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Abstract. The choice of hyper-parameters (e.g. kernel parameters) can significantly
affect generalization performance of large margin classifiers. In this paper we are con-
cerned with the problem of tuning these values in the case of multi-class problems that
have been recast into a set of binary problems. We report several experimental results
comparing independent and joint tuning of the hyper-parameters of the binary clas-
sifiers. Several different encoding strategies are explored, including error correcting
output codes. Tuning was carried out by using a validation set and a newly introduced
bound on the leave-one-out error.

Keywords: Machine Learning, Kernel Machines, Tuning Hyper-parameters, Error Correct-
ing Codes.

1 Introduction and Notation

Often a multiclass categorization learning problem is reduced to a set of binary learning prob-
lems. This approach enables the application of learning tools that are intrinsically conceived
for binary classification. Binary reduction can be practically effected by associating codes
to the classes of interest. In this context, variable-length codes lead to architectures based
on decision trees. Fixed-length codes are more commonly used and are typically based on
a redundant number of bits in order to gain robustness with respect to errors made by sin-
gle classifiers. In particular, error correcting output codes (ECOC) have been introduced by
Dietterich and Bakiri [6] and more recently extended in [1]. In this paper we focus on fixed-
length codes and binary classifiers that can be characterized through hyper-parameters, i.e.
parameters that affect the solution of the learning problem but that are normally considered as
constants if the solution is obtained through the numerical optimization of some criterion [2].
Let us assume Q > 2 classes and S binary classifiers, each trained on one of S dichotomies of
the instance space, formed by joining non overlapping subsets of classes. A “coding matrix”
M ∈ {−1, 0, 1}Q×S specifies the relation between classes and dichotomies. Here, mqs = 1
(mqs = −1) means that examples belonging to class q are used as positive (negative) exam-
ples to train the s−th classifier fs. When mqs = 0, points in class q are not used to train the
s−th classifier. Thus each class q is encoded by the q−th raw of matrix M which we also
denoted by Mq. A new input x is classified by computing the vector formed by the outputs of
the classifiers, f(x) = (f1(x), . . . , fS(x)) and choosing the class whose corresponding row



is closest to f(x). In so doing, classification can be seen as a decoding operation and x’s class
is computed as

arg
Q

min
q=1

d(Mq, f(x)),

where d a decoding function (some examples of decoding functions are given later). Suppose
the output of the s-th classifier depends on some hyper-parameters θs (for example the radius
in a radial basis function kernel), and let θ = (θ1, . . . , θS). Let es(θs) denote an estimate
of the true error of the s-th classifier, and e(θ) denote an estimate of the true error of the
multiclass classifier that combines f1(·; θ1), . . . , fS(·; θS). The main question in this paper
is whether tuning hyper-parameters by globally optimizing e with respect to θ gives better
results than optimizing each single es with respect to θs.

Our study is focused on support vector machine classifiers and the use of different alter-
native loss functions for decoding. In [6] the entries of matrix M were restricted to take only
binary values and the d was chosen to be the Hamming distance:

L(Mq, f) =

S
∑

s=1

|mqs − sign(fs)|
2

(1)

In the case that the binary learners are margin-based classifiers, [1] shown the advantage of
using a loss-based function of the margin

dL(Mq, f) =
S

∑

s=1

L(mqsfs)

where L is a loss function. Such a function has the advantage of weighting the confidence of
each classifier thus allowing a more robust classification criterion. The simplest loss function
one can use is the linear loss for which L(mqsfs) = −mqsfs but several other choices are
possible and it is not clear which one should work the best. In the case that all binary classi-
fiers are computed by the same learning algorithm, Allwein, Shapire and Singer [1] proposed
to set L to be the same loss function used by that algorithm. In [11] we have suggested a dif-
ferent approach which is based on decoding via conditional probabilities of the outputs of the
classifiers. The advantages offered by our approach is twofold. First, the use of conditional
probabilities allows to combine the margins of each classifier in a principled way. Second,
the decoding function is itself a class conditional probability which can give an estimate of
classification confidence. The approach is summarized in the next section.

2 Decoding Functions Based on Conditional Probabilities

We have seen that a loss function of the margin presents some advantage over the standard
Hamming distance because it can encode the confidence of each classifier in the ECOC. This
confidence is, however, a relative quantity, i.e. the range of the values of the margin may vary
with the classifier used. Thus, just using a linear loss function may introduce some bias in the
final classification in the sense that classifiers with a larger output range will receive a higher
weight. Not surprisingly, we showed in experiments reported in [11] that the Hamming dis-
tance can work better than the linear and soft-margin losses in the case of pairwise schemes.
A straightforward normalization in some interval, e.g. [−1, 1], can also introduce bias since
it does not fully take into account the margin distribution. A more principled approach is



to estimate the conditional probability of each output codebit Os given the input vector x.
Assuming that all the information about x that is relevant for determining Os is contained in
the margin fs(x) (or fs for short) the above probability for each classifier is P (Os|fs, s). We
can now assume a simple model for the probability of Y given the codebits O1, . . . , OS. The
conditional probability that Y = q should be 1 if the configuration on O1, . . . , OS is the code
of q, should be zero if it is the code of some other class q ′ 6= q, and uniform (i.e. 1/Q if the
configuration is not a valid class code. Under this model,

P (Y = q|f) = P (O1 = mq1, . . . , OS = mqS|f) + α

being α a constant that collects the probability mass dispersed on the 2S − Q invalid codes.
Assuming that Os and Os′ are conditionally independent given x for each s, s′, we can write
the likelihood that the resulting output codeword is q as

P (Y = q |f) =
S

∏

s=1

P (Os = mqs |fs) + α. (2)

In this case, if α is small, the decoding function will be:

d(Mq, f) ≈ − log P (Y = q |f). (3)

The problem boils down to estimating the individual conditional probabilities in Eq. (2). To
do so, one can try to fit a parametric model on the output produced by a n-fold cross validation
procedure. In our experiments we choose this model to be a sigmoid computed on a 3-fold
cross validation as suggested in [12]:

P (Os = mqs |fs, s) =
1

1 + exp{Asfs + Bs}
.

It is interesting to notice that an additional advantage of the proposed decoding algorithm is
that the multiclass classifier outputs a conditional probability rather than a mere class deci-
sion.

3 Tuning Kernel Parameters

In this section we study the problem of model selection in the case of ECOC of Kernel
Machines [14, 13, 7, 4]. The analysis uses a leave-one-out error estimate as the key quantity
for selecting the best model. We first recall the main features of kernel machines for binary
classification. For a more detailed account consistent with the notations in this section see
[7].

3.1 Background on Kernel Machines

Kernel machines are the minimizers of functionals of the form:

H[f ; D`] =
1

`

∑̀

i=1

V (cif(xi)) + λ‖f‖2
K, (4)

where we use the following notation:



• {(xi, ci) ∈ X × {−1, 1}}`
i=1 is the training set.

• f is a function IRn → IR belonging to a reproducing kernel Hilbert space H defined by
a symmetric and positive definite kernel K, and ‖f‖2

K is the norm of f in this space.
See [14, 15] for a number of kernels. The classification is done by taking the sign of this
function.

• V (cf(x)) is a loss function whose choice determines different learning techniques, each
leading to a different learning algorithm (for computing the coefficients αi - see below).
In this paper we assume that V is monotonic non increasing.

• λ is called the regularization parameter and is a positive constant.

Machines of the form in Eq. (4) have been motivated in the framework of statistical learn-
ing theory. Under rather general conditions the solution of Equation (4) is of the form1

f(x) =
∑̀

i=1

αiciK(xi,x). (5)

Let us introduce the matrix G defined by Gij = K(xi,xj). The coefficients αi in Equation
(5) are learned by solving the following optimization problem:

maxα H(α) =
∑m

i=1 S(αi)− 1
2

∑`

i,j=1 αiαjciciGij

subject to : 0 ≤ αi ≤ C, i = 1, . . . , `,
(6)

where S(·) is a concave function and C = 1
2`λ

a constant. Support Vector Machines (SVMs)
are a particular case of these machines for S(α) = α. This corresponds to a loss function V
in (4) that is of the form |1 − cf(x)|+, where |x|+ = x if x > 0 and zero otherwise. The
points for which αi > 0 are called support vectors.

An important property of kernel machines is that, since we assumed K is symmetric and
positive definite, the kernel function can be re-written as

K(x, t) =
∞

∑

n=1

λnφn(x)φn(t). (7)

where φn(x) are the eigenfunctions of the integral operator associated to kernel K and λn ≥ 0
their eigenvalues [5]. By setting Φ(x) to be the sequence

(√
λnφn(x)

)

n
, we see that K is a dot

product in a Hilbert space of sequences (called the feature space), that is, K(x, t) = Φ(x) ·
Φ(t). Thus, function in Eq. (5) is a linear combination of features, f(x) =

∑∞

n=1 wnφn(x).
The great advantage of working with the compact representation in Eq. (5) is that we avoid
directly estimating the infinite parameters wn.

Finally, note that kernel K can also be defined/built by choosing the φs and λs but, in
general, those do not need to be known and can be implicitly defined by K.

1We assume that the bias term is incorporated in the kernel K.



3.2 Bounds on the Leave-One-Out Error

We first introduce some more notation. We define the multiclass margin (see also [1]) of point
(x, y) to be

g(x, y) = −d(My, f(x)) + d(Mr(x,y), f(x))

with
r(x, y) = argminr 6=yd(Mr, f(x)).

When g(x, y) is negative, point x is misclassified. Notice that when Q = 2 and L is the
linear loss, g(x, y) reduces to the definition of margin for a binary real valued classification
function. The empirical misclassification error can be written as:

1

`

∑̀

i=1

θ (−g(xi, yi)) .

The leave-one-out (LOO) error is defined by

1

`

∑̀

i=1

θ
(

−gi(xi, yi)
)

where we have denoted by gi(xi, yi) the margin of example xi when the ECOC is trained on
the dataset D`\{(xi, yi)}. The LOO error is an interesting quantity to look at when we want
to select/find the optimum (hyper)parameters of a classification function, as is an almost
unbiased estimator for the test error and we may expect that his minimum will be close to the
minimum of the test error. Unfortunately, computing the LOO error is time demanding when
` is large. This becomes practically impossible in the case that we need to know the LOO
error for several values of the parameters of the machine used.

In the following theorem we give a bound on the LOO error of ECOC of kernel machines.
An interesting property of this bound is that it only depends on the solution of the machine
trained on the full dataset (so training the machine once will suffice). Below we denote by
fs the s−machine, fs(x) =

∑m

i=1 αs
imyisK

s(xi,x), and let Gs
ij = Ks(xi,xj). The following

result was proved in [11]:

Theorem 3.1. Suppose the decoding function uses the linear loss function. Then, the LOO
error of the ECOC of kernel machines is bounded by

1

`

∑̀

i=1

θ

(

−g(xi, yi) + max
t6=yi

Ut(xi)

)

(8)

where we have defined the function

Ut(xi) = (Mt −Mr) · f(xi) +

S
∑

s=1

myis(myis −mts)α
s
iG

s
ii

This theorem enlightens some interesting properties of the ECOC of kernel machines.
First, observe that the larger the margin of an example is, the less likely that this point will
be counted as a LOO error. Second, if the number of support vectors of each kernel machine



Table 1: Characteristics of the Datasets used

Name Classes Train Test Inputs

Optdigits 10 3823 1797 64
Satimage 6 4435 2000 36
Segment 7 1540 770 19

is small, say less than ν, the LOO error will be at most S ν
`
. Therefore, if Sν � ` the LOO

error will be small and so will be the test error.
We also notice that, although bound in Eq. (8) only uses the knowledge about the machine

trained on the full dataset, it gives an estimate close to the LOO error when the parameter C
used to train the kernel machine is “small”. Small in this case means that C sup`

i=1 K(xi,xi) <
1.

4 Comparison of local and global tuning

In order to compare local and global tuning of hyper-parameters we realized a set of experi-
ments using three datasets from the UCI repository. Their characteristics are shortly summa-
rized in Table 1.

We trained multiclass classifiers using Gaussian Kernel SVM as the base binary classifier,
with Gaussian variance as the hyper-parameter to be tuned. The C parameter was fixed to
the same value for all the experiments. In order to reduce the search space we looked for
a common value of the variance for all SVMs of the multiclass classifier. We found such
a value by dividing the training set in two thirds for training and one third for validating
and choosing the best value of the variance according to some estimate of the generalization
error computed on the validation set. In local tuning such estimate was the average of the
accuracies of each binary classifier, while in global tuning we used the multiclass accuracy.
Comparison between local and global tuning was done via accuracy computed on the test
set. Furthermore, in order to compare the two methods for smaller sizes of the training set,
we studied the learning curves obtained by randomly choosing 10/30/50/70/90 percent of the
training set and using it for the training (and validation) phase and testing on the full test set.
We repeated such a procedure five times and averaged the results. Figures 1–4 show global
(solid line) and local (dashed line) tuning learning curves for different coding matrix (one
against all, all pairs, dense codes) and decoding function (hamming2, linear loss, SVM soft
margin, our likelihood loss). Results do not offer a clear evidence of which tuning method is
better. However, global tuning seems to have some advantages in the cases of one-vs-all and
all-pairs. In addition the behavior of the learning curves appears to be quite insensitive to the
decoding function employed.

A natural question is whether two multiclassifiers having similar accuracy also have
strongly correlated errors. To investigate this issue we used an oracle that can always choose
the best option between the predictions of the two multiclassifiers. Such a classifier, repre-
sented by the dotted line in figures 1–4, obtains great improvements over the single methods
for all coding matrices, thus showing that local and global errors are often not correlated and
a weighted mixture of the two approaches could lead to classification improvements.

2Not reported for one against all coding matrix because ties often occur in this case
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Figure 1: Tuning via validation set with one-against-all coding matrix for different datasets (rows) and decoding
functions (columns). Learning curves represent global tuning (solid line), local tuning (dashed line) and oracle
(dotted line).
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Figure 2: Tuning via LOO error estimate for different datasets (rows) and coding matrices (columns) with linear
decoding function. Learning curves represent global tuning (solid line), local tuning (dashed line) and oracle
(dotted line).
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Figure 3: Tuning via validation set with all-pairs coding matrix for different datasets (rows) and decoding func-
tions (columns). Learning curves represent global tuning (solid line), local tuning (dashed line) and oracle
(dotted line).
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Figure 4: Tuning via validation set with dense-codes coding matrix for different datasets (rows) and decoding
functions (columns). Learning curves represent global tuning (solid line), local tuning (dashed line) and oracle
(dotted line).



We repeated the whole set of experiments tuning the parameters through a LOO error
estimate. Similarly to the validation case, in local tuning we used the average of the LOO
error estimates of each binary classifier, while in global tuning we used the multiclass LOO
error estimate in equation 8. Figure 2 show these learning curves for different coding matrices
for the linear decoding distance. Results indicate that the averaged binary bound is usually
better than the multiclass one. We argue this might be due to the complexity of the multiclass
bound that could make it a worse estimate of the true LOO error.

5 Conclusions

We presented experimental comparisons of hyperparameter tuning for multiclass margin clas-
sifiers. Results show that global tuning can offer advantages when a validation set is used and
simple schemes like one-against-all and all-pairs are used. Our experiments also show that
transforming margins into conditional probability improves the overall accuracy of multiclass
classification and should be preferred to standard loss-based decoding schemes. We have also
discussed a newly introduced analysis on the leave-one-out error of ECOC of kernel machine
classifiers. In this case experiments show that a simple average of binary LOO error estimate
is usually more effective than multiclass LOO error estimate. We conjecture this is due to the
greater complexity of the multiclass bound, and we are currently investigating how to refine
such estimate.
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