, GSM
recommends on average configurations with a loss still above 22.3%. The
performance difference after the first seven queries is statistically significant
with a 10−3 level, which goes to 10−10 after ten queries.

Ultimately, the main reason why GSM underperforms is that it is not
designed to recover sparse preferences, and we do expect sparsifying Bayesian
techniques to perform much better. This is a promising direction for future
research, keeping in mind the complexity of scaling Bayesian approaches to
realistic constructive problems.

8. Conclusion

We introduced CLEO, a preference elicitation algorithm that, unlike ex-
isting approaches, handles constructive preference elicitation problems when
recommending a complex configurable entity. It proceeds by optimizing the
configuration subject to feasibility constraints and user preferences to be
learned during the process. A combinatorial formulation of the unknown
DM utility function is adopted. CLEO consists of an incremental procedure,
iteratively optimizing the learned approximation of the DM utility function
to generate candidate configurations and refining the approximation based
on the human feedback received. Simple pairwise comparison queries are
asked.

CLEO assumes very limited initial knowledge. Because different DM usu-
ally have different decisional criteria, the algorithm just assumes a set of
catalog attributes describing the candidate configurations. The DM prefer-
ences are expressed by soft constraints over the attributes values. However,
only a small subset of catalog attributes (and, by consequence, of soft con-
straints defined on them) may be relevant for a specific DM, resulting in a
sparse learning setting, both in the number of relevant attributes and soft
constraints. The algorithm employs 1-norm regularization, which enforces
sparsity of the learned function, to identify the relevant attributes and con-
straints.

The learned function is a set of weighted soft constraints involving both
discrete and continuous-valued attributes. The configuration maximizing the
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weights of the satisfied constraints is recommended to the DM. To identify
this configuration, a Max-SMT solver is used. CLEO is a generic frame-
work, enabling the adoption of well-assessed learning methods and Max-SMT
solvers.

Experimental results on realistic preference elicitation tasks demonstrate
the effectiveness of CLEO in focusing on the optimal configurations, its ro-
bustness, as well as its ability to recover from suboptimal initial choices. Our
experiments involve preference elicitation tasks over hybrid domains, with
noisy human feedback, (known) hard constraints limiting the set of feasible
configurations and complex non-linear interactions among the decisional at-
tributes (e.g., the cost attribute in the case of the housing problem). CLEO
has also been compared with a state-of-the-art Bayesian preference elicita-
tion approach in a simplified setting with purely discrete attributes. The
experimental results show that CLEO outperforms the benchmarking algo-
rithm, with the performance difference becoming more pronounced when the
complexity of the preference elicitation task increases.

CLEO can be generalized in a number of directions. CLEO currently
turns algebraic constraints into Boolean features by considering their truth
value for the configuration being evaluated. Therefore we can formalize the
optimization task as a weighted Max-SMT problem and address it with off-
the-shelf solvers like Yices. However, one would often like to penalize con-
figurations proportionally to the distance from the satisfaction boundary of
algebraic constraints (e.g., if a distance from the kindergarten of more than
1 km makes it uneasy to always go by foot, a distance of 1.1 km is clearly
less problematic than a distance of 10 km). To address this limitation we
are investigating the use of a recent technology called Optimization Modulo
Theory (OMT) [17]. OMT generalizes weighted Max-SMT by allowing to op-
timize an arbitrary cost function defined on the variables of an SMT theory,
provided its dependence on the numeric variables is linear. The linearity re-
quirement poses some challenges in dealing with composite constraints (e.g.,
we cannot define the cost of a conjunction of predicates as the product of
costs for atomic predicates, as one would do in the purely Boolean case),
but we are planning to try out different fuzzy logic t-norms which OMT can
handle (e.g., Lukasiewicz, minimum) to determine efficient encodings. As a
more general alternative we plan to leverage on the research on hybrid non-
linear arithmetics [64, 65, 66], when the solvers will reach the desired level
of maturity.

The learning stage of CLEO employs a ranking loss function based on
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pairwise preference evaluation. More complex ranking losses have been pro-
posed in the literature (see for instance [67]), especially to increase the im-
portance of correctly ranking the highest scoring configurations, and could
be combined with 1-norm regularization.

In the context of preference elicitation, Bayesian approaches are attractive
as they quantify the uncertainty in the learned DM utility models and provide
a principled approach to estimate the value of the information obtained by
asking a certain query to the DM. In particular, the value of the information
estimates the extent to which a certain query helps in improving the quality
of the learned preference model. The value of information is exploited to
design efficient query strategies consisting of informative queries, see, e.g., the
GSM [5] algorithm we use as benchmark in the experimental comparisons.
Adapting these concepts to our setting, where the utility function is defined
over hybrid domains and models complex non-linear interactions between
attributes, is highly non-trivial, as our comparisons suggest (see Section 7.3).
Non-Bayesian approaches to this problem have been proposed in some follow-
up work of ours, cf. [68].

Another research direction is the extension of our approach to handle
feedback from multiple DMs [69]. In particular, an interesting case study is
the exploitation of preferences of previous DMs to minimize the elicitation
effort for a new user [9, 11]. We also plan to extend our algorithm to tackle
preference drift [70], i.e., the tendency of the DM to change her preferences
during the interactive utility elicitation process. In our combinatorial utility
settings, the DM preference drift can be modelled by weights of soft con-
straints evolving over time and by logic formulae gradually changing (e.g.,
the Boolean term x1∧x2 becoming x1∧x2∧x4 when the DM realizes to have
a more complex requirement).

Finally, this paper focused on preference elicitation tasks involving small-
scale problems typical of an interaction with a human DM. From a more
general perspective, CLEO provides a framework for the joint learning and
optimization of unknown combinatorial functions, involving both discrete
and continuous decision variables. In principle, when combined with ap-
propriate SMT solvers, CLEO could be applied to large combinatorial opti-
mization problems (e.g., arising from industrial applications of combinatorial
optimization [71]), whose formulation is only partially available. However,
the cost of requiring an explicit representation of all possible combinations
of predicates (even if limited to the unknown part) would rapidly produce an
explosion of computational and memory requirements. An option consists
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of resorting to an implicit representation of the function to be optimized,
like the kernelized one we used in [21] when learning quantitative scores. As
our previous results seem to indicate [21], this can degrade the quality of
returned configurations when the utility function is very sparse. Kernelized
versions of zero-norm regularization [72] could be tried to enforce sparsity
in the projected space if needed. However, let us note that the lack of an
explicit formula would prevent the use of all the efficient refinements of SMT
solvers, based on a tight integration between SAT and theory solvers. A pos-
sible alternative is that of pursuing an incremental feature selection strategy
and iteratively solving increasingly complex approximations of the underly-
ing problem.

Follow-up approaches to constructive preference elicitation are rooted on
the same intuition as CLEO, namely that constructive preference elicitation
can be solved by iteratively synthesizing high-quality, diverse recommenda-
tions and using these to elicit the user’s preferences. Like CLEO, all of these
algorithms generate candidate and query recommendations using constraint
or mathematical optimization, like MILP [73] and MiniZinc [74]. These tech-
nologies do not require, for instance, to discretize the continuous features
and to define a multitude of thresholds. The various algorithms differ mostly
in what kind of queries they ask to the user, for instance choice queries
over pairs [75] or sets [73] of candidate configurations or rather improvement
queries on individual configurations [74]. A recent overview of constructive
preference elicitation [68] shows how these algorithms all stem from ideas set
forth by CLEO.
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