
A Combination of Support Vetor Mahines andBidiretional Reurrent Neural Networks for ProteinSeondary Struture PreditionAlessio Ceroni, Paolo Frasoni, Andrea Passerini, and Alessandro VulloMahine Learning and Neural Networks GroupDipartimento di Sistemi e InformatiaUniversit�a di Firenze, ItalyPhone: +39 055 4796 361Fax: +39 055 4796 363Web: http://www.dsi.uni�.it/neural/Email: faeroni,paolo,passerini,vullog�dsi.unifi.itAbstrat. Prediting the seondary struture of a protein is a main topi in bioinformatis.A reliable preditor is needed for example by threading methods to improve the preditionof tertiary struture. Moreover, the predited seondary struture ontent of a protein anbe used to assign the protein to a spei� folding lass and to estimate its funtion.We disuss here the use of support vetor mahines (SVMs) for the predition of seondarystruture. We show the results of a omparative experiment with a previously presented work.We measure the performanes of SVMs on a signi�ant non-redundant set of proteins. Wepresent for the �rst time a diret omparison between SVMs and feed-forward neural netwoks(NNs) for the task of seondary struture predition. We exploit the use of bidiretionalreurrent neural networks (BRNNs) as a �ltering method to re�ne the preditions of theSVM lassi�er. Finally, we introdue a simple but e�etive idea to enfore onstraints intoseondary struture predition based on �nite-state automata (FSA) and Viterbi algorithm.1 IntrodutionProteins are polypeptide hains arrying out most of the basi funtions of life at the moleularlevel. These linear hains fold in omplex 3D strutures whose shape is responsible of proteins'behavior. Eah ring of the hain onsists of one of the 20 amino aid existing in nature. Therefore,a single protein an be represented as a sequene of letters from a 20 elements alphabet alled theprimary struture of the protein. All the amino aids share a ommon part, formed by a arboxyliaid (COOH) and an amino group (NH2) attahed to a arbon atom (ommonly referred to asC�). The arboxyli aid and the amino group of two amino aids an merge into a peptide bondto form the links of the polypeptide hain (see Figure 1). Eah amino aid is distinguished by adi�erent R-group, attahed to the C� athom, whih entails the amino aid dimensions and hemialproperties. For this reason, di�erent sequenes will reate di�erent folded strutures.
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Proteins are synthesized inside ells. The instrutions used by the ell to build a protein arewritten in the DNA. DNA's double helix is made by two long hains omposed by four di�erentnuleotides. The DNA ontains genes, sequenes of nuleotides odifying for proteins. Eah tripletof nuleotides in a gene orrespond to an amino aid of the enoded protein: the 64 possibleon�gurations of three nuleotides enode the 20 symbols alphabet of amino aids (it's a redundantode), plus two symbols to identify start and end of the oding sequene. Deoding is performedby spei� parts of ell's nuleus: the piee of DNA orresponding to a gene is transripted intomRNA (a disposable hain used to transfer informations inside ell's nuleus) whih is in turntranslated into the protein hain.All the observed proteins present loal regularities in their 3D struture, formed and main-tained by hydrogen bonds between atoms. These regular strutures are referred to as the protein'sseondary struture. The most ommon on�gurations observed in proteins are alled alpha heliesand beta strands, while all the other onformations are referred to as oils. They are traditionallyidenti�ed using a single letter ode: H (alpha helix), E (beta strand) and C (oil). An alpha helixis found when two amino aids spaed three positions along the sequene are hydrogen bonded: asequene of amino aids involved in a alpha helix will form a ork srew like 3D struture (Figure2a). On the ontrary, a beta strand is a straight onformation of amino aids hydrogen bondedto the omponents of another strand in the protein (Figure 2b), forming a planar aggregationalled beta sheet. A group of adjaent amino aids sharing the same onformation are membersof a segment of seondary struture. Segments of seondary struture are well de�ned and stableaggregations of amino aids whih strongly inuene the hain's folding and whih usually arryout spei�al funtions inside the protein, like a list of words in a partiular language forming ameaningful phrase. From the knowledge of the position of every atom of the protein moleule it ispossible to ompute the seondary struture at eah position in the sequene.[1℄.
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Parallel Anti−parallelFig. 2. Conformation of a) alpha helix and b) beta strands along the hain of a protein.Thanks to several genome sequening projets, the entire DNA sequene of many organismshas been experimentally determined. Inside eah genome the positions of genes have been disov-ered using spei� signals, partiular sequenes of nuleotides used by ells during transription.From these identi�ed genes the proteins' primary sequenes have been extrated. Unfortunatelyour knowledge often stops here. The proteins' 3D (tertiary) struture, essential to study their fun-tions, remains almost unknown. There exist physial methods to estimate the oordinates of eahatoms of a protein, but they need the protein to be rystallized, a time onsuming proess whih,at the moment, is impossible to automate and serialize. Even if the number of proteins whoseprimary sequene is known ounts in the number of millions, only few thousands of them havebeen rystallized and their 3D struture deposited in the Protein Data Bank [2℄. Unfortunately,neither alternative approahes based on nulear magneti resonane annot be applied at the ge-



nomi sale. It is therefore beoming inreasingly important to predit protein's tertiary strutureab initio from its amino aid sequene, using insights obtained from already known strutures.
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SecondaryFig. 3. Primary struture (amino aids), seondary struture (helies, strands and oils) and tertiarystrutures (C� oordinates) of a protein.The tertiary struture of a protein mostly depends on its primary struture and the environmentwhere the protein folds. It is also known that proteins having similar primary strutures tend tofold in similar ways. Therefore, the simplest approah to predit the tertiary struture of a querysequene is to align it to a database of known strutures using string similarity tehniques tosearh for lose parents. This way of deriving proteins' tertiary strutures is known as omparativemodeling. Proteins that annot be studied with this simple strategy are predited using threadingalgorithms. These methods estimate the proteins' struture ombining small piees of other proteinswhih share loal substrutures (domains) with the query hain. Those building bloks are foundperforming a struture to struture omparison, using an estimation of the protein seondarystruture. Therefore, reliable methods to estimate protein's seondary struture are fundamentalfor tertiary struture predition. Moreover, the predited seondary struture ontent of a proteinan be used to identify its folding family [3, 4℄ and to estimate its funtions.The �rst attempt to apply mahine learning tehniques to the predition of seondary struture[5℄ employed a standard multi-layer pereptron (MLP) with a single hidden layer, and used asinputs a window of amino aids in one-hot ode. The auray of this method, measured as theproportion of amino aids orretly assigned to one of the three seondary struture lasses (three-state auray or Q3) was well below 70%. Although it is true that primary struture ontainsall the informations needed for the orret folding of a protein, unfortunately the on�guration ofevery position of the sequene is inuened by the whole ontent of amino aids of the protein,whih an ontain thousands of them. Therefore, the same group of linked amino aids an appearin di�erent onformations if its ontext varies (suh misleading patterns are alled hameleons).The introdution of evolutionary information expressed by multiple alignment pro�les, repre-sented a major ontribution to the solution of the problem and allowed a signi�ant improvementof the reported auray to about 72% [6℄. A multiple alignment is a olletion of sequenes ofamino aids from di�erent proteins, realized using a maximum loal alignment algorithm [7℄. Theproedure searhes in a large database of known primary strutures for all the piees of sequenessimilar to part of the protein to predit. The rationale behind this approah is that seondarystruture is more onserved than primary struture, therefore similar primary strutures will leadto seondary strutures that are only slightly di�erent [8℄. One the multiple alignment has beenomputed, the pro�le is obtained by ounting the frequeny of eah amino aid at every position



in sequene. This pro�le is then used instead of the one-hot ode as a representation of the aminoaids in eah position of the sequene.A major drawbak of using a MLP on a window of pro�les is given by the relative independenebetween the preditions of adjaent positions in the sequene. On the ontrary, the seondarystruture of a protein is de�ned as a olletion of segments omposed by many onseutive aminoaids. To quantify the apability of a lassi�er to orretly predit entire segments of seondarystruture a measure of Segment OVerlap (SOV) is used [9℄. A ommon approah that an improveboth SOV and Q3 is to add a seond struture to struture lassi�er to �lter the preditions of theseondary struture. Jones [10℄ used neural networks (NNs) for both stages, feeding the �lteringnetwork with a window of preditions output by the �rst stage. Thanks to this solution and to aninreasing availability of training data, this arhiteture ahieves the best performanes so far withan auray of 78% and a SOV of 73.5%. A di�erent approah has been presented by Baldi et al[11℄ and re�ned by Pollastri et al [12℄ whih uses bidiretional reurrent neural networks (BRNNs)for seondary struture predition, trained with pro�les as inputs. BRNNs does not su�er of thelimitations of a feed-forward neural network lassi�er, so they do not need a �ltering stage. Thisarhiteture ahieves results equivalent to Jones' work. Lately, Hua and Sun [13℄ proposed theuse of support vetor mahines (SVMs) for seondary struture predition. The authors laim thesuperiority of this model, supported by an high value of SOV without the use of a �ltering stage.Given the work of Hua and Sun, we deided to explore the use of SVMs for the predition ofseondary struture. In setion 2 we briey explain the preparation of the data used during thiswork. In setion 3 we test the use of SVMs for the predition of seondary struture. The setionstart with a desription of the arhiteture used. We present here the results of an experiment runto repliate the laims made by Hua and Sun. Then, we apply the algorithm to a bigger and morerepresentative dataset, posing more attentions on model seletion. Finally, we ompare SVMs andNNs on the same data. In setion 4 we explore the use of bidiretional reurrent neural networksas a seond stage lassi�er to �lter the preditions of the SVM. This model is briey explained atthe beginning of the setion and then experimental results are presented. In setion 5 we present anovel method to enfore the predition with onstraints on seondary struture given in the formof a �nite-state automaton (FSA). This method uses Viterbi algorithm to align the FSA to thesequene of probabilities output by the preditor, and it proves to be a simple but general methodfor embedding prior knowledge in the predition of sequenes. Finally, in setion 6 we draw someonlusions about the results presented in this work, and we outline future diretions of researhinspired by these results.2 DatasetsThe �rst set of experiments is run to repliate the results of Hua and Sun [13℄. In their work theauthors used the publily available dataset CB513 released by Cu� and Barton [14℄. This datasetis omposed by 513 hains with low similarity, so that test results are not biased. A 7-fold ross-validation is adopted to estimate the auray of the lassi�er. Evolutionary information is derivedfrom multiple sequene alignments, obtained from the HSSP database [15℄. Seondary struturelabels are assigned using the DSSP program [1℄.The remaining of the experiments are performed using a signi�ant fration of the urrentrepresentative set of non homologous Protein Data Bank hains (PDB Selet [16℄). We extratedthe sequenes from the April 2002 release, listing 1779 hains with a perentage of homology lowerthan 25%. From this set we retained only high quality proteins on whih the DSSP program doesnot rash, determined only by X-ray di�ration, without any physial hain breaks and resolutionthreshold lower than 2.5 �A. The �nal dataset ontains 969 hains, almost 184,000 amino aids,splitted in a training set of 490 hains, a validation set of 163 hains and a test set of 326 hains.Multiple alignments are generated using PSI-BLAST [17℄ applied to the Swiss-Prot+TrEMBLnon-redundant database [18℄.



3 Support Vetor Mahines for Seondary Struture PreditionThe most suessful preditors of seondary struture so far employ neural networks as lassi�ers.Lately, Hua and Sun [13℄ presented an arhiteture based on SVMs, laiming the superiority ofthis model as demonstrated by the high value of SOV reahed.In this setion we present our result about the use of SVMs for seondary struture predition.We show the laimed value of SOV annot be reahed just implementing the lassi�er with SVMs.We experiment SVMs on a bigger and more representative dataset to further exploit the potentialityof this model. Finally, we perform a diret omparison with neural networks, using the same datafor both models, showing that there is no lear superiority of SVMs in this task.3.1 SVM Classi�erKernel mahines and in partiular support vetor mahines are motivated by Vapnik's priniple ofstrutural risk minimization in statistial learning theory [19℄. In the simplest ase, the SVM train-ing algorithm starts from a vetor-based representation of data points and searhes a separatinghyperplane that has maximum distane from the dataset, a quantity known as the margin. Morein general, when examples are not linearly separable vetors, the algorithm maps them into a highdimensional spae, alled feature spae, where they are almost linearly separable. This is typiallyahieved via a kernel funtion that omputes the dot produt of the images of two examples in thefeature spae. The deision funtion assoiated with an SVM is based on the sign of the distanefrom the separating hyperplane: f(x) = NXi=1 yi�iK(x;xi) (1)where x is the input vetor, fx1; : : : ;xNg is the set of support vetors, K(�; �) is the kernel fun-tion, and yi is the lass of the i-th support vetor (+1 or -1 for positive and negative examples,respetively).In their standard formulation SVMs output hard deisions rather than onditional probabilities.However, margins an be onverted into onditional probabilities in di�erent ways, both in the aseof binary lassi�ation [20, 21℄ and in the ase of multi-lass lassi�ation [22℄. The method usedin this paper extends the algorithm presented by Platt [21℄, where margins from equation 1 aremapped into onditional probabilities using a logisti funtion, parameterized by an o�set B anda slope A: P (Ci = 1jx) = 11 + eAf(x)+B : (2)Parameters A and B are adjusted aording to the maximum likelihood priniple, assuming aBernoulli model for the lass variable. This is extended here to the multi-lass ase by assuming amultinomial model and replaing the logisti funtion by a softmax funtion [23℄. More preisely,assuming Q lasses, we train Q binary lassi�ers, aording to the one-against-all output odingstrategy. In this way, for eah point x, we obtain a vetor [f1(x); � � � ; fQ(x)℄ of margins, that anbe transformed into a vetor of probabilities using the softmax funtion:P (C = qjx) = eAqfq(x)+BqPQr=1 eArfr(x)+Br ; q = 1 : : : Q: (3)The softmax parameters Aq ; Bq are determined as follows. First, we introdue a new datasetf(f1(xi); : : : ; fQ(xi); zi); i = 1; : : : ;mg of examples whose input portion is a vetor of Q marginsand output portion is a vetor z of indiator variables enoding (in one-hot) one of Q lasses. Assuggested by Platt for the two lasses ase, this dataset should be obtained either using a hold-outstrategy, or a k-fold ross validation proedure. Seond, we perform a searh of the parameters Aqand Bq that maximize the log-likelihood funtion under a multinomial model:` =Xi QXq=1 zq;i logP (Ci = qjx) (4)



where zq;i = 1 if the i-th training example belongs to lass q and zq;i = 0 otherwise.
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Fig. 4. Arhiteture of the SVM lassi�er for seondary struture predition, omposed of three one-against-all SVMs with gaussian kernel ombined using a softmax.3.2 Experiments on CB513We now run a set of experiments to repliate the results of Hua and Sun [13℄ on the CB513dataset. Our seondary struture preditor is onstituted by three one-against-all SVM lassi�erswith gaussian kernel ombined using a softmax (Figure 4). We used the same parameters and thesame inputs as in [13℄ in the attempt to repliate their best results, even if we ould not retrievethe same lists of proteins for eah fold of the ross-validation.Our experimental results show a signi�ant di�erene with respet to the SOV obtained in [13℄.This evidene supports our belief that the expeted value of SOV reahed by an SVM preditorQ3 SOVOur work 73.2 68.5Hua and Sun 73.5 76.2Table 1. Results of the experiments on the CB513 dataset.should not be muh di�erent ompared to a feed-forward neural-network approah, beause bothmethods are loal. There is no reason to expet that distint models trained to predit a singleposition in the protein sequene and that ahieve similar auray measured by Q3 should behaveompletely di�erent when their performane is measured on segments.3.3 Experiments on PDB selet: SVM vs NNThe CB513 is quite an old dataset whih omprises very few proteins if ompared to the presentsize of the Protein Data Bank. Moreover, the riteria used by Cu� and Barton [14℄ to hekfor redundanies inside the dataset has been subsequently replaed by di�erent measures. It isthen advisable to test the SVM lassi�er on a more representative dataset to better exploit its



apabilities. Also, in the experiments on the CB513 datasets we used �xed values of the  parameterfor every one-against-all lassi�ers. This is not advisable, sine the optimal value of  is stronglya�eted by the patterns to lassify. Therefore, we now perform a model searh to �nd the optimalvalue of  for eah one-against-all lassi�er at various dimensions of the input window, using avalidation set to estimate the error, and �xing the value of C to 1. The model searh is performedon a small part of the training set, beause it would take too muh time otherwise.Classi�er w = 9 w = 11 w = 13 w = 15 w = 17 w = 19H= ~H 15.7 15.2 15.0 14.9 15.3 16.3E= ~E 16.4 16.0 15.7 15.5 15.6 15.7C= ~C 23.0 22.8 22.7 22.9 23.1 23.1Table 2. Lowest errors ahieved by eah one-against-all lassi�er on the PDB selet dataset optimizingthe value of  at various dimensions w of the input window.The results of the model searh (Table 2) show a saturation in the performanes of the threelassi�ers for large windows. SVMs are apable of dealing with highly dimensional data, but theyseems unable to use the higher quantity of information ontained in suh riher inputs. It seemspossible that augmenting the input window have the e�et of inreasing the quantity of noise morethan the quantity of information, resulting in poorer performanes of the lassi�er. This an be apossible indiation of the fat that even riher models ould never exploit the information ontainedin the whole protein sequene for the predition of its struture.>From the experiments on the CB513 dataset we have seen that SVMs do not guarantee apartiularly high SOV. Moreover, these models require omputationally expensive proedures fortraining. Therefore, we want to establish if they are somehow superior to neural networks in thetask of seondary struture predition. In this work we present for the �rst time a diret omparisonbetween the two models on the same dataset. We use a NN arhiteture based on the work of Riisand Krog [24℄, whih employed a four layers feed-forward neural network: an input layer where awindow of amino aids is fed, a ode layer used for adaptively searh an enoding of eah aminoaid, an hidden layer and an output layer where the predition is taken. The ode layer has beenintrodued to limit the number of weights in the network, therefore preventing over�tting. Adi�erent oding is possible beause the representation of amino aids with pro�les is extremelysparse and also amino aids an be lustered in di�erent overlapping ategories aording to theirhemial properties. The neural networks is then fored to adaptively searh an optimal enodingby sharing the weights between every group of 20 neurons in the input layer enoding a singleamino aid and the orresponding k neurons in the ode layer. Riis and Krog suggested to usek = 3 neurons for eah amino aid in the ode layer. We employ here a single lassi�er withmultiple linear outputs ombined using a softmax funtion to estimate the probability of eah ofthe three seondary struture lasses.Method Q3 SOV Time SpaeSVM 76.5 68.9 3 days 210 MbNN 76.7 67.8 2 hours 30 kbTable 3. Performanes of the SVM arhiteture ompared to the NN arhiteture on the PDB seletdataset. Running time and size of the trained model are reported for both arhitetures.Given the optimal parameters found, we applied our lassi�ers to a single split of the dataset asdesribed in setion 2. The same input window is used for both the SVM and the NN arhiteture.The best NN model is searhed by varying the size of the hidden layer and using the auray on the



validation set as a soring funtion. The NN is trained with bak-propagation and early stoppingto avoid over�tting. The results of the experiments are shown in table 3. Both arhitetures reaha satisfying value of auray, quite omparable to the most reent works, but they su�er from avery low measure of SOV, as we expeted for the reasons explained before. The results show nolear advantage of the SVM over the NN arhiteture. Moreover the SVM arhiteture have muhhigher time and spae omplexity: the time omplexity of the training proedure of an SVM is inthe order of a quadrati funtion of the number of examples (the training set we used ontains morethan 90000 data points), and its model onsists of almost 60% of the training examples. Giventhe very high number of examples and the possibility of using a validation-set, the predition ofseondary struture seems a task �tted for neural networks.4 Filtering Preditions with Bidiretional Reurrent Neural NetworksOur experiments with SVM and NN arhitetures on�rmed that a loal lassi�er trained on singlepositions of the sequene annot ahieve a high value of SOV. The SOV is a very important measureto assess the quality of a lassi�er, sine most of the uses of seondary struture preditions relyon the orret assignment of segments. It is then neessary to adopt an arhiteture whih anorrelate preditions on adjaent amino aids, to somehow smooth the �nal predited sequene. Inthis work we explore the use of bidiretional reurrent neural networks as a �ltering stage to re�nethe preditions of the loal lassi�er.
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Fig. 5. Two stages arhiteture. Loal lassi�er an be either SVM based or NN based. The bidiretionalreurrent neural network is unfolded over the hain.BRNNs are reurrent neural networks where two set of states F and B are reursively opiedforward and bakward along the sequene (Figure 5). BRNNs an develop omplex non-linear andnon-ausal dynamis that an be used to orret output-loal predition by trying to apture validsegments of seondary struture. However, the problem of vanishing gradients [25℄ prevents fromlearning global dependenies, so it is impossible for the BRNN to model the whole onformation ofthe protein. The �ltering BRNN have three inputs for eah position of the sequene, orrespondingto the probabilities alulated by the softmax funtion in the �rst stage lassi�er (Figure 5).We used early stopping to ontrol over�tting during the training phase. We tested the BRNNon both the preditions of SVM and NN arhitetures. These experiments (Table 4) learly showthe eÆieny of the BRNN when used for �ltering the preditions of a loal lassi�er, reahingstate-of-the-art auray and a very high value of SOV. The performanes of this solution are



equivalent to the arhiteture based on a BRNN with pro�les as input [12℄, even if the �lteringBRNN has a muh simpler arhiteture and its easier to train.Q3 SOVSVM+BRNN 77.9 74.1NN+BRNN 77.8 74.2Table 4. Performanes of the BRNN used as a �ltering stage applied to both the preditions of SVM andNN arhitetures.
5 Enforing Constraints using the Viterbi DeoderA lose observation of the outputs of the two stages lassi�er shows the presene of inonsisteniesin the predited sequenes. The DSSP program reognize the presene of alpha helies and betastrands from spei� patterns in the hydrogen bonds between the amino aids of the protein.These way of labeling the seondary struture of a protein imposes some onstraints on observablesequenes:{ alpha helix segments must be at least 4 �Along,{ beta strands must be at least 2 �Along.some additional fats enrih the list of onstraints:{ a sequene must start and �nish with a oil,{ between an alpha helix and a beta strand (and vieversa) there must be a oil.

E1
H2H1 H3 H4

E2
HH H H

Start H
E

C CE CE
EndC CC1

Fig. 6. Finite-state automaton representing every possible allowed sequene of seondary struture.We present here a simple but e�etive method to enfore these onstraints in the output of alassi�er. All the previous fats known about physial hains an be expressed using a �nite-stateautomaton (FSA, Figure 6), whih represents every possible allowed sequene in our minimal se-ondary struture grammar. The outputs of the two stages lassi�er are the probabilities P (H jXt; t),P (EjXt; t) and P (CjXt; t) that the amino aid in position t of the sequene is in one of the threeseondary struture lasses, given the input Xt and the position t. We would like our onstraintssatisfying method to output the best possible sequene from the grammar de�ned by our FSA,using as soring funtion its overall probability as estimated by the lassi�er:P (Y jI) = TYt=1P (ytjXt; t) ; Y = fy1y2 : : : yT g yt 2 fH;E;Cg: (5)



This request stritly resemble problem 2 of hidden Narkov models [26℄: we have the probabilitiesof observations, we have a state model of our data and we want the best sequene of states. A�nite-state automaton an be thought of as a degenerated hidden Markov model, where eah stateemits a single symbol with probability 1 and all the transitions have the same probability (it anbe set to 1 beause we don't need the probabilities of all the transitions oming out of a state sumto 1). Therefore, we an employ the Viterbi algorithm to align our model to the sequene, usingthe probabilities of observations estimated by the lassi�er (Algorithm 1). The algorithm searhesan optimal path on a trellis whose nodes are (s; t), being s the orresponding state of the FSA andt the position in the sequene. Eah node of the trellis has two attahed variables: sore(s; t) isthe sore of the best sequene ending at this node, and last(s; t) is the preeding state in the bestsequene ending at this node. We de�ne symbol(si; sj) as the symbol emitted during the transitionfrom state si to sj , and parents(s) as the set states whih have a transition ending in state s.Algorithm 1 The Viterbi deoder.Init the trellis:for all (s; t) dosore(s; t) �1end forForward reursion:sore(start;0) 0for t = 1 to T dofor all si dofor all sj 2 parents(si) doif sore(sj ; t� 1) + log P (symbol(si; sj)jXt; t) > sore(si; t) thensore(si; t) sore(sj ; t� 1) + log P (symbol(si; sj)jXt; t)last(si; t) sjend ifend forend forend forBakward reursion:previous endfor t = T to 1 dothis previousprevious last(this; t)yt  symbol(previous; this)end forY  fy1y2 : : : yT gWe use log-probabilities beause of numerial problems. The sore of the ending state of thesequene is the log-probability of the best sequene Y . This algorithm an be easily extended to aFSA with more than one starting state and more than one ending state. Moreover, the probabilitiesused to alulate the sores do not need to ome from a partiular type of lassi�er: we an use thepreditions of the seond stage BRNN, but also the preditions of the �rst stage SVM and NN.Target ..CEEEEECCCCCC.. ..CHHHHHHC..Predited ..CEHEEECCHCHC.. ..CHCCHHEC..Correted ..CEEEEECCCCCC.. ..CHHHHHHC..Table 5. Errors orreted by the Viterbi deoder.



A visual observation of the preditions shows the kind of errors the Viterbi deoder is ableto orret (Table 5). In Table 6 we show the performanes of the Viterbi deoder applied to thepreditions of our lassi�ers. The Viterbi deoder an strongly inrease the value of SOV of thelassi�ers, even improving the preditions of the �ltering stage, and sometimes it an also improvethe overall aurayQ3. Q3 SOVSVM 76.5 68.9SVM+VD 76.9 73.5NN 76.7 67.8NN+VD 77.2 73.6SVM+BRNN 77.9 74.1SVM+BRNN+VD 78.0 74.7NN+BRNN 77.8 74.2NN+BRNN+VD 78.0 75.2Table 6. Performanes of the Viterbi deoder applied to the various lassi�ers presented in this paper,ompared to their original results.
6 ConlusionsIn this paper we have presented a two stages arhiteture for seondary struture predition. Insetion 3 we have explored the use of SVMs for the predition of seondary struture. We foundthat SVMs do not guarantee a high value of SOV, ontrarily to a reent laim by Hua and Sun [13℄.Moreover, we have found that SVMs are not superior to NN for seondary struture predition,running for the �rst time an experiment to ompare both models on the same data. Given theneed of a �ltering stage to re�ne the preditions of the loal lassi�er and inrease the valueof SOV, we have explored the use of BRNNs for suh task. We have demonstrated that a twostages arhiteture omposed by a loal lassi�er, either SVM based or NN based, and a �lteringBRNN an reah state-of-the-art performanes. Finally, we have introdued a Viterbi deoder toenfore onstraints derived from prior knowledge into seondary struture preditions. The Viterbideoder is apable of �nding the best sequene of preditions from a prede�ned grammar giventhe probabilities estimated by a lassi�er. We have demonstrated the Viterbi deoder is able ofinreasing the value of SOV of our two stages arhiteture, and to output sequenes whih areonsistent with the onstraints on seondary struture.We have demonstrated that SVMs are not superior to other types of lassi�er for the problemof prediting seondary struture, as a onsequene of the high number of available examples. Thesuperiority of SVMs is given by the possibility of working in high dimensionality spaes de�ned bykernels. The use of a gaussian kernels does not onstitute an improvement over the implementationof NNs with sigmoid ativation funtions. The apabilities of SVMs would be really exploited if amore omplex kernel using riher inputs is implemented. An example ould be a kernel runningdiretly on multiple alignments, without the need of alulating pro�les whih onstitutes a lossin information. We have demonstrated the Viterbi deoder is very e�etive for aligning �nite-stateautomata to sequenes of probabilities: it is able of orreting isolated errors, resulting in highvalues of SOV. However, the Viterbi deoder annot orret ompletely mislassi�ed segmentsof seondary struture. A solution to this problem would require the reation of a riher �nite-state automaton, omprising onstraints on seondary struture segments, maybe automatiallydisovered from observed strutures.
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