A Combination of Support Vector Machines and
Bidirectional Recurrent Neural Networks for Protein
Secondary Structure Prediction

Alessio Ceroni, Paolo Frasconi, Andrea Passerini, and Alessandro Vullo

Machine Learning and Neural Networks Group
Dipartimento di Sistemi e Informatica
Universita di Firenze, Italy
Phone: +39 055 4796 361
Fax: +39 055 4796 363
Web: http://www.dsi.unifi.it/neural/

Email: {aceroni,paolo,passerini,vullo}@dsi.unifi.it

Abstract. Predicting the secondary structure of a protein is a main topic in bioinformatics.
A reliable predictor is needed for example by threading methods to improve the prediction
of tertiary structure. Moreover, the predicted secondary structure content of a protein can
be used to assign the protein to a specific folding class and to estimate its function.

We discuss here the use of support vector machines (SVMs) for the prediction of secondary
structure. We show the results of a comparative experiment with a previously presented work.
We measure the performances of SVMs on a significant non-redundant set of proteins. We
present for the first time a direct comparison between SVMs and feed-forward neural netwoks
(NNs) for the task of secondary structure prediction. We exploit the use of bidirectional
recurrent neural networks (BRNNs) as a filtering method to refine the predictions of the
SVM classifier. Finally, we introduce a simple but effective idea to enforce constraints into
secondary structure prediction based on finite-state automata (FSA) and Viterbi algorithm.

1 Introduction

Proteins are polypeptide chains carrying out most of the basic functions of life at the molecular
level. These linear chains fold in complex 3D structures whose shape is responsible of proteins’
behavior. Each ring of the chain consists of one of the 20 amino acid existing in nature. Therefore,
a single protein can be represented as a sequence of letters from a 20 elements alphabet called the
primary structure of the protein. All the amino acids share a common part, formed by a carboxylic
acid (COOH) and an amino group (NH;) attached to a carbon atom (commonly referred to as
C.). The carboxylic acid and the amino group of two amino acids can merge into a peptide bond
to form the links of the polypeptide chain (see Figure 1). Each amino acid is distinguished by a
different R-group, attached to the C, athom, which entails the amino acid dimensions and chemical
properties. For this reason, different sequences will create different folded structures.

HO 0 HO o) HO O HO O
N N N/ \/
A A
H—Cs— N H—Cz—N —= H—Csz— N—Cz—N
| ’ Ny W
R, Ry R; H Ry

Fig. 1. Two free amino acids with their unspecified R-groups, and the dipeptide formed by their bonding.

Proteins are synthesized inside cells. The instructions used by the cell to build a protein are
written in the DNA. DNA’s double helix is made by two long chains composed by four different
nucleotides. The DNA contains genes, sequences of nucleotides codifying for proteins. Each triplet
of nucleotides in a gene correspond to an amino acid of the encoded protein: the 64 possible
configurations of three nucleotides encode the 20 symbols alphabet of amino acids (it’s a redundant
code), plus two symbols to identify start and end of the coding sequence. Decoding is performed
by specific parts of cell’s nucleus: the piece of DNA corresponding to a gene is transcripted into
mRNA (a disposable chain used to transfer informations inside cell’s nucleus) which is in turn
translated into the protein chain.

All the observed proteins present local regularities in their 3D structure, formed and main-
tained by hydrogen bonds between atoms. These regular structures are referred to as the protein’s
secondary structure. The most common configurations observed in proteins are called alpha helices
and beta strands, while all the other conformations are referred to as coils. They are traditionally
identified using a single letter code: H (alpha helix), E (beta strand) and C (coil). An alpha helix
is found when two amino acids spaced three positions along the sequence are hydrogen bonded: a
sequence of amino acids involved in a alpha helix will form a cork screw like 3D structure (Figure
2a). On the contrary, a beta strand is a straight conformation of amino acids hydrogen bonded
to the components of another strand in the protein (Figure 2b), forming a planar aggregation
called beta sheet. A group of adjacent amino acids sharing the same conformation are members
of a segment of secondary structure. Segments of secondary structure are well defined and stable
aggregations of amino acids which strongly influence the chain’s folding and which usually carry
out specifical functions inside the protein, like a list of words in a particular language forming a
meaningful phrase. From the knowledge of the position of every atom of the protein molecule it is
possible to compute the secondary structure at each position in the sequence.

[1].

a) b) N

Hydrogen
bond

Hydrogen bond

Parallel Anti—parallel

Fig. 2. Conformation of a) alpha helix and b) beta strands along the chain of a protein.

Thanks to several genome sequencing projects, the entire DNA sequence of many organisms
has been experimentally determined. Inside each genome the positions of genes have been discov-
ered using specific signals, particular sequences of nucleotides used by cells during transcription.
From these identified genes the proteins’ primary sequences have been extracted. Unfortunately
our knowledge often stops here. The proteins’ 3D (tertiary) structure, essential to study their func-
tions, remains almost unknown. There exist physical methods to estimate the coordinates of each
atoms of a protein, but they need the protein to be crystallized, a time consuming process which,
at the moment, is impossible to automate and serialize. Even if the number of proteins whose
primary sequence is known counts in the number of millions, only few thousands of them have
been crystallized and their 3D structure deposited in the Protein Data Bank [2]. Unfortunately,
neither alternative approaches based on nuclear magnetic resonance cannot be applied at the ge-

nomic scale. It is therefore becoming increasingly important to predict protein’s tertiary structure
ab initio from its amino acid sequence, using insights obtained from already known structures.

I

(-0.8 6.573.8)
(0.99.7 72.5)

(-1.1 9.6 69.3)
(-4.6 11 68.7)

(-5.210.1 65)

(-8.58.564.1)
(-9.4 6.8 60.8)
(-12.6 6.158.9
(-11.12.857.6
(-9.1 0.2 59.6)
(-6.8 -0.556.6
(5.6 3.2 56.8)
(-4.9 2.8 60.6)
(-2.9-0.459.7
(-0.81.757.3)
(-0.5 4.5 59.9)

ST ITIIIIIIOOMMOOOOO -

|

ST IXVHCrO>POIXIOMOTIDOVDOOMM -

Primry Secondary Tertiary

Fig. 3. Primary structure (amino acids), secondary structure (helices, strands and coils) and tertiary
structures (C coordinates) of a protein.

The tertiary structure of a protein mostly depends on its primary structure and the environment
where the protein folds. It is also known that proteins having similar primary structures tend to
fold in similar ways. Therefore, the simplest approach to predict the tertiary structure of a query
sequence is to align it to a database of known structures using string similarity techniques to
search for close parents. This way of deriving proteins’ tertiary structures is known as comparative
modeling. Proteins that cannot be studied with this simple strategy are predicted using threading
algorithms. These methods estimate the proteins’ structure combining small pieces of other proteins
which share local substructures (domains) with the query chain. Those building blocks are found
performing a structure to structure comparison, using an estimation of the protein secondary
structure. Therefore, reliable methods to estimate protein’s secondary structure are fundamental
for tertiary structure prediction. Moreover, the predicted secondary structure content of a protein
can be used to identify its folding family [3,4] and to estimate its functions.

The first attempt to apply machine learning techniques to the prediction of secondary structure
[5] employed a standard multi-layer perceptron (MLP) with a single hidden layer, and used as
inputs a window of amino acids in one-hot code. The accuracy of this method, measured as the
proportion of amino acids correctly assigned to one of the three secondary structure classes (three-
state accuracy or @)3) was well below 70%. Although it is true that primary structure contains
all the informations needed for the correct folding of a protein, unfortunately the configuration of
every position of the sequence is influenced by the whole content of amino acids of the protein,
which can contain thousands of them. Therefore, the same group of linked amino acids can appear
in different conformations if its context varies (such misleading patterns are called chameleons).

The introduction of evolutionary information expressed by multiple alignment profiles, repre-
sented a major contribution to the solution of the problem and allowed a significant improvement
of the reported accuracy to about 72% [6]. A multiple alignment is a collection of sequences of
amino acids from different proteins, realized using a maximum local alignment algorithm [7]. The
procedure searches in a large database of known primary structures for all the pieces of sequences
similar to part of the protein to predict. The rationale behind this approach is that secondary
structure is more conserved than primary structure, therefore similar primary structures will lead
to secondary structures that are only slightly different [8]. Once the multiple alignment has been
computed, the profile is obtained by counting the frequency of each amino acid at every position

in sequence. This profile is then used instead of the one-hot code as a representation of the amino
acids in each position of the sequence.

A major drawback of using a MLP on a window of profiles is given by the relative independence
between the predictions of adjacent positions in the sequence. On the contrary, the secondary
structure of a protein is defined as a collection of segments composed by many consecutive amino
acids. To quantify the capability of a classifier to correctly predict entire segments of secondary
structure a measure of Segment OVerlap (SOV) is used [9]. A common approach that can improve
both SOV and @3 is to add a second structure to structure classifier to filter the predictions of the
secondary structure. Jones [10] used neural networks (NNs) for both stages, feeding the filtering
network with a window of predictions output by the first stage. Thanks to this solution and to an
increasing availability of training data, this architecture achieves the best performances so far with
an accuracy of 78% and a SOV of 73.5%. A different approach has been presented by Baldi et al
[11] and refined by Pollastri et al [12] which uses bidirectional recurrent neural networks (BRNNs)
for secondary structure prediction, trained with profiles as inputs. BRNNs does not suffer of the
limitations of a feed-forward neural network classifier, so they do not need a filtering stage. This
architecture achieves results equivalent to Jones’ work. Lately, Hua and Sun [13] proposed the
use of support vector machines (SVMs) for secondary structure prediction. The authors claim the
superiority of this model, supported by an high value of SOV without the use of a filtering stage.

Given the work of Hua and Sun, we decided to explore the use of SVMs for the prediction of
secondary structure. In section 2 we briefly explain the preparation of the data used during this
work. In section 3 we test the use of SVMs for the prediction of secondary structure. The section
start with a description of the architecture used. We present here the results of an experiment run
to replicate the claims made by Hua and Sun. Then, we apply the algorithm to a bigger and more
representative dataset, posing more attentions on model selection. Finally, we compare SVMs and
NNs on the same data. In section 4 we explore the use of bidirectional recurrent neural networks
as a second stage classifier to filter the predictions of the SVM. This model is briefly explained at
the beginning of the section and then experimental results are presented. In section 5 we present a
novel method to enforce the prediction with constraints on secondary structure given in the form
of a finite-state automaton (FSA). This method uses Viterbi algorithm to align the FSA to the
sequence of probabilities output by the predictor, and it proves to be a simple but general method
for embedding prior knowledge in the prediction of sequences. Finally, in section 6 we draw some
conclusions about the results presented in this work, and we outline future directions of research
inspired by these results.

2 Datasets

The first set of experiments is run to replicate the results of Hua and Sun [13]. In their work the
authors used the publicly available dataset CB513 released by Cuff and Barton [14]. This dataset
is composed by 513 chains with low similarity, so that test results are not biased. A 7-fold cross-
validation is adopted to estimate the accuracy of the classifier. Evolutionary information is derived
from multiple sequence alignments, obtained from the HSSP database [15]. Secondary structure
labels are assigned using the DSSP program [1].

The remaining of the experiments are performed using a significant fraction of the current
representative set of non homologous Protein Data Bank chains (PDB Select [16]). We extracted
the sequences from the April 2002 release, listing 1779 chains with a percentage of homology lower
than 25%. From this set we retained only high quality proteins on which the DSSP program does
not crash, determined only by X-ray diffraction, without any physical chain breaks and resolution
threshold lower than 2.5 A. The final dataset contains 969 chains, almost 184,000 amino acids,
splitted in a training set of 490 chains, a validation set of 163 chains and a test set of 326 chains.
Multiple alignments are generated using PSI-BLAST [17] applied to the Swiss-Prot+TrEMBL
non-redundant database [18].

3 Support Vector Machines for Secondary Structure Prediction

The most successful predictors of secondary structure so far employ neural networks as classifiers.
Lately, Hua and Sun [13] presented an architecture based on SVMs, claiming the superiority of
this model as demonstrated by the high value of SOV reached.

In this section we present our result about the use of SVMs for secondary structure prediction.
We show the claimed value of SOV cannot be reached just implementing the classifier with SVMs.
We experiment SVMs on a bigger and more representative dataset to further exploit the potentiality
of this model. Finally, we perform a direct comparison with neural networks, using the same data
for both models, showing that there is no clear superiority of SVMs in this task.

3.1 SVM Classifier

Kernel machines and in particular support vector machines are motivated by Vapnik’s principle of
structural risk minimization in statistical learning theory [19]. In the simplest case, the SVM train-
ing algorithm starts from a vector-based representation of data points and searches a separating
hyperplane that has maximum distance from the dataset, a quantity known as the margin. More
in general, when examples are not linearly separable vectors, the algorithm maps them into a high
dimensional space, called feature space, where they are almost linearly separable. This is typically
achieved via a kernel function that computes the dot product of the images of two examples in the
feature space. The decision function associated with an SVM is based on the sign of the distance
from the separating hyperplane:

N
Fx) =) piouK (x, ;) (1)
i=1
where x is the input vector, {x1,...,xy} is the set of support vectors, K (-,-) is the kernel func-
tion, and y; is the class of the i-th support vector (+1 or -1 for positive and negative examples,

respectively).

In their standard formulation SVMs output hard decisions rather than conditional probabilities.
However, margins can be converted into conditional probabilities in different ways, both in the case
of binary classification [20,21] and in the case of multi-class classification [22]. The method used
in this paper extends the algorithm presented by Platt [21], where margins from equation 1 are
mapped into conditional probabilities using a logistic function, parameterized by an offset B and

a slope A:
1

1+ cATOTE (2)
Parameters A and B are adjusted according to the maximum likelihood principle, assuming a
Bernoulli model for the class variable. This is extended here to the multi-class case by assuming a
multinomial model and replacing the logistic function by a softmax function [23]. More precisely,
assuming () classes, we train () binary classifiers, according to the one-against-all output coding

P(C; = 1]x) =

strategy. In this way, for each point x, we obtain a vector [fi(x),-- -, fo(x)] of margins, that can
be transformed into a vector of probabilities using the softmax function:
eAqfq(x)+Bq
P(C = glx) = —¢ g=1...Q. 3)

S eArfr()+B,

The softmax parameters A,, B, are determined as follows. First, we introduce a new dataset
{(fr(x:),..., fo(xi),2zi),i = 1,...,m} of examples whose input portion is a vector of) margins
and output portion is a vector z of indicator variables encoding (in one-hot) one of @ classes. As
suggested by Platt for the two classes case, this dataset should be obtained either using a hold-out
strategy, or a k-fold cross validation procedure. Second, we perform a search of the parameters 4,
and B, that maximize the log-likelihood function under a multinomial model:

Q
t=3 Z 24,6108 P(C; = g|x) (4)

i

where z,; = 1 if the ¢-th training example belongs to class ¢ and z,; = 0 otherwise.

P(Y =h,e, c|X)
SoftMax
eAifi+Bi
Yihec it
e e
SVM SVM SVM

— 5

... 0.119 0.820 0.222 0.000 0.000 0.152 0.000 0.000 0.010 0.111 0.000 ...
. 0.386 0.180 0.273 0.000 0.000 0.141 0.000 0.141 0.020 0.576 0.000 ...

. 0.000 0.000 0.000 0.000 0.000 0.000 0.140 0.000 0.010 0.010 0.000 ...

Fig. 4. Architecture of the SVM classifier for secondary structure prediction, composed of three one-
against-all SVMs with gaussian kernel combined using a softmax.

3.2 Experiments on CB513

We now run a set of experiments to replicate the results of Hua and Sun [13] on the CB513
dataset. Our secondary structure predictor is constituted by three one-against-all SVM classifiers
with gaussian kernel combined using a softmax (Figure 4). We used the same parameters and the
same inputs as in [13] in the attempt to replicate their best results, even if we could not retrieve
the same lists of proteins for each fold of the cross-validation.

Our experimental results show a significant difference with respect to the SOV obtained in [13].
This evidence supports our belief that the expected value of SOV reached by an SVM predictor

Qs SOV
Our work 73.2] 68.5
Hua and Sun|73.5| 76.2

Table 1. Results of the experiments on the CB513 dataset.

should not be much different compared to a feed-forward neural-network approach, because both
methods are local. There is no reason to expect that distinct models trained to predict a single
position in the protein sequence and that achieve similar accuracy measured by)3 should behave
completely different when their performance is measured on segments.

3.3 Experiments on PDB select: SVM vs NN

The CB513 is quite an old dataset which comprises very few proteins if compared to the present
size of the Protein Data Bank. Moreover, the criteria used by Cuff and Barton [14] to check
for redundancies inside the dataset has been subsequently replaced by different measures. It is
then advisable to test the SVM classifier on a more representative dataset to better exploit its

capabilities. Also, in the experiments on the CB513 datasets we used fixed values of the v parameter
for every one-against-all classifiers. This is not advisable, since the optimal value of v is strongly
affected by the patterns to classify. Therefore, we now perform a model search to find the optimal
value of v for each one-against-all classifier at various dimensions of the input window, using a
validation set to estimate the error, and fixing the value of C' to 1. The model search is performed
on a small part of the training set, because it would take too much time otherwise.

Classifier|w = 9w = 11|w = 13|w = 15|w = 17|w = 19
H/H 15.7 | 15.2 15.0 14.9 15.3 16.3
E/E 16.4 | 16.0 15.7 | 15.5 15.6 15.7
c/c 23.0 | 22.8 | 22.7 | 229 23.1 23.1

Table 2. Lowest errors achieved by each one-against-all classifier on the PDB select dataset optimizing
the value of v at various dimensions w of the input window.

The results of the model search (Table 2) show a saturation in the performances of the three
classifiers for large windows. SVMs are capable of dealing with highly dimensional data, but they
seems unable to use the higher quantity of information contained in such richer inputs. It seems
possible that augmenting the input window have the effect of increasing the quantity of noise more
than the quantity of information, resulting in poorer performances of the classifier. This can be a
possible indication of the fact that even richer models could never exploit the information contained
in the whole protein sequence for the prediction of its structure.

JFrom the experiments on the CB513 dataset we have seen that SVMs do not guarantee a
particularly high SOV. Moreover, these models require computationally expensive procedures for
training. Therefore, we want to establish if they are somehow superior to neural networks in the
task of secondary structure prediction. In this work we present for the first time a direct comparison
between the two models on the same dataset. We use a NN architecture based on the work of Riis
and Krog [24], which employed a four layers feed-forward neural network: an input layer where a
window of amino acids is fed, a code layer used for adaptively search an encoding of each amino
acid, an hidden layer and an output layer where the prediction is taken. The code layer has been
introduced to limit the number of weights in the network, therefore preventing overfitting. A
different coding is possible because the representation of amino acids with profiles is extremely
sparse and also amino acids can be clustered in different overlapping categories according to their
chemical properties. The neural networks is then forced to adaptively search an optimal encoding
by sharing the weights between every group of 20 neurons in the input layer encoding a single
amino acid and the corresponding k neurons in the code layer. Riis and Krog suggested to use
k = 3 neurons for each amino acid in the code layer. We employ here a single classifier with
multiple linear outputs combined using a softmax function to estimate the probability of each of
the three secondary structure classes.

Method| @3 |SOV'| Time | Space
SVM |76.5]| 68.9 | 3 days |210 Mb
NN 76.7| 67.8 |2 hours| 30 kb

Table 3. Performances of the SVM architecture compared to the NN architecture on the PDB select
dataset. Running time and size of the trained model are reported for both architectures.

Given the optimal parameters found, we applied our classifiers to a single split of the dataset as
described in section 2. The same input window is used for both the SVM and the NN architecture.
The best NN model is searched by varying the size of the hidden layer and using the accuracy on the

validation set as a scoring function. The NN is trained with back-propagation and early stopping
to avoid overfitting. The results of the experiments are shown in table 3. Both architectures reach
a satisfying value of accuracy, quite comparable to the most recent works, but they suffer from a
very low measure of SOV, as we expected for the reasons explained before. The results show no
clear advantage of the SVM over the NN architecture. Moreover the SVM architecture have much
higher time and space complexity: the time complexity of the training procedure of an SVM is in
the order of a quadratic function of the number of examples (the training set we used contains more
than 90000 data points), and its model consists of almost 60% of the training examples. Given
the very high number of examples and the possibility of using a validation-set, the prediction of
secondary structure seems a task fitted for neural networks.

4 Filtering Predictions with Bidirectional Recurrent Neural Networks

Our experiments with SVM and NN architectures confirmed that a local classifier trained on single
positions of the sequence cannot achieve a high value of SOV. The SOV is a very important measure
to assess the quality of a classifier, since most of the uses of secondary structure predictions rely
on the correct assignment of segments. It is then necessary to adopt an architecture which can
correlate predictions on adjacent amino acids, to somehow smooth the final predicted sequence. In
this work we explore the use of bidirectional recurrent neural networks as a filtering stage to refine
the predictions of the local classifier.

P(Y: = hye,¢|X1) P(Ys = hy e, c|X») P(Yr = h,e,c|Xr)

BRNN

Local Local Local
Classifier Classifier T Classifier

/—?ﬁ%\/—?—\

.. 0.119 0.820 0.222 0.000 0.000 0.152 0.000 0.000 0.010 0.111 0.000 ...
.. 0.386 0.180 0.273 0.000 0.000 0.141 0.000 0.141 0.020 0.576 0.000 ...

.. 0.000 0.000 0.000 0.000 0.000 0.000 0.140 0.000 0.010 0.010 0.000 ...

Fig. 5. Two stages architecture. Local classifier can be either SVM based or NN based. The bidirectional
recurrent neural network is unfolded over the chain.

BRNNs are recurrent neural networks where two set of states F' and B are recursively copied
forward and backward along the sequence (Figure 5). BRNNs can develop complex non-linear and
non-causal dynamics that can be used to correct output-local prediction by trying to capture valid
segments of secondary structure. However, the problem of vanishing gradients [25] prevents from
learning global dependencies, so it is impossible for the BRNN to model the whole conformation of
the protein. The filtering BRNN have three inputs for each position of the sequence, corresponding
to the probabilities calculated by the softmax function in the first stage classifier (Figure 5).

We used early stopping to control overfitting during the training phase. We tested the BRNN
on both the predictions of SVM and NN architectures. These experiments (Table 4) clearly show
the efficiency of the BRNN when used for filtering the predictions of a local classifier, reaching
state-of-the-art accuracy and a very high value of SOV. The performances of this solution are

equivalent to the architecture based on a BRNN with profiles as input [12], even if the filtering
BRNN has a much simpler architecture and its easier to train.

Qs SOV
SVM+BRNN|77.9| 74.1
NN+BRNN (77.8] 74.2

Table 4. Performances of the BRNN used as a filtering stage applied to both the predictions of SVM and
NN architectures.

5 Enforcing Constraints using the Viterbi Decoder

A close observation of the outputs of the two stages classifier shows the presence of inconsistencies
in the predicted sequences. The DSSP program recognize the presence of alpha helices and beta
strands from specific patterns in the hydrogen bonds between the amino acids of the protein.
These way of labeling the secondary structure of a protein imposes some constraints on observable
sequences:

— alpha helix segments must be at least 4 Along,
— beta strands must be at least 2 Along.

some additional facts enrich the list of constraints:

— a sequence must start and finish with a coil,
— between an alpha helix and a beta strand (and viceversa) there must be a coil.

Fig. 6. Finite-state automaton representing every possible allowed sequence of secondary structure.

We present here a simple but effective method to enforce these constraints in the output of a
classifier. All the previous facts known about physical chains can be expressed using a finite-state
automaton (FSA, Figure 6), which represents every possible allowed sequence in our minimal sec-
ondary structure grammar. The outputs of the two stages classifier are the probabilities P(H|X¢, t),
P(E|Xy,t) and P(C|X¢,t) that the amino acid in position ¢ of the sequence is in one of the three
secondary structure classes, given the input X; and the position ¢. We would like our constraints
satisfying method to output the best possible sequence from the grammar defined by our FSA,
using as scoring function its overall probability as estimated by the classifier:

T
Y|I = HP yt|Xt; , Y = {ylyg .. -yT} Yyt € {H,E,C’}' (5)
t=1

This request strictly resemble problem 2 of hidden Narkov models [26]: we have the probabilities
of observations, we have a state model of our data and we want the best sequence of states. A
finite-state automaton can be thought of as a degenerated hidden Markov model, where each state
emits a single symbol with probability 1 and all the transitions have the same probability (it can
be set to 1 because we don’t need the probabilities of all the transitions coming out of a state sum
to 1). Therefore, we can employ the Viterbi algorithm to align our model to the sequence, using
the probabilities of observations estimated by the classifier (Algorithm 1). The algorithm searches
an optimal path on a trellis whose nodes are (s, t), being s the corresponding state of the FSA and
t the position in the sequence. Each node of the trellis has two attached variables: score(s,t) is
the score of the best sequence ending at this node, and last(s,t) is the preceding state in the best
sequence ending at this node. We define symbol(s;, s;) as the symbol emitted during the transition
from state s; to s;, and parents(s) as the set states which have a transition ending in state s.

Algorithm 1 The Viterbi decoder.
Init the trellss:
for all (s,t) do
score(s,t) < —o0
end for

Forward recursion:
score(start,0) < 0
fort=1toT do
for all s; do
for all s; € parents(s;) do
if score(s;,t — 1) + log P(symbol(si, sj)|X¢,t) > score(s;,t) then
score(si, t) < score(sj,t — 1) + log P(symbol(s;, s;)| X¢,t)
last(si, t) < s;
end if
end for
end for
end for

Backward recursion:
previous < end
fort =T to 1l do
this < previous
previous < last(this, t)
ye < symbol(previous, this)
end for

Y {y1y2...yT}

We use log-probabilities because of numerical problems. The score of the ending state of the
sequence is the log-probability of the best sequence Y. This algorithm can be easily extended to a
FSA with more than one starting state and more than one ending state. Moreover, the probabilities
used to calculate the scores do not need to come from a particular type of classifier: we can use the
predictions of the second stage BRNN, but also the predictions of the first stage SVM and NN.

Target ..CEEEEECCCCCC.. ..CHHHHHHC..
Predicted .. CEHFEEECCHCHC.. ..CHCCHHEC..
Corrected .. CEEEEECCCCCC.. ..CHHHHHHC..

Table 5. Errors corrected by the Viterbi decoder.

A visual observation of the predictions shows the kind of errors the Viterbi decoder is able
to correct (Table 5). In Table 6 we show the performances of the Viterbi decoder applied to the
predictions of our classifiers. The Viterbi decoder can strongly increase the value of SOV of the
classifiers, even improving the predictions of the filtering stage, and sometimes it can also improve
the overall accuracy@s.

Qs SOV
SVM 76.5| 68.9
SVM+VD 76.9] 73.5
NN 76.7| 67.8
NN+VD 77.2]73.6

SVM+BRNN 77.9| 74.1
SVM+BRNN+VD|78.0| 74.7
NN+BRNN 77.8] 74.2
NN+BRNN+VD |78.0| 75.2

Table 6. Performances of the Viterbi decoder applied to the various classifiers presented in this paper,
compared to their original results.

6 Conclusions

In this paper we have presented a two stages architecture for secondary structure prediction. In
section 3 we have explored the use of SVMs for the prediction of secondary structure. We found
that SVMs do not guarantee a high value of SOV, contrarily to a recent claim by Hua and Sun [13].
Moreover, we have found that SVMs are not superior to NN for secondary structure prediction,
running for the first time an experiment to compare both models on the same data. Given the
need of a filtering stage to refine the predictions of the local classifier and increase the value
of SOV, we have explored the use of BRNNs for such task. We have demonstrated that a two
stages architecture composed by a local classifier, either SVM based or NN based, and a filtering
BRNN can reach state-of-the-art performances. Finally, we have introduced a Viterbi decoder to
enforce constraints derived from prior knowledge into secondary structure predictions. The Viterbi
decoder is capable of finding the best sequence of predictions from a predefined grammar given
the probabilities estimated by a classifier. We have demonstrated the Viterbi decoder is able of
increasing the value of SOV of our two stages architecture, and to output sequences which are
consistent with the constraints on secondary structure.

We have demonstrated that SVMs are not superior to other types of classifier for the problem
of predicting secondary structure, as a consequence of the high number of available examples. The
superiority of SVMs is given by the possibility of working in high dimensionality spaces defined by
kernels. The use of a gaussian kernels does not constitute an improvement over the implementation
of NNs with sigmoid activation functions. The capabilities of SVMs would be really exploited if a
more complex kernel using richer inputs is implemented. An example could be a kernel running
directly on multiple alignments, without the need of calculating profiles which constitutes a loss
in information. We have demonstrated the Viterbi decoder is very effective for aligning finite-state
automata to sequences of probabilities: it is able of correcting isolated errors, resulting in high
values of SOV. However, the Viterbi decoder cannot correct completely misclassified segments
of secondary structure. A solution to this problem would require the creation of a richer finite-
state automaton, comprising constraints on secondary structure segments, maybe automatically
discovered from observed structures.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers 22 (1983) 2577-2637

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne,
P.E.: The Protein Data Bank. Nucleic Acids Research 28 (2000) 235-242

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH - a
hierarchic classification of protein domain structures. Structure 5 (1997) 1093-1108

Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins
database for the investigation of sequences and structures. Journal of Molecular Biology 247 (1995)
563-540

Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network
models. Journal of Molecular Biology 202 (1988) 865-884

Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70% accuracy. Journal
of Molecular Biology 232 (1993) 584-599

Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular
Biology 147 (1981) 195-197

Abagyan, R.A., Batalov, S.: Do aligned sequences share the same fold? Journal of Molecular Biology
273 (1997)

Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A modified definition of SOV, a segment-based measure
for protein secondary structure prediction assessment. Proteins 34 (1999) 220-223

Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. Journal
of Molecular Biology 292 (1999) 195-202

Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Exploiting the past and the future in protein
secondary structure prediction. Bioinformatics 15 (1999) 937-946

Pollastri, G., Przybylski, D., Rost, B., Baldi, P.: Improving the prediction of protein secondary struc-
ture in three and eight classes using recurrent neural networks and profiles. Proteins 47 (2002) 228-235
Hua, S., Sun, Z.: A novel method of protein secondary structure prediction with high segment overlap
measure: Support vector machine approach. Journal of Molecular Biology 308 (2001) 397407

Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein
secondary structure prediction. Proteins 34 (1999) 508-519

Schneider, R., de Daruvar, A., Sander, C.: The HSSP database of protein structure-sequence align-
ments. Nucleic Acids Res. 25 (1997) 226230

Hobohm, U., Sander, C.: Enlarged representative set of protein structures. Protein Science 3 (1994)
522-524

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.
25 (1997) 3389-3402

Bairoch, A., Apweiler, R.: The Swiss-Prot protein sequence data bank and its new supplement
TrEMBL. Nucleic Acids Research 24 (1996) 21-25

Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)

Kwok, J.: Moderating the outputs of support vector machine classifiers. IEEE Transactions on Neural
Networks 10 (1999) 1018-1031

Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. In Smola, A., Bartlett, P., Scholkopf, B., Schuurmans, D., eds.: Advances in Large Margin
Classifiers. MIT Press (1999)

Passerini, A., Pontil, M., Frasconi, P.: From margins to probabilities in multiclass learning problems.
In van Harmelen, F., ed.: Proc. 15th European Conf. on Artificial Intelligence. (2002)

Bridle, J.: Probabilistic interpretation of feedforward classification network outputs, with relation-
ships to statistical pattern recognition. In Fogelman-Soulie, F., Hérault, J., eds.: Neuro-computing;:
Algorithms, Architectures, and Applications. Springer-Verlag (1989)

Riis, S.K., Krogh, A.: Improving prediction of protein secondary structure using structured neural
networks and multiple sequence alignments. Journal of Computational Biology (1996)

Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks 5 (1994) 157-166

Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE 77 (1989) 257-286

