
Kernels on Prolog Proof Trees: Statistical Learning in the ILP
Setting

A. Passerini passerini a©dsi·unifi·it

P. Frasconi p-f a©dsi·unifi·it

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze

L. De Raedt deraedt a©informatik·uni-freiburg·de

Institute for Computer Science, Albert-Ludwigs Universität, Freiburg

Abstract

We develop kernels for measuring the similar-
ity between relational instances using back-
ground knowledge expressed in first-order
logic. The method allows us to bridge the
gap between traditional inductive logic pro-
gramming representations and statistical ap-
proaches to supervised learning. Logic pro-
grams will be used to generate proofs of given
visitor programs which exploit the avail-
able background knowledge, while kernel ma-
chines will be employed to learn from such
proofs. We report positive empirical results
on Bongard-like and M -of-N problems that
are difficult or impossible to solve with tra-
ditional ILP techniques, as well as on a real
data set.

1. Introduction

Within the field of automated program synthesis, in-
ductive logic programming and machine learning, sev-
eral approaches exist that learn from example-traces.
An example-trace is a sequence of steps taken by
a program on a particular example input. For in-
stance, Alan Bierman (Biermann & Krishnaswamy,
1976) has sketched how to induce Turing machines
from example-traces; Mitchell et al. have developed
the LEX system (Mitchell et al., 1983) that learned
how to solve symbolic integration problems by an-
alyzing traces (or search trees) for particular exam-
ple problems; Ehud Shapiro’s Model Inference System
(Shapiro, 1983) inductively infers logic programs by
reconstructing the proof-trees and traces correspond-
ing to particular facts; and Zelle and Mooney (Zelle
& Mooney, 1993) show how to speed-up the execution
of logic programs by analyzing example-traces of the
underlying logic program. The diversity of these ap-
plications as well as the difficulty of the learning tasks

considered clearly illustrate the power of learning from
example-traces for a wide range of applications.

In the present paper, we generalize the idea of learning
from example-traces. Rather than explicitly learning
a target program from positive and negative example
traces, we assume that a particular – so-called visitor
program – is given and that our task consists of learn-
ing from the associated traces. The advantage is that
in principle any programming language can be used to
model the visitor program and that any machine learn-
ing system able use traces as an intermediate represen-
tation can be employed. In particular, this allows us to
combine two frequently employed frameworks within
the field of machine learning: inductive logic program-
ming and kernel methods. Logic programs will be used
to generate traces corresponding to specific examples
and kernels will be employed for quantifying the sim-
ilarity between traces. The combination yields an ap-
pealing and expressive framework for tackling complex
learning tasks involving structured data in a natural
manner. We call trace kernels the resulting broad fam-
ily of kernel functions obtainable as a result of this
combination. The visitor program is a set of clauses
that can be seen as the interface between the avail-
able background knowledge and the kernel itself. In-
tuitively, visitors are employed to specify a set of useful
features and in this sense play a role similar to rmodes
in ILP.

Starting from the seminal work of Haussler (Haus-
sler, 1999), several researchers have already proposed
kernels on discrete data structures such as sequences
(Lodhi et al., 2000; Jaakkola & Haussler, 1998; Leslie
et al., 2002; Cortes et al., 2004), trees (Collins &
Duffy, 2002; Vishwanathan & Smola, 2002), annotated
graphs (Gärtner, 2003; Schölkopf & Warmuth, 2003),
and complex individuals defined using higher order
logic abstractions (Gärtner et al., 2004). Construct-
ing kernels on structured data types, however, is not
the only aim of the proposed framework. In many

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

symbolic approaches to learning, logic programs allow
us to define background knowledge in a very natural
way. Similarly, in the case of kernel methods, the no-
tion of similarity between two instances expressed by
the kernel function is the main tool for exploiting the
available domain knowledge. It seems therefore nat-
ural to seek a link between logic programs and ker-
nels, also as a mean for embedding knowledge into
statistical learning algorithms in a principled and flex-
ible way. This aspect is an important contribution
of this paper as few alternatives exist to achieve this
goal. Propositionalization, for example, transforms
a relational problem into one that can be solved by
an attribute-value learner by mapping data structures
into a finite set of features (Kramer et al., 2000). Al-
though it is known that in many practical applications
propositionalization works well, its flexibility is gener-
ally limited. A remarkable exception is the method
proposed in (Cumby & Roth, 2002) that uses descrip-
tion logic to specify features and that has been subse-
quently extended to specify kernels (Cumby & Roth,
2003).

The guiding philosophy of trace kernels is very dif-
ferent from the above approaches. Intuitively, rather
than defining a kernel function that compares two
given instances, we define a kernel function that com-
pares the execution traces of a program (that ex-
presses background knowledge) run over the two given
instances. Similar instances should produce similar
traces when probed with programs examining char-
acteristics they have in common. Clearly these char-
acteristics can be more general than parts. Hence,
trace kernels can be introduced with the aim of achiev-
ing a greater generality and flexibility with respect to
convolution and decomposition kernels. In particular,
any program to be executed on data can be exploited
within the present framework to form a valid kernel
function, provided one can give a suitable definition of
the visitor program to specify how to obtain relevant
traces and proofs to compare examples. In addition,
although in this paper we only study trace kernels for
logic programs, similar ideas could be used in the con-
text of different programming paradigms and in con-
junction with alternative models of computation such
as finite state automata or Turing machines.

In this paper, we focus on a specific learning framework
for Prolog programs. Prolog execution traces consist
of sets of search trees (see e.g. (Sterling & Shapiro,
1994)) associated with goals in the visitor program;
these traces can be conveniently represented as Pro-
log ground terms. Thus, in this case, kernels over
traces reduce to Prolog ground terms kernels (PGTKs)
(Passerini & Frasconi, 2005). These kernels (which are

briefly reviewed in Section 3.3) can be seen as a special-
ization to Prolog of the kernels between higher order
logic individuals earlier introduced in (Gärtner et al.,
2004).

The paper is organized as follows. In Section 2 we re-
vise the classic ILP framework and describe the struc-
ture of visitor programs. In Section 3 we describe the
general form of the kernel on logical objects and, in
particular, Prolog proof trees, in Section 4 we give
some implementation details, and finally in Section 5
we report an empirical evaluation of the methodology
on some classic ILP benchmarks including Bongard
problems, M of N problems on sequences, and muta-
genesis.

2. Visitors and proof trees in First
Order Logic

In traditional inductive logic programming ap-
proaches, the learner is given a set of positive and
negative examples P and N (in the form of definite
clauses that are (resp. are not) entailed by the
target theory), and a background theory BK (a set
of definite clauses), and has to induce a hypothesis
H (a set of definite clauses) such that BK ∪ H
covers all positive examples and none of the negative
ones. More formally, ∀p ∈ P : BK ∪ H |= p and
∀n ∈ N : BK ∪H 6|= n. In practice, rather than work-
ing with ground clauses of the form e ← f1, ..., fn as
examples, inductive logic programming systems often
employ e as the example and add the facts fi to the
background theory BK. As an illustration, consider
the famous mutagenicity benchmark by (Srinivasan
et al., 1996). There the examples are of the form
mutagenic(id) where id is a unique identifier of the
molecule and the background knowledge contains
information about the atoms, bonds and functional
groups in the molecule. A hypothesis in this case
could be

mutagenic(ID)← nitro(ID,R), lumo(ID,L), L< -1.5.

It entails, i.e., covers, the molecule listed in Fig. 1.
For the purposes of this paper, it will be convenient
to look at examples as objects and to consider
the clausal notation h(x) ← f1, ..., fn where x is a
unique identifier of the example. Furthermore, where
necessary, we will refer to the head of the example as
h(x) and the set of facts in the body as F (x).

We can now introduce the framework of learning from
trace kernels. The key difference with the traditional
inductive logic programming setting is that the learner
is given a set of so-called visitor clauses V , which de-

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

mutagenic(225).
molecule(225).
logmutag(225,0.64).
lumo(225,-1.785).
logp(225,1.01).
nitro(225,[f1_4,f1_8,f1_10,f1_9]).
atom(225,f1_1,c,21,0.187).
atom(225,f1_2,c,21,-0.143).
atom(225,f1_3,c,21,-0.143).
atom(225,f1_4,c,21,-0.013).
atom(225,f1_5,o,52,-0.043).
...

Figure 1. An example from the mutagenesis domain

fine visitor predicates and which replace the hypothe-
sis H. So rather than having to find a set of clauses H,
the learner is given a set of clauses V . The idea then
is that for each example x, the proofs of the visitor
predicates are computed. These proofs then consti-
tute the representation employed by the kernel, which
has to learn how to discriminate the set of proofs for
a positive example from those of a negative example.
The rationale behind the use of the program trace is
the idea that not only the success or failure of the goal
is of interest in order to characterize a given instance,
but also the full trace of steps passed in order to pro-
duce such a result. Different visitors can be conceived
in order to explore different aspects of the examples
and include multiple sources of information.

This idea can be formalized as follows: for each exam-
ple (h(x), F (x)), background theory BK and visitor
clauses V defining visitor predicates vi, we compute
the set of proofs Pi(x) = {p | p is a proof such that
BK ∪ F (x) ∪ V |= vi(x)}.

So far, we have not detailed which type of proof or
trace is employed. At this point, there are several
possibilities. One could employ the SLD-tree, which
would not only contain information about succeeding
proofs but also about failing ones. The SLD-tree is
however a very complex and rather unstructured rep-
resentation. It is much more convenient to work with
and-trees for the visitor facts.

An and-tree for a query v for an example (h(x), F (x)),
a background theory BK and visitor clauses V for
which F (x) ∪BK ∪ V |= v is a tree such that

• v is the root of the tree and

• if v is a fact in F (x) ∪BK ∪ V then v is a leaf

• otherwise there must be a clause w ← b1, ..., bn ∈
BK ∪ V and a substitution θ grounding it such
that wθ = v and BK ∪ V |= biθ∀i and there is

a subtree of v for each biθ that is an and-tree for
biθ

The simplest visitor we can imagine just ignores the
background knowledge and extracts the ground facts
concerning a given example (or a subset of them).
Note that visitors actually allow us to expand the ex-
ample representation as described in (Lloyd, 2003) by
naturally including information derived from the back-
ground knowledge.

As an example, consider again the mutagenicity bench-
mark. The following is the atom bond representation
of the simple molecule in Figure 2. By looking at the
molecule as a graph where atoms are nodes and bonds
are edges, we can introduce the common notions of
path and cycle:

1 : cycle(E,X):- 2 : path(E,X,Y,M):-
path(E,X,Y,[X]), atm(E,X,_,_,_),
bond(E,Y,X,_). bond(E,X,Y,_),

atm(E,Y,_,_,_),
\+ member(Y,M).

3 : path(E,X,Y,M):-
atm(E,X,_,_,_),
bond(E,X,Z,_),
\+ member(Z,M),
path(E,Z,Y,[Z|M]).

A possible visitor in such context would be the one
simply looking for a cycle in the molecule, which can
be written as:

4 : visit(E):
cycle(E,X).

Note that we numbered each clause in BK ∪ V (but
not in F (e)1) with a unique identifier. This will allow
us to take into account information about the clauses
that are used in a proof.

In many situations, the and-tree for a given goal will
be unnecessary complex in that it may contain several
uninteresting subtrees. To account for this situation,
we will often work with pruned and-trees, which are
trees where subtrees rooted at specific predicates (de-
clared as leaf predicates by the user) are turned into
leafs. This will allow the kernel to ignore the way
atoms involving these predicates are proved. For in-
stance, consider again the molecule in Figure 2, and
suppose we have the background knowledge of func-
tional groups as described in (Srinivasan et al., 1996).
A potential visitor could look for a benzene ring within
the molecule, and eventually find out the details of the

1These numbers would change from example to example
and hence, would not carry any useful information.

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

atm(d26,d26_1,c,22,-0.093).
atm(d26,d26_2,c,22,-0.093).
atm(d26,d26_3,c,22,-0.093).
atm(d26,d26_4,c,22,-0.093).
atm(d26,d26_5,c,22,-0.093).
atm(d26,d26_6,c,22,-0.093).
atm(d26,d26_7,h,3,0.167).
atm(d26,d26_8,h,3,0.167).
atm(d26,d26_9,h,3,0.167).
atm(d26,d26_10,cl,93,-0.163).
atm(d26,d26_11,n,38,0.836).
atm(d26,d26_12,n,38,0.836).
atm(d26,d26_13,o,40,-0.363).
atm(d26,d26_14,o,40,-0.363).
atm(d26,d26_15,o,40,-0.363).
atm(d26,d26_16,o,40,-0.363).

bond(d26,d26_1,d26_2,7).
bond(d26,d26_2,d26_3,7).
bond(d26,d26_3,d26_4,7).
bond(d26,d26_4,d26_5,7).
bond(d26,d26_5,d26_6,7).
bond(d26,d26_6,d26_1,7).
bond(d26,d26_1,d26_7,1).
bond(d26,d26_3,d26_8,1).
bond(d26,d26_6,d26_9,1).
bond(d26,d26_10,d26_5,1).
bond(d26,d26_4,d26_11,1).
bond(d26,d26_2,d26_12,1).
bond(d26,d26_13,d26_11,2).
bond(d26,d26_11,d26_14,2).
bond(d26,d26_15,d26_12,2).
bond(d26,d26_12,d26_16,2).

Figure 2. Simple molecule from the mutagenicity benchmark.

atoms involved. In this case it could be convenient to
ignore the details of the proof of the ring, provided
the atoms involved are extracted. This would be im-
plemented by the predicate visit_benzene as follows:

1 : atoms(E,[]). 2 : atoms(E,[H|T]):-
atm(E,H,_,_,_),
atoms(E,T).

3 : visit_benzene(E):-
benzene(E,Atoms),
atoms(E,Atoms).

leaf(benzene(_,_)).

It is important to note that in general a goal can be
satisfied in a number of alternative ways. Therefore, a
visitor predicate actually generates a (possibly empty)
set of proof trees. Furthermore, as we already under-
lined, different visitors can be conceived in order to
analyse different characteristics of the data. An ex-
ample is thus represented as a tuple of sets of proof
trees, obtained by running all the available visitors on
it. Given such a representation, we are now able to
develop kernels over pairs of examples.

3. Bridging the Gap: Kernels over
Logical Objects

Having defined the program traces generated by the
visitors, in this section we detail how traces are com-
pared by a kernel over tuples of sets of proof trees.

3.1. Kernels for Discrete Structures

A very general formulation of kernels on discrete struc-
tures is that of convolution kernels (Haussler, 1999).

Suppose x ∈ X is a composite structure made of
“parts” x1, . . . , xD such that xd ∈ Xd for all i ∈ [1, D].
This can be formally represented by a relation R on
X1 × · · · × XD × X such that R(x1, . . . , xD, x) is true
iff x1, . . . , xD are the parts of x. Given a set of kernels
Kd : Xd ×Xd → IR, one for each of the parts of x, the
R-convolution kernel is defined as

(K1 ? · · · ? KD)(x, z) =
∑
R

D∏
d=1

Kd(xd, zd), (1)

where the sum runs over all the possible decomposi-
tions of x and z. For finite relations R, this can be
shown to be a valid kernel (Haussler, 1999).

A special case of convolution kernel, which will prove
useful in defining kernels between proof trees, is the
set kernel (Shawe-Taylor & Cristianini, 2004). Pro-
vided an object can be represented as a set of simpler
objects, we define the part-of relation to be the set-
membership, and the kernel reduces to the sum of all
pairwise kernels between members:

Kset(x, z) =
∑

ξ∈x,ζ∈z

Kmember(ξ, ζ). (2)

In order to reduce the dependence on the dimension
of the objects, kernels over discrete structures are of-
ten normalized. A commmon choice is that of using
normalization in feature space, given by:

Knorm(x, z) =
K(x, z)√

K(x, x)
√

K(z, z)
. (3)

In the case of set kernels, an alternative is that of
dividing by the size of the two sets, thus computing

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

the mean value between pairwise comparisons:

Kmean(x, z) =
Kset(x, z)
|x||z|

. (4)

This formalism allows us to define a kernel over logi-
cal objects as the convolution kernel over the parts in
which the objects can be decomposed according to the
background knowledge available, provided we are able
to define appropriate kernels between individual parts.

3.2. Kernels over Visit Programs

Assume we have a visiting program V made of a num-
ber n ≥ 1 of visitor predicates v1, . . . , vn, each produc-
ing a (possibly empty) set of proof trees ti,j(x) when
tested over an example x. The proof tree representa-
tion of x can be written as:

P (x) = [P1(x), . . . , Pn(x)] (5)

where
Pi(x) = {ti,1(x), . . . , ti,hi(x)(x)} (6)

and mi(x) ≥ 0 is the number of alternative proofs of
visitor vi for example x. Assuming that we do not want
to compare proof trees derived from different visitors
(but it is straightforward to include such a case), we
can define the kernel between examples as:

K(x, z) = KP (P (x), P (z))

=
n∑

i=1

Ki(Pi(x), Pi(z)). (7)

By using the definition of set kernel introduced in Sec-
tion 3.1, we further obtain:

Ki(Pi(x), Pi(z)) =
mi(x)∑
j=1

mi(z)∑
`=1

K(ti,j(x), ti,`(z)) (8)

The problem boils down to defining the kernel between
individual proof trees. Note that we can define differ-
ent kernels for proof trees originating from different
visitors, thus allowing for the greatest flexibility.

At the highest level of kernel between visit programs,
we will employ a feature space normalization (eq. (3)).
However, it is still possible to normalize lower level ker-
nels, in order to rebalance contributions of individual
parts. We will employ a mean normalization (eq. (4))
for the kernel between visitors, and possibly further
normalize kernels between individual proof trees, thus
reducing the influence of the dimension of proofs.

3.3. Kernels over Proof Trees

Proof trees are discrete data structures and, in prin-
ciple, existing kernels on trees could be applied (e.g.

(Collins & Duffy, 2002; Vishwanathan & Smola,
2002)). However, we can gain more expressiveness
by representing individual proof trees as typed Pro-
log ground terms. In so doing we can exploit type in-
formation on constants and functors so that different
sub-kernels can be applied to different object types. In
addition, while traditional tree kernels would typically
compare all pairs of subtrees between two proofs, the
kernel on ground terms presented below results in a
more selective approach that compares certain parts
of two proofs only when reached by following similar
inference steps, (a distinction that would be difficult
to implement with traditional tree kernels).

We will use the following procedure to represent a
proof tree as a ground term:

• Nodes corresponding to facts are already ground
terms.

• Consider a node corresponding to a clause, with
n arguments in the head, and the conjunction of
m terms in the body, which correspond to the m
children of the node.

– Let the ground term be a compund term with
n + 1 arguments, and functor equal to the
head functor of the clause.

– Let the first n arguments be the arguments
of the clause head.

– Let the last argument be a compound term,
with functor equal to the clause number2,
and m arguments equal to the ground term
representations of the m children of the node.

We are now able to employ kernels on Prolog ground
terms as defined in (Passerini & Frasconi, 2005) to
compute kernels over individual proof trees. Let us
briefly recall the definition of the kernel for typed Pro-
log ground terms.

We denote by T the ranked set of type constructors,
which contains at least the nullary constructor ⊥. The
type signature of a function of arity n has the form
τ1×, . . . ,×τn 7→ τ ′ where n ≥ 0 is the number of ar-
guments, τ1, . . . , τk ∈ T their types, and τ ′ ∈ T the
type of the result. Functions of arity 0 have signature
⊥ 7→ τ ′ and can be therefore interpreted as constants
of type τ ′. The type of a function is the type of its
result. The type signature of a predicate of arity n
has the form τ1×, . . . ,×τn 7→ Ω where Ω ∈ T is the
type of booleans, and is thus a special case of type
signatures of functions. We write t : τ to assert that

2Actually the number will be prefixed by ’cbody’ be-
cause Prolog does not allow to use numbers as functors.

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

t is a term of type τ . We denote by B the set of all
typed ground terms, by C ⊂ B the set of all typed con-
stants, and by F the set of typed functors. Finally we
introduce a (possibly empty) set of distinguished type
signatures D ⊂ T that can be useful to specify ad-hoc
kernel functions on certain compound terms.

Definition 3.1 (Sum Kernels on typed terms)
The kernel between two typed terms t and s is defined
inductively as follows:

• if s ∈ C, t ∈ C, s : τ , t : τ then K(s, t) = κτ (s, t)
where κτ : C × C 7→ IR is a valid kernel on con-
stants of type τ ;

• else if s and t are compound terms that have the
same type but different arities, functors, or signa-
tures, i.e. s = f(s1, . . . , sn) and t = g(t1, . . . , tm),
f : σ1×, . . . ,×σn 7→ τ ′, g : τ1×, . . . ,×τm 7→ τ ′,
then

K(s, t) = ιτ ′(f, g) (9)

where ιτ ′ : F × F 7→ IR is a valid kernel on func-
tors that construct terms of type τ ′

• else if s and t are compound terms and have
the same type, arity, and functor, i.e. s =
f(s1, . . . , sn), t = f(t1, . . . , tn), and f :
τ1×, . . . ,×τn 7→ τ ′, then

K(s, t) =

κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f, f) +
n∑

i=1

K(si, ti) otherwise

(10)

• in all other cases K(s, t) = 0.

By replacing Equation (10) with

K(s, t) =

κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f, f)
n∏

i=1

K(si, ti) otherwise

(11)
we obtain the Product Kernel on typed ground terms.
In order to employ such kernels on proof trees, we need
a typed syntax for them. We will assume the follow-
ing default types for constants: num (numerical) and
cat (categorical). Types for compounds terms will be
either fact, corresponding to leaves in the proof tree,
clause in the case of internal nodes, and body when
containing the body of a clause. Note that regard-
less of the specific implementation of kernels between
types, such definitions imply that we actually compare

the common subpart of proofs starting from the goal
(the visitor clause), and stop whenever the two proofs
diverge.

A number of special cases of kernels can be imple-
mented with appropriate choices of the kernel for com-
pound and atomic terms. The equivalence kernel out-
puts one iff two proofs are equivalent, and zero other-
wise:

Kequiv(s, t) =
{

1 if s ≡ t
0 otherwise (12)

We say that two proof trees s and t are equivalent iff
they have the same number of nodes, and each node
is equivalent to its partner in the perfect matching
relation between the trees. This can be implemented
using the Product Kernel in combination with binary
valued kernels, such as the matching one, for kernels on
constants and functors , thus implementing the notion
of equivalence between individual nodes.

In many cases, we will be interested in ignoring some
of the arguments of a pair of ground terms when com-
puting the kernel between them. As an example, con-
sider the atom bond representation in the mutagenic-
ity benchmark, and the background knowledge in the
example at the end of Section 2: the argument denoted
by E indicates the unique identifier of a given molecule,
and we would like to ignore its value when comparing
two molecules together. This can be implemented us-
ing a special ignore type for arguments that should be
ignored in comparisons, and a corresponding constant
kernel which always outputs a constant value:

Kη(s, t) = η (13)

It is straightforward to see that Kη is a valid kernel
provided η ≥ 0. The constant η should be set equal
to the neutral value of the operation which is used to
combine results for the different arguments of the term
under consideration, that is η = 0 for the sum kernel
and η = 1 for the product one.

The extreme use for this kernel is that of implementing
the notion of functor equality for nodes, where two
nodes are the same iff they share the same functor (and
number of arguments), regardless the specific values
taken by their arguments. Given two ground terms
s = f(s1, . . . , sn) and t = g(t1, . . . , tn) the functor
equality kernel is given by:

Kf (s, t) =

0 if type(s) 6= type(t)
δ(f, g) if s, t : fact
δ(f, g) ? K(sn, tn) if s, t : clause
K(s, t) if s, t : body

(14)

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

where in the internal node case the comparison pro-
ceeds on the children, and the operator ? can be either
sum or product.

Moreover, it will often be useful to define custom ker-
nels for specific terms, being them clauses or facts, by
using distinguished type signatures.

4. Algorithmic Implementation

The algorithm we implemented allows for a high flex-
ibility in customizing the behaviour to match the re-
quirements of the specific task at hand. Four different
files should be filled in order to provide the following
information:

• The knowledge base describing the data.

• The background knowledge.

• The visit program to be run on the data.

• The specific implementation of kernel over proof
trees, as a combination of default behaviours and
possibly customized ones.

The first two files are standard in the ILP setting. The
visit program is represented as a collection of clauses
implementing one or more visitors, together with pos-
sible leaf statements aimed at pruning resulting proof
trees (see the example at the end of Section 2). Note
that it is not necessary to explicitly specify numeric
identifiers for clauses, as the program will use the ones
automatically provided by Prolog interpreters.

The kernel specification defines the way in which data
and knowledge should be treated. The default way of
treating compound terms can be declared to be either
sum or product, by writing compound_kernel(sum)or
compound_kernel(product)respectively.

The default atomic kernel is the matching one for sym-
bols, and the product for numbers. Such behaviour
can be modified by directly specifying the type signa-
ture of a given clause or fact. As an example, the fol-
lowing definition overrides the default kernel between
atm terms for the mutagenicity problem:

type(atm(ignore,ignore,cat,cat,num)).

allowing to ignore identifiers for molecule and atom,
and change the default behaviour for atom type (which
is a number) to categorical.

Default behaviours can also be overriden by defining
specific kernels for particular clauses or facts. This
corresponds to specifying distinguished types together

to appropriate kernels for them. Thus, the kernel be-
tween atoms could be equivalently specified by writ-
ing3:

term_kernel(atm(_,_,Xa,Xt,Xc),
atm(_,_,Ya,Yt,Yc),K):-

delta_kernel(Xa,Ya,Ka),
delta_kernel(Xt,Yt,Kt),
dot_kernel(Xc,Yc,Kc),
K is Ka + Kt + Kc.

A useful kernel which can be selected is the func-
tor equality kernel as defined in Equation (14). For
example, by writing

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

at the end of the configuration file it is possible to
force the default behaviour for all remaining terms to
functor equality, where the combination operator em-
ployed for internal nodes will be the one specified with
the compound kernel statement.

Finally, hyperparameters must be provided for the par-
ticular kernel machine to be run. We employed gist-
svm 4 as it permits to separate kernel calculation from
training by accepting the complete kernel matrix as
input. Note that in this phase it is possible to spec-
ify kernels other than the linear one (e.g. Gaussian)
on top of the visit program kernel, in order to further
enlarge the feature space.

In the next section, we will provide a number of exper-
iments showing how to customize the program to the
task at hand and providing evidence of the possibilities
and limitations of the proposed method.

5. Experiments

5.1. Bongard problems

In order to provide a full basic example of visit pro-
gram construction, algorithm configuration and ex-
ploitation of the proof tree information, we created
a very simple Bongard problem (Bongard, 1970). The
concept to be learned can be represented with the sim-
ple pattern triangle-Xn-triangle for a given n, mean-
ing that a positive example is a scene containing two
triangles nested into one another with exactly n ob-
jects (possibly triangles) in between. Figure 3 shows a
pair of examples of such scenes with their representa-

3Actually, this also allows to possibly override the ker-
nel combination operator specified by the compound kernel
statement.

4available at
http://microarray.genomecenter.columbia.edu/gist/

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

tion as Prolog facts and their classification according
to the pattern for n = 1.

A possible example of background knowledge intro-
duces the concepts of nesting in containment and poly-
gon as a generic object, and can be represented as fol-
lows:

inside(E,X,Y):-
in(E,X,Y).

inside(E,X,Y):-
in(E,X,Z),
inside(E,Z,Y).

polygon(E,X) :-
triangle(E,X).

polygon(E,X) :-
rectangle(E,X).

polygon(E,X) :-
circle(E,X).

A visitor exploiting such background knowledge, and
having hints on the target concept, could be looking
for two polygons contained one into the other. This
can be represented as:

visit(E):-
inside(E,X,Y),polygon(E,X),polygon(E,Y).

Figure 4 shows the proofs trees obtained running such
a visitor on the first Bongard problem in Figure 3.

A very simple kernel can be employed to solve such a
task, namely an equivalence kernel with functor equal-
ity for nodewise comparison. This can be implemented
with the following kernel configuration file:

compound_kernel(product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

For any value of n, such a kernel maps the examples
into a feature space where there is a single feature dis-
criminating between positive and negative examples,
while the simple use of ground facts without back-
ground knowledge would not provide sufficient infor-
mation for the task.

The data set was generated by creating m scenes each
containing a series of n randomly chosen objects nested
one into the other, and repeating the procedure for n
varying from 1 to 19. Moreover, we generated two
different data sets by choosing m = 10 and m = 50
respectively. Finally, for each data set we obtained 15
experimental settings denoted by n ∈ [1, 15]. In each
setting, positive examples where scenes containing the
pattern triangle-Xn-triangle. We run an SVM with
the above mentioned proof trees kernel and a fixed
value C = 10 for the regulatization parameter, being
the data set noise free. We evaluated its performance
with a leave-one-out procedure, and compared it to

Tilde (Blockeel & Raedt, 1997) trained from the same
data and background knowledge (including the visi-
tor).

Results are plotted in Figure 5(a) and 5(b) for m = 10
and m = 50 respectively. Both methods obtained bet-
ter performance for bigger data sets, but SVM per-
formance was very stable when increasing the nest-
ing level corresponding to positive examples, whereas
Tilde was not able to learn the concept for n > 5 when
m = 10, and n > 9 when m = 50.

5.2. Strings

The possibility to plug background knowledge into the
kernel allows to address problems which are notori-
ously hard for ILP approaches. An example of such
concepts is the M of N one, which expects the model
to be able to count and make the decision according
to the result of such count.

We represented this kind of tasks with a toy problem.
Examples are strings of integers i ∈ [0, 9], and a string
is positive iff more than a half of its pairs of consecu-
tive elements is ordered, where we employ the partial
ordering relation ≤ between numbers. In this task,
M and N are example dependent, while their ratio is
fixed.

As background knowledge, we introduced the concepts
of length two substring and ordering between pairs of
elements:

substr([],_):-fail. comp(A,B):-
substr(_,[]):-fail. A @> B.
substr([A,B],[A,B|_T]). comp(A,B):-
substr([A,B],[_H|T]):- A @=< B.
substr([A,B],T).

while the visitor actually looks for a substring of length
two in the example, and compares its elements:

visit(E):-
string(E,S),substr([A,B],S),comp(A,B).

leaf(substr(_,_)).

Note that we state substr is a leaf, because we are not
interested in where the substring is located within the
example.

The kernel we employed for this task is a sum kernel
with functor equality for nodewise comparison. This
can be implemented with the following kernel config-
uration file:

compound_kernel(sum).

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

bongard(1, pos).

triangle(1,o1).

circle(1,o2).

triangle(1,o3).

in(1,o1,o2).

in(1,o2,o3).

bongard(4, neg).

triangle(4,o1).

rectangle(4,o2).

circle(4,o3).

triangle(4,o4).

in(4,o1,o2).

in(4,o2,o3).

in(4,o3,o4).

Figure 3. Graphical and Prolog facts representation of two Bongard scenes. The left and right examples are positive and
negative, respectively, according to the pattern triangle-X-triangle.

visit(1)

inside(1,o1,o2)

in(1,o1,o2)

polygon(1,o1)

triangle(1,o1)

polygon(1,o2)

circle(1,o2)

visit(1)

inside(1,o2,o3)

in(1,o2,o3)

polygon(1,o2)

circle(1,o2)

polygon(1,o3)

triangle(1,o3)

visit(1)

inside(1,o1,o3)

in(1,o2,o3)

polygon(1,o1)

triangle(1,o1)

polygon(1,o3)

triangle(1,o3)inside(1,o2,o3)in(1,o1,o2)

Figure 4. Proof trees obtained by running the visitor on the first Bongard problem in Figure 3.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

Ac
cu

ra
cy

Nesting Level

SVM LOO
Tilde train

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

Ac
cu

ra
cy

Nesting Level

SVM LOO
Tilde train

Figure 5. Comparison between SVM and Tilde in learning the triangle-Xn-triangle for different values of n, for data sets
corresponding to m = 10 (left) and m = 50 (right).

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

The data set was created in the following way: the
training set was made of 150 randomly generated lists
of length 4 and 150 lists of length 5; the test set was
made of 1455 randomly generated lists of length from
6 to 100. This allowed to verify the generalization per-
formances of the algorithm for lengths very different
from the ones it was trained on. The area under the
ROC curve (Bradley, 1997) on the test set was equal to
1, showing that the concept had been perfectly learned
by the algorithm.

5.3. Mutagenicity

The mutagenicity problem described in (Srinivasan
et al., 1996) is a standard benchmark for ILP ap-
proaches. Background theory is represented as number
of clauses looking for functional groups, such as ben-
zene or anthracene, within a molecule. As a baseline
we used a visitor looking for paths of different lenghts
within the molecule, thus ignoring the notion of func-
tional groups:

path(Drug,1,X,Y,M):-
atm(Drug,X,_,_,_),bond(Drug,X,Y,_),
atm(Drug,Y,_,_,_),\+ member(Y,M).

path(Drug,L,X,Y,M):-
atm(Drug,X,_,_,_),bond(Drug,X,Z,_),
\+ member(Z,M),L1 is L - 1,
path(Drug,L1,Z,Y,[Z|M]).

visit1(Drug):-
path(Drug,1,X,_,[X]).
.
.

visit5(Drug):-
path(Drug,5,X,_,[X]).

the kernel compared atoms and bonds in correspond-
ing positions for paths of same length:

compound_kernel(sum).

type(atm(ignore,ignore,cat,cat,num)).
type(bond(ignore,ignore,ignore,cat)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

A more complex notion of similarity would be to com-
pare atoms belonging to the same type of functional

group, according to the background knowledge avail-
able. This was implemented with the following set of
visitors:

atoms(Drug,[]).

atoms(Drug,[H|T]):-
atm(Drug,H,_,_,_),atoms(Drug,T).

visit_benzene(Drug):-
benzene(Drug,Atoms),
atoms(Drug,Atoms).

visit_anthracene(Drug):-
anthracene(Drug,[Ring1,Ring2,Ring3]),
atoms(Drug,Ring1),atoms(Drug,Ring2),
atoms(Drug,Ring3).
.
.

visit_ring_size_5(Drug):-
ring_size_5(Drug,Atoms),
atoms(Drug,Atoms).

leaf(benzene(_,_)).
leaf(anthracene(_,_)).
.
.

leaf(ring_size_5(_,_)).

and corresponding kernel configuration:

compound_kernel(sum).

type(atm(ignore,ignore,cat,cat,num)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

Note that we are not interested in the way the pres-
ence of a functional group is proved, but simply on the
characteristics of the atoms belonging to it. Finally,
an additional source of information is given by some
non structural attributes, which were included using a
visitor which simply reads them

visit_global(Drug):-
lumo(Drug,_Lumo),
logp(Drug,_Logp).

and a kernel configuration like

type(lumo(ignore,num)).
type(logp(ignore,num)).

to be added before the last statement for the default
functor equality kernel.

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 1 10 100

LO
O

 A
cc

ur
ac

y

Regularization parameter

path
theory

theory+global
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

LO
O

 A
re

a
Un

de
r r

oc
 C

ur
ve

Regularization parameter

path
theory

theory+global

Figure 6. LOO accuracy (left) and AUC (right) for the regression friendly mutagenesis data set using different types of
visitors/kernels.

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.01 0.1 1 10

LO
O

 A
cc

ur
ac

y

Gaussian gamma

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.01 0.1 1 10

LO
O

 A
re

a
Un

de
r r

oc
 C

ur
ve

Gaussian gamma

Figure 7. LOO accuracy (left) and AUC (right) for the regression friendly mutagenesis data set using the theory+global
visitor/kernel, a Gaussian kernel on top of it, C = 50 and different values for the Gaussian width.

We used the regression friendly data set of 188
molecules with a LOO procedure to evaluate the meth-
ods, and both accuracy and area under the ROC curve
(AUC) as performance measures. Figures 6(a) and
6(b) report LOO accuracy and AUC for different val-
ues of the regularization parameter C, for path, theory
and theory+global visitors and corresponding kernels.
Note that performances could be further improved by
composing additional kernels on top of the visit pro-
gram one. As an example, Figure 7(a) and 7(b) report
LOO accuracy and AUC when using a Gaussian kernel
on top of the theory+global kernel, with a fixed param-
eter C = 50 (tuned on the non composed kernel), and
different values for the Gaussian width.

6. Conclusions

We have introduced the general idea of kernels over
program traces and specialized it to the case of Pro-
log proof trees in the logic programming paradigm.
The theory and the experimental results that we have
obtained indicate that this method can be seen as a

successful attempt to bridge several important aspects
of symbolic and statistical learning, including the abil-
ity of working with relational data, the incorporation
of background knowledge in a flexible and principled
way, and the use of kernel methods. Besides the case
of classification that has been studied in this paper,
other learning tasks could benefit from the proposed
framework including regression, clustering, ranking,
and novelty detection. One advantage of ILP as com-
pared to the present work is the intrinsic ability of
inductive logic programming to generate transparent
explanations of the learned function. We are currently
investigating the possibility to use the kernel in guid-
ing program synthesis or refinement, for example by
learning to change the default order of Prolog resolu-
tion looking at the traces of successful and unsuccessful
proofs.

Acknowledgements

This research is supported by EU Grant APrIL II (con-
tract n◦ 508861). PF and AP are also partially sup-

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

ported by MIUR Grant 2003091149 002.

References

Biermann, A., & Krishnaswamy, R. (1976). Construct-
ing programs from example computations. IEEE
Transactions on Software Engineering, 2, 141–153.

Blockeel, H., & Raedt, L. D. (1997). Top-down induc-
tion of logical decision trees (Technical Report CW
247). Dept. of Computer Science, K.U.Leuven.

Bongard, M. (1970). Pattern recognition. Spartan
Books.

Bradley, A. (1997). The use of the area under the
roc curve in the evaluation of machine learning al-
gorithms. Pattern Recognition, 30, 1145–1159.

Collins, M., & Duffy, N. (2002). New ranking algo-
rithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. Proceedings of
ACL 2002 (pp. 263–270). Philadelphia, PA, USA.

Cortes, C., Haffner, P., & Mohri, M. (2004). Rational
kernels: Theory and algorithms. Journal of Machine
Learning Research, 5, 1035–1062.

Cumby, C. M., & Roth, D. (2002). Learning with
feature description logics. Proc. of ILP’02 (pp. 32–
47). Springer-Verlag.

Cumby, C. M., & Roth, D. (2003). On kernel methods
for relational learning. Proc. of ICML’03.

Gärtner, T. (2003). A survey of kernels for structured
data. SIGKDD Explor. Newsl., 5, 49–58.

Gärtner, T., Lloyd, J., & Flach, P. (2004). Kernels and
distances for structured data. Machine Learning, 57,
205–232.

Haussler, D. (1999). Convolution kernels on dis-
crete structures (Technical Report UCSC-CRL-99-
10). University of California, Santa Cruz.

Jaakkola, T., & Haussler, D. (1998). Exploiting gen-
erative models in discriminative classifiers. Proc. of
NIPS.

Kramer, S., Lavrac, N., & Flach, P. (2000). Proposi-
tionalization approaches to relational data mining.
In Relational data mining, 262–286. SV, NY.

Leslie, C., Eskin, E., & Noble, W. (2002). The spec-
trum kernel: a string kernel for svm protein classi-
fication. Proc. of the Pac. Symp. Biocomput. (pp.
564–575).

Lloyd, J. (2003). Logic for learning: learning com-
prehensible theories from structured data. Springer-
Verlag.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., &
Watkins, C. (2000). Text classification using string
kernels. NIPS 2000 (pp. 563–569).

Mitchell, T. M., Utgoff, P. E., & Banerj, R. (1983).
Learning by experimentation: Acquiring and refin-
ing problem-solving heuristics. In Machine learning:
An artificial intelligence approach, vol. 1. Morgan
Kaufmann.

Passerini, A., & Frasconi, P. (2005). Kernels on prolog
ground terms. Int. Joint Conf. on Artificial Intelli-
gence (IJCAI’05). Edinburgh.

Schölkopf, B., & Warmuth, M. (Eds.). (2003). Kernels
and regularization on graphs, vol. 2777 of Lecture
Notes in Computer Science. Springer.

Shapiro, E. (1983). Algorithmic program debugging.
MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel
methods for pattern analysis. Cambridge University
Press.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E.,
& King, R. D. (1996). Theories for mutagenicity:
A study in first-order and feature-based induction.
Artificial Intelligence, 85, 277–299.

Sterling, L., & Shapiro, E. (1994). The art of prolog:
Advanced programming techniques. MIT Press. 2nd
edition.

Vishwanathan, S., & Smola, A. (2002). Fast kernels
on strings and trees. NIPS 2002.

Zelle, J. M., & Mooney, R. J. (1993). Combining
FOIL and EBG to speed-up logic programs. Proc.
of IJCAI-93 (pp. 1106–1111).

