
Constructive Preference Elicitation over Hybrid Combinatorial Spaces

Paolo Dragone∗
University of Trento, Italy
TIM-SKIL, Trento, Italy

paolo.dragone@unitn.it

Stefano Teso
KU Leuven, Belgium

stefano.teso@cs.kuleuven.be

Andrea Passerini
University of Trento, Italy

andrea.passerini@unitn.it

Abstract

Peference elicitation is the task of suggesting a highly pre-
ferred configuration to a decision maker. The preferences are
typically learned by querying the user for choice feedback
over pairs or sets of objects. In its constructive variant, new
objects are synthesized “from scratch” by maximizing an es-
timate of the user utility over a combinatorial (possibly in-
finite) space of candidates. In the constructive setting, most
existing elicitation techniques fail because they rely on ex-
haustive enumeration of the candidates. A previous solution
explicitly designed for constructive tasks comes with no for-
mal performance guarantees, and can be very expensive in (or
unapplicable to) problems with non-Boolean attributes. We
propose the Choice Perceptron, a Perceptron-like algorithm
for learning user preferences from set-wise choice feedback
over constructive domains and hybrid Boolean-numeric fea-
ture spaces. We provide a theoretical analysis on the attained
regret that holds for a large class of query selection strate-
gies, and devise a heuristic strategy that aims at optimizing
the regret in practice. Finally, we demonstrate its effective-
ness by empirical evaluation against existing competitors on
constructive scenarios of increasing complexity.

Introduction
Constructive preference elicitation is the task of recom-
mending structured objects, i.e. configurations of several
components, assembled on the basis of the user prefer-
ences (Teso, Passerini, and Viappiani 2016; Dragone et al.
2016). In this setting, the space of possible configurations
grows exponentially in the number of components. Exam-
ples include configurable products, such as personal com-
puters or mobile phone plans, and complex preference-based
decision problems, such as customized travel planning or
personalized activity scheduling.

The suggested configurations should reflect the pref-
erences of the user, which are unobserved and must be
estimated. As in standard preference elicitation (Pigozzi,
Tsoukiàs, and Viappiani 2016), preferences can be learned
by iteratively suggesting candidate products to the user, and
refining an estimate of the preference model from the re-

∗PD is a fellow of TIM-SKIL Trento and is supported by a TIM
scholarship.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ceived feedback. The ultimate goal is to produce good rec-
ommendations with minimal user effort. Here we focus on
choice queries, an interaction protocol consisting in recom-
mending a set of products; the user is invited to indicate the
most preferred item in the set (Viappiani and Boutilier 2011;
Louviere, Hensher, and Swait 2000). Elicitation techniques
based on choice set queries rely on some strategy to se-
lect the next query set to show to the user. Successful query
selection strategies must balance between the estimated in-
formativeness of the recommendations (so to minimize the
number of elicitation rounds) and their quality (to maximize
the chance of the user buying the product and to keep her en-
gaged). By generalizing pairwise ranking feedback, choice
queries over larger sets of items allow finer control over
informativeness, diversity and quality (Pu and Chen 2009;
Bollen et al. 2010).

Most existing preference elicitation methods are not de-
signed for constructive tasks (Viappiani and Boutilier 2011;
Teso, Passerini, and Viappiani 2016). Regret-based meth-
ods (Viappiani and Boutilier 2009) rely on perfectly ratio-
nal user responses, while Bayesian approaches do not scale
to combinatorial product spaces (Viappiani and Boutilier
2010), as discussed in the related work section. A notable
exception is the approach of Teso et al. (Teso, Passerini,
and Viappiani 2016), which avoids the enumeration of the
product space by encoding it through mixed-integer linear
constraints. Alas, it requires configurations to be encoded
with binary variables (in one-hot format), which can be very
costly from a computational perspective, and comes with no
formal performance guarantees.

In this paper we present several contributions. First, we
propose an iterative algorithm, dubbed Choice Perceptron,
that generalizes the structured Perceptron (Collins 2002;
Shivaswamy and Joachims 2015) to interactive preference
elicitation from pairwise and set-wise choice feedback. The
query selection strategy is implemented as an optimization
problem over the combinatorial space of products. In con-
trast to previous constructive approaches (Teso, Passerini,
and Viappiani 2016), our algorithm handles general linear
utilities over arbitrary feature spaces, including combinato-
rial and numerical attributes and features. Second, we prove
that under a very general assumption (implied by many ex-
isting user response models), the expected average regret
suffered by our algorithm decreases at least as O(1/

√
T).

We show how the constants appearing in the bound depend
on intuitive properties of the query selection strategy, and,
as a third contribution, we propose a simple strategy to con-
trol these quantities. Our empirical analysis showcases the
effectiveness of our approach against several state-of-the-art
(including constructive) alternatives.

Related work

Preference elicitation (PE) is a widely studied subject in
AI (Domshlak et al. 2011; Pigozzi, Tsoukiàs, and Viap-
piani 2016). Most existing approaches to PE rely on re-
gret theory (Viappiani and Boutilier 2009; Viappiani and
Kroer 2013) or Bayesian estimation (Viappiani and Boutilier
2010); see (Viappiani and Boutilier 2011) for a brief
overview. None of them are suitable for constructive set-
tings, for different reasons. Regret-based methods main-
tain a version space of utility functions consistent with the
collected feeedback. However, inconsistent user responses,
which are common in real-world recommendation, make the
version space collapse. Bayesian methods gracefully deal
with inconsistent feedback by employing a full distribution
over the candidate utility functions. Unfortunately, selection
of the query set (based on optimizing its Expected Value
of Information or approximations thereof) is computation-
ally expensive, preventing these approaches from scaling to
larger combinatorial domains.

The only approach specifically designed for constructive
preference elicitation is SETMARGIN, introduced in (Teso,
Passerini, and Viappiani 2016). SETMARGIN can be seen
as a max-margin approximation of Bayesian methods that
maintains only k most promising candidate utility functions
(with k small, e.g. 2 to 4). Like the Choice Perceptron, it
avoids the explicit enumeration of the product catalogue by
compactly defining the latter in terms of MILP constraints,
for significant runtime benefits. Alas, it only handles config-
urations encoded in one-hot form, which can become ineffi-
cient for very complex problems involving many categorical
variables, relies on a rather involved optimization problem,
and it has not be analyzed from a theoretical standpoint. Our
query strategy is much simpler, and aims specifically at op-
timizing an upper bound on the regret.

Our method is related to Coactive Learning (Shivaswamy
and Joachims 2015), which has already found application
in constructive tasks (Teso, Dragone, and Passerini 2017;
Dragone et al. 2016); some concepts and arguments used
in our theoretical analysis are adapted from the Coac-
tive Learning literature (Shivaswamy and Joachims 2012;
Raman et al. 2013). However, in our framework the user is
asked to choose an option from a set of alternatives, rather
than to construct an improved configuration. The two ap-
proaches are complementary in the sense that when manip-
ulative feedback is easy to obtain Coactive Learning may be
better suited; however when the space of products is highly
constrained, producing feasible improvements may be diffi-
cult for the user, and our approach is preferable.

Algorithm 1 The Choice Perceptron (CP) algorithm.
1: procedure CP (T, η)
2: w1 ← 0
3: for t = 1, . . . , T do
4: Receive context xt from the user
5: Qt ← SELECTQUERY(xt,wt)
6: User chooses ȳt from Qt
7: wt+1 ← wt + η∆t

The Choice Perceptron algorithm
We consider a combinatorial space Y of structured products
defined by hard feasibility constraints. As customary in pref-
erence elicitation, we focus on the problem of learning a
utility function that ranks candidate objects according to the
user preferences. The utility of a product y∈Y may option-
ally depend on some externally provided context x ∈X . In
the rest of the paper, we assume that the user’s true utility
function is fixed and never observed by the algorithm, and
that it is linear, i.e. of the form u∗(x, y) = 〈w∗,φ(x, y)〉;
herew∗∈Rd are the true preference weights of the user and
φ : X ×Y → Rd maps context-configuration pairs to a d-
dimensional feature space. The feature vectors φ(x, y) are
assumed to be enclosed in a ball of radius R.

We propose the Choice Perceptron (CP) algorithm; the
pseudocode is listed in Algorithm 1. The CP algorithm keeps
an estimate ut(x, y) = 〈wt,φ(x, y)〉 of the true user util-
ity, and iteratively refines it by interacting with the user. At
each iteration t, the algorithm receives a context xt and rec-
ommends a set of k configurations Qt ⊆ Y , by selecting
them according to some query strategy based on wt1. Af-
ter receving the query set, the user choses the “best” ob-
ject ȳt ∈ Qt according to her preferences. This kind of
set-wise interaction protocol generalizes pairwise ranking
feedback, and is well studied in decision theory, psychol-
ogy, and econometrics (Louviere, Hensher, and Swait 2000;
Toubia, Hauser, and Simester 2004; Pu and Chen 2009). We
allow the choice to be noisy, i.e. the user may choose ȳt ac-
cording to a distribution Pxt(ȳt=y|y ∈ Qt).

After observing the user’s pick, the algorithm updates the
current estimatewt. Here we focus on the following Percep-
tron update:

wt+1 ← wt + η∆t

∆t := φ(xt, ȳt)− 1

k − 1

∑
y∈Qt:y 6=ȳt

φ(xt, y) (1)

where η is a constant step-size. Despite its simplicity, this
update comes with sound theoretical guarantees, as shown
in the next section2.

We measure the quality of a recommendation set Qt in
context xt by the instantaneous regret, that is the differ-
ence in true utility between a truly optimal object y∗xt =

1The CP algorithm is independent from the particular query se-
lection strategy used. Different query strategies may find better rec-
ommendations in different problems.

2Futher, our results could be extended to more sophisticated up-
dating mechanisms, see e.g. (Shivaswamy and Joachims 2015).

argmaxy∈Y u
∗(xt, y) and the best option in the set:

REG(xt,Qt) = min
y∈Qt

(
u∗(xt, y∗xt)− u∗(xt, y)

)
This definition is in line with previous works on prefer-
ence elicitation with set-wise choice feedback (Viappiani
and Boutilier 2010). After T iterations, the average regret
is REGT = 1

T

∑T
t=1 REG(xt,Qt). A low average regret im-

plies low instantaneous regret throughout the elicitation pro-
cess, as is necessary for keeping the user engaged. In the
next section we prove a theoretical upper bound on the ex-
pected average regret suffered by CP under a very general
assumption on the user feedback.

Theoretical Analysis
In this section we analyze the theoretical properties of the
CP algorithm, proving an O(1/

√
T) upper bound on its ex-

pected average regret. In the following Eȳt [f(xt, y)|Qt] in-
dicates the conditional expectation of f(xt, y) with respect
to Pxt(ȳt=y|Qt), where t is the iteration index; E[f(xt, y)]
is the expectation of f(xt, y) over the distribution of all
user choices ȳ1, . . . , ȳt. We will also use the shorthands
Pt(y) := Pxt(ȳt = y|y ∈ Qt), u∗(∆t) := 〈w∗,∆t〉 and
[k] := {1, . . . , k}.

In order to derive the regret bound, we need to quan-
tify the “quality” of the sets provided by the query
strategy. To this end, we adapt the concept of expected
α-informativeness from the Coactive Learning frame-
work (Shivaswamy and Joachims 2012):
Definition. For any query strategy, there exist α ∈ (0, 1]
and ξ̄t ∈ R such that, for all t ∈ [T] and for all users:

Eȳt [u∗(∆t)|Qt] ≥
αmax
y∈Qt

(
u∗(xt, y∗xt)− u∗(xt, y)

)
− ξ̄t (2)

The LHS of Eq. 2 is the expected utility gain of the up-
date rule (Eq. 1): a positive utility gain indicates that wt+1

makes a step towards a better approximation of w∗. The
term maxy∈Qt (u∗(xt, y∗xt)− u∗(xt, y)) on the RHS is in-
stead the worst-case regret, i.e. the regret with respect to the
worst object in the query set. This model simply quantifies
the amount of utility gain in terms of a fraction α of the
worst-case regret and the slack term ξ̄t. Intuitively, α cap-
tures the minimum quality of the query sets selected by the
query strategy, while the slacks ξ̄t are additional degrees of
freedom that depend on the expected user replies.

Notice that the above definition is very general and can
describe the behavior of any query selection strategy, pro-
vided appropriate values for α and ξ̄t. Both occur as con-
stants in our regret bound.

By requiring the user to behave “reasonably”, according
to the following definition, we can guarantee the expected
utility gain to always be non-negative (Lemma 1). This al-
lows us to make explicit and assign a precise meaning to the
value of the constant ξ̄t.
Definition. A user is reasonable if, for any context xt and
query set Qt, the probability Pxt(ȳt = y|Qt) is a non-
decreasing monotonic transformation of the true utility u∗:
∀y, y′∈Qt Pt(y) ≥ Pt(y′) ⇐⇒ u∗(xt, y) ≥ u∗(xt, y′)

This property is implied by many widespread user response
models, including the Bradley-Terry (Bradley and Terry
1952) and Thurstone-Mosteller (Mcfadden 2001) models of
pairwise choice feedback, and the Plackett-Luce (Plackett
1975; Luce 1959) model of set-wise choice feedback. It is
also strictly less restrictive than applying any of these mod-
els.

Notably, when applied to a reasonable user, the update
rule (Eq. 1) always yields a non-negative expected utility
gain.
Lemma 1. For a reasonable user with utility u∗, it holds
that Eȳt [u∗(∆t)|Qt] ≥ 0 at all iterations t.

Proof. Given that the user is reasonable, we apply the
Chebyshev’s sum inequality to u∗(xt, yt) and Pxt(ȳt =
yt|Qt), for yt ∈ Qt:

1
k

∑
yt∈Qt u∗(xt, yt)Pt(y

t) ≥(
1
k

∑
yt∈Qt u∗(xt, yt)

)
·
(

1
k

∑
yt∈Qt Pt(y

t)
)

⇐⇒
∑
yt∈Qt u∗(xt, yt)Pt(y

t) ≥ 1
k

∑
yt∈Qt u∗(xt, yt)

Rearranging, we obtain:∑
yt∈Qt u∗(xt, yt)Pt(y

t)− 1
k

∑
yt∈Qt u∗(xt, yt) ≥ 0

⇐⇒ k
k−1E[u∗(xt, ȳt)|Qt]− 1

k−1

∑
yt∈Qt u∗(xt, yt) ≥ 0

⇐⇒ E[k
k−1u

∗(xt, ȳt)− 1
k−1

∑
yt∈Qt u∗(xt, yt)|Qt] ≥ 0

⇐⇒ E[k−1
k−1u

∗(xt, ȳt)− 1
k−1

∑
yt 6=ȳt u

∗(xt, yt)|Qt] ≥ 0

⇐⇒ E[u∗(xt, ȳt)− 1
k−1

∑
yt 6=ȳt u

∗(xt, yt)|Qt] ≥ 0

The lemma allows us to distinguish between informative
and uninformative query sets, depending on whether the ex-
pected utility gain is strictly positive or null, respectively. We
can use these definitions to derive an equivalent formulation
of the α-informativeness making the constants ξ̄t explicit.

Let α > 0 be the smallest constant such that
Eȳt [u∗(∆t)|Qt] ≥ αmaxy∈Qt (u∗(xt, y∗xt)− u∗(xt, y))
for all iterations t in which the query set Qt is in-
formative. For these iterations setting ξ̄t = 0 still
satisfies the inequality in Eq. 2. On the other hand,
when the query set is uninformative, ξ̄t must satisfy
ξ̄t ≥ αmaxy∈Qt (u∗(xt, y∗xt)− u∗(xt, y)). Given that
‖φ(x, y)‖ ≤ R, the worst-case regret is upper-bounded by
2R‖w∗‖, therefore it suffice to set ξ̄t = 2αR‖w∗‖. We can
rewrite the expected α-informativeness as:

Eȳt [u∗(∆t)|Qt] ≥
αmax
y∈Qt

(
u∗(xt, y∗xt)− u∗(xt, y)

)
− 2αR‖w∗‖mt (3)

Here mt = 1[E[u∗(∆t)] = 0] is a constant that is equal
to 1 if any query set Qt that may be chosen at iteration t
is expected to be uninformative and 0 otherwise. Note that
E[u∗(∆t)] = E[Eȳt [u∗(∆t)|Qt]], therefore if Qt is infor-
mative then E[u∗(∆t)] > 0 (i.e. mt = 0), while if Qt is
uninformative then E[u∗(∆t)] = 0 (i.e. mt = 1). We say
that an iteration t is expected uninformative if mt = 1, and

let M :=
∑T
t=1m

t be the total number of expected uninfor-
mative iterations.

The last property of the query selection stategy we define
in order to state the bound is the β-affirmativeness, which
we adapt from (Raman et al. 2013) as follows:

Definition. For any query selection strategy and for a fixed
time horizon T , there exists a constant β ∈ R such that
1
T

∑T
t=1 E[ut(∆t)] ≤ β.

This definition states that β is an upper bound on the average
expected change in ut, for t ∈ [T]. Notice that E[ut(∆t)]
may be positive, null or negative. Intuitively, a negative
E[ut(∆t)] indicates that the query set is expected to pro-
duce a user choice that disagrees with the current estimate
of wt. This is the case in which the algorithm receives the
most information. In general, the smaller β is, the quicker
CP learns from the user feedback.

The previous assumptions on the user and definitions for
the query strategy allow us to derive the following regret
bound for CP along the same lines of what done in Coac-
tive Learning (Shivaswamy and Joachims 2012; Raman et
al. 2013).

Theorem 2. For a reasonable user with true preference
weights w∗ and an α-informative and β-affirmative query
strategy, the expected average regret of the CP algorithm is
upper bounded by:

E[REGT] ≤

√
2βη + 4R2‖w∗‖

α
√
T

+
2R‖w∗‖M

T

Proof. Using Cauchy-Schwarz and Jensen’s inequalities:

E[〈w∗,wT+1〉] ≤ ‖w∗‖ E[‖wT+1‖]

≤ ‖w∗‖
√

E[〈wT+1,wT+1〉] (4)

From the expected β-affirmativeness and ‖φ(x, y)‖ ≤ R:

E[〈wT+1,wT+1〉] =

= E[〈wT ,wT 〉] + 2ηE[〈wT ,∆T 〉] + η2E[〈∆T ,∆T 〉]

≤ 2η

T∑
t=1

E[〈wt,∆t〉] + 4η2R2T ≤ 2ηβT + 4η2R2T

Plugging this result into inequality (4) we have:

E[〈w∗,wT+1〉] ≤
√

2ηβT + 4η2R2T‖w∗‖

For a reasonable user, the α-informativeness in Eq. 3 holds
for any query strategy. Applying it to the LHS of the above
inequality, along with the law of total expectation, we get:

E[〈w∗,wT+1〉]
= E[〈w∗,wT 〉] + ηE[EȳT [〈w∗,∆T 〉|Qt]]

= E[
∑T
t=1 ηEȳt [u∗(∆t)|Qt]]

Applying the α-informativeness (Eq. 3):

≥ E[
∑T
t=1 αηmaxy∈Qt (u∗(xt, y∗xt)− u∗(xt, y))

− 2αηR‖w∗‖mt]

≥ αηE[
∑T
t=1 maxy∈Qt (u∗(xt, y∗xt)− u∗(xt, y))]

− 2Rαη‖w∗‖
∑T
t=1m

t

≥ αηE[
∑T
t=1 miny∈Qt (u∗(xt, y∗xt)− u∗(xt, y))]

− 2Rαη‖w∗‖
∑T
t=1m

t

= αηTE[REGT]− 2Rαη‖w∗‖M
Finally:

αηTE[REGT]

≤
√

2ηβ + 4η2R2‖w∗‖
√
T + 2Rαη‖w∗‖M

from which the claim follows.

Query selection strategy
In the previous section we proved an upper bound on the ex-
pected average regret of CP for any query selection strategy,
provided that the user is reasonable. Crucially, however, the
bound depends on the actual value of α, β and M . These
constants depend both on the user and the query selection
strategy. While the algorithm has no control on the user, an
appropriate design of the query selection strategy can posi-
tively affect the impact of the constants on the bound. In the
following we present a query selection strategy that aims at
reducing the bound by finding a trade-off between α and β.

Recall that we want α ∈ (0, 1] to be large and β ∈ R
and M ∈ [T] small. While have no direct control over α
and β, which depend on all iterations, we can control their
step-wise surrogates:

u∗(∆t) = 〈w∗,∆t〉 ∝ ‖w∗‖‖∆t‖ for α

ut(∆t) = 〈wt,∆t〉 ∝ ‖wt‖‖∆t‖ for β
There is a trade-off between the two, as they both depend on
‖∆t‖. Further, whilewt is observed,w∗ is not. We proceed
as follows. Since w∗ is not observed, we indirectly maxi-
mize u∗(∆t) by maximizing ‖∆t‖, i.e. by picking k query
configurations that are distant in feature space. For reason-
able users, maximizing the distance between objects also
tends to maximize the probability Pt(y) of picking a high
utility object: the larger the distance, the higher the probabil-
ity of picking objects with large difference in u∗(·). On the
other hand wt is observed, so we can choose k query con-
figurations with small difference in estimated utility ut(·)
by taking them from a plane orthogonal (or almost orthogo-
nal) to wt. This way, ut(∆t) is close to 0 regardless of the
choice of the user, implying β ≈ 0. This reasoning leads to
the following optimization problem:

Qt = argmax{y1,...,yk} γδ + (1− γ)µ

s.t. ut(xt, y1)=maxy u
t(xt, y)

φ(xt, y1) 6= · · · 6= φ(xt, yk)

where: δ :=
∑k
i=2‖φ(xt, y1)− φ(xt, yi)‖1

µ :=
∑k
i=2 u

t(xt, yj)

The objective aims at optimizing a convex combination
of the L1 distances of the options inQ (δ) and their distance
from optimality (µ). The two terms are modulated by the
γ ∈ [0, 1] hyperparameter. The third constraint forces the
first configuration y1 to be optimal, irrespective of the choice
of γ, ensuring that when wt ≈ w∗, Qt contains at least one
true optimal configuration. Finally, all options are required
to be different in feature space. By maximizing the utility of
the objects, we are also pushing E[〈wt,∆t〉] towards zero,
implying that iteration t can only be expected uninformative
when wt is (approximately) anti-parallel to w∗:

E[u∗(∆t)] = 0 ⇐⇒ E[〈w∗,wt〉] ≈ −E[‖w∗‖‖wt‖]

For reasonable users E[〈w∗,wt〉] = E[
∑T
t=1 u

∗(∆t)] ≥ 0
(by Lemma 1), implying that the above case is extremely
rare, and therefore M ≈ 0.

This query strategy essentially attempts to find a good
trade-off between exploration (γ ≈ 1) and exploitation
(γ ≈ 0). In most cases a good strategy is to allow more ex-
ploration in the beginning of the elicitation and then exploit
more when the algorithm has learned a good approximation
ofw∗. We therefore set γ to 1

t in our experiments. This also
ensures that ut(∆t) decreases over time regardless of the
user choice, thereby keeping β constant.

In the following, we will stick to features φ expressible
as linear functions of Boolean, categorical and continuous
attributes. This choice is very general, and allows to encode
arithmetical, combinatorial and logical constraints, as shown
by our empirical evaluation. So long as the feasible set Y is
also defined in terms of mixed linear constraint, query selec-
tion can be cast as a mixed-integer linear problem (MILP)
and solved with any efficient off-the-shelf solver.

We remark that the previous arguments apply to all
choices of k ≥ 2, i.e. to both pairwise and set-wise choice
feedback. Intuitively, larger set sizes imply more diverse and
potentially more informative query sets, because they reduce
the chance for a reasonable user to pick a low utility option.
They also imply more conservative updates, mitigating the
deleterious effect of uninformative choices. These effects are
studied experimentally.

Empirical Evaluation
We compare CP against three state-of-the-art preference elic-
itation approaches on three constructive preference elic-
itation tasks taken from the literature. The query selec-
tion problem is solved with Gecode via its MiniZinc inter-
face (Nethercote et al. 2007)3.

The three competitors are: [i] the Bayesian approach
of (Viappiani and Boutilier 2010) using Monte Carlo meth-
ods (the number of particles was set to 50,000, as in (Teso,
Passerini, and Viappiani 2016)) with greedy query selection
based on the Expected Utility of a Selection (a tight approx-
imation of the Expected Value of Information criterion); [ii]
Query Iteration, also from (Viappiani and Boutilier 2010), a
sampling-based query selection method that trades off query

3The complete experimental setting can be retrieved from:
https://github.com/unitn-sml/choice-perceptron

informativeness for computational efficiency; [iii] the set-
wise maximum margin method of (Teso, Passerini, and Vi-
appiani 2016), modified to accept set-wise choice feedback;
support for user indifference was also disabled4. We indi-
cate the competitors as VB-EUS, VB-QI and SETMARGIN,
respectively. As argued in the previous section, for CP we
set γ to 1

t in all experiments, in order to allow more explo-
ration earlier on during the search. In practice we also em-
ploy an adaptive Perceptron step size, which is adapted at
each iteration t ≥ 3 from the set {0.1, 0.2, 0.5, 1, 2, 5, 10}
via cross-validation on the collected feedback; it was found
to work well empirically. SETMARGIN includes a similar
tuning procedure.

Our experimental setup is modelled after (Teso, Passerini,
and Viappiani 2016). We consider two different kinds of
users: “uniform” and “normal” users, whose true prefer-
ence vectors w∗ are drawn, respectively, from a uniform
and a normal distribution. Twenty users are sampled at ran-
dom and kept fixed for each experiment. User responses
are simulated with a Plackett-Luce model (Plackett 1975;
Luce 1959):

Px(ȳ = yi|Q) =
exp(λu∗(x, yi))∑k
j=1 exp(λu∗(x, yj))

We set λ = 1 as in (Teso, Passerini, and Viappiani 2016).
In the first two experiments (which are context-less) we re-
port the median over users of the instantaneous regret, as
in (Viappiani and Boutilier 2010) and (Teso, Passerini, and
Viappiani 2016); whereas, in the third experiment (with con-
text) we report the median average regret. In all experiments
we also report cumulative runtime and std. deviations.

Synthetic experiment. We evaluated all methods on
the synthetic constructive benchmark introduced in (Teso,
Passerini, and Viappiani 2016). The space of feasible config-
urations is the Cartesian product of r attributes, each taking
values in [r], i.e. Y = ×ri=1[r]. The features are the one-hot
encoding of the attributes, for a total of r2 features. Here we
focus on the r = 4 case (16 features, 256 products) which
is large enough to be non-trivial, and sufficiently small to be
solvable by the two Bayesian competitors. For CP and SET-
MARGIN Y is encoded natively via MILP constraints; the
Bayesian methods required Y to be enumerated. The users
were sampled as in (Teso, Passerini, and Viappiani 2016),
i.e. from a uniform distribution in the range [1, 100] and a
normal distribution with mean 25 and standard deviation 25

3 .
All methods were run until either the user was satisfied (i.e.
the regret reported by the method reached zero) or 25 itera-
tions elapsed. We evaluated the importance of the query set
size by running CP and SETMARGIN with k = 2, 3, 4. VB-
EUS and VB-QI were only run with k = 2, due to scalability
issues. In the k = 2 case (Figure 1, left), CP performs better
than both VB-QI and SETMARGIN, and worse than VB-QI.
The runtimes, however, vary wildly. The Bayesian competi-
tors are much more computationally expensive than CP and

4These changes have no impact on the performance of the
method, and provide a generous boost to its runtime, due to the
fewer pairwise comparisons collected at each iteration.

Figure 1: Comparison of various algorithms in the synthetic experiment. The plots on the top row show the regret of the
various algorithm for increasing iterations, whereas the plots on the bottom row show the cumulative running time (inference
+ learning). On the left, CP is compared to SETMARGIN, VB-EUSand VB-QIusing query sets with dimension k = 2. On the
right, instead, CP is compared only with SETMARGIN using k = 4. In both cases, experiments using uniformely distributed
and normally distributed users are shown on the left plots and on the right plots respectively. Best viewed in color.

SETMARGIN, confirming the results of (Teso, Passerini, and
Viappiani 2016); the two MILP methods instead avoid the
explicit enumeration of the candidate configurations, with
noticeable computational savings. Notably, CP is faster than
SETMARGIN, while performing comparably or better. The
gap widens with set size k = 4 (Figure 1, right; k = 3 is
similar, not shown). Here CP and SETMARGIN converge af-
ter a similar number of iterations, but with very different run-
times. The bottleneck of SETMARGIN is the hyperparameter
tuning procedure; disabling it however severely degrades the
performance, so we left it on.

PC configuration. In the second experiment, we com-
pared CP and SETMARGIN on a much larger recommenda-
tion task, also from (Teso, Passerini, and Viappiani 2016).
The goal is to suggest a fully customized PC configuration
to a customer. A computer is defined by seven categorical
attributes (manufacturer, CPU model, etc.) and a numerical
one (the price, determined by the choice of components).
The features include the one-hot encodings of the attributes
and the price. The relations between parts (e.g. what CPUs
are sold by which manufacturers) are expressed as Horn con-
straints. The feasible space includes thousands of configura-
tions, ruling the Bayesian competitors out (Teso, Passerini,
and Viappiani 2016). The users were sampled as in the pre-
vious experiment. To help keeping running times low, the
query selection procedure of CP is executed with a 20 sec-
onds time cutoff. No time cutoff is applied to SETMARGIN.

The results for k = 2 and 3 can be seen in Figure 2 (left).
On uniform users, CP consistently outperforms SETMAR-
GIN for both choices of k, despite the timeout. Notably, CP
with k = 2 (less informative queries) works as well as SET-
MARGIN with k = 3 (more informed queries) in this set-
ting. For normal users the situation is similar: with k = 2,
SETMARGIN catches up with CP after about 80 iterations,

but at considerably larger computational cost. Surprisingly,
SETMARGIN behaves worse for k = 3 than for k = 2;
CP instead improves monotonically, for a modest increase
in computational effort. In all cases, the runtimes are very
favorable to our method, also thanks to the timeout, which
however does not compromise performance.

Trip planning. Finally, we evaluated CP on a slightly
modified version of the touristic trip planning task intro-
duced in (Teso, Dragone, and Passerini 2017). Here the rec-
ommender must suggest a trip route between 10 cities, each
annotated with an offering of 15 activities (resorts, services,
etc.). The trip y includes the path itself (which is allowed to
contain cycles) and the time spent at each city. Differently
from (Teso, Dragone, and Passerini 2017), at each iteration
the user issues a context x indicating a subset of cities that
the trip must visit. The features include the number of days
spent at each location, the number of times an activity is
available at the visited locations, the cost of the trip, etc., for
a total of 127 features; see (Teso, Dragone, and Passerini
2017) for the details. Note that this problem can not be
encoded in SETMARGIN, i.e. with Boolean and dependent
numerical attributes, without incurring significant encoding
overhead: the resulting SETMARGIN query selection prob-
lem would include approximately 300 Boolean variables (an
almost 300% blow-up in problem size). According to our
tests, problems of this size are not solvable in real-time in
practice, compromising the reactiveness of SETMARGIN.

Differently from the previous two settings, here users
were sampled from a standard normal distribution (as
in (Teso, Dragone, and Passerini 2017)) and from a uniform
distribution in the range [−1, 1]. Not having a one-hot en-
coded feature vector, negative weights are useful to capture
the user dislikes. The contexts are uniformly sampled from
the combinations of 2 or 3 cities. As in the previous exper-

Figure 2: Comparison of various algorithms in the PC configuration and travel planning experiments. The plots on the top row
show the regret of the various algorithm for increasing iterations, whereas the plots on the bottom row show the cumulative
running time (inference + learning). On the left, CP is compared to SETMARGIN on the PC configuration task using query sets
with dimension k = 2 and k = 3. The plots on the right, instead, show only the performance of CP on the travel planning task
using k = {2, 3, 4}. In both cases, experiments using uniformely distributed and normally distributed users are shown on the
left plots and on the right plots respectively. Best viewed in color.

iment, we employ a time cutoff of 20 seconds. We run this
experiment with k = 2, 3, 4 to show how different set sizes
affect the performance of the system. Since this experiment
is context-based, we let the algorithm run for exactly 100 it-
erations. Figure 2 (right) reports the median average regret
and the median cumulative running time.

The plots show that in both cases there is a significant
decrease in average regret with k = 3 over k = 2, in ex-
change for increased running time; k = 4 performs bet-
ter than k = 3 for about 40 iterations, but then worsens
considerably. This is probably due to the timeout, which in
this more complicated setting may substantially hinder the
MILP solver. Increasing the cutoff to 60 seconds however
did not improve the results (data not shown). This indicates
that larger values of k may be too costly to compute with-
out further approximations, as is also the case for the other
competitors.

Choosing k While our theoretical analysis is agnostic on
the number k of objects in a query set, in our empirical anal-
ysis we collected some insight on how to choose k on the
basis of the difficulty of the underlying optimization prob-
lem. While in general a larger k is more informative, it is not
always possible to solve the query selection problem to op-
timality. This may severely hinder the learning capabilities
of the algorithm, as in the case of the trip planning setting
with k = 4. On the other hand, for smaller problems a larger
k may significantly reduce the number of iterations needed
to reach an optimal solution, as for the PC configuration set-
ting. There is, therefore, a trade-off that depends on the com-
putational complexity of the query selection problem of the
application at hand. From our experiments, we can infer, as
a rule of thumb, that it is usually better to choose larger k
(k = 4, 5) when objects are small and the selection problem

easier to solve, whereas a smaller k (k = 2, 3) is preferable
when the objects are large and difficult to select. Addition-
ally, the larger the objects, the harder it is for the user to
choose the best in the set, so a smaller k is also desirable to
reduce the cognitive load on the user.

Conclusion
We presented the Choice Perceptron, an algorithm for pref-
erence elicitation from noisy choice feedback. Contrary to
existing recommenders, CP can solve constructive elicitation
problems over arbitrary combinatorial spaces, composed of
many Boolean, integer and continuous variables and con-
straints. Our theoretical analysis shows that, under a very
general assumption, the average regret suffered by CP is up-
per bounded by O(1/

√
T). The exact constants appearing

in the bound depend on intuitive properties of the query se-
lection strategy at hand. We further described a strategy that
aims at controlling these constants. We applied CP to con-
structive preference elicitation tasks for progressively more
complex combinatorial structures. Not only CP is the only
method expressive enough to deal with all of these prob-
lems, but it is also more performant than the alternatives in
terms of recommendation quality and run-time.

In the future, we plan to research more informed query
selection strategies, e.g. by leveraging estimates of β dur-
ing query selection. Other possible directions include ex-
ploring different update rules. As mentioned, this algorithm
and the analysis could be also extended to perform exponen-
tiated updates or handle generic convex loss functions (Shiv-
aswamy and Joachims 2015). Finally, a deeper investigation
on the optimal size of the query set and its possible adap-
tation during the interaction process could be useful to find
an appropriate trade-off between informativeness and com-
plexity.

References
Bollen, D.; Knijnenburg, B. P.; Willemsen, M. C.; and Graus, M.
2010. Understanding choice overload in recommender systems. In
RecSys’10, 63–70. ACM.
Bradley, R. A., and Terry, M. E. 1952. Rank analysis of incomplete
block designs: I. the method of paired comparisons. Biometrika
39(3/4):324–345.
Collins, M. 2002. Discriminative training methods for hidden
markov models: Theory and experiments with perceptron algo-
rithms. In ACL’02, volume 10, 1–8.
Domshlak, C.; Hüllermeier, E.; Kaci, S.; and Prade, H. 2011. Pref-
erences in ai: An overview. Artificial Intelligence 175(7-8):1037–
1052.
Dragone, P.; Erculiani, L.; Chietera, M. T.; Teso, S.; and Passerini,
A. 2016. Constructive layout synthesis via coactive learning. In
Constructive Machine Learning workshop, NIPS.
Louviere, J. J.; Hensher, D. A.; and Swait, J. D. 2000. Stated choice
methods: analysis and applications. Cambridge University Press.
Luce, R. D. 1959. Individual choice behavior: A theoretical anal-
ysis.
Mcfadden, D. 2001. Economic choices. American Economic Re-
view 91:351–378.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck, G. J.;
and Tack, G. 2007. Minizinc: Towards a standard cp modelling
language. In CP. 529–543.
Pigozzi, G.; Tsoukiàs, A.; and Viappiani, P. 2016. Preferences in
artificial intelligence. Ann. Math. Artif. Intell. 77(3-4):361–401.
Plackett, R. L. 1975. The analysis of permutations. Applied Statis-
tics 193–202.
Pu, P., and Chen, L. 2009. User-involved preference elicitation for
product search and recommender systems. AI magazine 29(4):93.
Raman, K.; Joachims, T.; Shivaswamy, P.; and Schnabel, T. 2013.
Stable coactive learning via perturbation. In ICML (3), 837–845.
Shivaswamy, P., and Joachims, T. 2012. Online structured predic-
tion via coactive learning. In ICML, 1431–1438.
Shivaswamy, P., and Joachims, T. 2015. Coactive Learning. JAIR
53:1–40.
Teso, S.; Dragone, P.; and Passerini, A. 2017. Coactive critiquing:
Elicitation of preferences and features. In AAAI.
Teso, S.; Passerini, A.; and Viappiani, P. 2016. Constructive prefer-
ence elicitation by setwise max-margin learning. In IJCAI, 2067–
2073.
Toubia, O.; Hauser, J. R.; and Simester, D. I. 2004. Polyhedral
methods for adaptive choice-based conjoint analysis. Journal of
Marketing Research 41(1):116–131.
Viappiani, P., and Boutilier, C. 2009. Regret-based optimal recom-
mendation sets in conversational recommender systems. In RecSys,
101–108. ACM.
Viappiani, P., and Boutilier, C. 2010. Optimal bayesian recom-
mendation sets and myopically optimal choice query sets. In NIPS,
2352–2360.
Viappiani, P., and Boutilier, C. 2011. Recommendation sets and
choice queries: there is no exploration/exploitation tradeoff! In
AAAI.
Viappiani, P., and Kroer, C. 2013. Robust optimization of rec-
ommendation sets with the maximin utility criterion. In ADT’13,
411–424. Springer.

