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Paolo Frasconi

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Firenze

Abstract

Type Extension Trees are a powerful representation language for “count-of-
count” features characterizing the combinatorial structure of neighborhoods
of entities in relational domains. In this paper we present a learning algorithm
for Type Extension Trees (TET) that discovers informative count-of-count
features in the supervised learning setting. Experiments on bibliographic
data show that TET-learning is able to discover the count-of-count feature
underlying the definition of the h-index, and the inverse document frequency
feature commonly used in information retrieval. We also introduce a metric
on TET feature values. This metric is defined as a recursive application
of the Wasserstein-Kantorovich metric. Experiments with a k-NN classifier
show that exploiting the recursive count-of-count statistics encoded in TET
values improves classification accuracy over alternative methods based on
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simple count statistics.

1. Introduction

Probabilistic logical (or relational) models provide models for properties
and relationships of entities in domains with a relational structure, such as
graphs, networks, or, generally, any kind of structure found in a relational
database. The prevalence of this type of structured data, and the chal-
lenges posed by it for traditional machine learning methods based on simple
attribute-value data models has led to an increasing interest over the past
10 years in probabilistic logical models, and associated statistical-relational
learning techniques [10, 6].

When modeling entities embedded in a relational domain a key question
is what features of the entities are relevant to model and predict properties
of interest. Apart from using attributes of the given entities themselves,
one has in relational learning the ability to construct new features by con-
sidering the relational neighborhood of an entity. Taking into consideration
related entities and their attributes, one obtains a basically unlimited supply
of potential features.

A word on terminology here may be in order: by an attribute we mean
a formal representation in a dataset of a property of individual entities by a
data column. The color property of a flower, for example, could be formalized
by attributes such as color ∈ {red , green, blue, orange, . . . }, or three distinct
attributes RGB red ,RGB green,RGB blue ∈ {0, . . . , 255}. The value space
of an attribute will typically be a simple data type like Boolean, enumer-
ation, or numeric. In classic attribute-value data, feature is often a syn-
onym for attribute. By contrast, we use feature to denote formalized prop-
erties in a much broader sense. First, a feature may only be implicit in
the data as a function of explicit data. For example, brightness as a func-
tion of RGB red ,RGB green, and RGB blue is a feature for an attribute-
value dataset containing the attributes RGB red ,RGB green,RGB blue; the
“number of friends older than 22” is a feature (of a person entity) in a rela-
tional social-network dataset. Second, for relational data, a feature can also
represent a property relating multiple entities. Thus, “titles having more
than 3 words in common” would be a feature for a pair of paper entities in
a bibliographic database. Third, unlike other common frameworks in sta-
tistical learning (like for example kernel methods), in this paper we are not
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interested in simple numerical features but will focus on features whose val-
ues are complex combinatorial data structures representing what we loosely
will call counts-of-counts. In all cases, however, we require that a feature has
a well-defined formal specification and value space. The language available
for the formal specifications defines the feature space.

Relational learning frameworks differ widely to what extent they are
linked to a clearly defined feature space, and to what extent feature se-
lection or feature construction is integrated into the model learning process.
On the one hand, there are techniques that only require the availability of
features of a simple data type. The features construction is not part of the
learning framework, and usually requires an application-dependent data pre-
processing [42]. Propositionalization approaches also maintain a strict sep-
aration between feature construction and learning, but specific frameworks
and representation languages for feature specification are a crucial ingredi-
ent [22].

On the other extreme there are approaches in which feature construction
and model learning are tightly integrated, and, in fact, the learned model
essentially consists of a list of features represented in a formal specification
language. To this category belong most frameworks that are based on predi-
cate logic as the feature representation language [3, 20, 21]. In between, there
are approaches where feature construction is an integral part of the learning
process, but the exact feature space accessible to the learner is less clearly
delimited [1, 18].

A key component in the design of relational features is given by the tools
that are available for constructing features from properties of entities that
are related to the entity of interest by chains of one or several relations.
Since the number of entities that are reached by such “slotchains” [8] varies
from instance to instance, this feature construction usually involves a form
of combination or aggregation of the properties of multiple related entities.

In non-probabilistic inductive logic programming approaches, such an ag-
gregation is usually based purely on existential quantification, i.e., a feature
only determines whether or not a related entity with certain attributes exists.
So, for example, for an “author” entity in a bibliographic database one could
define a Boolean feature saying whether there exists a paper citing a paper
of this author. A number of frameworks that are more closely linked to rela-
tional databases [31, 13] construct features based on aggregation operators.
Here, it would be possible, for example, to construct a feature that repre-
sents the average count of citations that papers of an author have received,
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or a feature that represents the average price of items purchased by a cus-
tomer. Recently approaches that define probability distributions over entire
structures based on pure count features have become quite popular [36, 43].
Here the probability of a relational structure (over a given domain of enti-
ties) is determined by the count of entity tuples that satisfy some relational
constraints, typically expressed as a logical clause.

All these approaches are based on features that only represent relatively
simple summary statistics about quantitative properties of an entity’s rela-
tional neighborhood. However, for many prediction tasks, a more detailed
picture of combinatorial count-of-count features may be relevant. Consider
the tiny bibliographic dataset shown in Figure 1, for instance. It represents
5 different authors, 10 different papers by these authors, and citation links
between the papers. Simple summary features for an author a could be the
number of a’s papers, or his/her total or average citation count. However,
a currently important attribute for an author is the h-index [14]. To pre-
dict the h-index (or another attribute closely linked to the h-index — like
receiving a professional award, or a large research grant) one may need to
consider the more detailed feature of the count of papers with given counts
of citations. In Figure 1, the values for the 5 authors of this count-of-count
feature are shown on the right (an expression k : l meaning that there are l
papers with k citations).

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

a1 a2 a3 a4 a5
a1 : [1 : 1, 2 : 1]
a2 : [1 : 2, 0 : 1]
a3 : [2 : 1, 0 : 2]
a4 : [2 : 1, 0 : 1]
a5 : [0 : 3]

Figure 1: Bibliographic data fragment and count-of-count feature

As another example for count of count features consider the Internet
Movie Database (IMDB), a quite popular object of investigation in relational
machine learning. Here one may be interested in predicting some attribute
of a movie, e.g., whether it will be a box-office success (e.g. [38, 31]). For this
prediction one may consider the cast of the movie, for example in terms of its
size, the count of actors in the cast who have previously received an award
nomination, the total number of award nominations shared by the actors,
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etc. Again, a more detailed count-of-count feature can be more informative
than only flat counts: it will make a difference, perhaps, whether there is a
single actor in the cast with many award nominations (perhaps a single box
office draw actor, but maybe beyond the peak of his/her career?), or whether
there are many actors with one or two nominations each (perhaps a young
all-star cast?).

In information retrieval, relevance measures for a document d given a
query q are often based on counting terms appearing both in d and q. These
counts will usually be weighted by a term weight such as inverse document
frequency, which is given by the number of documents in the collection con-
taining the term. Thus, the relevance measure is computed from a count-
of-count feature. Similarly to Figure 1, for example, a query-document pair
(d, q) could have a feature value [3 : 1, 10 : 2, 7 : 1] expressing the fact that
d and q have 1 term in common that appears in a total of 3 documents, 2
terms in common that each appear in 10 documents, and 1 term in common
that appears in 7 documents.

Finally, consider the relational domain consisting of Web-pages and the
links-to relation. An important attribute of a web-page is its pagerank [5],
and we may want to estimate the pagerank of a web-page based on informa-
tion of its local relational neighborhood. Unlike the h-index in the biblio-
graphic example, which is precisely determined by a relational neighborhood
of radius 2 defined by the chain authorOf (A,P ), cites(P ′, P ), the pagerank1

is fully determined only by the structure of the whole relational domain.
However a useful approximation might be obtained already from local infor-
mation. Clearly relevant for the pagerank of page P is the number of its
incoming links. Also important is the pagerank of the pages P ′ linking to P ,
and hence the number of their incoming links. Furthermore, it is important
to know for the pages P ′ linking to P the number of outgoing links of P ′

(pointing to pages other than P ), because this determines how much of the
pagerank of P ′ is “inherited” by P . Again, the full relevant information is
only given by a comprehensive count-of-count feature.

The purpose of this paper is to develop a framework for the representa-
tion of rich combinatorial count-of-count features in the context of relational
learning. The methodological contribution of the paper has three main com-

1In fact pagerank can be applied beyond Web searching, e.g. in bibliometrics [2] or
collaborative filtering [27]
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ponents:

C1 The definition of Type-Extension Trees (TETs) [7] as a formal repre-
sentation language for count-of-count features

C2 A method for learning Type-Extension Trees in conjunction with a sim-
ple predictive model based on TET-features. This gives us a method
for relational feature discovery , as well as a baseline supervised learn-
ing framework. In [7] TET learning employed the classic notion of
information gain, while in this paper we take advantage of the recently
introduced relational information gain [26].

C3 The definition of a novel metric on TET feature values, which enables
distance-based learning techniques that make use of count-of-count fea-
tures in a substantial manner.

To illustrate the relationship and significance of these three components,
consider an analogy with learning from standard numerical attribute-value
data, where each instance is fully characterized by a tuple of numeric at-
tributes, and a class variable. Figure 2 on the left shows a small dataset with
numeric attributes A1, A2, N1, . . . , N4 and a binary class label with values
p(ositive) and n(egative). In this dataset the class is only correlated with the
attributes A1 and A2, whereas N1, . . . , N4 are random noise. The plot in the
left part of the figure represents the values of A1, A2 and C. The relevant
feature subset for predicting the class label then is {A1, A2}, out of the space
of all possible feature subsets (Figure 2 A). The set {A1, A2} may also be
called a sufficient or model-independent feature for predicting C. No con-
crete type of machine learning model will use all the information represented
by this feature. A decision tree model, for instance, will only use finitely
many Boolean features defined by lower- or upper-bounds on A1, A2-values.
A linear classifier will only use a linear function of A1, A2. We may call
the spaces of such features reduced or model-specific feature spaces (Figure 2
B). A proper distinction between the sufficient and reduced feature spaces is
important when we interpret the result of learning a specific model also in
terms of feature discovery: the decision tree learned from our example dataset
(Figure 2 C left) uses four Boolean features A1 > 0.79, . . . , A2 > 0.75, and,
strictly speaking, has “discovered” exactly these four features. However, one
will typically want to generalize, take {A1, A2} as the discovered feature in
the sufficient feature space, and assume that suitable reductions of {A1, A2}
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A1 A2 N1 N2 N3 N4 C
0.37 0.22 0.86 0.2 0.6 0.01 p
0.12 0.18 0.4 0.48 0.28 0.25 p
0.68 0.11 0.76 0.59 0.17 0.18 n
. . . . . . . . . . . . . . . . . . . . .

A1

A2 A1 > 0.79
A2 > 0.42
A2 > 0.75

−22.1A1 + 4.3A2

+1.2N1 − 1.4N2

−3.7N3 + 3.4N4

{}, {A1}, {A2}, {N1}, . . . , {A1, A2}, {A1, N1},
. . . , {A1, A2, N1}, . . . {A1, A2, N1, N2, N3, N4}

A1 > 0.65

p A1 > 0.79

A2 > 0.42

n A2 > 0.75

p n

n

log(P (p)/P (n)) =
12.8− 22.1A1 + 4.3A2+
1.2N1 − 1.4N2 − 3.7N3

+3.4N4

Figure 2: Analogy: numerical data. A: Sufficient feature space, B: Model-specific feature
spaces, C: “lightweight” learned models

in other model-specific feature spaces will also lead to good performance of
other types of models. Fitting a logistic regression model to our data (Fig-
ure 2C right) directly leads only to the construction of the linear function
12.8−22.1A1 · · ·+3.4N4 as a predictive feature. Again, one can abstract from
this reduced feature, and try to identify the “discovered” model-independent
feature. Here this abstraction is not as clear-cut as in the decision tree case.
Considering the attributes whose coefficients in the linear function have the
highest absolute values for inclusion in the feature subset, one here might
take any of the subsets {A1}, {A1, A2}, {A1, A2, N3, N4} as the discovered
model-independent feature.

Our objective (C1) aims at defining for relational data a rich, model-
independent feature space that corresponds to the space of attribute subsets
(Figure 2 A), and that includes complex count-of-count features. This defi-
nition is developed in Section 2 via syntax and semantics of Type Extension
Trees (see Section 2.1). The construction of a sufficient feature space for
relational data not only faces the challenge of the basically unlimited sup-
ply of possible features, but also the challenge of the diversity of relational
learning tasks: attribute prediction for individual entities, link prediction,
and classification of whole relational structures (e.g. molecules) require the
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specification not only of features for single entities, but also for pairs of enti-
ties, tuples of entities, and global features of a whole relational dataset. TET
features provide a uniform and coherent framework for all these cases.

Component (C2) corresponds to the feature discovery process via the
learning of a lightweight model as illustrated in Figure 2. This is achieved
by first defining directly on TET-feature values a discriminant function that
turns a TET-feature into a predictive model (Section 3). Based on this
discriminant function a TET structure learning algorithm is developed that,
strictly speaking, will discover a feature (T, f) (T a TET, f a discriminant
function defined on T ), but from which in a trivial abstraction step we can
extract the model-independent TET feature T (Section 5).

Given a TET – either learned or manually constructed based on expert
knowledge – we finally in component C3 define a predictive model based on
TET features that makes use of the TET’s count-of-count values in a more
substantial and sophisticated manner than the discriminant function. For
this we define a metric on TET values that then enables nearest neighbor
classification (Section 4).

2. Feature Representation with Type Extension Trees

2.1. TET Syntax and Semantics

In this section, we review the basic syntax and semantics definitions
of Type Extension Trees [17]. To simplify the definitions, we will assume
that all attributes and relations are Boolean, which means that a multi-
valued attribute like ’color’ that would give rise to atomic propositions such
as color(hat,red) is assumed to be encoded using Boolean attributes like
color red(hat). Relational data can then be viewed as a model in the sense
of the following definition.

Definition 2.1. Let R be a relational signature, i.e. a set of relation symbols
of different arities. A (finite) model for R, M = (M, I) consists of a finite
domain M , and an interpretation function I : r(a) → {t, f} defined for
all ground atoms r(a) constructible from relations r ∈ R and arguments

a ∈ Marity(r).

Throughout the paper we use f and t as shorthands for false and true.
Furthermore, we denote objects (entities) from a domain with lowercase let-
ters, and logical variables with uppercase letters. Only first-order formulae

8



are acceptable, i.e. variables always stand for objects. Bold symbols always
denote tuples of the corresponding non-bold symbols, e.g., in the foregoing
definition: a = (a1, . . . , aarity (r)). In logic programming terminology, M
is a Herbrand interpretation for the signature consisting of R and constant
symbols for the elements of M . For convenience we may assume that the
domain M is partitioned into objects of different types , that arguments of
relations are typed, and that I is only defined for ground atoms with argu-
ments of appropriate types. For the sake of simplicity we do not introduce
any special notation for specifying types. Rather, in our examples below we
will typically use generic capital letters (X, Y , Z, U , V , W ) to indicate vari-
ables which may range over all domain objects, and specific letters (like A for
author or P for paper) to implicitly mean that the corresponding variables
are restricted to a subset of objects. With a slight abuse of notation, if τ(a)
is a complex ground sentence, we denote by I(τ(a)) its truth value under
interpretation I.

Definition 2.2. An R-literal is a (negated) atom r(V ) (r ∈ R ∪ {=}, V
a tuple of variable symbols). We also allow the special literal �(V ), which
always evaluates to t. An R-type is a conjunction of R-literals.

A type extension tree (TET) over R is a tree whose nodes are labeled with
R-types, and whose edges are labeled with (possibly empty) sets of variables.

In the following we will usually omit the reference to the underlying signa-
ture R, and talk about literals and types, rather than R-literals and R-types.

Note that according to Definition 2.2 a literal cannot contain any constant
symbols as arguments. Since R is assumed to only contain relation and no
constant symbols, this is consistent with the usual definition of an R-literal.
The term “type” for a conjunction of literals is motivated by two distinct (yet
compatible), existing uses of “type”: on the one hand, the type of an entity
is commonly understood as a property expressed by a single unary predicate,
e.g., movie(V ) or person(V ). Our definition generalizes this to types of tuples
of objects, and to types which are expressed via a conjunction of literals. On
the other hand, “type” is used in mathematical model theory for consistent
sets of formulas using free variables V1, . . . , Vn that describe properties of
n-tuples of domain elements [15]. Our definition is a special case of type in
this sense by limiting it to a single, quantifier-free conjunction of literals.
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Example 2.3. The following is a TET for a signature containing relations
author, authorOf and cites:

author(A)
P1−−→ authorOf(A,P1)

P2−−→ cites(P2, P1) (1)

According to the semantics given below, this TET represents a feature that is
sufficient for computing the h-index of an author, for example.

Example 2.4. A TET that will be sufficient for representing relevance fea-
tures based on inverse-document frequency weights is

�(D,Q)

term in document(T,D), term in query(T,Q)
T

term in document(T,D′)
D′

(2)

Labeled edges in a TET are related to quantifiers in predicate logic: like
a quantifier, a labeled edge binds all occurrences of the variables associated
with the edge in the subtree rooted at this edge. The free variables of a TET
are all variables not bound by an edge label. We call a TET propositional
if all edge labels are empty. The TET in (1) has the single free variable
A, the one in (2) the two free variables D and Q. In both cases, the root
node essentially serves to introduce the free variables, and, in case of (1), to
explicitly establish that the variable ranges over entities of type author. If
such type constraints on variables are assumed to be implicit in the variable
names, then the root will usually be a vacuous �() atom, as in (2).

We write T (V ) to denote a TET whose free variables are among the
variables V (but does not necessarily contain all of them). We write

T (V ) = [τ(V ), (W1, T1(V ,W1)), . . . , (Wm, Tm(V ,Wm))] (3)

to denote a TET with a root labeled with τ(V ), and m sub-trees T1(V ,Wi, )
reached by edges labeled with variables Wi (possibly empty).

A TET T (V ) with free variables V = V1, . . . , Vk will define a feature for
k-tuples of domain entities: for any model M, and any a ∈ Mk the TET
defines a feature value V (T (a)). Figure 1 on the right shows (in a somewhat
simplified form) the values V (T (a1)), . . . , V (T (a5)) for the TET T (A) in (1).
We give the general definition of TET semantics in two steps: first we define
the value space of nested counts associated with a given TET T (V ), and
then the actual mapping a �→ V (T (a)).
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Definition 2.5. For any set A we denote with multisets(A) the set of all
multisets over A. We denote with {a1 : k1, . . . , an : kn} a multiset that
contains ki copies of ai. The value space V(T ) of a TET T is inductively
defined as follows:

Base: If T = [τ ] consists of a single node, then V(T ) = {t, f}.
Induction: If T = [τ, (W1, T1), . . . , (Wm, Tm)], then

V(T ) = {f} ∪ {t} ×
m×
i=1

multisets(V(Ti))

We note that according to this definition the structure of V(T ) only de-
pends on the tree structure of T , but not on the labeling of the edges of T ,
or the types at the nodes of T .

Example 2.6. (1) is a graphical representation of a TET that following (3)
can be written as

T (A) = [author(A), (P1, [authorOf(A,P1), (P2, [cites(P2, P1)])])]. (4)

The recursive definition of V(T ) is grounded in V([cites(P2, P1)]) = {t, f}. In
other words, the single node TET [cites(P2, P1)] represents a Boolean feature
for pairs of papers. The inductive construction proceeds with the definition
of V(T ′(A,P1)), where

T ′(A,P1) = [authorOf(A,P1), (P2, [cites(P2, P1)])] (5)

represents a feature of an author-paper pair A,P1. This value space is con-
structed according to the inductive case of Definition 2.5 as the union of {f}
and pairs of the form (t, A), where A is a multiset of t,f values. Thus, exam-
ples are: f (according to Definition 2.7 below, this is the feature value of an
author-paper pair (a, p), where a is not the author of p), (t, {f : 9, t : 1}) (this
will be the feature value, e.g., of the pairs (a1, p1) and (a2, p4) in Figure 1),
or (t, {f : 8, t : 2}) (the feature value of (a1, p2) in Figure 1).

11



Finally, values of the full TET (4) are either f , or (t, A), where A is a
multiset of values from V(T ′(A,P1)). Examples are

γ1 :

⎛
⎝t,

⎧⎨
⎩

f : 8
(t, {f : 9, t : 1}) : 1
(t, {f : 8, t : 2}) : 1

⎫⎬
⎭
⎞
⎠

γ2 :

⎛
⎝t,

⎧⎨
⎩

f : 7
(t, {f : 9, t : 1}) : 2
(t, {f : 10}) : 1

⎫⎬
⎭
⎞
⎠

γ3 :

⎛
⎝t,

⎧⎨
⎩

f : 7
(t, {f : 8, t : 2}) : 1
(t, {f : 10}) : 2

⎫⎬
⎭
⎞
⎠

γ4 :

⎛
⎝t,

⎧⎨
⎩

f : 8
(t, {f : 8, t : 2}) : 1
(t, {f : 10}) : 1

⎫⎬
⎭
⎞
⎠

γ5 :

(
t,

{
f : 7
(t, {f : 10}) : 3

})

(6)

Here, for better readability, the outer multisets are written as column vec-
tors, rather than in comma-separated linear form (used for the inner multi-
sets). These five values are just the feature values of the five authors a1, . . . , a5
in Figure 1. We will usually use γ to denote TET values. We note that the
t component of a value of the form (t, A), A a multiset, is redundant: since
every occurrence of a multiset is prefixed by such a t one could just write
A instead of (t, A). However, adding the explicit t as an embellishment to
the value lets us maintain a clearer match between the structure of a TET T
and its values γ ∈ V(T ): otherwise, for example, the value (t, {f : 1}) of a
two-level TET would become just {f : 1} and easily confused with a value f .

In the preceding example we have already introduced the values of the
TET feature (1) for the entities a1, . . . , a5 in Figure 1. These values refine
the informal count-of-counts shown in Figure 1 by representing in a more
principled way the recursive nature of count-of-counts, and by also including

12



f counts (in this case, the number of papers not written by a given author,
and the number of papers not citing a given paper). In the following we give
the general definition of the feature value V (T (a)) ∈ V(T (V )) for a specific
tuple a.

Definition 2.7. Let M = (M, I) be a model, T (V1, . . . , Vk) a TET, and
a ∈ Mk. The value V (T (a)) ∈ V(T ) is defined as follows:

Base: If T (V ) = [τ(V )] consists of a single node, then V (T (a)) := I(τ(a)).

Induction: If T (V ) = [τ(V ), (W1, T1(V ,W1)), . . . , (Wm, Tm(V ,Wm))]:

(a) If I(τ(a)) = f then V (T (a)) := f .

(b) If I(τ(a)) = t then

V (T (a)) := (t, μ(a,W1, T1), . . . , μ(a,Wm, Tm)),

with μ(a,Wi, Ti) ∈ multisets(V(Ti)) given by

{γ : |{b ∈ Mki s.t. V (Ti(a, b)) = γ}| }, (7)

where γ ranges over all values in V(Ti), and ki is the number of
variables in Wi.

We remark that the original definitions given in [17] treated the cases
I(τ(a)) = f and I(τ(a)) = t symmetrically, which is why values according
to Definition 2.5 were called “pruned” in [7] (because here the recursive
evaluation of counts is cut off once a node evaluating to f is encountered on
a TET branch).

We next consider in some detail the special case of unlabeled edges in a
TET, and, in particular, purely propositional TETs. Consider a TET with
a single unlabeled branch attached to the root: T = [τ(V ), (∅, T1(V ))]. The
multiset (7) then contains the single value γ = V (T1(a)). Generally, an
unlabeled edge in a TET induces in the recursive structure of V(T ) a single
value of the sub-TET T ′ reached by this edge, whereas an edge labeled with
one or several variables induces a multiset of such values. The following
example serves to illustrate the nature of propositional TETs. At the same
time the example shows how different tree structures of a TET can be used
to represent different logical properties.
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Example 2.8. Consider a propositional TET T (V ) with V = v1, . . . , vn.
Since no further variables are introduced via edge labels, then all nodes only
contain literals in the variables V , and therefore V (T (a1, . . . , an)) only de-
pends on the relational sub-structure induced by a1, . . . , an in M. By varying
the types at the nodes, as well as the tree structure of T (V ), the values
V (T (a)) can represent a variety of different structural properties.

Consider a relational signature that contains a single binary (“edge”) re-
lation symbol e(·, ·). The upper part of Table 1 shows 4 different propositional
TETs with the two free variables v1, v2. In all cases, the TET value T (a1, a2)
is determined by the relational sub-structure induced by a1, a2.

The leftmost column in Table 1 lists the four different possible sub-structures,
and the remaining columns the values returned by TETs (a)-(d) for these
sub-structures.

TET (a) represents a feature that only tests whether a1, a2 define the sub-

structure
a1•→a2• . TET (b) is doing a two-stage test for the two possible edge

relations. If the first test fails, i.e. there is no edge e(a1, a2) then the value
is false, regardless of the presence or absence of the converse edge.

Both (c) and (d) use a vacuous root-type �(v1, v2) to connect sub-TETs
that are evaluated separately. The values in columns (c) and (d) in the table
list the values of the different sub-TETs according to the top-to-bottom order
on the branches defined by the graphical representation above. Both TETs
discriminate between all four a1, a2-structures in the sense that each structure
has a unique value. In this sense, (d) could be seen as a redundant version of
(c). However, as we will see in Section 4, (c) and (d) exhibit quite distinct
behavior with respect to the metric we will define on TET values.

2.2. TET definable features

In this section we illustrate that TETs provide a representation language
for a rich class of fundamental features that are usable in a variety of learning
frameworks, and that, thus, TET-features can play the role of the sufficient
feature space in analogy to Figure 2 A.

Example 2.9. Inductive Logic Programming (ILP) is probably the oldest ap-
proach to relational learning. In ILP one learns classification rules for a tar-
get predicate, usually in the form of logical clauses. A classic example for ILP
are Bongard problems, where scenes consisting of geometric objects have to
be classified as positive or negative examples. Here, any such scene is a rela-
tional model, whose domain consists of geometric objects on which attributes
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Table 1: Propositional TETs and their values

e(v1, v2),¬e(v2, v1)
(a)

e(v1, v2) e(v2, v1)

(b)

�(v1, v2)

e(v1, v2)

e(v2, v1)
(c)

�(v1, v2)

e(v1, v2), e(v2, v1)

e(v1, v2),¬e(v2, v1)

¬e(v1, v2), e(v2, v1)

¬e(v1, v2),¬e(v2, v1)
(d)

(a) (b) (c) (d)
a1• a2• f f (t, {f}, {f}) (t, {f}, {f}, {f}, {t})
a1•→a2• t (t, {f}) (t, {t}, {f}) (t, {f}, {t}, {f}, {f})
a1•←a2• f f (t, {f}, {t}) (t, {f}, {f}, {t}, {f})
a1•↔a2• f (t, {t}) (t, {t}, {t}) (t, {t}, {f}, {f}, {f})

like triangle(X) and in(X, Y ) are defined. Then a rule for the positive scene
examples can be

positive ← circle(X) ∧ triangle(Y ) ∧ in(Y,X),

which says that a scene is positive, if it contains a triangle inside a circle
(cf. [35, Chapter 4]). The feature used by this classification rule, thus, is a
reduction of the TET feature

� X,Y−−−−→ circle(X) ∧ triangle(Y ) ∧ in(Y,X).

Values of this simple TET are of the form (t, {f : k, t : l}), giving the counts
of object pairs that satisfy, respectively do not satisfy, the body of the rule.
The reduced ILP feature is just the Boolean that tests whether l > 0.

The original limitation to Boolean features defined by existential quan-
tification has in some ILP based approaches been lifted via the introduction
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of special literals that contain aggregators for quantitative information. For
example, [44] introduce aggregate conditions, which now would allow for a
rule like

positive ← circle(X) ∧ count{Y | triangle(Y ) ∧ in(Y,X)} ≥ 3,

which says that a scene is positive, if it contains a circle with at least three
triangles inside. The Boolean feature used by this rule is a reduction of the
TET feature

� X−−−−→ circle(X)
Y−−−−→ triangle(Y ) ∧ in(Y,X). (8)

While not explicitly explored in [44], nested aggregate conditions also could
be possible:

positive ← count{X | circle(X), count{Y | triangle(Y ) ∧ in(Y,X)} ≥ 3} ≥ 2

would now classify a scene as positive if it contains at least two circles, each
with at least three triangles inside. This Boolean feature still is a reduction
of the underlying count-of-count feature represented by (8).

Several other frameworks have been proposed for constructing numeric
or Boolean features by iterated aggregation over chains of relational depen-
dencies. Some of these also are in the ILP tradition [22], others arise out
of a combination of relational extensions of probabilistic graphical models or
decision trees [8, 19, 1, 31]

While in this previous work nested aggregation was considered, all these
frameworks require an immediate aggregation at each step along a chain of
relations. Thus, considering bibliographic data for example, one could define
an author feature that represents whether the author has at least seven publi-
cations with at least seven citations each. However, a complex count-of-count
feature that would be sufficient for computing the h-index is outside the scope
of these feature construction methods.

Most of the approaches here mentioned also consider (or, in some cases,
focus on) numeric predicates, and aggregation of numeric values using func-
tions like mean and max. For the purely categorical (especially Boolean)
data that we consider in this paper, the only common aggregation function is
count (with “exists” as the special case “count ≥ 1”). In spite of our current
restriction to Boolean data, the same basic TET architecture could also be
extended to numeric data, and thereby also be used to represent the under-
lying sufficient combinatorial and numerical information needed to compute
more model-specific aggregated features.
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Example 2.10. In this example we focus on Markov-Logic Networks (MLNs)
[36] in the generative setting. In this case MLNs define a distribution over all
models M for a given signature R, and a fixed domain M . This distribution
is defined by a knowledge base KB containing first-order logic formulas φi

with attached numeric weights wi:

φ1(X1) w1

KB : . . . . . .
φn(Xn) wn

(9)

We refer to [36] for the details of MLN syntax and semantics. Relevant in
the current context is the fact that the distribution is defined as a function of
count features, which, adapting the notation of the previous example, can be
written in the form

count{X | φ(X)} (10)

where now φ(X) can be any first-order formula with free variables X. While,
thus, very similar in appearance to the aggregate features of the preceding
example, there are some essential differences: first, MLNs depend on the
actual integer-valued count feature, not only on derived Boolean features of
the form count{. . .} ≥ k. Second, (10) takes the count of all substitutions of
tuples of domain elements for all the free variables X in φ(X). As a result,
whereas count{Y | triangle(Y )∧ in(Y,X)} ≥ 3 was a feature of the object X,
now count{X | φ(X)} is a feature of entire models M.

Concrete MLN implementations will often allow only a restricted class
of formulas φ(X) in the model specification (e.g. quantifier free formulas).
However, the use of arbitrary first-order formulas poses no problem at the
level of semantic definitions, and so we here consider models with no restric-
tions on the φ(X). For any such count feature one can construct a TET
T () such that the integer-valued feature (10) is obtained as a reduction of

the values V (T ()). We construct T () in the form � X−→ Tφ(X), where now
Tφ(X) is a TET with free variables X, such that the truth value of φ(a) can
be read off the TET value V (Tφ(a)).

The construction of Tφ is by induction on the structure of φ. In the atomic
case φ(X) ≡ r(X) Tφ contains the single node r(X). For a conjunction
φ(X) = φ1(X1) ∧ φ2(X2) one lets Tφ(X) = [�, (∅, Tφ1(X1)), (∅, Tφ2(X2))].
At this point in the construction TET values V (Tφ(a)) already encode more
information than the mere Boolean value φ(a), since it also contains the in-
dividual truth values for the two conjuncts φ1, φ2 (cf. (c) in Table 1). For
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the negation case φ(X) ≡ ¬ψ(X) one can simply let Tφ = Tψ: if the truth
value of ψ(a) is retrievable from V (Tψ(a)), then so is the truth value of
¬ψ(a). In the quantifier case φ(X) ≡ ∃Y ψ(Z, Y ) (X = Z ∪ Y ) one defines
Tφ(X) = [�, (Y, Tψ(Z, Y ))]. Again, the TET constructed in this step repre-
sents a counting-refinement of the Boolean feature actually required (note that
while (10) has an outermost counting semantics for the variables X, there is
a standard Boolean semantics for any quantifiers appearing internally in φ).

Example 2.11. Graphs are a special kind of relational models in which there
is a single binary (edge) relation e(X, Y ), and, in the case of labeled graphs,
multiple unary relations li(X) representing the different node labels. An im-
portant feature considered in graph mining problems, and used, for example,
to define kernel functions on graphs [9], is the number of subgraphs of a
specific structure: if H is any (finite) graph, then

φH(G) :=|{H ′ | H ′ ⊆ G,H ′ � H}|
counts the number of subgraphs H ′ isomorphic to H that are embedded in G.
The (unlabeled) graph H with nodes {1, . . . , k} can be described by a type that
contains one variable Xi for each node i of H, and the literal e(Xi, Xj) for
each edge i → j in H. Then

� X1,...,Xk−−−−−−−−→
∧

(i,j):e(i,j)

e(Xi, Xj)

is just the TET feature that corresponds to φH(G). The case of labeled graphs,
or the case where H ′ ⊆ G is the induced subgraph relationship (i.e., there are
no edges in G between any nodes matched to nodes of H ′, other than the
edges also present in H ′) are treated in a similar manner.

The preceding examples illustrate the ability of the TET language to
represent in a coherent manner a wide range of features used in a variety
of different relational learning frameworks. There are some limitations to
the TET language, though: TETs are essentially rooted in first-order logic,
with a refined counting semantics replacing Boolean existential or universal
quantification. They cannot represent features that are not first-order in
nature, such as features that are defined in terms of the transitive closure of
a relation, which can only be defined in suitable extensions of first-order logic,
such as least fixed-point logic, or transitive closure logic [11]. For example,
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“paper p1 can be found by tracing a chain of citations starting with paper
p2” is not TET-expressible. Also, the integer-valued feature “Erdös number
of author a” cannot be captured by a TET, since it depends on a chain of
co-authorship relations of undetermined length.

3. TET Discriminant Function

A TET alone only defines a feature of objects in a relational domain.
TET-defined features can be incorporated in many ways into existing types
of predictive or descriptive models. For example, one can define distance or
kernel functions on TET value spaces V(T ), thereby making TET features us-
able for standard clustering techniques, or SVM classifiers. We will introduce
a metric on V(T ) in Section 4. In this section we first describe how to build
a predictive model on a TET feature using simple discriminant functions on
TET values, i.e. functions of the form [7]

d : V(T ) → R.

Such discriminant functions directly lead to binary classification models. We
use {+,−} to denote binary class labels. Then one can learn two discriminant
functions d+, d−, and a threshold value t, and assign class label + to a tuple
a iff

d+(V (T (a))/d−(V (T (a)) > t. (11)

3.1. Defining the Simple TET Discriminant

We now introduce one simple type of TET-discriminant function. The
motivation for the particular form of discriminant function we propose is
twofold: first, for a given TET, these discriminants are efficient to learn and
evaluate. Since the discriminant function is also used in TET learning, within
a wrapper evaluation routine for candidate TETs (see Section 5), efficiency is
an important issue. Second, as we will show below, our discriminant function
definition can be motivated as a uniform generalization of the classic decision
tree and Naive Bayes models.

Definition 3.1. Let T be a TET. A weight assignment β for T assigns a
nonnegative real number to all nodes of T . A weight assignment can be
written as (βr,β1, . . . ,βm), where βr is the weight assigned to the root, and
βi is the weight assignment to the ith sub-tree.

For a TET T with node weights β we define the discriminant function dβ

as follows. Let γ ∈ V(T ):
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Table 2: A propositional dataset

a(X)
b(X) c(X) t f
t t 1;15 10;6
t f 0;10 9;3
f t 5;3 15;9
f f 4;2 6;2

• If γ = f define dβ(γ) := 0.

• If γ = t then T = [τ(V )] consists of a single node, and β = (βr).
Define dβ(γ) := βr.

• If γ = (t, μ1, . . . , μm), μi ∈ multisets(V(Ti)), define

dβ(γ) := βr ·
m∏
i=1

∏
γ′∈μi,γ′ �=f

1

βr
dβi(γ′).

In the following we illustrate the nature of this discriminant function. We
begin by investigating TETs in a propositional setting, where it turns out
that our simple discriminant is closely related to the standard decision tree
and Naive Bayes models.

Table 2 shows a hypothetical dataset with observations of 100 cases for
which three Boolean attributes a, b, c and a binary class label class with values
+,− are recorded. To be consistent with our relational notation, we view
the Boolean attributes as unary relations a(X), b(X), c(X) defined on the
observations X. The entries in the table represent pairs n+;n− of counts for
the positive and negative class with the given attribute value combination.

Figure 3 on the left shows a decision tree that could be constructed for
this data. The nodes are labeled with the counts n+;n− of positive/negative
examples that reach the nodes. An example e with attribute values a(e) =
t, b(e) = f, c(e) = t, for instance, would be classified as positive, or, more
precisely, would be estimated as being positive with probability 9/14.

The right side of the Figure 3 shows a propositional TET for a, b, c. This
TET is labeled with a weight assignment, where the weight at each node
corresponds to the empirical frequency n+/(n+ + n−) of the positive class
among the examples that satisfy all the conditions on the path from the root
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down to the node. For the example a(e) = t, b(e) = f, c(e) = t the TET in
Figure 3 evaluates to

V (T (e)) = (t, {(t, {f}, {t})}, {f})
For this value, the discriminant function evaluates as

dβ+(V (T (e))) = 50/100
10/40

50/100

9/14

10/40
= 9/14 = P (+|a(e) = t,¬b(e) = t).

(12)

a
50;50

b
10;30

t

1; 25

t

9; 5

f

c
40;20

f

25; 15

t

15; 5

f

�(X)
50/100

a(X)
10/40

b(X)
1/26

¬b(X)
9/14

¬a(X)
40/60

c(X)
25/40

¬c(X)
15/20

Figure 3: Decision tree and TET discriminant d+

A Naive Bayes model learned from the data of Table 2 is shown in the
top of Figure 4, with a corresponding TET below. Again the TET nodes
are labeled with weight assignments corresponding to empirical frequencies
n+/(n+ + n−).

Now the example a(e) = t, b(e) = f, c(e) = t evaluates to the TET value

V (T (e)) = (t, {t}, {f}, {f}, {t}, {t}, {f}),
which gives a discriminant function value equal to

dβ+(V (T (e))) = 50/100
10/40

50/100

30/46

50/100

31/64

50/100

= P (+)
P (+ | a(e) = t)

P (+)

P (+ | b(e) = t)

P (+)

P (+ | c(e) = t)

P (+)

= P (+)
P (a(e) = t | +)

P (a(e) = t)

P (¬b(e) = t | +)

P (¬b(e) = t)

P (c(e) = t | +)

P (c(e) = t)
(13)

While (13) is not quite equivalent to the posterior probability P (+ | a(e) =
t,¬b(e) = t, c(e) = t) that one would obtain from the Naive Bayes model,
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class
+ -

50/100 50/100

a
t f

+ 10/50 40/50
- 30/50 20/50

b
t f

+ 20/50 30/50
- 34/50 16/50

c
t f

+ 31/50 19/50
- 33/50 17/50

�(X)
50/100

a(X)
10/40

¬a(X)
40/60

b(X)
20/54

¬b(X)
30/46

c(X)
31/64

¬c(X)
19/36

Figure 4: Naive Bayes model and TET discriminant d+

one still obtains that the ratio dβ+(V (T (e)))/dβ−(V (T (e))) (with dβ− similarly

defined as dβ+, only using the negative class frequencies n−/(n+ + n−) as
weights) is equal to odds ratio P (+ | a(e), b(e), c(e))/P (− | a(e), b(e), c(e))
in the Naive Bayes model.

The special cases (12) and (13) for TETs emulating decision trees and
Naive Bayes models, respectively, generalize to arbitrary propositional TETs
as follows. To simplify matters, consider a TET T with a single free variable
X, and vacuous root �(X). Assume that T has n nodes besides the root,
and that the ith node is labeled with a type τi(X). We denote with φp

i (X)
the Boolean feature that is the conjunction of all types on the path from the
root to node i (not including τi(X) itself). Let node i be labeled with the
weight P (+ | φp

i = t, τi = t).
Now consider an example e. It defines a “prefix” of T consisting of all

nodes i for which φp
i (e) ∧ τi(e) evaluates to t. Without loss of generality,

assume that the nodes in this prefix are just i = 1, . . . , l for some l ≤ n.
Then the discriminant function value for e is

dβ+(V (T (e))) = P (+)
l∏

i=1

P (+ | φp
i = t, τi = t)

P (+ | φp
i = t)

= P (+)
l∏

i=1

P (τi = t | +, φp
i = t)

P (τi = t | φp
i = t)

Let ki ≥ 0 be the number of children of node i ≤ l within the prefix
{1, . . . , l} (ki will usually be less than the actual number of children of τi
in the full TET T ). For j = 1, . . . , ki let φj

i be the Boolean feature that is
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the conjunction of all prefix nodes contained in the subtree rooted at the jth
child of i (note that φj

i depends on e, which defines the relevant prefix). If
we now assume that for each i ≤ l the child features φj

i (j = 1 . . . ki) are
independent given φp

i ∧ τi and class = +, then one obtains

P (+)
l∏

i=1

P (τi = t | +, φp
i = t) = P (+,∧l

i=1τi = t),

and from that
dβ+(V (T (e)))

dβ−(V (T (e)))
=

P (+,∧l
i=1τi = t)

P (−,∧l
i=1τi = t)

. (14)

Thus, in this way dβ+/d
β
− can be interpreted as an odds ratio. The indepen-

dence assumption we made to arrive at this interpretation is appropriate for
the decision tree and Naive Bayes emulating TETs: in the first case, it actu-
ally becomes vacuous, because here the prefix defined by an example always
consists of a single branch. For the Naive Bayes TETs, it is just the regular
Naive Bayes assumption. For TETs that do not have a pure decision tree or
Naive Bayes structure, the independence assumption can still be reasonable,
and lead to a coherent probabilistic interpretation of the d+/d− ratio. Note,
however, that one also easily can construct TETs in which our independence
assumption is infeasible, due to logical dependencies between different child
features φj

i . Thus, while our analysis here leads to a general understanding
of the nature of the discriminant function, it does not necessarily endow it
in all cases with a coherent probabilistic semantics.

So far, we have considered propositional TETs only. However, the anal-
ysis of the discriminant function for this case directly carries over to non-
propositional TETs. For this we only have to observe that for any given
concrete domain M one can transform a TET T into an equivalent propo-
sitional one by grounding all variable-introducing edges, i.e., by replacing a

branch
W−−→ T ′(V ,W ) with the set of branches −−→ T ′(V ,a) (a ∈ M |W|). If

all the groundings of the original branch are labeled with copies of the original
weight assignment, then the discriminant function defined by the grounded
TET is the same as the discriminant function defined by the original TET.
Thus, the interpretation of the discriminant function on propositional TETs
also explains the discriminant function on general TETs, with two additional
assumptions, or observations: our general independence assumption implies
that features T ′(V ,a), T ′(V ,a′) defined by two different substitutions of
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constants in an sub-TET T ′(V ,W ) are assumed as independent, and the
d+/d− ratio one obtains is only an approximation of (14), since the weights
defined by the initial TET are not exact class frequencies for the ground fea-
tures, but only shared approximations obtained from aggregating statistics
from all groundings (see Section 5).

Example 3.2. Consider the following weight assignment for the TET from
Example 2.3:

1.0

author(A)
P1−−−→

1.5

authorOf(A,P1)
P2−−−→

2.0

cites(P2, P1)

We compute the discriminant function value for γ2 and γ3 from Example 2.6:

γ2 :

⎛
⎝t,

⎧⎨
⎩

f : 7
(t, {f : 9, t : 1}) : 2
(t, {f : 10}) : 1

⎫⎬
⎭
⎞
⎠ γ3 :

⎛
⎝t,

⎧⎨
⎩

f : 7
(t, {f : 8, t : 2}) : 1
(t, {f : 10}) : 2

⎫⎬
⎭
⎞
⎠

Since the underlying TET consists of a single branch, here m = 1 at all levels
in the recursive value definition. At the first level of recursion we obtain:

dβ(γ2) = 1.0 · (dβ((t, {f : 9, t : 1})))2 · dβ((t, {f : 10})) (15)

To proceed, we compute for values of the form (t, {f : k, t : l}) for the sub-
TET T ′(A,P1) (cf. (5)):

dβ((t, {f : k, t : l})) = 1.5 ·
(
2.0

1.5

)l

.

Plugging this into (15) gives

dβ(γ2) = 1.0 ·
(
1.5 ·

(
2.0

1.5

)1
)2

· 1.5 = (1.5)3 ·
(
2.0

1.5

)2

. (16)

The last re-arrangement of the terms in (16) can be read as follows: each
paper P1 written by author A contributes a factor 1.5 to the discriminant
function value, and each citation to a paper by A contributes a factor of
2.0/1.5. Since in γ3 the total number of authored papers, and citations to
these papers also is 3, respectively 2, the same discriminant function value is
obtained:

dβ(γ3) = 1.0 · 1.5 ·
(
2.0

1.5

)2

· 1.52 = (1.5)3 ·
(
2.0

1.5

)2

. (17)
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The preceding example points to a limitation of the discriminant function:
the function value d(γ) depends only on certain “flat” counts contained in γ,
not on the more detailed count-of-count structure. On the other hand, being
a product of factors determined by simple counts, it turns out that TETs
with the discriminant function can emulate Markov Logic Networks, as the
following example illustrates.

Example 3.3. Consider a MLN knowledge base (9) in which all φi are con-
junctions of literals. The MLN then defines the weight of a model M as

e
∑n

i=1 count{Xi|φi(Xi)}[M]wi =
n∏

i=1

(ewi)count{Xi|φi(Xi)}[M],

where count{X i | φi(X i)}[M] is the value of the count feature (10) in M.
The same weight function on models is defined by the discriminant func-

tion on the TET

[�(), (X1, φ1(X1)), . . . , (Xn, φ1(Xn))]

with the weight assignment β = (1, ew1 , . . . , ewn).
MLNs whose formulas φi are arbitrary quantifier-free formulas also can

be emulated by a TET discriminant function. For this one may write φi in a
disjunctive normal form

∨
j

∧
k lijk with literals lijk, such that the individual

disjuncts φij :=
∧

k lijk are mutually exclusive. Then the same construc-
tion as above applied to all formulas φij with associated weights wi yields a
discriminant function representation of the MLN weight function. This rep-
resentation, however, may now be of a size that is exponential in the length
of the original formulas φi.

4. TET Metric

After the simple discriminant function of the previous section, we now
introduce our second tool to build predictive and descriptive models directly
on TET-defined features. This consists of the definition of a metric on the
value space V(T ) of a TET T .

The metric is defined by induction on the structure of V(T ). Following
Definition 2.5, the base case is:

• If V(T ) = {t, f}, define dtet (t, f) = 1, dtet (t, t) = dtet (f, f) = 0.
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The core of the induction step for dtet consists of the specification of the
distance between two multisets of values

μ = (γ1 : k1, . . . , γm : km), μ′ = (γ′
1 : k

′
1, . . . , γ

′
l′ : k

′
l)

where the γi, γ
′
j all come from a value space V(T̃ ) of some sub-TET T̃ of T ,

and dtet is already defined on V(T̃ ).
After normalizing the counts to probability values pi := ki/(k1 + . . . +

km), p′j := k′
j/(k

′
1 + . . . + k′

l) we can view the two values as probability

distributions on the metric space (V(T̃ ), dtet ). A standard way to define a
metric on such distributions is the well-known Wasserstein-Kantorovich or
Earth-Mover’s Distance:

Definition 4.1. Let μ = (γ1 : p1, . . . , γm : pm), μ
′ = (γ′

1 : p′1, . . . , γ
′
l′ : p

′
l) be

two multisets over V(T̃ ) with counts normalized to probability distributions
p, p′.

Let dtet be a metric on V(T̃ ). The Wasserstein-Kantorovich distance
between μ and μ′ is

dWK(μ, μ
′) = infq

∑
i,j

dtet(γi, γ
′
j)q(γi, γ

′
j)

where the infimum is taken over all probability distributions q on V(T̃ )×V(T̃ )
whose marginal on the first component is equal to p, and whose marginal on
the second component is equal to p′. Note that dWK is a valid metric if the
“ground distance” dtet is a valid metric [4].

We now define dtet (γ, γ
′) for γ, γ′ ∈ V(T ):

Definition 4.2. Let V(T ) = {f} ∪ {t} × ×m
i=1multisets(V(Ti)), and assume

that dtet is defined on V(Ti) (i = 1, . . . ,m). Let γ, γ′ ∈ V(T ). Depending on
whether one or both of γ, γ′ are f , we define dtet(γ, γ

′) as:

γ
γ′ f �= f
f 0 1

�= f 1 Eqn.(19)

(18)

In the non-trivial case γ, γ′ �= f , we have γ = (t, μ1, . . . , μm), γ
′ = (t, μ′

1, . . . , μ
′
m)

with
(μ1, . . . , μm), (μ

′
1, . . . , μ

′
m) ∈ ×m

i=1multisets(V(Ti)).
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Then

dtet(γ, γ
′) :=

m∑
i=1

ωidWK(μi, μ
′
i), (19)

where ω0, . . . , ωm > 0 are adjustable weight parameters with
∑

i ωi = 1.

Proposition 4.3. For all T , dtet is a metric on V(T ) with values in [0, 1].

Proof: The statement is clearly true for the base case V(T ) = {t, f}.
For the case V(T ) = {f} ∪ {t} × ×m

i=1multisets(V(Ti)) we have the
induction hypothesis that dtet is a metric with values in [0, 1] on V(Ti)
(i = 1, . . . ,m). Then dWK defined on multisets (μi, μ

′
i) over V(Ti) is a metric

for all i = 1, . . . ,m, and hence the convex combination in (19) defines a met-
ric on V(T ) \ {f}. By the condition

∑
i ωi = 1 its values lie in the interval

[0, 1].
It remains to show that the extension via (18) to include the f case still

satisfies the properties of a metric. dtet (γ, γ
′) ≥ 0 with equality only for

γ = γ′, and dtet (γ, γ
′) ≤ 1, as well as symmetry dtet (γ, γ

′) = dtet (γ
′, γ) are

clearly satisfied. For the triangle inequality, consider dtet (γ, γ
′)+dtet (γ

′, γ′′).
If γ = γ′ = γ′′ = f , then the sum is zero, and equal to dtet (γ, γ

′′). If one
of γ, γ′, γ′′ is not f , then the sum is greater or equal 1, and thus greater or
equal dtet (γ, γ

′′). �

The TET metric defined above can be computed using the transportation
simplex algorithm, a specialized linear programming algorithm for solving the
transportation problem [37]. Ling and Okada [25] have introduced a faster
algorithm for computing the Earth Mover’s Distance between histogram.
However that algorithm assumes fixed-size histograms and cannot deal with
signatures of distributions, as required by the recursive definition of dtet .

In our experiments, we found the CPU time required for computing the
distances to be negligible compared to CPU time for computing the TET-
values. A simple theoretical analysis justifies this finding. Assume we want
to calculate the distance between two TET values having (for simplicity) the
same shape, uniform branching factor m, and height h. Let n = mh the
number of nodes in the TET value and assume the transportation simplex
(which needs to be computed on each TET-value node) takes a polynomial
time O(mk) for some k (in [37] k was empirically found to be between 3
and 4). We therefore have the recurrence for the running time T (n) of the
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TET-distance calculation:

T (n) = mT
( n

m

)
+O

(
mk

)
= mT

( n

m

)
+O

(
n

k
h

)
.

By the master theorem, if h > k then T (n) = O(n) and if h < k then

T (n) = O(n
k
h ).

We now illustrate some of the properties of the dtet metric. Our first
example uses simple propositional TETs to illustrate the flexibility of the
dtet metric that derives from varying TET structures.

Example 4.4. Consider the four TETs (a)-(d) from Example 2.8. Table 1
gave for the four possible configurations of entity pairs a1, a2 the associated
TET values. Table 3 now shows the distance matrices obtained from evalu-
ating dtet on these values. For (c) and (d) uniform weights for the different
branches have been used, i.e., ωi = 1/2 in (c), and ωi = 1/4 in (d). For better
readability and ease of comparison, the rows and columns in these matrices
are indexed by the a1, a2-substructures, even though the entries in the table
are, of course, a function of their values.

We obtain the following characteristics of the distance function defined
by the four TETs:

(a): This is 0/1-distance to the “reference structure” a1 → a2: any pair
a′1, a

′
2 that has a different structure has distance 1 to a1 → a2, and distance

0 to any other pair that also does not have the reference structure.
(b): This metric identifies two structures (a1, a2), (a

′
1, a

′
2) (i.e., assigns

zero distance between them), if neither contains the edge →. Otherwise,
structures have distance 0 iff they are equal, and distance 1 else.

(c): Here the TET metric becomes the (normalized) edit distance relative
to the two primitive edit operations edge insertion and edge deletion.

(d): This is a scaled 0/1 distance: two structures (a1, a2), (a
′
1, a

′
2) have a

constant distance > 0 iff they are different. Note that two distinct structures
have distance 1/2 rather than 1, because their values agree on the two out
of four TET branches that evaluate to f for both of them. The two other
branches each return a distance of 1, which with the ωi = 1/4 weights gives
a total distance 1/2.

Example 4.5. Table 4 (a) gives the distances between the values γi shown
in (6), i.e. the distances between the authors ai in Figure 1 defined by the
TET (1).
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Table 3: Distance matrices for propositional TETs
a1• a2• a1•→a2• a1•←a2• a1•↔a2•

a′1• a′2• 0 1 0 0
a′1•→a′2• 1 0 1 1
a′1•←a′2• 0 1 0 0
a′1•↔a′2• 0 1 0 0

(a)

a1• a2• a1•→a2• a1•←a2• a1•↔a2•
a′1• a′2• 0 1 0 1
a′1•→a′2• 1 0 1 1
a′1•←a′2• 0 1 0 1
a′1•↔a′2• 1 1 1 0

(b)

a1• a2• a1•→a2• a1•←a2• a1•↔a2•
a′1• a′2• 0 1/2 1/2 1
a′1•→a′2• 1/2 0 1 1/2
a′1•←a′2• 1/2 1 0 1/2
a′1•↔a′2• 1 1/2 1/2 0

(c)

a1• a2• a1•→a2• a1•←a2• a1•↔a2•
a′1• a′2• 0 1/2 1/2 1/2
a′1•→a′2• 1/2 0 1/2 1/2
a′1•←a′2• 1/2 1/2 0 1/2
a′1•↔a′2• 1/2 1/2 1/2 0

(d)

The matrix shows that according to dtet there are two clusters {a1, a4} and
{a2, a3, a5} of authors: the distances between authors within each of these
groups is about one order of magnitude smaller than the distance between
authors from different groups.

Comparing with Figure 1 one finds that the clusters are defined by the
number of papers written by an author: two for the first cluster, and three
for the second. Given the difference in the number of authored papers, the
citation distribution has a secondary influence on the distance value: thus,
for example, d(a1, a2) < d(a1, a5), because the citation pattern of the two
papers of a1 is more similar to the one of the three papers of a2, than the
three papers of a5.

The preceding example highlights a potential problem with the definition
of dtet : differences in top-level counts appear to have a dominating influence
on the distance values. While it often will be reasonable that primary counts
have a larger impact than counts in the lower levels of the TET, it may be
desirable to control the extent to which this is happening. In the following
we first analyze in a more general manner the distances obtained between
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Table 4: Author distance matrix: (a): no normalization (b): false counts normalized

a1 a2 a3 a4 a5
a1 0 0.11 0.11 0.01 0.13
a2 0 0.02 0.11 0.02
a3 0 0.1 0.02
a4 0 0.12
a5 0

(a)

a1 a2 a3 a4 a5
a1 0 0.26 0.37 0.23 0.59
a2 0 0.22 0.19 0.32
a3 0 0.14 0.22
a4 0 0.36
a5 0

(b)

certain TET values, and then introduce a method for adjusting the metric
so that its behavior can be adapted to fit more closely the needs in specific
applications.

We consider the generic two-level count-of-count TET

�(V )
W−−→ r(V,W )

U−−→ s(W,U)

Assume that the variables W,U are typed, such that W ranges over a sub-
domain of size K, and U ranges over a sub-domain of size N . We now
consider values of the form(

t,

{
f : K − k
(t, {f : N − n, t : n}) : k

})

These values are symmetric in the sense that all W with r(V,W ) have the
same number n of s()-successors U (cf. also the values for a2, a4, a5 in (6)).
Assuming K,N to be fixed, these values are fully characterized by the two
parameters n, k, and one can derive a closed-form expression for pairs of
values of this form:

dWK((n, k), (n
′, k′)) =

min(k, k′)
K

|n− n′|
N

+
|k − k′|

K
(20)

This expression explains several potential problems that were already
visible in the example of Table 4 (a): first, since typically n, n′ � N and
k, k′ � K, the distances will tend to be very small numbers. Second, the
distance is dominated by the difference |k−k′|

K
in counts at the first level of

the TET. Furthermore, the distance is sensitive to the sizes of the domains
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over which the variables range: the behavior of (20) as a function of the
actual counts n, k, n′, k′ depends on K,N , in particular on differences in
order of magnitude (K � N or N � K). Note that the third issue is
akin to the situation in standard attribute-value data, where certain numeric
features may dominate a distance measure due to the order of magnitude
of their measuring scale. We can address all these (potential) problems by
introducing a normalization operation on TET values.

4.1. Value Normalization

In analogy to standard normalization procedures for numeric data, we in-
troduce a normalization operation for TET values. A standard normalization
procedure for numeric data would be a linear transformation x �→ ax + b,
where the coefficients a, b are such that the empirical distribution in the
transformed dataset has mean 0 and variance 1. Note that here the con-
crete coefficients a, b depend on the dataset (the original empirical mean and
variance of x), but that the normalization procedure in general is defined
by the two “hyper-parameters” 0 and 1. Instead of standardizing all nu-
meric attributes to 0 mean and variance 1, one could also assign different
such hyper-parameters to different attributes, and thereby adjust the impact
different attributes have on the overall distance function.

For TET values, we will perform normalization by scaling f counts, i.e.,
replacing occurrences of f : k by f : ak for some a. The normalization
is guided by data-independent hyper-parameters that can be adjusted to
optimize the behavior of the TET metric dtet for specific purposes. The
concrete multiplicative factors a will then depend on the hyper-parameters,
and the empirical distribution of TET values for which the normalization is
performed. The hyper-parameters are defined by a normalization labeling in
the sense of the following definition.

Definition 4.6. A normalization labeling for a TET

T (V ) = [τ(V ), (W1, T1(V ,W1)), . . . , (Wm, Tm(V ,Wm))]

is given by a vector (y1, . . . , ym) of non-negative real numbers, and a normal-
ization labeling for each of the sub-TETs Ti (i = 1, . . . ,m).

In the following, we assume for notational convenience m = 1, i.e., T =
[τ(V ), (W , T ′(V ,W ))].
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Definition 4.7. Let T = [τ(V ), (W , T ′(V ,W ))], and (y,y′) be a normal-
ization labeling (y′ a normalization labeling for T ′). Let Γ = {γ1, . . . , γn} ⊆
V(T ) \ {f}.

We write the γi as

γi = (t, {f : kf
i , γi,1 : ki,1, . . . , γi,li : ki,li})

with γi,j �= f .
Define

kf
avg = 1/n

n∑
i=1

kf
i , k �=f

avg = 1/n
n∑

i=1

li∑
j=1

ki,j

The normalization of γi in Γ with hyperparameters (y,y′) is now given
by:

• replacing kf
i by y(k �=f

avg/k
f
avg)k

f
i .

• replacing each γi,j by the normalization of γi,j in Γ′ := {γi,j | i =
1, . . . , n; j = 1, . . . , li} with hyperparameters y′.

A normalization parameter y specifies the ratio of total f to non-f counts
in all the values in the given dataset corresponding to the branch labeled with
y.

Example 4.8. A normalization labeling for our basic bibliographic TET is

author(A)
P1,0.1−−−−−→ authorOf(A,P1)

P2,1.0−−−−−→ cites(P2, P1)

The hyper-parameters (0.1,1.0) were found in our experiments on pre-
dicting the h-index in the DBLP dataset (cf. Section 6.1). Normalizing the
dataset consisting of the 5 values in (6) gives the normalized values:
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γ∗
1 :

⎛
⎝t,

⎧⎨
⎩

f : 0.281
(t, {f : 0.878, t : 1}) : 1
(t, {f : 0.78, t : 2}) : 1

⎫⎬
⎭
⎞
⎠

γ∗
2 :

⎛
⎝t,

⎧⎨
⎩

f : 0.246
(t, {f : 0.878, t : 1}) : 2
(t, {f : 0.976}) : 1

⎫⎬
⎭
⎞
⎠

γ∗
3 :

⎛
⎝t,

⎧⎨
⎩

f : 0.246
(t, {f : 0.78, t : 2}) : 1
(t, {f : 0.976}) : 2

⎫⎬
⎭
⎞
⎠

γ∗
4 :

⎛
⎝t,

⎧⎨
⎩

f : 0.281
(t, {f : 0.78, t : 2}) : 1
(t, {f : 0.976}) : 1

⎫⎬
⎭
⎞
⎠

γ∗
5 :

(
t,

{
f : 0.246
(t, {f : 0.976}) : 3

})
Observe that 0.1 = (0.281+0.246+0.246+0.281+0.246)/(2+3+3+2+3),

and 1 = (2 · 0.878 + 3 · 0.78 + 4 · 0.976)/(1 + 2 + 1 + 2 + 2).
The distance matrix obtained for these normalized values is shown in Ta-

ble 4 (b). One immediately sees that now the range of distance values is
more spread out in the interval [0,1], and that the clustering according to
paper count has disappeared. The most dis-similar authors now (as before)
are a1 and a5 (few papers with many citations vs. many papers without cita-
tions). However, the most similar authors now are a3 and a4, who previously
even belonged to different clusters. Seeing that a3 differs from a4 only by
the addition of one paper without citations, it makes intuitive sense that the
distance measure optimized for predicting the h-index sees them as nearest
neighbors.

5. TET Learning

We first describe in more detail the learning problem we want to solve.
Our data consists of a model M in the sense of Definition 2.1. In our im-
plementation, M is given as a relational database containing one table for
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Table 5: Input Data Tables

Arg1
a1
a2
...
a5

author

Arg1
p1
p2
...
p10

paper

Arg1 Arg2
a1 p1
a1 p2
...

...
a5 p10
authorOf

Arg1 Arg2
p3 p1
p5 p2
...

...
p9 p6
cites

A Label
a1 +
a2 −
a3 +
a4 +
a5 −
target

Table 6: Local Target Table

A P Label
a1 p1 +
a1 p2 +
a2 p3 −
...

...
...

a5 p8 −
a5 p9 −
a5 p10 −

target

each r ∈ R, where the table for r contains all tuples a ∈ Marity(r) for which
I(r(a)) = true. Furthermore, we are given an initial target table, i.e. a table
consisting of a set of examples with +/− class labels. For example, a learning
problem given by the data depicted in Figure 1, with a1, a3, a4 as positive
and a2, a5 as negative examples would be given by the 4 leftmost tables in
Table 5. Columns in the data tables are headed by synthetic identifiers Argi.
Columns in the target table (other than the class label column) are headed by
variable names, which will then become the names of the free variables in the
TET we construct. Thus, given the input we will want to construct a TET
T (A) over the signature R = {author, paper, authorOf, cites} that captures
features of A that are predictive for the class label given in target.

Our general approach to TET learning is a recursive top-down construc-
tion that associates with each node a local discrimination task represented
by a local target table. In our running example, starting with the input
data in Table 5 we would initialize the TET construction with the vacuous
TET �(A). If the first extension was �(A)

P−→ authorOf(A,P ), then we
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would associate with the node authorOf(A,P ) the local target table shown
in Table 6. This construction of local target tables is essentially the same
as the construction of local training sets in FOIL [34]. The construction of
this new target table amounts to a problem transformation: the problem of
predicting the label of an author is transformed into predicting the label of
author/paper pairs in the new target table, which may be effected by taking
into consideration attributes of both authors and papers, as well as additional
relations between authors and papers (if any such exist in the data).

The exact specification of the construction of local target tables is as
follows. Let n be a TET node associated with a local target table ttn(V , L)
with columns for variables V and label L. Let n′ be a child of n labeled with
type σ(V ,W ), and reached by an edge labeled with variables W (we include
the possibility that |W |= 0, i.e. the edge is really unlabeled). Then n′ is
associated with a target table ttn′ with columns for V ,W and L, defined as:

ttn′(V ,W , L) =

{(a, b, l) ∈ M |V |+|W| × {+,−} : (a, l) ∈ ttn; I(σ(a, b)) = true}. (21)

In the case |W |= 0, ttn′ is just the subset of ttn containing the elements for
which σ(a) is true.

When building the TET, candidate tree-extensions . . .
W−−→ σ(V ,W )

are scored based on the relational information gain (RIG) measure proposed
in [26]. RIG values represent both direct and potential informativeness of the
extension: direct informativeness is provided by extensions that in one step
increase the class-purity of the local target table. Potential informativeness
is provided by extensions that introduce new entities into the target table
which in subsequent steps might enable discrimination between positive and
negative examples via additional features related to the new entities.

High RIG values (unlike information gain in decision tree learning, for
example), thus, do not give bounds on a guaranteed improvement of clas-
sification accuracy in a single construction step, but may only indicate a
potential improvement that could be obtained by further construction steps.
After termination of a recursive sub-tree construction, therefore, the final pre-
dictive accuracy gain of the sub-tree is evaluated, and the sub-tree is pruned
if this gain does not exceed a given threshold. The evaluation of the current
TET’s accuracy has to be based on a concrete classification model built on
the TET feature. It is here that we crucially use the discriminant function
model of Section 3: a weight assignment defining the discriminant function
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Table 7: TET learning

build TET(Data M,Labeled table tt,TET node parent,TET node root)
1. parent.weight = positive class frequency(tt)
2. current score = predictive score(M, root)
3. EXT :=possible extensions(parent, θvars, θdepth)
4. for all σ(V ,W ) ∈ EXT compute RIG(tt, σ(V ,W ))
5. CAND := candidate extensions(EXT,RIG-values, θRIG)
6. for all σ(V ,W ) ∈ CAND
7. tt′ = construct tt(M, tt, σ(V ,W ))
8. nextChild = new TET node(σ(V ,W ))
9. add nextChild as child to parent
10. build TET(M, tt′, nextChild, root)
11. new score == predictive score(M, root)
12. if new score− current score < θscore
13. remove nextChild from parent
14. else current score=new score

is very fast to learn, and the resulting discriminant function values on the
validation set are fast to compute. The overall wrapper-evaluation with the
discriminant function, thus, is computationally very efficient. If the final
TET is to be used in conjunction with a different classification model than
the discriminant function, then it could be beneficial to already use that clas-
sification model in the wrapper-evaluation during TET learning. However,
for complex models this can be computationally very expensive. Further-
more, it does not appear to be the case that TET features learned using the
discriminant function are highly biased towards this particular classification
model. The discriminant function, thus, can play the role of a lightweight
classification model that may be used to discover features which are also
useful for more complex model types, similarly as in the propositional case
decision tree or logistic regression model learning can act as a feature se-
lector also for subsequent use in more complex models, like support vector
machines (cf. Figure 2).

Table 7 outlines the TET learning algorithm. It is implemented as a
procedure that recursively expands an initial TET. It receives as arguments
the data, a local target table tt to be classified, a pointer parent to the current
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node to be expanded and a pointer to the root of the TET being constructed.
The initial call is

build TET(M, tt, T, T )

where T = new TET Node(�(V )) is a pointer to an initial TET with
vacuous root type �(V ). The construction works as follows: Line 1 sets
the weight for the discriminant function d+ for the input node. It is just
the relative frequency of positive examples in the target table associated
with this node (the weight for d− being one minus this weight). Thus, the
discriminant function here is learned (at little extra cost) in parallel with the
TET construction.

The function predictive score(M, root) called in lines 2 and 11 performs
the global evaluation of the current TET based on its predictive performance
in conjunction with the chosen classification model. If a model other than
the discriminant function here is used, then calls to predictive score(M, root)
may require computationally expensive model training for the current TET.

Lines 3-5 are crucial: here a subset of all the possible extensions of the
current node defined by types σ(V ,W ) of child nodes is constructed for fur-
ther exploration. This operation is analogous to refinement operators in ILP.
Our construction is in two steps: in the first step the set of possible exten-
sions for the current node is constructed by the function possible extensions.
This function can implement various constraints and a language bias. In our
implementation and experiments, we restrict possible extensions in terms of
the number of literals and the number of new variables in σ(V ,W ) (mostly
limiting both numbers to at most one). The function can also take TILDE-
style user-defined rmode declarations [3], that can force certain arguments of
the new literal to be filled with variables already present in the parent node
(input variable), or with a new variable introduced by this extension (out-
put variable). As common in ILP algorithms, type predicates can be used to
specify the type of arguments of the literals. In this case the learner expects a
unary predicate for each variable type, being true for all and only the objects
of that type. In addition to this user-defined bias, we force candidate exten-
sions to use at least one of the latest introduced variables along their path
to the root. The rationale for this constraint is that extensions introducing
new variables were selected based on their RIG score and thus likely on their
potential rather than direct informativeness. By focusing the search toward
further refinements of the new variables, we force the algorithm to try making
this potential informativeness explicit. When introducing a new variable, the
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algorithm automatically adds inequality constraints guaranteeing that they
cannot be bound to the same value as that of any of the root variables, i.e.
those identifying the entity the TET will represent features of. In case of
a typed language bias, inequality constraints are added for variables of the
same type only. In order to control the computational cost of adding new
variables, we constraint the number of variables in each path from the root
to a leaf to be within a user-defined maximum value (θvars). Finally, pos-
sible extensions is used to implement a termination condition: if the depth
of the current parent node in the TET has reached a (user specified) max-
imum depth (θdepth), then possible extensions will return an empty set. In
the next step, the relational information gain is computed for all possible ex-
tensions; the function candidate extensions then performs a selection based
on RIG values. Our current implementation of candidate extensions selects
all extensions whose RIG value exceeds a user defined threshold (θRIG).

A child node is then created for each candidate extension. The func-
tion construct tt constructs the local target table for the child according to
(21). Lines 8-9 add a new child labeled with the current candidate exten-
sion σ(V ,W ) to parent. Line 10 continues the recursive construction at the
new child, which then becomes the root of a whole new subtree. Lines 11-14
then evaluate the extension of the old TET with this new subtree, and either
accept or reject it based on a user defined threshold for the required global
score improvement (θscore).

6. Experiments

6.1. DBLP

As already stated in the introduction, bibliometrics represents an ideal
domain to test the capability of TETs of learning count-of-counts features:
in particular, we focus on the task of predicting h-indices. The h-index of
an author A is defined as the maximum number h such that A authored h
papers having at least h citations each [14].

The data set used in our experiments is taken from the the DBLP Com-
puter Science Bibliography [24]2 enhanced with citation data [41]. We ex-
tracted a set of facts and relations in the form of a MySQL database from the
original data set available at http://www.arnetminer.org/citation. For

2http://dblp.uni-trier.de
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the sake of reproducibility, we also provide a package with the scripts used
to build the data set used in our experiments (see Supplementary Materials).
From the original database we extracted the following tables:

• author(A) providing the id of each author;

• paper(P ) providing the id of each paper;

• author of (A,P ), true if A is an author of P ;

• cites(P1, P2), true if P1 cites P2.

Our first goal was to learn a TET able to discriminate between authors
with high and low h-index (i.e., above/below a certain threshold). To this
end, we extracted a sub-graph of the whole DBLP network (see Supplemen-
tary Materials) consisting of 8,726 authors and 244,265 papers, and used the
learning algorithm described in Table 7, employing relational information
gain [26] as the scoring function guiding the search, and the discriminant
function of Definition 3.1 to evaluate the TET score after the introduction
of each new literal3. We chose an h-index threshold h = 7 to define pos-
itive and negative examples. We fixed θRIG = 0, so that each candidate
extension with non-zero RIG was considered (in the order given by the RIG
score), θscore = 1e − 4 in order to prune away branches with low improve-
ment, θdepth = 2 and θvars = 3. Figure 5 shows the learned TET: it consists
of three different branches, the first corresponding to the count-of-counts fea-
ture which can be used to exactly compute the h-index, and the two other
branches describing features which are also correlated to the h-index of au-
thor A: the number of papers P ′ cited by each paper P written by A (second
branch), and the number of co-authors A′ for each paper P of A (third). One
may wonder why the learner did not return a TET consisting only of the first
branch, since this feature would be sufficient to predict the h-index in the
training examples exactly. Note however that the classification accuracy on
the training examples is also constrained by the prediction model that maps
the TET feature value into a binary classification. The discriminant func-
tion used by the learner (as well as virtually any other conceivable prediction
model) is not able to exactly map the feature value obtained from the first

3No particular rmode declaration was specified.
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branch into the binary threshold function h > 7, and therefore additional fea-
tures represented by the additional branches can still be useful for obtaining
a better fit to this threshold.

The TET shown in Figure 5 in combination with the discriminant function
guiding the learning phase achieves an F1 of 61.3 % for the binary classifica-
tion task of predicting authors with h > 7. As a comparison, we employed
TILDE [3] to inductively learn a logical decision tree in the same setting. The
task turned out to be quite difficult for TILDE: being the author of (A,P )
predicate only potentially informative but not directly informative [26], with
the same language bias used by our TET learner, TILDE ended up the search
with an empty tree. We therefore tried to modify the language bias, by allow-
ing the joint introduction of the predicates author of (A,P ) and cites(P1, P2):
the result was a quite complex tree learned by TILDE, which anyhow con-
tained only three positive leaves covering a few examples, heading to an F1
of 1.8 %. We also tried to define some aggregates4 in the language bias,
counting the number of papers of an author and the number of citations of a
paper. We used the TILDE option which allows the introduction of multiple
aggregates within the same tree branch5, but in this case the search could not
be completed due to memory requirements. We finally tried to use exhaustive
lookahead, which turned out to be computationally very expensive: with only
one level of lookahead, TILDE ran for over 20 days without terminating. As
a comparison, the TET learning algorithm ran for about 7 minutes. Finally,
in order to assess the potential of the TET metric introduced in Section 4,
we also tested our TET with a k-NN classifier in a leave-one-out setting,
using the TET metric between TET values: in this case, the F1 achieved
by the classifier, even without value normalization, was 88.5 % with a single
neighbor, and up to 91.2 with k = 5.

The second experiment is about h-index forecasting: given data up to a
given year Y0, we predict the h-index of an author in the forthcoming years.
In this case, our aim was to measure the discriminative power of the metric
defined on TET values and described in Section 4, with respect to several
baselines and other prediction models using plain counts. The experimental
framework is constructed as follows: first, we extracted from the whole DBLP

4Aggregates are specific rmodes for TILDE defining predicates that represent aggre-
gating functions, such as count, average, min, max.

5This option is called aggregate refinement.
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Figure 5: The TET learned on the DBLP data set for the task of h-index prediction. The
first branch on the left represents the relational features which are necessary and sufficient
to compute h-indices.

the set of 8,441 authors having h-index > 3 in Y0 = 2000, and then split this
set into 2/3 for the development set, and 1/3 for the test set (the development
set was again split in 2/3 for training and 1/3 for validation). Our predictor
was built as follows: using just the simple TET shown in the first branch
of Figure 5, which describes all the sufficient features to calculate h-index,
we computed TET values for all the authors, and then run a simple k-NN
algorithm employing the TET metric as distance between such values. This
predictor was compared against several different competitors:

1. predict future h-index as equal to current h-index (SAME);
2. predict future h-index of a test author a as the average of future h-

indices of training authors having current h-index equal to a (AVFUT);
3. predict future h-index using a k-NN algorithm, using as distance a

linear combination of plain counts features, that is the number of papers
npap and the number of citations ncit (hpred = wpap × npap +wcit × ncit)
(k-NN counts);

4. predict future h-index as a non-linear Support Vector Regressor taking
plain counts features npap and ncit as input (SVR);

5. predict future h-index using a k-NN algorithm with the TET metric,
but using the whole learned TET (represented in Figure 5) to compute
TET values (complete TET k-NN).

Note that albeit very simple, the SAME and AVFUT predictors have a
significant advantage over the other methods, since they make direct use of
the h-index as a materialized feature in the data, whereas the other methods
only are given underlying paper and citation counts.

The validation set was used to perform model selection over the parame-
ters of each model: regularization parameter C and Gaussian kernel width γ
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were tuned for SVR (C ranges in 10−2,. . . ,102, while γ ranges in 10−4,. . . ,1);
wpap, wcit (both ranging in 10−2, . . . , 102) and the number of neighbors k for
the counts-based k-NN; the normalization coefficients y and the number of
neighbors k for k-NN with TET metric6. Root Mean Squared Error (RMSE)
was used to measure the performance of each predictor.

0 1 2 3 4 5 6 7 8 9

Prediction horizon (years)

0

1

2

3

4

R
M

S
E

SAME
AVFUT
SVR
Counts k-NN
TET k-NN
Complete TET k-NN

Figure 6: Results on the task of h-index prediction over years: we plot the RMSE of
several competitors as a function of the prediction year.

Figure 6 shows the results obtained as a function of the prediction horizon
H over years, starting from 2000 — the year for which TET values were
computed, and therefore corresponding to H = 0 — up to 2009 (H = 9).

The SAME and AVFUT predictors, by construction, have 0 error at
H = 0, and remain very accurate for short prediction horizons, as the dy-
namics of h-indices change slowly over time. The TET based predictor has a

6Model selection for the normalization coefficients was performed on the simple TET,
and resulted in the normalization labeling shown in Example 4.8
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lower average prediction error starting from H > 5, and always outperforms
methods based on plain counts of features. It should also be noticed that the
k-NN algorithm based on the complete learned TET performs slightly better
than the simple TET for longer prediction horizons. This happens because
the TET metric, although taking into account count-of-counts features (and
thus performing consistently better than plain counts-based metrics), is not
able to exactly compute the h-index starting from these features.

6.2. Cora

CORA is a dataset of research papers and their citations, originally col-
lected by Andrew McCallum and used for different predictive tasks includ-
ing hierarchical classification, information extraction, and citation matching.
Here we focus on this latter task, namely predicting whether two biblio-
graphic records refer to the same paper. We rely on the relational data rep-
resentation and experimental setting defined by Singla and Domingos [40].

The domain consists of entities of types title, author, venue (given by
a string value), bibrec (a bibliographic record given by its author, title and
venue fields), as well as title word, author word, venue word, which are the
constituent words appearing in title, author, and venue. Only the first author
of each record is considered in this setting. The data set contains 1,295
bibliographic records, referring to 132 different research papers, 50 authors,
and 103 venues. Relations are all representing part-of relationships: title of,
author of, and venue of link bibliographic records to their constituent fields;
word in title, word in author, word in venue link complete field strings to
their constituent words. Note that relations in the first group are one-to-
one, whereas the second group is one-to-many.

The experimental setting by Singla and Domingos [40] consists of a five
fold cross validation procedure over plausible candidate pairs as identified
using McCallum et al.’s canopy approach [28], with TF-IDF cosine as the
similarity measure. This results in 52,923 overall candidate pairs, with 30,971
positive and 21,952 negative pairs respectively. The compiled dataset is
available at alchemy.cs.washington.edu.

We fixed θRIG = 0, as in the DBLP experiments, and θscore = 1e− 2. We
ran the TET learner on each of the five different training sets with increasing
values of the main parameters controlling the size of the search space, θdepth
and θvars. Tables 8 and 9 report F1 and Area under the recall-precision
curve (AURPC) values for each fold and macro-averaged on the five folds.
The simple discriminant function guiding the TET learning phase (DF) is
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Table 8: F1 results on the CORA dataset. Horizontal lines separate different learning
parameter settings (allowing for increasingly complex TETs to be learned), plus a manually
curated TET T (hand). Rows within each learning setting indicate a different predictive
model, either discriminant function (DF) or k-NN with the TET metric, for different
values of k > 1 (only values producing non-negligible differences are reported). Columns
report results for each fold and macro-averaged over the five folds.

θdepth θvars learn 1 2 3 4 5 avg

2 1 DF 89.2 90.6 90.1 95.2 88.0 90.6
2 1 k-NN>1 89.2 90.6 90.1 95.2 88.0 90.6
3 2 DF 89.2 90.6 90.8 95.2 88.0 90.8
3 2 k-NN>1 89.2 90.6 90.3 95.2 88.0 90.7
4 3 DF 79.2 90.6 58.9 89.6 88.0 81.3
4 3 k-NN5 88.0 90.6 70.9 88.8 88.0 85.3
4 3 k-NN10 89.4 95.7 78.6 94.2 81.1 87.8
4 3 k-NN100 86.6 95.7 90.8 95.8 81.1 90.0
hand DF 89.2 90.6 90.8 95.2 88.0 90.8
hand k-NN5 93.6 99.2 96.8 96.6 91.3 95.5
hand k-NN10 94.2 98.9 97.1 97.7 94.5 96.5
hand k-NN100 94.7 99.7 98.0 99.3 95.3 97.4
hand k-NN500 97.6 99.7 98.0 99.3 95.3 98.0
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Table 9: Area under the recall-precision curve (AURPC) results on the CORA dataset.
Horizontal lines separate different learning parameter settings (allowing for increasingly
complex TETs to be learned), plus a manually curated TET (hand). Rows within each
learning setting indicate a different predictive model, either discriminant function (DF)
or k-NN with the TET metric, for different values of k > 1 (only values producing non-
negligible differences are reported). Columns report results for each fold and macro-
averaged over the five folds.

θdepth θvars learn 1 2 3 4 5 avg

2 1 DF .926 .993 .940 .980 .957 .959
2 1 k-NN>1 .966 .993 .940 .980 .957 .967
3 2 DF .926 .993 .946 .980 .957 .960
3 2 k-NN>1 .966 .993 .956 .980 .957 .970
4 3 DF .872 .993 .986 .960 .957 954
4 3 k-NN5 .906 .993 .880 .925 .957 932
4 3 k-NN10 .932 .993 .928 .969 .957 .956
4 3 k-NN100 .945 .993 .960 .982 .957 .967
hand DF .926 .993 .946 .980 .957 .960
hand k-NN5 .992 1.00 .986 .998 .962 .988
hand k-NN10 .992 1.00 .995 .999 .962 .990
hand k-NN100 .994 1.00 .996 1.00 .953 .989
hand k-NN500 995 1.00 .992 1.00 .971 .992
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compared to k -NN with the TET metric, for different values of k > 1 (only
values producing non-negligible differences are reported). We did not perform
any fine tuning on the TET metric, leaving all hyperparameters to one (see
Section 4.1).

The first apparent finding is that small TETs seem to perform quite
well on this dataset, and increasing their complexity does not pay much.
Figure 7 (a) shows the TET learned in four (1,2,4,5) out of five folds for
both (θdepth = 2, θvars = 1) and (θdepth = 3, θvars = 2) parameter settings
and in two (2,5) folds for the (θdepth = 4, θvars = 3) setting. This represents
the very basic feature of the two records B0, B1 having identical title and/or
venue fields. It is noteworthy that neither here, nor in any of the other
TETs, features involving the author field were constructed. This may be
due to the fact that the CORA dataset contains relatively many different
publications by a relatively small number of (first) authors, so that the author
field becomes a quite poor predictor for the identity of papers. Note that
simple pairs with clearly different first authors were preliminarily excluded
by the canopy construction [28] and are not part of the plausible candidates.
The only difference between the two simpler learning settings is in fold three,
where the (θdepth = 3, θvars = 2) setting learns the TET in Figure 7 (b),
while the TET learned by the simplest setting (θdepth = 2, θvars = 1) lacks

the
TW−−→ word in title(T, TW ) branch. The former achieves slightly better

results, possibly because of a correlation between the number of title words
and the likelihood that two entries refer to the same paper.

Learning more complex TETs does not seem to provide improvements
in this setting. However, an inspection on the learned TETs gives interest-
ing insights on the potential of the mined features. Figures 7 (c) and (d)
show linear branches that constitute the main features in two of the complex
TETs. (c), at first, appears to be a fairly complex feature, which because
of its three variable introductions would represent a three-level hierarchi-
cal count. However, due to the one-to-one nature of the relations in the

extensions
V−−→ venue of(B0, V ) and

T−−→ title of(B, T ), only the extension
B−−→ venue of(B, V ) introduces real counts other than 0 and 1. Roughly

speaking, the feature (c) counts the number of records B that have the same
venue as B0, and the same title as B1. In both TETs containing the branch
(c), also the dual branch with the roles of B0 and B1 interchanged was con-
structed. Intuitively, this feature uses the transitivity of the same paper
relation by considering “interpolating” records B for which there is evidence
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Figure 7: Features in the CORA TETs for entity resolution on bibliographic records
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that they are equal to B0 because of agreement in the venue field, and equal
to B1 because of agreement in the title field (or vice-versa). Note that the
dataset includes 103 distinct venues for the 132 papers, which makes venue
almost as discriminative as title.

(d) is a refinement of the left branch of (a): in addition to testing equality
of the title field, (d) also counts the number of additional records B that have
the same title. It appears, however, that the introduction of the variable T1

in the extension
T1−−→ title of(B, T1) here is redundant, since T0 at this place

is already established as the unique title of B, and so the simpler extension
−−→ title of(B0, T0) would express the same logical feature. The reason for
the roundabout way (d) ends up taking for defining this feature lies in the fact
that our learning algorithm includes a constraint that variables introduced
at a previous extension (B in this case) should be used in the next child node
(see Section 5).

With the exception of the
TW−−→ word in title(T, TW ) branch of TET (b),

all features discussed so far do not use the word-related relations. Com-
parisons are based on identity of whole title and venue strings. This is
different in (e), which shows the complete TET learned for the third fold
in the (θdepth = 4, θvars = 3) learning setting. It again is a refinement
of the same-title feature, but this time in its right sub-branch also intro-
ducing counts of title words, and by means of the subsequent extension
T1−−→ word in title(T1, TW ) −−→ title of(B0, T1) a count-of-count feature that
incorporates an inverse-document frequency feature (cf. TET (2) in Ex-
ample 2.4). To understand the meaning of this branch, consider how the
sub-TET rooted at word in title(T0, TW ) evaluates for a title word w: if w
does not occur in the title of B1, then the value is f . If w is in the title of B1,
but not in the title of B0, then the value is (t, {(t, {f}) : k1, f : k2}), where k1
and k2 are the number of titles in the domain that contain, respectively do
not contain, w. If, finally, w occurs both in the title of B1 and B0, then the
value is (t, {(t, {t}) : k1, f : k2}), with the same k1, k2 as before. The branch
TW−−→ . . . then provides for each of these possible values the count of words
w with that value. In this manner, the values of the right branch provide
all the count-of-count statistics required for the inverse-document-frequency
feature. Note that the more parsimonious representation (2) is not learnable
by our current TET learner, since we only allow single-literal nodes.

We see, thus, that the learned complex TETs represent very reasonable
features. In order to better understand whether the lack of performance
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dashed triangle indicates a copy of the title subtree, with title replaced by venue.
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gain over the simpler TETs is possibly due to lack of predictive relevance
of these features, or due to a difficulty for the TET metric to utilize the
feature information in the way it is presented by these TETs, we manually
designed a TET that encodes the idf-like feature represented by (e) in a
way that is optimized for the TET metric (Figure 8). It provides separate
branches for words in each of the titles and each of the venues (the dashed
triangle indicates a copy of the title subtree, with title replaced by venue).
As shown in the last rows of Tables 8 and 9, the TET achieves quite high
performance when paired with k-NN employing the TET-metric, with almost
perfect AURPC in most folds, while the discriminant function again fails to
exploit the full potential of counts-of-counts features.

We can conclude that the TET learner is able to discover complex fea-
tures with high discriminative value. The fact that some post-processing in
the representation of the features was needed to obtain the best performance
results with k-NN prediction may not be very surprising, since the learner is
not optimizing with regard to the TET metric. In future work this kind of
post-processing may be automated by implementing efficient techniques for
optimizing the parameters of the TET metric (weight parameters ω and nor-
malization labels y), and optimizing the TET structure using post-pruning
and -balancing operations.

The results of the learned TETs are comparable with those achieved with
a Markov Logic Network (MLN) that (like our TET) is language indepen-
dent, i.e. does not contain rules referring to specific strings occurring in the
data, which achieves an AURPC of .971 [40]. Note that the MLN based
approach in [40] – as well as more recent approaches achieving still higher
accuracy [33, 39] – perform collective classification, and therefore can exploit
the fact that the binary relation on bibliographic records that one predicts
is an equivalence relation. The two classification models we have used both
perform independent predictions for each pair of bibliographic records, and
therefore cannot be expected to achieve results that are competitive with
state-of-the-art collective approaches. It should be emphasized, though, that
in [33, 39] the MLN structure (i.e. the set of logical formulae) was carefully
designed by hand, while in our experiments the TET structure is learned
from data. A carefully crafted TET as described in Figure 8 indeed achieves
a macro-averaged AURPC of around .99. Additionally, TET features could
equally well be used in connection with collective classification techniques.
We also compared TET results with those achievable by TILDE, with and
without aggregates. As for the DBLP case, the search procedure of TILDE
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suffers from a lack of direct informativeness of single predicates, and plain
TILDE returns an empty tree for all folds. However, exhaustive lookahead
allows us to overcome the problem and recover the same rules of the simple
TET in Figure 7 (a), thus achieving substantially equivalent results (macro
averaged F1=91.0%, slightly better than those of the simple TET as Tilde
learns these rules for the third fold too). More complex features, like the
idf-like ones in Figures 7 (e) and 8 cannot be recovered by plain Tilde, and
adding aggregates in the language bias concerning counts of author, title and
venue words dramatically increases learning time: the search did not finish
after a week of CPU time.

As for inductive logic programming and relational rule learning approaches,
learning time strongly depends on the constraints imposed on the search
space, which is otherwise exponential in the number of candidate predi-
cates. Learning TETs takes roughly three minutes, one hour and 20 hours
respectively, on average over the five folds, for the three increasingly complex
learning settings (θdepth = 2, θvars = 1), (θdepth = 3, θvars = 2), (θdepth = 4,
θvars = 3). As a matter of comparison, Tilde learns the tree resembling
TET in Figure 7 (a) in 30 seconds or 11 hours, depending on the number of
exhaustive lookaheads allowed (one and two, respectively).

7. Conclusion

Properties of entities in a relational domain can depend on complex com-
binatorial count-of-count features characterizing the entities’ relational neigh-
borhood. Examples of properties that are directly defined in terms of count-
of-count features are the h-index of an author, and certain relevance measures
widely used in information retrieval. Type Extension Trees are a simple, but
highly expressive representation language for count-of-count features. In this
article we have presented a method for learning Type Extension Trees in su-
pervised learning settings as a means of discovering count-of-count features
that are informative for the prediction of a class label.

Most existing frameworks for statistical relational learning either are only
based on simpler, “flat”, count features, or their use of count-of-count fea-
tures is only implicit in the specification of conditional probability distribu-
tions, and does not include an interpretable representation of the underlying
features. Examples of frameworks of the first kind are Markov Logic Net-
works [36] (cf. Example 2.10), and systems providing simple aggregation
operators [1, 13, 18]. Examples of frameworks of the second kind are prob-
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abilistic relational models that allow the specification of conditional proba-
bility distribution using nested combination functions [16, 30].

Kernel methods can be also applied to (implicitly) extract features from
relational data. The general framework of convolution kernels [12] has orig-
inated a wealth of different approaches for defining the similarity between
structured objects (see e.g. [45] and references therein). Features defined by
these kernels essentially count fragments or substructures, but not counts of
counts. In most cases, these methods aim to develop a suitable represen-
tation of structured data for subsequent learning, not to discover features.
There are previous works, however, where the feature space itself is learned
from relational data [23, 29] and is interpretable in terms of definite clauses.

In most of these previous works relational feature construction is an in-
tegral part of a particular learning paradigm. Relational features in their
own right have previously been investigated in [32]. Here a systematic view
of aggregation-based features at different levels of complexity is developed.
However, the focus still is on aggregation over a single level of relational
dependencies.

Discovered TET features can be used in a variety of classification models,
and could be integrated into existing models such as relational probability
trees [31], or inductive logic programming systems, for which simpler types of
count features have already been used [1]. In this paper we have considered
two approaches for directly augmenting TET features into full prediction
models. The simple discriminant function is fast to learn and evaluate, but
only makes limited use of the count-of-count information provided by a TET
feature value. We have therefore also introduced a metric on TET values
defined by a recursive application of the Wasserstein-Kantorovich metric.
With this metric, distance-based methods for supervised or unsupervised
learning become directly applicable.

Our experiments have shown that our TET learning algorithm is able to
discover non-trivial and interpretable count-of-count features. A comparison
of the classification accuracies achieved with the discriminant function model
and k-nearest neighbor classification based on the TET metric indicates that
TET features learned using the discriminant function can also support other
classification models, and that a model that exploits the complex count-of-
count information outperforms models only using flat counts.
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8. Supplementary material

The software for TET learning and for the computation of Wasserstein-
Kantorovich metric between TET values, together with the data used in the
experiments presented in this paper, can be downloaded at http://www3.

diism.unisi.it/~lippi/TET.tgz.
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[9] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results
and efficient alternatives. In Proceedings of the 6th Annual Conference
on Computational Learning Theory and the 7th Kernel Workshop, vol-
ume 2777 of LNAI, pages 129–143, 2003.

[10] Lise Getoor and Ben Taskar, editors. Introduction to statistical relational
learning. MIT Press, Cambridge, Mass., 2007.
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