
kFOIL: Learning Simple Relational Kernels

Niels Landwehr1 and Andrea Passerini2 and Luc De Raedt1 and Paolo Frasconi2
1Machine Learning Lab

Department of Computer Science
Albert-Ludwigs Universität, Freiburg, Germany
{landwehr,deraedt}@informatik.uni-freiburg.de

2Machine Learning and Neural Networks Group
Dipartimento di Sistemi e Informatica

Università degli Studi di Firenze, Florence, Italy
{passerini,p-f}@dsi.unifi.it

Abstract

A novel and simple combination of inductive logic program-
ming with kernel methods is presented. The kFOIL algo-
rithm integrates the well-known inductive logic programming
system FOIL with kernel methods. The feature space is
constructed by leveraging FOIL search for a set of relevant
clauses. The search is driven by the performance obtained
by a support vector machine based on the resulting kernel.
In this way, kFOIL implements a dynamic propositionaliza-
tion approach. Both classification and regression tasks can be
naturally handled. Experiments in applying kFOIL to well-
known benchmarks in chemoinformatics show the promise
of the approach.

Introduction
Various successes have been reported in applying inductive
logic programming (ILP) techniques to challenging prob-
lems in bio- and chemoinformatics, cf. e.g. (Bratko & Mug-
gleton 1995). These successes can—to a large extent—be
explained by the use of an expressive general purpose repre-
sentation formalism that allows one to deal with structured
data, to incorporate background knowledge in the learning
process, and to obtain hypotheses in the form of a small set
of rules that are easy to interpret by domain experts.

On the other hand, support vector machines and kernel
methods in general have revolutionized the theory and prac-
tice of machine learning in the past decade. These methods
do not only yield highly accurate hypotheses; they are also
grounded in a solid mathematical theory. However, dealing
with structured data and employing background knowledge
is harder, as it typically requires one to develop a novel ker-
nel for the specific problem at hand, which is a non-trivial
task. Also, the resulting hypotheses are hard to interpret by
the human domain expert.

Given these developments, it can be no surprise that sev-
eral researchers have started to combine and integrate ideas
from ILP with those from support vector machines. First,
there has been a significant interest in developing kernels for
structured data, cf. (Gaertner 2003) for an overview, in par-
ticular for sequences, trees, graphs, and even individuals de-
scribed in high-order logic (Gaertner, Lloyd, & Flach 2004).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

All these kernels are fixed before learning takes place and,
to the best of the authors’ knowledge, a kernel method that
directly learns from relational representations is still miss-
ing. Second, there is the idea of static propositionalization,
in which an ILP problem is turned into a propositional one
by pre-computing a typically large set of features, cf. e.g.
(Muggleton, Amini, & Sternberg 2005), and then using tra-
ditional SVM learning on the resulting representation. An
extension of this approach transforms the relational repre-
sentations into a structured one, by e.g. computing proof-
trees for so-called visitor programs (Passerini, Frasconi, &
De Raedt 2006). Third, as kernels are closely related to sim-
ilarity measures, work on distance based relational learning
(Ramon & Bruynooghe 1998; Kirsten, Wrobel, & Horváth
2001) should also be mentioned. The drawback of these ap-
proaches is that the resulting models are still complex and
hard to interpret. In addition, the user typically needs to
specify additional information to restrict the number of fea-
tures generated in the propositionalization process or to en-
code the distance function, which is often a non-trivial task.

The approach taken in this paper is different. The key
idea is to dynamically induce a small set of clauses us-
ing a FOIL-like covering algorithm (Quinlan 1990) and to
use these as features in standard kernel methods. Apply-
ing rule-learning principles leads to a typically small set of
rules or features, which are—due to the use of a relational
representation—also easy to interpret. Using these features
to define a kernel leads to similarity measures amongst re-
lational examples and also allows to directly tackle a wide
variety of learning tasks including classification and regres-
sion with support vector machines. Especially the uniform
treatment of classification and regression is appealing from
an ILP perspective, as these typically require rather differ-
ent techniques (with possibly the exception of decision trees
(Kramer 1996)).In contrast to the three types of approaches
mentioned earlier, the kernel or similarity measure is being
learned. Also, whereas the resulting model is still a kind
of propositionalization, the features are learned dynamically
and not pre-computed in advance. Thus a dynamic propo-
sitionalization technique results, which is similar in spirit to
the nFOIL system (Landwehr, Kersting, & De Raedt 2005),
a method that combines FOIL with naı̈ve Bayes and proved
to yield significant improvements over traditional ILP meth-
ods such as Aleph (an ILP system developed by Ashwin

Srinivasan 1) on a number of benchmark problems.
The above sketched idea has been incorporated in the

kFOIL algorithm and has been elaborated for classification
as well as regression problems. kFOIL has been evalu-
ated experimentally on a number of well-known benchmark
problems from the field of ILP.

Problem Specification
We start from an inductive logic programming perspective
and then extend it towards the use of kernels.

Inductive Logic Programming
Traditional ILP approaches tackle the following problem:

Given
• a background theory B, in the form of a set of definite

clauses, i.e., clauses of the form h← b1, · · · , bk where h
and the bi are logical atoms;

• a set of examples E in the form of ground facts of an un-
known target function y; y maps examples to {+1,−1}
(denoting {true, false}) in a classification setting, or al-
ternatively to R, the reals, in a regression setting;

• a language of clauses L, which specifies the clauses that
are allowed in hypotheses;

• a f (e,H,B) function, which returns the value of the hy-
pothesis H on the example e w.r.t. the background theory
B;

• a score(E,H, B) function, which specifies the quality of
the hypothesis H w.r.t. the data E and the background
theory;

Find arg maxH⊂L score(E,H, B) .
In a classification setting, the goal typically is to find a

complete and consistent concept-description, i.e., a set of
clauses that cover all positive and no negative examples.
This can be formalized within our framework by making the
following choices for f (e,H ,B) and score:
• f (e,H,B) = +1 if B ∪ H |= e (i.e., e is entailed by

B ∪H); otherwise, f (e,H,B) = -1;
• score(E,H, B) = training set accuracy.

In a regression setting, the goal is typically to find
a hypothesis H that minimizes a measure such as the
root mean squared error between the target y(e) and the
prediction f (e,H,B). This can be modeled by setting
score(E,H, B) = −RMSE(E,H, B).

kFOIL’s Problem Specification
Let us now show how kFOIL can be formulated within the
above sketched definition of inductive logic programming.
The notions of examples, language, hypotheses and back-
ground theory remain essentially the same. However, it is
extended by a notion of similarity between pairs of exam-
ples e1,e2 that is defined—as for other kernel methods—
by a kernel function. ¿From an ILP point of view, this
should take into account the hypothesis H and the back-
ground theory B. Thus kFOIL requires a kernel K of the

1
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/

Aleph/aleph toc.html

form K(e1, e2,H, B). As the background theory B is fixed
throughout the whole learning process, we will from now
on omit this argument from the notation. The function K
plays a role similar to that of the distances between first-
order logic objects used in relational learning (Ramon &
Bruynooghe 1998; Kirsten, Wrobel, & Horváth 2001). A
support vector machine will then be used in combination
with the kernel K to define the f(e,H,B) function.

Kernel functions based on clauses To obtain kernels
K(e1, e2,H), it is convenient to first propositionalize the ex-
amples e1 and e2 using H and B and then to employ existing
kernels on the resulting problem. The natural way of doing
this, is to map each example e onto a vector ϕH(e) over
{0, 1}n with n = |H|, having ϕH(e)i = 1 if B ∪ {ci} |= e
for the i-th clause ci ∈ H , and 0 otherwise.

Example 1 Consider the following background theory B,
which describes the structure of molecules:

atm(m1, a1 1, c, 22,−0.11) bond(m1, a1 1, a1 2, 7)
atm(m1, a1 3, c, 22, 0.02) bond(m1, a1 3, a1 4, 7)
atm(m1, a1 26, o, 40,−0.38) bond(m1, a1 18, a1 26, 2)
.

atm(m2, a2 1, c, 22,−0.11) bond(m2, a2 1, a2 2, 7)
atm(m2, a2 3, c, 27, 0.02) bond(m2, a2 3, a2 4, 2)
atm(m2, a2 26, o, 40,−0.38) bond(m2, a2 18, a2 26, 7)

and the examples m1,m2. A possible hypothesis H =
{c1, c2, c3} for this domain is

pos(X)← atm(X, A, o, 40, C)
pos(X)← atm(X, A, c, 22, C), atm(X, B,E, 22, 0.02)
pos(X)← atm(X, A, c, 27, C), bond(X, A,B, 2)

H as a logical theory covers both examples. Clauses c1, c2

succeed on the first example and clauses c1, c3 on the sec-
ond. Consequently, in the feature space spanned by the truth
values of the clauses, the examples are represented as

ϕH(m1) =

(1
1
0

)
, ϕH(m2) =

(1
0
1

)
Let us now look at the effect of defining kernels on the
propositionalized representation. A simple linear kernel KL

would give the following results:

KL(m1,m2,H) = 〈ϕH(m1), ϕH(m2)〉 = 1
KL(m1,m1,H) = 〈ϕH(m1), ϕH(m1)〉 = 2
KL(m2,m2,H) = 〈ϕH(m1), ϕH(m1)〉 = 2

The resulting kernel KL can be interpreted as the number of
clauses in H that succeed on both examples.

Let us formalize the linear kernel introduced in the above
example in terms of logical entailment:

KL(e1, e2,H) = #entH(e1 ∧ e2)

where #entH(f) = |{c ∈ H|B ∧ {c} |= f}| denotes the
number of clauses in H that together with B logically entail

f . Intuitively, this implies that two examples are similar if
they share many structural features. Which structural fea-
tures to look at when computing similarities is encoded in
the hypothesis H .

This formalism can be generalized to standard polynomial
(KP) and Gaussian (KG) kernels. Using a polynomial ker-
nel, the interpretation in terms of logical entailment is

KP (e1, e2,H) = (#entH(e1 ∧ e2) + 1)p,

which amounts to considering conjunctions of up to p
clauses which logically entail the two examples, as can eas-
ily be shown by explicitly computing the feature space in-
duced by the kernel. Using a Gaussian kernel turns out to
implement the similarity

KG(e1, e2,H) = exp

(
−#entH((e1 ∨ e2) ∧ ¬(e1 ∧ e2))

2σ2

)
where the argument of entH can be interpreted as a kind of
symmetric difference between the two examples.

From similarity to classification Having defined kernels
over examples in a propositional representation, we only
need to employ them within traditional support vector ma-
chine methods to obtain effective classification and regres-
sion algorithms.

For instance, using the standard support vector method for
classification, the f (e,H ,B) function is expressed as

f (e,H,B) = sign

(
n∑

i=1

αiy(ei)K(e, ei,H) + b

)
(1)

where {e1, ..., em} are the training examples and y(ei) =
1 if ei is a positive example and y(ei) = −1 otherwise.
Similarly, using support vector regression one obtains

f (e,H,B) =
n∑

i=1

(αi − α∗i)K(e, ei,H) + b. (2)

The support vector coefficients αi,α∗i and the bias b can be
obtained from the theory H using standard support vector
training.

By now, we have formally specified the learning setting
addressed by kFOIL. It is the instantiation of the standard
ILP problem sketched earlier with the f (e,H,B) function
just defined. As scoring functions, kFOIL employs train-
ing set accuracy for classification and Pearson correlation
or root mean squared error for regression. The key point
is that kFOIL—as standard inductive logic programming
techniques—must find the right hypothesis H that maxi-
mizes its score. Note that this approach differs significantly
from the static propositionalization approaches, where H
is actually pre-computed and fixed. As kFOIL learns the
hypothesis H , this implies that the kernel itself is being
learned.

The kFOIL Learning Algorithm
To learn H , kFOIL employs an adaptation of the well-known
FOIL algorithm (Quinlan 1990), which essentially imple-
ments a separate-and-conquer rule learning algorithm in a
relational setting.

Algorithm 1 Generic FOIL algorithm.
Initialize H := ∅
repeat

Initialize c := p(X1, · · · , Xn)←
repeat

for all c′ ∈ ρ(c) do
compute score(E,H ∪ {c′}, B)

end for
let c be the c′ ∈ ρ(c) with the best score

until stopping criterion
add c to H
E := update(E,H)

until stopping criterion
output H

The generic FOIL algorithm is sketched in Algorithm 1.
It repeatedly searches for clauses that score well with respect
to the data set and the current hypothesis and adds them to
the current hypothesis. The examples covered by a learned
clause are removed from the training data (in the update
function). In the inner loop, it greedily searches for a clause
that scores well. To this aim, it employs a general-to-specific
hill-climbing search strategy. Let p(X1, ..., Xn) denote the
predicate that is being learned (e.g, pos(X) for a simple clas-
sification problem). Then the most general clause, which
succeeds on all examples, is ”p(X1, ..., Xn) ←”. The set
of all refinements of a clause c within the language bias is
produced by a refinement operator ρ(c). For our purposes, a
refinement operator just specializes a clause h← b1, · · · , bk

by adding a new literal bk+1, though other refinements have
also been used in the literature. This type of algorithm has
been successfully applied to a wide variety of problems in
ILP. Many different scoring functions and stopping criteria
have been employed.

The search in kFOIL follows the generic search strategy
outlined in Algorithm 1. However, there are three key dif-
ferences, which will now be outlined. First, when scoring
a refined clause, a support vector machine based on the cur-
rent kernel including the clause has to be built and its perfor-
mance must be evaluated on the training data. This can be
achieved by introducing a loss function V (y(e), f(e)) that
measures the cost of predicting f(e) when the target is y(e).
Thus score(E,H ∪ {c′}, B) is computed in a ”wrapper”
fashion as follows:

(α1, ..., αm, b) := train svm(E,H ∪ {c′}, B)
for all e ∈ E do

compute V (y(e), f (e,H ∪ {c′}, B))
end for
output score(E,H ∪ {c′}, B)

Here train svm(E,H, B) trains a support vector machine
using the kernel defined by H , while f (e,H,B) computes
the prediction according to Equation 1 or Equation 2 for the
classification or regression case respectively.

Second, kFOIL cannot use a separate-and-conquer ap-
proach. Because the final model in FOIL is the logical dis-
junction of the learned clauses, (positive) examples that are
already covered by a learned clause can be removed from the

training data (in the update(E,H) function in Algorithm 1).
In kFOIL, this notion of coverage is lost, and the training set
is not changed between iterations. Therefore, update(E,H)
returns E. Finally, FOIL stops when it fails to find a clause
that covers additional positive examples. As an equally sim-
ple stopping criterion, learning in kFOIL is stopped when
the improvement in score between two successive iterations
falls below a certain threshold.

The repeated support vector optimizations performed dur-
ing the search are computationally expensive. However, the
costs can be reduced with simple tabling techniques, and
by exploiting the fact that the relational example space is
mapped to a much simpler propositional space by ϕh. There,
different relational examples are represented by the same
vector, and can be merged to one example with a higher
weight. In our experimental study, this typically reduced
the time needed to learn a model by one to two orders of
magnitude.

In a preliminary evaluation, we compared alternative
scores to guide FOIL search, including kernel target align-
ment (Lanckriet et al. 2004) and various loss functions V
in the wrapper-style score algorithm above (hinge loss, 0-
1 loss, margin-based conditional likelihood). Kernel target
alignment does not require SVM training but the speedup is
marginal due to the inherent cost of FOIL and the optimiza-
tions outlined above. In addition, local optima problems oc-
curred in conjunction with greedy search. 0-1 loss for clas-
sification and quadratic loss for regression yielded the most
stable search results and were employed in the experiments
reported below. These criteria are known to be associated
with the risk of overfitting in the case of propositional fea-
ture selection (Kohavi & John 1997). However, the use of
independent data—e.g. by using a leave-one-out estimated
loss as suggested in (Reunanen 2003)—would increase com-
plexity significantly and the more efficient approach of esti-
mating leave-one-out bounds resulted in unstable search.

Experimental Evaluation
Several questions arise w.r.t. the kernel based dynamic
propositionalization approach developed in kFOIL:

(Q1) Is kFOIL competitive with state-of-the-art inductive
logic programming systems for classification?

(Q2) Is kFOIL competitive with state-of-the-art inductive
logic programming systems for regression?

(Q3) Is kFOIL competitive with other dynamic proposition-
alization approaches, in particular to nFOIL?

(Q4) Is kFOIL competitive with static propositionalization
approaches?

Datasets and Algorithms
We conducted experiments on nine benchmark datasets
from four domains. On Mutagenesis (Srinivasan et al.
1996) the problem is to predict the mutagenicity of a
set of compounds We used atom and bond information
only. For Alzheimer (King, Srinivasan, & Sternberg
1995), the aim is to compare four desirable properties of
drugs against Alzheimer’s disease: inhibit amine reuptake

(686 examples), low toxicity (886 examples), high acetyl
cholinesterase inhibition (1326 examples), and good rever-
sal of memory deficiency (642 examples).

The NCTRER dataset has been extracted from the EPA’s
DSSTox NCTRER Database (Fang et al. 2001). It con-
tains structural information about a diverse set of 232 nat-
ural, synthetic and environmental estrogens and classifica-
tions with regard to their binding activity for the estrogen
receptor. Again, we used atom and bond information only.
In the Biodegradability domain (Blockeel et al. 2004) the
task is to predict the biodegradability of 328 chemical com-
pounds based on their molecular structure and global molec-
ular measurements. This is originally a regression task, but
can also be transformed into a classification task by putting
a threshold on the target variable.

On Mutagenesis, Alzheimer, and NCTRER, kFOIL was
compared to nFOIL, the state-of-the-art ILP system Aleph
and a static propositionalization approach. We used a variant
of the relational frequent query miner WARMR (Dehaspe,
Toivonen, & King 1998) for static propositionalization as
WARMR patterns have shown to be effective propositional-
ization techniques on similar benchmarks in inductive logic
programming (Ashwin Srinivasan 1999). The variant used
was c-ARMR (De Raedt & Ramon 2004), which allows to
remove redundancies amongst the found patterns by focus-
ing on so-called free patterns. c-ARMR was used to gener-
ate all free frequent patterns in the data sets where the fre-
quency threshold was set to 20%. We used at most 5000 of
the generated patterns as features to generate (binary) propo-
sitional representations of the datasets. On the proposition-
alized datasets, a cross-validation of a support vector ma-
chine was then performed2. To evaluate the regression per-
formance of kFOIL, we reproduced the experimental setting
used in (Blockeel et al. 2004) and compared to the results
obtained in that study for Tilde and S-CART.

As the goal of the experimental study was to verify that
the presented approach is competitive to other state-of-the-
art techniques, and not to boost performance, we did not
try to specifically optimize any parameter. For nFOIL, we
used the default settings: maximum number of clauses in
a hypothesis was set to 25, maximum number of literals in
a clause to 10 and the threshold for the stopping criterion
to 0.1%. For kFOIL, we used exactly the same parameters.
For both algorithms, a beam search with beam size 5 instead
of simple greedy search was performed, as in (Landwehr,
Kersting, & De Raedt 2005). Furthermore, a polynomial
kernel of degree 2 was used, the regularization constant C
was set to 1 for classification and 0.01 for regression, and
the ε tube parameter was set to 0.001. All SVM parameters
were set identical for all datasets, and kept fixed during the
search for clauses.

Results
Table 1 shows cross-validated predictive accuracy results
on Mutagenesis, Alzheimer, and NCTRER. Both kFOIL
and nFOIL on average yield higher predictive accuracies

2Note that this methodology puts this approach at a slight ad-
vantage and might yield over-optimistic results.

Dataset kFOIL nFOIL Aleph c-ARMR+SVM
Mutagenesis r.f. 81.3± 11.0 75.4± 12.3 73.4± 11.8 73.9± 11.2
Mutagenesis r.u. 81.0± 40.0 78.6± 41.5 85.7± 35.4 76.2± 43.1
Alzheimer amine 88.8± 5.0 86.3± 4.3 70.2± 7.3• 81.2± 4.5•
Alzheimer toxic 89.3± 3.5 89.2± 3.4 90.9± 3.5 71.6± 1.9•
Alzheimer acetyl 87.8± 4.2 81.2± 5.2• 73.5± 4.3• 72.4± 3.6•
Alzheimer memory 80.2± 4.0 72.9± 4.3• 69.3± 3.9• 68.7± 3.0•
NCTRER 77.6± 9.4 78.0± 9.1 50.9± 5.9• 65.1± 13.2•

Table 1: Average predictive accuracy results on Mutagenesis, Alzheimer and NCTRER for kFOIL, nFOIL, Aleph and static
propositionalization. On Mutagenesis r.u. a leave-one-out cross-validation was used (which, combined with the small size of
the dataset, explains the high variance of the results), on all other datasets a 10 fold cross-validation. • indicates that the result
for kFOIL is significantly better than for other method (paired two-sided t-test, p = 0.05).

Dataset kFOIL Tilde S-CART
Classification
BioDeg Global + R 74.3± 0.76 73.6± 1.1 72.6± 1.1•
BioDeg Global + P1 + P2 + R 73.2± 2.0 72.9± 1.1 71.3± 2.3
Regression: correlation
BioDeg Global + R 0.609± 0.047 0.616± 0.021 0.605± 0.023
BioDeg Global + P1 + P2 + R 0.597± 0.026 0.595± 0.020 0.606± 0.032
Regression: root mean squared error
BioDeg Global + R 1.196± 0.023 1.265± 0.033• 1.290± 0.038•
BioDeg Global + P1 + P2 + R 1.290± 0.037 1.335± 0.036 1.301± 0.049

Table 2: Result on the Biodegradability dataset. The results for Tilde and S-CART have been taken from (Blockeel et al. 2004).
5 runs of 10 fold cross-validation have been performed, on the same splits into training and test set as used in (Blockeel et al.
2004). For classification, average accuracy is reported, for regression, Pearson correlation and RMSE. • indicates that the result
for kFOIL is significantly better than for other method (unpaired two-sided t-test, p = 0.05).

than the ILP system Aleph and static propositionalization.
kFOIL significantly outperforms nFOIL on two datasets,
and a Wilcoxon Matched Pairs Test applied to the results
of kFOIL and nFOIL on the different datasets shows that
kFOIL reaches significantly higher predictive accuracy on
average (p=0.05). These results affirmatively answer ques-
tions Q1–Q3.

Table 2 shows results for the Biodegradability dataset. For
regression, we ran kFOIL with scoring based on correlation
and root mean squared error, and measured the result using
the corresponding evaluation criterion. The results obtained
show that kFOIL is competitive with the first-order decision
tree systems S-CART and Tilde for classification. For re-
gression, it is competitive at maximizing correlation, and
slightly superior at minimizing RMSE. Thus, question Q4
can be answered affirmatively as well.

kFOIL returned between 2.8 and 22.9 clauses averaged
over the folds of the cross-validation, depending on the
dataset. Interestingly, the number of clauses in H was al-
ways lower than for nFOIL. On the datasets we examined,
building a kFOIL model takes up to 10 minutes for classi-
fication, and up to 30 minutes for regression. This is of the
same order of magnitude as the runtime for the other systems
considered.

Finally, we give an example of a learned clause which
is meaningful to human domain experts: on the NCTRER

dataset, we obtained the clause

← atm(B, o), bd atm(B, C, c,−), bd atm(C, D, c, =),
bd atm(C, E, c,−), bd atm(E, F, c, =),
bd atm(G, D, c,−), bd atm(F, H, I,−).

It encodes an aromatic ring with a phenol group (a so-called
phenolic ring):

H O C

C C

?

CC

In the study presented in (Fang et al. 2001), the presence
of a phenolic ring is identified by human experts as one of
the main factors that determine estrogen-binding activity of
chemical compounds.

Related Work and Conclusions
We have presented the kFOIL system, which introduces a
simple integration of inductive logic programming meth-
ods with support vector learning. kFOIL can be consid-
ered a propositionalization approach. Two types of propo-
sitionalization approaches have been discussed: static ones,
in which a typically large set of features is pre-computed,

and dynamic propositionalization, in which features are in-
crementally and greedily generated. As the generation of
clauses is driven by the performance of the support vec-
tor machine, kFOIL performs dynamic propositionaliza-
tion. Hence, kFOIL is related to Support Vector Induc-
tive Logic Programming,which combines static proposition-
alization with support vector learning, and systems like
SAYU (Davis et al. 2005), nFOIL, and Structural Logis-
tic Regression (Popescul et al. 2003), which all combine
dynamic propositionalization with probabilistic models. In
contrast, kFOIL employs kernel based learning, which al-
lows to tackle classification and regression problems in a
uniform framework. Also, kFOIL improved upon nFOIL
in terms of predictive accuracy in our experimental study.

From a kernel machine perspective, kFOIL can also be
seen as constructing the kernel based on the available data
and therefore it has interesting connections to methods that
attempt to learn the kernel from data. The method by
(Lanckriet et al. 2004) works in the transductive setting
(input portion of the test data available when training) and
uses a semidefinite programming algorithm for computing
the optimal kernel matrix. Algorithms for learning the ker-
nel function include the idea of using a hyperkernel (that
spans a Hilbert space of kernel functions) (Ong, Smola, &
Williamson 2002) and the use of regularization function-
als (Micchelli & Pontil 2005). These approaches are typ-
ically more principled than kFOIL (as they learn the ker-
nel by solving well-posed optimization problems). However
the formulation by which the kernel is obtained as a convex
combination of other kernel functions would be difficult or
impossible to apply in the context of dynamic feature con-
struction in a fully-fledged relational setting. Furthermore,
to the best of the authors’ knowledge, no other method pro-
posed so far can learn kernels defined by small sets of inter-
pretable first-order rules.
Acknowledgements The authors would like to thank Kris-
tian Kersting and the anonymous reviewers for valuable
comments. The research was supported by the European
Union IST programme, contract no. FP6-508861, Applica-
tion of Probabilistic Inductive Logic Programming II.

References
Ashwin Srinivasan, Ross D. King, D. B. 1999. An As-
sessment of ILP-Assisted Models for Toxicology and the
PTE-3 Experiment. In Proc. of ILP’99.
Blockeel, H.; Dzeroski, S.; Kompare, B.; Kramer, S.;
Pfahringer, B.; and Laer, W. 2004. Experiments in Pre-
dicting Biodegradability. Appl. Art. Int. 18(2):157–181.
Bratko, I., and Muggleton, S. 1995. Applications of Induc-
tive Logic Programming. Comm. of the ACM 38(11):65–
70.
Davis, J.; Burnside, E.; de Castro Dutra, I.; Page, D.; and
Costa, V. S. 2005. An Integrated Approach to Learning
Bayesian Networks of Rules. In Proc. of ECML’05, 84–
95.
De Raedt, L., and Ramon, J. 2004. Condensed Representa-
tions for Inductive Logic Programming. In Proc. of KR’04.

Dehaspe, L.; Toivonen, H.; and King, R. 1998. Finding
Frequent Substructures in Chemical Compounds. In Proc.
of KDD’98.
Fang, H.; Tong, W.; Shi, L.; Blair, R.; Perkins, R.; Bran-
ham, W.; Hass, B.; Xie, Q.; Dial, S.; Moland, C.; and Shee-
han, D. 2001. Structure-Activity Relationships for a Large
Diverse Set of Natural, Synthetic, and Environmental Es-
trogens. Chemical Research in Toxicology 14(3):280–294.
Gaertner, T.; Lloyd, J.; and Flach, P. 2004. Kernels
and Distances for Structured Data. Machine Learning
57(3):205–232.
Gaertner, T. 2003. A Survey of Kernels for Structured
Data. SIGKDD Explorations 5(1):49–58.
King, R.; Srinivasan, A.; and Sternberg, M. 1995. Relat-
ing Chemical Activity to Structure: an Examination of ILP
Successes. New Generation Computing 13(2,4):411–433.
Kirsten, M.; Wrobel, S.; and Horváth, T. 2001. Distance
based approaches to relational learning and clustering. In
Relational Data Mining, 213–230. Springer.
Kohavi, R., and John, G. 1997. Wrappers for feature subset
selection. Art. Int. 97(1–2):273–324.
Kramer, S. 1996. Structural Regression Trees. In Proc. of
AAAI, 812–819.
Lanckriet, G. R. G.; Cristianini, N.; Bartlett, P.; Ghaoui,
L. E.; and Jordan, M. I. 2004. Learning the Kernel Ma-
trix with Semidefinite Programming. J. Mach. Learn. Res.
5:27–72.
Landwehr, N.; Kersting, K.; and De Raedt, L. 2005.
nFOIL: Integrating Naı̈ve Bayes and FOIL. In Proc. of
AAAI, 795–800.
Micchelli, C. A., and Pontil, M. 2005. Learning the Kernel
Function via Regularization. J. Mach. Learn. Res. 6:1099–
1125.
Muggleton, S.; Amini, A.; and Sternberg, M. 2005. Sup-
port Vector Inductive Logic Programming. In Proc. of
DS’05, 163–175.
Ong, C. S.; Smola, A. J.; and Williamson, R. C. 2002.
Hyperkernels. In NIPS 15.
Passerini, A.; Frasconi, P.; and De Raedt, L. 2006. Kernels
on prolog proof trees: Statistical learning in the ILP setting.
J. Mach. Learn. Res. 7:307–342.
Popescul, A.; Ungar, L.; Lawrence, S.; and Pennock, D.
2003. Statistical Relational Learning for Document Min-
ing. In Proc. of ICDM’03, 275–282.
Quinlan, J. 1990. Learning Logical Definitions from Rela-
tions. Machine Learning 5:239–266.
Ramon, J., and Bruynooghe, M. 1998. A Framework for
Defining Distances Between First-Order Logic Objects. In
Proc. of ILP, 271–280.
Reunanen, J. 2003. Overfitting in making comparisons
between variable selection methods. J. Mach. Learn. Res.
3:1371–1382.
Srinivasan, A.; Muggleton, S.; King, R.; and Sternberg, M.
1996. Theories for Mutagenicity: a Study of First-Order
and Feature-Based Induction. Art. Int. 85:277–299.

