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t. Predi
ting the se
ondary stru
ture of a protein is a main topi
 in bioinformati
s.A reliable predi
tor is needed for example by threading methods to improve the predi
tionof tertiary stru
ture. Moreover, the predi
ted se
ondary stru
ture 
ontent of a protein 
anbe used to assign the protein to a spe
i�
 folding 
lass and to estimate its fun
tion.We dis
uss here the use of support ve
tor ma
hines (SVMs) for the predi
tion of se
ondarystru
ture. We show the results of a 
omparative experiment with a previously presented work.We measure the performan
es of SVMs on a signi�
ant non-redundant set of proteins. Wepresent for the �rst time a dire
t 
omparison between SVMs and feed-forward neural netwoks(NNs) for the task of se
ondary stru
ture predi
tion. We exploit the use of bidire
tionalre
urrent neural networks (BRNNs) as a �ltering method to re�ne the predi
tions of theSVM 
lassi�er. Finally, we introdu
e a simple but e�e
tive idea to enfor
e 
onstraints intose
ondary stru
ture predi
tion based on �nite-state automata (FSA) and Viterbi algorithm.1 Introdu
tionProteins are polypeptide 
hains 
arrying out most of the basi
 fun
tions of life at the mole
ularlevel. These linear 
hains fold in 
omplex 3D stru
tures whose shape is responsible of proteins'behavior. Ea
h ring of the 
hain 
onsists of one of the 20 amino a
id existing in nature. Therefore,a single protein 
an be represented as a sequen
e of letters from a 20 elements alphabet 
alled theprimary stru
ture of the protein. All the amino a
ids share a 
ommon part, formed by a 
arboxyli
a
id (COOH) and an amino group (NH2) atta
hed to a 
arbon atom (
ommonly referred to asC�). The 
arboxyli
 a
id and the amino group of two amino a
ids 
an merge into a peptide bondto form the links of the polypeptide 
hain (see Figure 1). Ea
h amino a
id is distinguished by adi�erent R-group, atta
hed to the C� athom, whi
h entails the amino a
id dimensions and 
hemi
alproperties. For this reason, di�erent sequen
es will 
reate di�erent folded stru
tures.
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Proteins are synthesized inside 
ells. The instru
tions used by the 
ell to build a protein arewritten in the DNA. DNA's double helix is made by two long 
hains 
omposed by four di�erentnu
leotides. The DNA 
ontains genes, sequen
es of nu
leotides 
odifying for proteins. Ea
h tripletof nu
leotides in a gene 
orrespond to an amino a
id of the en
oded protein: the 64 possible
on�gurations of three nu
leotides en
ode the 20 symbols alphabet of amino a
ids (it's a redundant
ode), plus two symbols to identify start and end of the 
oding sequen
e. De
oding is performedby spe
i�
 parts of 
ell's nu
leus: the pie
e of DNA 
orresponding to a gene is trans
ripted intomRNA (a disposable 
hain used to transfer informations inside 
ell's nu
leus) whi
h is in turntranslated into the protein 
hain.All the observed proteins present lo
al regularities in their 3D stru
ture, formed and main-tained by hydrogen bonds between atoms. These regular stru
tures are referred to as the protein'sse
ondary stru
ture. The most 
ommon 
on�gurations observed in proteins are 
alled alpha heli
esand beta strands, while all the other 
onformations are referred to as 
oils. They are traditionallyidenti�ed using a single letter 
ode: H (alpha helix), E (beta strand) and C (
oil). An alpha helixis found when two amino a
ids spa
ed three positions along the sequen
e are hydrogen bonded: asequen
e of amino a
ids involved in a alpha helix will form a 
ork s
rew like 3D stru
ture (Figure2a). On the 
ontrary, a beta strand is a straight 
onformation of amino a
ids hydrogen bondedto the 
omponents of another strand in the protein (Figure 2b), forming a planar aggregation
alled beta sheet. A group of adja
ent amino a
ids sharing the same 
onformation are membersof a segment of se
ondary stru
ture. Segments of se
ondary stru
ture are well de�ned and stableaggregations of amino a
ids whi
h strongly in
uen
e the 
hain's folding and whi
h usually 
arryout spe
i�
al fun
tions inside the protein, like a list of words in a parti
ular language forming ameaningful phrase. From the knowledge of the position of every atom of the protein mole
ule it ispossible to 
ompute the se
ondary stru
ture at ea
h position in the sequen
e.[1℄.
a)

Hydrogen bond

b)

Hydrogen
bond

Parallel Anti−parallelFig. 2. Conformation of a) alpha helix and b) beta strands along the 
hain of a protein.Thanks to several genome sequen
ing proje
ts, the entire DNA sequen
e of many organismshas been experimentally determined. Inside ea
h genome the positions of genes have been dis
ov-ered using spe
i�
 signals, parti
ular sequen
es of nu
leotides used by 
ells during trans
ription.From these identi�ed genes the proteins' primary sequen
es have been extra
ted. Unfortunatelyour knowledge often stops here. The proteins' 3D (tertiary) stru
ture, essential to study their fun
-tions, remains almost unknown. There exist physi
al methods to estimate the 
oordinates of ea
hatoms of a protein, but they need the protein to be 
rystallized, a time 
onsuming pro
ess whi
h,at the moment, is impossible to automate and serialize. Even if the number of proteins whoseprimary sequen
e is known 
ounts in the number of millions, only few thousands of them havebeen 
rystallized and their 3D stru
ture deposited in the Protein Data Bank [2℄. Unfortunately,neither alternative approa
hes based on nu
lear magneti
 resonan
e 
annot be applied at the ge-



nomi
 s
ale. It is therefore be
oming in
reasingly important to predi
t protein's tertiary stru
tureab initio from its amino a
id sequen
e, using insights obtained from already known stru
tures.
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SecondaryFig. 3. Primary stru
ture (amino a
ids), se
ondary stru
ture (heli
es, strands and 
oils) and tertiarystru
tures (C� 
oordinates) of a protein.The tertiary stru
ture of a protein mostly depends on its primary stru
ture and the environmentwhere the protein folds. It is also known that proteins having similar primary stru
tures tend tofold in similar ways. Therefore, the simplest approa
h to predi
t the tertiary stru
ture of a querysequen
e is to align it to a database of known stru
tures using string similarity te
hniques tosear
h for 
lose parents. This way of deriving proteins' tertiary stru
tures is known as 
omparativemodeling. Proteins that 
annot be studied with this simple strategy are predi
ted using threadingalgorithms. These methods estimate the proteins' stru
ture 
ombining small pie
es of other proteinswhi
h share lo
al substru
tures (domains) with the query 
hain. Those building blo
ks are foundperforming a stru
ture to stru
ture 
omparison, using an estimation of the protein se
ondarystru
ture. Therefore, reliable methods to estimate protein's se
ondary stru
ture are fundamentalfor tertiary stru
ture predi
tion. Moreover, the predi
ted se
ondary stru
ture 
ontent of a protein
an be used to identify its folding family [3, 4℄ and to estimate its fun
tions.The �rst attempt to apply ma
hine learning te
hniques to the predi
tion of se
ondary stru
ture[5℄ employed a standard multi-layer per
eptron (MLP) with a single hidden layer, and used asinputs a window of amino a
ids in one-hot 
ode. The a

ura
y of this method, measured as theproportion of amino a
ids 
orre
tly assigned to one of the three se
ondary stru
ture 
lasses (three-state a

ura
y or Q3) was well below 70%. Although it is true that primary stru
ture 
ontainsall the informations needed for the 
orre
t folding of a protein, unfortunately the 
on�guration ofevery position of the sequen
e is in
uen
ed by the whole 
ontent of amino a
ids of the protein,whi
h 
an 
ontain thousands of them. Therefore, the same group of linked amino a
ids 
an appearin di�erent 
onformations if its 
ontext varies (su
h misleading patterns are 
alled 
hameleons).The introdu
tion of evolutionary information expressed by multiple alignment pro�les, repre-sented a major 
ontribution to the solution of the problem and allowed a signi�
ant improvementof the reported a

ura
y to about 72% [6℄. A multiple alignment is a 
olle
tion of sequen
es ofamino a
ids from di�erent proteins, realized using a maximum lo
al alignment algorithm [7℄. Thepro
edure sear
hes in a large database of known primary stru
tures for all the pie
es of sequen
essimilar to part of the protein to predi
t. The rationale behind this approa
h is that se
ondarystru
ture is more 
onserved than primary stru
ture, therefore similar primary stru
tures will leadto se
ondary stru
tures that are only slightly di�erent [8℄. On
e the multiple alignment has been
omputed, the pro�le is obtained by 
ounting the frequen
y of ea
h amino a
id at every position



in sequen
e. This pro�le is then used instead of the one-hot 
ode as a representation of the aminoa
ids in ea
h position of the sequen
e.A major drawba
k of using a MLP on a window of pro�les is given by the relative independen
ebetween the predi
tions of adja
ent positions in the sequen
e. On the 
ontrary, the se
ondarystru
ture of a protein is de�ned as a 
olle
tion of segments 
omposed by many 
onse
utive aminoa
ids. To quantify the 
apability of a 
lassi�er to 
orre
tly predi
t entire segments of se
ondarystru
ture a measure of Segment OVerlap (SOV) is used [9℄. A 
ommon approa
h that 
an improveboth SOV and Q3 is to add a se
ond stru
ture to stru
ture 
lassi�er to �lter the predi
tions of these
ondary stru
ture. Jones [10℄ used neural networks (NNs) for both stages, feeding the �lteringnetwork with a window of predi
tions output by the �rst stage. Thanks to this solution and to anin
reasing availability of training data, this ar
hite
ture a
hieves the best performan
es so far withan a

ura
y of 78% and a SOV of 73.5%. A di�erent approa
h has been presented by Baldi et al[11℄ and re�ned by Pollastri et al [12℄ whi
h uses bidire
tional re
urrent neural networks (BRNNs)for se
ondary stru
ture predi
tion, trained with pro�les as inputs. BRNNs does not su�er of thelimitations of a feed-forward neural network 
lassi�er, so they do not need a �ltering stage. Thisar
hite
ture a
hieves results equivalent to Jones' work. Lately, Hua and Sun [13℄ proposed theuse of support ve
tor ma
hines (SVMs) for se
ondary stru
ture predi
tion. The authors 
laim thesuperiority of this model, supported by an high value of SOV without the use of a �ltering stage.Given the work of Hua and Sun, we de
ided to explore the use of SVMs for the predi
tion ofse
ondary stru
ture. In se
tion 2 we brie
y explain the preparation of the data used during thiswork. In se
tion 3 we test the use of SVMs for the predi
tion of se
ondary stru
ture. The se
tionstart with a des
ription of the ar
hite
ture used. We present here the results of an experiment runto repli
ate the 
laims made by Hua and Sun. Then, we apply the algorithm to a bigger and morerepresentative dataset, posing more attentions on model sele
tion. Finally, we 
ompare SVMs andNNs on the same data. In se
tion 4 we explore the use of bidire
tional re
urrent neural networksas a se
ond stage 
lassi�er to �lter the predi
tions of the SVM. This model is brie
y explained atthe beginning of the se
tion and then experimental results are presented. In se
tion 5 we present anovel method to enfor
e the predi
tion with 
onstraints on se
ondary stru
ture given in the formof a �nite-state automaton (FSA). This method uses Viterbi algorithm to align the FSA to thesequen
e of probabilities output by the predi
tor, and it proves to be a simple but general methodfor embedding prior knowledge in the predi
tion of sequen
es. Finally, in se
tion 6 we draw some
on
lusions about the results presented in this work, and we outline future dire
tions of resear
hinspired by these results.2 DatasetsThe �rst set of experiments is run to repli
ate the results of Hua and Sun [13℄. In their work theauthors used the publi
ly available dataset CB513 released by Cu� and Barton [14℄. This datasetis 
omposed by 513 
hains with low similarity, so that test results are not biased. A 7-fold 
ross-validation is adopted to estimate the a

ura
y of the 
lassi�er. Evolutionary information is derivedfrom multiple sequen
e alignments, obtained from the HSSP database [15℄. Se
ondary stru
turelabels are assigned using the DSSP program [1℄.The remaining of the experiments are performed using a signi�
ant fra
tion of the 
urrentrepresentative set of non homologous Protein Data Bank 
hains (PDB Sele
t [16℄). We extra
tedthe sequen
es from the April 2002 release, listing 1779 
hains with a per
entage of homology lowerthan 25%. From this set we retained only high quality proteins on whi
h the DSSP program doesnot 
rash, determined only by X-ray di�ra
tion, without any physi
al 
hain breaks and resolutionthreshold lower than 2.5 �A. The �nal dataset 
ontains 969 
hains, almost 184,000 amino a
ids,splitted in a training set of 490 
hains, a validation set of 163 
hains and a test set of 326 
hains.Multiple alignments are generated using PSI-BLAST [17℄ applied to the Swiss-Prot+TrEMBLnon-redundant database [18℄.



3 Support Ve
tor Ma
hines for Se
ondary Stru
ture Predi
tionThe most su

essful predi
tors of se
ondary stru
ture so far employ neural networks as 
lassi�ers.Lately, Hua and Sun [13℄ presented an ar
hite
ture based on SVMs, 
laiming the superiority ofthis model as demonstrated by the high value of SOV rea
hed.In this se
tion we present our result about the use of SVMs for se
ondary stru
ture predi
tion.We show the 
laimed value of SOV 
annot be rea
hed just implementing the 
lassi�er with SVMs.We experiment SVMs on a bigger and more representative dataset to further exploit the potentialityof this model. Finally, we perform a dire
t 
omparison with neural networks, using the same datafor both models, showing that there is no 
lear superiority of SVMs in this task.3.1 SVM Classi�erKernel ma
hines and in parti
ular support ve
tor ma
hines are motivated by Vapnik's prin
iple ofstru
tural risk minimization in statisti
al learning theory [19℄. In the simplest 
ase, the SVM train-ing algorithm starts from a ve
tor-based representation of data points and sear
hes a separatinghyperplane that has maximum distan
e from the dataset, a quantity known as the margin. Morein general, when examples are not linearly separable ve
tors, the algorithm maps them into a highdimensional spa
e, 
alled feature spa
e, where they are almost linearly separable. This is typi
allya
hieved via a kernel fun
tion that 
omputes the dot produ
t of the images of two examples in thefeature spa
e. The de
ision fun
tion asso
iated with an SVM is based on the sign of the distan
efrom the separating hyperplane: f(x) = NXi=1 yi�iK(x;xi) (1)where x is the input ve
tor, fx1; : : : ;xNg is the set of support ve
tors, K(�; �) is the kernel fun
-tion, and yi is the 
lass of the i-th support ve
tor (+1 or -1 for positive and negative examples,respe
tively).In their standard formulation SVMs output hard de
isions rather than 
onditional probabilities.However, margins 
an be 
onverted into 
onditional probabilities in di�erent ways, both in the 
aseof binary 
lassi�
ation [20, 21℄ and in the 
ase of multi-
lass 
lassi�
ation [22℄. The method usedin this paper extends the algorithm presented by Platt [21℄, where margins from equation 1 aremapped into 
onditional probabilities using a logisti
 fun
tion, parameterized by an o�set B anda slope A: P (Ci = 1jx) = 11 + eAf(x)+B : (2)Parameters A and B are adjusted a

ording to the maximum likelihood prin
iple, assuming aBernoulli model for the 
lass variable. This is extended here to the multi-
lass 
ase by assuming amultinomial model and repla
ing the logisti
 fun
tion by a softmax fun
tion [23℄. More pre
isely,assuming Q 
lasses, we train Q binary 
lassi�ers, a

ording to the one-against-all output 
odingstrategy. In this way, for ea
h point x, we obtain a ve
tor [f1(x); � � � ; fQ(x)℄ of margins, that 
anbe transformed into a ve
tor of probabilities using the softmax fun
tion:P (C = qjx) = eAqfq(x)+BqPQr=1 eArfr(x)+Br ; q = 1 : : : Q: (3)The softmax parameters Aq ; Bq are determined as follows. First, we introdu
e a new datasetf(f1(xi); : : : ; fQ(xi); zi); i = 1; : : : ;mg of examples whose input portion is a ve
tor of Q marginsand output portion is a ve
tor z of indi
ator variables en
oding (in one-hot) one of Q 
lasses. Assuggested by Platt for the two 
lasses 
ase, this dataset should be obtained either using a hold-outstrategy, or a k-fold 
ross validation pro
edure. Se
ond, we perform a sear
h of the parameters Aqand Bq that maximize the log-likelihood fun
tion under a multinomial model:` =Xi QXq=1 zq;i logP (Ci = qjx) (4)



where zq;i = 1 if the i-th training example belongs to 
lass q and zq;i = 0 otherwise.
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Fig. 4. Ar
hite
ture of the SVM 
lassi�er for se
ondary stru
ture predi
tion, 
omposed of three one-against-all SVMs with gaussian kernel 
ombined using a softmax.3.2 Experiments on CB513We now run a set of experiments to repli
ate the results of Hua and Sun [13℄ on the CB513dataset. Our se
ondary stru
ture predi
tor is 
onstituted by three one-against-all SVM 
lassi�erswith gaussian kernel 
ombined using a softmax (Figure 4). We used the same parameters and thesame inputs as in [13℄ in the attempt to repli
ate their best results, even if we 
ould not retrievethe same lists of proteins for ea
h fold of the 
ross-validation.Our experimental results show a signi�
ant di�eren
e with respe
t to the SOV obtained in [13℄.This eviden
e supports our belief that the expe
ted value of SOV rea
hed by an SVM predi
torQ3 SOVOur work 73.2 68.5Hua and Sun 73.5 76.2Table 1. Results of the experiments on the CB513 dataset.should not be mu
h di�erent 
ompared to a feed-forward neural-network approa
h, be
ause bothmethods are lo
al. There is no reason to expe
t that distin
t models trained to predi
t a singleposition in the protein sequen
e and that a
hieve similar a

ura
y measured by Q3 should behave
ompletely di�erent when their performan
e is measured on segments.3.3 Experiments on PDB sele
t: SVM vs NNThe CB513 is quite an old dataset whi
h 
omprises very few proteins if 
ompared to the presentsize of the Protein Data Bank. Moreover, the 
riteria used by Cu� and Barton [14℄ to 
he
kfor redundan
ies inside the dataset has been subsequently repla
ed by di�erent measures. It isthen advisable to test the SVM 
lassi�er on a more representative dataset to better exploit its




apabilities. Also, in the experiments on the CB513 datasets we used �xed values of the 
 parameterfor every one-against-all 
lassi�ers. This is not advisable, sin
e the optimal value of 
 is stronglya�e
ted by the patterns to 
lassify. Therefore, we now perform a model sear
h to �nd the optimalvalue of 
 for ea
h one-against-all 
lassi�er at various dimensions of the input window, using avalidation set to estimate the error, and �xing the value of C to 1. The model sear
h is performedon a small part of the training set, be
ause it would take too mu
h time otherwise.Classi�er w = 9 w = 11 w = 13 w = 15 w = 17 w = 19H= ~H 15.7 15.2 15.0 14.9 15.3 16.3E= ~E 16.4 16.0 15.7 15.5 15.6 15.7C= ~C 23.0 22.8 22.7 22.9 23.1 23.1Table 2. Lowest errors a
hieved by ea
h one-against-all 
lassi�er on the PDB sele
t dataset optimizingthe value of 
 at various dimensions w of the input window.The results of the model sear
h (Table 2) show a saturation in the performan
es of the three
lassi�ers for large windows. SVMs are 
apable of dealing with highly dimensional data, but theyseems unable to use the higher quantity of information 
ontained in su
h ri
her inputs. It seemspossible that augmenting the input window have the e�e
t of in
reasing the quantity of noise morethan the quantity of information, resulting in poorer performan
es of the 
lassi�er. This 
an be apossible indi
ation of the fa
t that even ri
her models 
ould never exploit the information 
ontainedin the whole protein sequen
e for the predi
tion of its stru
ture.>From the experiments on the CB513 dataset we have seen that SVMs do not guarantee aparti
ularly high SOV. Moreover, these models require 
omputationally expensive pro
edures fortraining. Therefore, we want to establish if they are somehow superior to neural networks in thetask of se
ondary stru
ture predi
tion. In this work we present for the �rst time a dire
t 
omparisonbetween the two models on the same dataset. We use a NN ar
hite
ture based on the work of Riisand Krog [24℄, whi
h employed a four layers feed-forward neural network: an input layer where awindow of amino a
ids is fed, a 
ode layer used for adaptively sear
h an en
oding of ea
h aminoa
id, an hidden layer and an output layer where the predi
tion is taken. The 
ode layer has beenintrodu
ed to limit the number of weights in the network, therefore preventing over�tting. Adi�erent 
oding is possible be
ause the representation of amino a
ids with pro�les is extremelysparse and also amino a
ids 
an be 
lustered in di�erent overlapping 
ategories a

ording to their
hemi
al properties. The neural networks is then for
ed to adaptively sear
h an optimal en
odingby sharing the weights between every group of 20 neurons in the input layer en
oding a singleamino a
id and the 
orresponding k neurons in the 
ode layer. Riis and Krog suggested to usek = 3 neurons for ea
h amino a
id in the 
ode layer. We employ here a single 
lassi�er withmultiple linear outputs 
ombined using a softmax fun
tion to estimate the probability of ea
h ofthe three se
ondary stru
ture 
lasses.Method Q3 SOV Time Spa
eSVM 76.5 68.9 3 days 210 MbNN 76.7 67.8 2 hours 30 kbTable 3. Performan
es of the SVM ar
hite
ture 
ompared to the NN ar
hite
ture on the PDB sele
tdataset. Running time and size of the trained model are reported for both ar
hite
tures.Given the optimal parameters found, we applied our 
lassi�ers to a single split of the dataset asdes
ribed in se
tion 2. The same input window is used for both the SVM and the NN ar
hite
ture.The best NN model is sear
hed by varying the size of the hidden layer and using the a

ura
y on the



validation set as a s
oring fun
tion. The NN is trained with ba
k-propagation and early stoppingto avoid over�tting. The results of the experiments are shown in table 3. Both ar
hite
tures rea
ha satisfying value of a

ura
y, quite 
omparable to the most re
ent works, but they su�er from avery low measure of SOV, as we expe
ted for the reasons explained before. The results show no
lear advantage of the SVM over the NN ar
hite
ture. Moreover the SVM ar
hite
ture have mu
hhigher time and spa
e 
omplexity: the time 
omplexity of the training pro
edure of an SVM is inthe order of a quadrati
 fun
tion of the number of examples (the training set we used 
ontains morethan 90000 data points), and its model 
onsists of almost 60% of the training examples. Giventhe very high number of examples and the possibility of using a validation-set, the predi
tion ofse
ondary stru
ture seems a task �tted for neural networks.4 Filtering Predi
tions with Bidire
tional Re
urrent Neural NetworksOur experiments with SVM and NN ar
hite
tures 
on�rmed that a lo
al 
lassi�er trained on singlepositions of the sequen
e 
annot a
hieve a high value of SOV. The SOV is a very important measureto assess the quality of a 
lassi�er, sin
e most of the uses of se
ondary stru
ture predi
tions relyon the 
orre
t assignment of segments. It is then ne
essary to adopt an ar
hite
ture whi
h 
an
orrelate predi
tions on adja
ent amino a
ids, to somehow smooth the �nal predi
ted sequen
e. Inthis work we explore the use of bidire
tional re
urrent neural networks as a �ltering stage to re�nethe predi
tions of the lo
al 
lassi�er.
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BRNN
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jXT )

Fig. 5. Two stages ar
hite
ture. Lo
al 
lassi�er 
an be either SVM based or NN based. The bidire
tionalre
urrent neural network is unfolded over the 
hain.BRNNs are re
urrent neural networks where two set of states F and B are re
ursively 
opiedforward and ba
kward along the sequen
e (Figure 5). BRNNs 
an develop 
omplex non-linear andnon-
ausal dynami
s that 
an be used to 
orre
t output-lo
al predi
tion by trying to 
apture validsegments of se
ondary stru
ture. However, the problem of vanishing gradients [25℄ prevents fromlearning global dependen
ies, so it is impossible for the BRNN to model the whole 
onformation ofthe protein. The �ltering BRNN have three inputs for ea
h position of the sequen
e, 
orrespondingto the probabilities 
al
ulated by the softmax fun
tion in the �rst stage 
lassi�er (Figure 5).We used early stopping to 
ontrol over�tting during the training phase. We tested the BRNNon both the predi
tions of SVM and NN ar
hite
tures. These experiments (Table 4) 
learly showthe eÆ
ien
y of the BRNN when used for �ltering the predi
tions of a lo
al 
lassi�er, rea
hingstate-of-the-art a

ura
y and a very high value of SOV. The performan
es of this solution are



equivalent to the ar
hite
ture based on a BRNN with pro�les as input [12℄, even if the �lteringBRNN has a mu
h simpler ar
hite
ture and its easier to train.Q3 SOVSVM+BRNN 77.9 74.1NN+BRNN 77.8 74.2Table 4. Performan
es of the BRNN used as a �ltering stage applied to both the predi
tions of SVM andNN ar
hite
tures.
5 Enfor
ing Constraints using the Viterbi De
oderA 
lose observation of the outputs of the two stages 
lassi�er shows the presen
e of in
onsisten
iesin the predi
ted sequen
es. The DSSP program re
ognize the presen
e of alpha heli
es and betastrands from spe
i�
 patterns in the hydrogen bonds between the amino a
ids of the protein.These way of labeling the se
ondary stru
ture of a protein imposes some 
onstraints on observablesequen
es:{ alpha helix segments must be at least 4 �Along,{ beta strands must be at least 2 �Along.some additional fa
ts enri
h the list of 
onstraints:{ a sequen
e must start and �nish with a 
oil,{ between an alpha helix and a beta strand (and vi
eversa) there must be a 
oil.

E1
H2H1 H3 H4

E2
HH H H

Start H
E

C CE CE
EndC CC1

Fig. 6. Finite-state automaton representing every possible allowed sequen
e of se
ondary stru
ture.We present here a simple but e�e
tive method to enfor
e these 
onstraints in the output of a
lassi�er. All the previous fa
ts known about physi
al 
hains 
an be expressed using a �nite-stateautomaton (FSA, Figure 6), whi
h represents every possible allowed sequen
e in our minimal se
-ondary stru
ture grammar. The outputs of the two stages 
lassi�er are the probabilities P (H jXt; t),P (EjXt; t) and P (CjXt; t) that the amino a
id in position t of the sequen
e is in one of the threese
ondary stru
ture 
lasses, given the input Xt and the position t. We would like our 
onstraintssatisfying method to output the best possible sequen
e from the grammar de�ned by our FSA,using as s
oring fun
tion its overall probability as estimated by the 
lassi�er:P (Y jI) = TYt=1P (ytjXt; t) ; Y = fy1y2 : : : yT g yt 2 fH;E;Cg: (5)



This request stri
tly resemble problem 2 of hidden Narkov models [26℄: we have the probabilitiesof observations, we have a state model of our data and we want the best sequen
e of states. A�nite-state automaton 
an be thought of as a degenerated hidden Markov model, where ea
h stateemits a single symbol with probability 1 and all the transitions have the same probability (it 
anbe set to 1 be
ause we don't need the probabilities of all the transitions 
oming out of a state sumto 1). Therefore, we 
an employ the Viterbi algorithm to align our model to the sequen
e, usingthe probabilities of observations estimated by the 
lassi�er (Algorithm 1). The algorithm sear
hesan optimal path on a trellis whose nodes are (s; t), being s the 
orresponding state of the FSA andt the position in the sequen
e. Ea
h node of the trellis has two atta
hed variables: s
ore(s; t) isthe s
ore of the best sequen
e ending at this node, and last(s; t) is the pre
eding state in the bestsequen
e ending at this node. We de�ne symbol(si; sj) as the symbol emitted during the transitionfrom state si to sj , and parents(s) as the set states whi
h have a transition ending in state s.Algorithm 1 The Viterbi de
oder.Init the trellis:for all (s; t) dos
ore(s; t) �1end forForward re
ursion:s
ore(start;0) 0for t = 1 to T dofor all si dofor all sj 2 parents(si) doif s
ore(sj ; t� 1) + log P (symbol(si; sj)jXt; t) > s
ore(si; t) thens
ore(si; t) s
ore(sj ; t� 1) + log P (symbol(si; sj)jXt; t)last(si; t) sjend ifend forend forend forBa
kward re
ursion:previous endfor t = T to 1 dothis previousprevious last(this; t)yt  symbol(previous; this)end forY  fy1y2 : : : yT gWe use log-probabilities be
ause of numeri
al problems. The s
ore of the ending state of thesequen
e is the log-probability of the best sequen
e Y . This algorithm 
an be easily extended to aFSA with more than one starting state and more than one ending state. Moreover, the probabilitiesused to 
al
ulate the s
ores do not need to 
ome from a parti
ular type of 
lassi�er: we 
an use thepredi
tions of the se
ond stage BRNN, but also the predi
tions of the �rst stage SVM and NN.Target ..CEEEEECCCCCC.. ..CHHHHHHC..Predi
ted ..CEHEEECCHCHC.. ..CHCCHHEC..Corre
ted ..CEEEEECCCCCC.. ..CHHHHHHC..Table 5. Errors 
orre
ted by the Viterbi de
oder.



A visual observation of the predi
tions shows the kind of errors the Viterbi de
oder is ableto 
orre
t (Table 5). In Table 6 we show the performan
es of the Viterbi de
oder applied to thepredi
tions of our 
lassi�ers. The Viterbi de
oder 
an strongly in
rease the value of SOV of the
lassi�ers, even improving the predi
tions of the �ltering stage, and sometimes it 
an also improvethe overall a

ura
yQ3. Q3 SOVSVM 76.5 68.9SVM+VD 76.9 73.5NN 76.7 67.8NN+VD 77.2 73.6SVM+BRNN 77.9 74.1SVM+BRNN+VD 78.0 74.7NN+BRNN 77.8 74.2NN+BRNN+VD 78.0 75.2Table 6. Performan
es of the Viterbi de
oder applied to the various 
lassi�ers presented in this paper,
ompared to their original results.
6 Con
lusionsIn this paper we have presented a two stages ar
hite
ture for se
ondary stru
ture predi
tion. Inse
tion 3 we have explored the use of SVMs for the predi
tion of se
ondary stru
ture. We foundthat SVMs do not guarantee a high value of SOV, 
ontrarily to a re
ent 
laim by Hua and Sun [13℄.Moreover, we have found that SVMs are not superior to NN for se
ondary stru
ture predi
tion,running for the �rst time an experiment to 
ompare both models on the same data. Given theneed of a �ltering stage to re�ne the predi
tions of the lo
al 
lassi�er and in
rease the valueof SOV, we have explored the use of BRNNs for su
h task. We have demonstrated that a twostages ar
hite
ture 
omposed by a lo
al 
lassi�er, either SVM based or NN based, and a �lteringBRNN 
an rea
h state-of-the-art performan
es. Finally, we have introdu
ed a Viterbi de
oder toenfor
e 
onstraints derived from prior knowledge into se
ondary stru
ture predi
tions. The Viterbide
oder is 
apable of �nding the best sequen
e of predi
tions from a prede�ned grammar giventhe probabilities estimated by a 
lassi�er. We have demonstrated the Viterbi de
oder is able ofin
reasing the value of SOV of our two stages ar
hite
ture, and to output sequen
es whi
h are
onsistent with the 
onstraints on se
ondary stru
ture.We have demonstrated that SVMs are not superior to other types of 
lassi�er for the problemof predi
ting se
ondary stru
ture, as a 
onsequen
e of the high number of available examples. Thesuperiority of SVMs is given by the possibility of working in high dimensionality spa
es de�ned bykernels. The use of a gaussian kernels does not 
onstitute an improvement over the implementationof NNs with sigmoid a
tivation fun
tions. The 
apabilities of SVMs would be really exploited if amore 
omplex kernel using ri
her inputs is implemented. An example 
ould be a kernel runningdire
tly on multiple alignments, without the need of 
al
ulating pro�les whi
h 
onstitutes a lossin information. We have demonstrated the Viterbi de
oder is very e�e
tive for aligning �nite-stateautomata to sequen
es of probabilities: it is able of 
orre
ting isolated errors, resulting in highvalues of SOV. However, the Viterbi de
oder 
annot 
orre
t 
ompletely mis
lassi�ed segmentsof se
ondary stru
ture. A solution to this problem would require the 
reation of a ri
her �nite-state automaton, 
omprising 
onstraints on se
ondary stru
ture segments, maybe automati
allydis
overed from observed stru
tures.
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