
Identity Attribute-based Role Provisioning for Human WS-BPEL processes

Federica Paci

CS Department

Purdue University

West Lafayette, IN, US

paci@cs.purdue.edu

Rodolfo Ferrini

CS Department

Purdue University

West Lafayette, IN, US

rferrini@purdue.edu

Elisa Bertino

CS Department

Purdue University

West Lafayette, IN, US

bertino@cs.purdue.edu

Abstract

The WS-BPEL specification focuses on business processes

the activities of which are assumed to be interactions with

Web services. However, WS-BPEL processes go beyond

the orchestration of activities exposed as Web services.

There are cases in which people must be considered as

additional participants to the execution of a process. The

inclusion of humans, in turn, requires solutions to support

the specification and enforcement of authorizations to users

for the execution of human activities while enforcing au-

thorization constraints. In this paper, we extend RBAC-WS-

BPEL, a role-based authorization framework for WS-BPEL

processes with an identity attribute-based role provisioning

approach that preserves the privacy of the users who claim

the execution of human activities. Such approach is based

on the notion of identity records and role provisioning

policies, and uses Pedersen commitments, aggregated zero

knowledge proof of knowledge, and Oblivious Commitment-

Based Envelope protocols to achieve privacy of user identity

information.

1. Introduction

WS-BPEL has been developed to support the specification

of automated business processes that orchestrate activities of

multiple Web services. However, there are many applications

and situations requiring that people be included as additional

participants who can influence the execution of a WS-BPEL

process. Human participation within a WS-BPEL process

ranges from simple scenarios, such as manual approval,

to complex scenarios where data is entered by a user or

an interactive decision task is executed. Therefore, it is

important to extend WS-BPEL to include the specifica-

tion of activities that must be fully or partially performed

by humans. The inclusion of humans, in turn, requires

an access control model to support the specification and

enforcement of authorizations to users for the execution

of human activities while enforcing constraints, such as

separation of duty, on the execution of those activities.

One such model is RBAC-WS-BPEL, a role based access

control model for inter-organization WS-BPEL processes.

RBAC-WS-BPEL supports the specification of authorization

information stating which role is allowed to execute which

human activities in a process [5]. In order to make an

authorization decision on the execution of a human activity,

it is necessary to verify the user claiming the execution of the

activity is assigned to a role which is granted the execution

of the activity. Usually, users are assigned to roles which

reflect the users’ job function in the organization in which

the business process is deployed. When a user has to perform

a task in a business process, the user is requested to provide

the password that has been given to him at the moment of

enrollment, so that the system can authenticate the user and

verify if the user is assigned to a role which is authorized

to perform the task.

The use of roles, if on one hand, directly supports the

specification of authorization in terms of business relevant

roles and functions, on the other hand it introduces the

problem of role provisioning, that is, the management of the

assignments of roles to users. To address such shortcoming,

in this paper, we propose a major extension to RBAC-

WS-BPEL that allows one to dynamically assign users to

roles based on properties that characterize the users. We

refer to such properties as identity attributes. Examples of

identity attributes are “social security number”, “birth-date”

and “employment”. In our approach the assignments are

driven by high-level identity attribute-based role provision-

ing policies; such policies specify that whenever the identity

attributes of a user verify certain conditions, the user is

authorized to use a role associated with the activity the user

would like to execute. Such entails however addressing two

issues. On one hand, to enable identity attribute-based role

provisioning, the propagation of users’s identity attributes

across activities in the same process should be facilitated.

On the other hand, identity attributes need to be protected

as they may convey sensitive information about users and

can be target of attacks leading to privacy breaches. To

address the former issue, our approach uses some special

purpose certificates. Such a certificate allows a user to prove

that his/her identity attributes comply with the provisioning

policies of a certain role. As conventional certificates, our

certificates have temporal validity intervals and can be

revoked. To address the latter issue, our approach uses



Figure 1. Patient Diagnosis and Treatment process

Pedersen commitments [7], aggregate zero knowledge proof

of knowledge techniques [6], and OCBE protocols [4].

Our approach has many advantages. It is based on high-

level access control policies; the use of high-level policies

is crucial in order to comply with privacy laws and orga-

nizational policies. Auditors and high-level managers can

directly see which are the access control policies enforced

by the organization. The use of role provisioning based

on identity attributes makes role management more flexible

and supports multi-domain environments. For a user in a

domain to be able to use a role, and thus execute an activity

in a process from another domain, all the user has to do

is to provide his/her identity attributes. The use of our

privacy-preserving protocols secures the use of those identity

attributes, thus preventing privacy breaches.

The remainder of the paper is organized as follows.

Section 2 introduces a running example. Section 3 presents

the main components of RBAC-WS-BPEL authorization

model. Section 4 introduces aggregate zero knowledge proof

of knowledge and OCBE protocols. Section 5 describes our

privacy-preserving identity attribute-based role provisioning

approach. Sections 6 and 7 discuss the system architec-

ture and report experimental results, respectively. Section

8 outlines related work. Section 9 concludes the paper and

outlines future research directions.

2. Running Example

We now introduce an example of a fictitious WS-BPEL

process deployed in an hospital and consisting of several

organizational units: the laboratory, the pharmacy, the drug

distribution unit, and several diagnostic units.

The process orchestrates the following operations:

• the submit operation, by the Laboratory service,

that allows a laboratory assistant to insert in the system

the type of blood test for a patient and to print labels

for the blood samples;

• the test_referral operation, by the

Laboratory service, that allows a doctor to

comment the test results;

• the send_results operation, by the Shipping

service that allows a Laboratory employee to schedule

the shipment of the blood test results to the patient;

• the update_record operation, by the Physician

Assistant service, that allows a doctor or a nurse

to read and update the patient medical record;

• the send_prescription operation, by the

Pharmacy service, that allows a physician to send a

drug prescription to the hospital’s pharmacy.

• the deliver operation, by the Shipping service,

that allows a pharmacy’s employee to schedule the

deliver of prescribed drugs to a patient.

The process is organized as follows (see Figure 1).

First, a laboratory assistant invokes operation submit

(<receive> submit activity). Then, a doctor of the

hospital views and comments the blood test results of

the patient by executing the operation test_referral

(<invoke> test_referral activity). Once the test re-

sults are ready, the activities <invoke> update_record

and <invoke> send_results are performed in parallel.

After, the activity <invoke> update_record has been

performed, a physician of the Blood Diseases unit prescribes

a treatment to the patient if the level of total cholesterol in

the patient’s blood is higher than 200 mg/dL; otherwise the

patient does not need any treatment. In the former case,

the prescription is sent to the hospital’s pharmacy by in-

voking the operation send_prescription (<invoke>

send_prescription activity). Then, a pharmacy’s em-

ployee schedules the delivery of the prescribed drugs to

the patient by invoking operation deliver (<invoke>

deliver activity).

3. RBAC-WS-BPEL Framework

RBAC-WS-BPEL applies to WS-BPEL business pro-

cesses deployed in a single organization composed of dif-

ferent organizational units. RBAC-WS-BPEL inherits all

the components of traditional RBAC models: users, roles,

permissions, role hierarchies, user-role assignment and role-

permission assignment relations. Moreover, RBAC-WS-

BPEL supports the specification of authorization constraints

such as separation of duty and binding of duty that restrict

the set of users that can perform a given activity. In RBAC-

WS-BPEL, permissions represent the ability to execute an

activity of a WS-BPEL business process and are specified

as tuples of the form (Ai, Action) where Ai identifies an

activity and Action identifies the execution of the activity.

Permissions are assigned to roles that are structured in a

role hierarchy that defines a permission inheritance relation

among the roles. Authorization constraint can be expressed



as a binary relation on the set of users or roles. An authoriza-

tion constraint is represented by a tuple < D, (A1, A2), ρ >,

where D is the user or role who has executed activity

A1, called the antecedent activity, A2 is the consequent
activity to which the constraints is applied and ρ is a

relation on U , the set of users, or on R, the set of roles.

A constraint < D, (A1, A2), ρ > is satisfied if, whenever

x ∈ D performs A1 and y performs A2, then (x, y) ∈ ρ.

Authorizations and authorization constraints are evaluated

to verify that the execution of the activity by the user

does not violate any authorization constraints and does not

prevent some other subsequent activities from completing

[5].

Example 3.1: The following are examples of

RBAC-WS-BPEL components that can be defined

for our running example. We associate with the

patient’s diagnosis and treatment process the following

role hierarchy: on top of the hierarchy there is

the Hospital Medical Director role that

dominates the Department Director, Laboratory

Director, Pharmacist, and Delivery Manager

roles. The Department Director dominates the

roles Primary Physician and Nurse while

the Laboratory Director role dominates the

Laboratory Assistant role. The Delivery

Manager dominates on his turn the Delivery Boy

role. (Nurse, <invoke> update_record, execute) is

an example of authorization that can be defined for activity

<invoke> update_record: it states that <invoke>

update_record can be performed by the Nurse role.

We can also define the following authorization constraint:

〈 U, (<invoke>test referral,<invoke>send pre

scription, 6= 〉: it represents a separation of duty

constraint for the activities <invoke>test referral,

and <invoke>send prescription.

4. Basic Notions

In this section, we introduce the basic cryptographic

notions on which our privacy-preserving role provisioning

approach is based. We, first, introduce aggregated zero

knowledge proof of knowledge (AgZKPK) protocol, and

then OCBE protocols. AgZKPK is a cryptographic protocol

to allow users to prove the ownership of multiple identity

attributes without revealing anything about such identity

attributes. OCBE protocols are cryptographic protocols to

allow users to prove that their identity attributes satisfy a

predicate without disclosing anything about such identity

attributes. Note that by adopting AgZKPK and OCBE pro-

tocols no information about identity attributes is disclosed,

and thus users’ privacy is preserved.

4.1. Zero-knowledge proof of knowledge protocol

Zero-knowledge proof of knowledge (ZKPK) protocol

allows a party U referred to as the prover, to convince

the verifier, V, that U can open a commitment c = gxhr,

without showing the values x and r in clear. Aggregate

zero-knowledge proof of knowledge (AgZKPK) allows

U to convince V that U knows how to open multiple

commitments ci = gxihri .

Aggregate Zero-knowledge proof of knowledge

A trusted party T generates public parameters G, p, g, h. A

prover U who holds private knowledge of values x1,· · · ,xn

and r1, · · · , rn can convince a verifier V that U can open

the Pedersen commitments ci = gxihri as follows.

1) U computes c = gxhr where x = x1+ · · · + xn and

r = r1+ · · · + rn

2) U randomly chooses y, s ∈ F
∗

p, and sends V the

element d = gyhs ∈ G.

3) V picks a random value e ∈ F
∗

p, and sends e as a

challenge to U.

4) U sends u = y + ex, v = s + er, both in Fp, to V.

5) V accepts the proof if and only if guhv = d · ce in G.

4.2. OCBE protocols

The Oblivious Commitment-Based Envelope (OCBE)

protocols, proposed by Li and Li [4], ensure that a receiver

Re can decrypt a message sent by a sender Se if and only if

its committed value satisfies a condition given by a predicate

in Se’s access control policy, while Se learns nothing about

the committed value. The possible predicates are comparison

predicates =, 6=, >,≥, < and ≤.

The OCBE protocols are built with several cryptographic

components:

1) The Pedersen commitment scheme.

2) A semantically secure symmetric-key encryption al-

gorithm E , for example, AES, with key length k-bits.

Let EKey[M ] denote the encrypted message M under

the encryption algorithm E with symmetric encryption

key Key.

3) A cryptographic hash function H(·) : {0, 1}∗ →
{0, 1}k. When we write H(α) for an input α in

a certain set, we adopt the convention that there

is a canonical encoding which encodes α as a bit

string, i.e., an element in {0, 1}∗, without explicitly

specifying the encoding.

Given the above notation, to give an idea how OCBE

protocols work we describe the OCBE protocol for ≥
predicate, denoted as GE-OCBE. The OCBE protocols for

other predicates can be derived and described in a similar

fashion.

GE-OCBE Protocol



Parameter generation

T runs a Pedersen commitment setup protocol to generate

system parameters Param = 〈G, g, h〉, and outputs the order

of G, p. In addition, T chooses another parameter ℓ, which

specifies an upper bound for the length of attribute values,

such that 2ℓ < p/2. T also outputs V = {0, 1, . . . , 2ℓ−1} ⊂
Fp, and P = {GEx0

: x0 ∈ V}, where

GEx0
: V → {true, false}

is a predicate such that GEx0
(x) is true if and only if x ≥

x0.

Commitment

T chooses an integer x ∈ V for Re to commit. T then

randomly chooses r ∈ Fp, and computes the Pedersen

commitment c = gxhr. T sends x, r, c to Re, and sends

c to Se.

Interaction

• Re makes a data service request to Se.
• Based on the request, Se sends to Re a predicate

GEx0
∈ P .

• Upon receiving this predicate, Re sends to Se a Ped-

ersen commitment c = gxhr.
• Let d = (x − x0) (mod p). Re picks r1, . . . , rℓ−1 ∈

Fp, and sets r0 = r −
ℓ−1∑

i=1

2iri. If GEx0
(x) is true,

let dℓ−1 . . . d1d0 be d’s binary representation, with

d0 the lowest bit. Otherwise if GEx0
is false, Re

randomly chooses dℓ−1, . . . , d1 ∈ {0, 1}, and sets d0 =

d −
ℓ−1∑

i=1

2idi (mod p). Re computes ℓ commitments

ci = gdihri for 0 ≤ i ≤ ℓ − 1, and sends all of them

to Se.

• Se checks that cg−x0 =
ℓ−1∏

i=0

(ci)
2

i

. Se randomly

chooses ℓ bit strings k0, . . . , kℓ−1, and sets k = H(k0 ‖
. . . ‖ kℓ−1). Se picks y ∈ F

∗

p, and computes η =
hy, C = Ek[M ], where M is the message containing

requested data. For each 0 ≤ i ≤ ℓ − 1 and j = 0, 1,

Se computes σj
i = (cig

−j)y, Cj
i = H(σj

i ) ⊕ ki. Se

sends to Re the tuple

〈η, C0

0
, C1

0
, . . . , C0

ℓ−1
, C1

ℓ−1
, C〉.

Open

After Re receives the tuple 〈η, C0

0
, C1

0
, . . . , C0

ℓ−1
, C1

ℓ−1
, C〉

from Se as above, Re computes σ′

i = ηri , and k′

i = H(σ′

i)⊕
Cdi

i , for 0 ≤ i ≤ ℓ − 1. Re then computes k′ = H(k′

0
‖

. . . ‖ k′

ℓ−1
), and decrypts C using key k′.

LE-OCBE, the OCBE protocol for the ≤ predicates, can

be constructed in a similar way as GE-OCBE. Other OCBE

protocols (for 6=, <, > predicates) can be built on EQ-

OCBE, GE-OCBE and LE-OCBE.

5. RBAC-WS-BPEL Role provisioning

In this section we describe how our identity attribute-

based role provisioning approach is interleaved with RBAC-

Figure 2. RBAC-WS-BPEL Business process life cycle

WS-BPEL process life cycle.

5.1. User Enrollment

In order to support our privacy-preserving role provi-

sioning approach we assume that users enroll their identity

attributes when they join the organization. Identity Providers

(IdPs) issue certified identity attributes to users and control

the sharing of such information. Users enroll then their cer-

tified identity attributes at an entity called Identity Manager

(IM). The IM stores and manages information related to

identity attributes that are used for role provisioning. Note

that, unlike IdPS, the information stored at the IM does

not include the values of the identity attributes in clear. In

particular, the IM stores for each user an Identity Record that

contains an identity tuple for each user’s identity attribute m.

An identity tuple consists of tag, an attribute descriptor, the

Pedersen commitment of m, denoted as Mi, the signature

of the IM on M , denoted as σi, and two types of assurance,

namely validity assurance and ownership assurance. Mi is

the Pedersen commitment of m and it is computed as gmhr,

where g and h are generators in a group G of prime order

p and r is a random secret from Zp that is known only to

the user. Instead, G, p, g and h are public parameters of

the IM. Validity assurance corresponds to the confidence

about the validity of the identity attribute based on the

verification performed at the identity attribute’s original

issuer. Ownership assurance corresponds to the confidence

about the claim that the principal presenting an identity

attribute is its true owner.

The identity tuples of each registered user can be retrieved

from the IM by the identity verifier (offline mode) or the IM

can release to the user a certificate containing his/her identity

record (offline mode).



5.2. Privacy-Preserving Role provisioning

In RBAC-WS-BPEL the execution of an activity is

granted to a user if the user is assigned to a role which has

the permission to execute the activity and the execution does

not violate any authorization constraint. The assignment of

users to roles is governed by role provisioning policies

defined according to the following definitions.

Definition 5.1 (Attribute Condition): An attribute condi-

tion Cond is an expression that can take one of the following

two forms: (1) “nameA op l”, where nameA is the name

of an identity attribute A, op is a comparison operator such

as =, <, >, ≤, ≥, 6=, and l is a value that can be assumed

by attribute A; (2) “nameA” where nameA is the name of

an identity attribute A.

Definition 5.2 (Role Provisioning Policies): A Role pro-

visioning Policy Pol is an expression of the form “R ←
Cond1, Cond2, . . .Condn”, n ≥ 1, where R identifies a role

and Cond1, Cond2, . . .Condn are attribute conditions.

Example 5.1: An example of role provisioning policy for

the role Hospital Medical Director is:

Hospital Medical Director ← Bachelor = Medical, Age >
55.

Such policy states that for a user to be assigned to the Hos-

pital Medical Director role he/she must prove the possession

of a medical bachelor degree and to be older than 55.

Figure 3. Role provisioning Protocol Steps

The evaluation of role provisioning policies against user’s

identity attributes is performed when the user claims the

execution of a human activity of a WS-BPEL process. In

what follows, we propose a protocol to verify whether a user

satisfies a role provisioning policy while preserving user’s

privacy. The protocol is performed by the client running

on behalf of the user1, and the enforcement point which

decides whether the execution of a human activity can be

granted to the client. The main steps of the protocol are

summarized in Figure 3. When a client claims the execution

of a human activity Activityi, the enforcement point selects

the roles that have the permission to perform Activityi.

Then, the enforcement point selects the role provisioning

policy defined for the roles authorized to execute Activityi

and forward them to the client. For each policy received,

the client groups the identity attributes it has to provide

according to the type of attribute conditions in which they

appear. The identity attributes A in the attribute conditions of

the form “nameA” are listed in the set NoCondition, while

the identity attributes in the attribute conditions of the form

“nameA op l” are part of the set Condition. To satisfy the

condition of the form “nameA”, the client has to prove the

possession of the identity attributes in the set NoCondition

by carrying out an AgZKPK protocol with the enforcement

point. First, the client retrieves the Pedersen commitments

of the identity attributes mi in NoCondition set and the

corresponding signatures σi. Then the client computes the

aggregated commitment M and the aggregated signature σ
and sends them to the enforcement point. Then, the client

and the enforcement point perform the steps described in

Section 4.1.

By contrast, to prove the satisfaction of policy conditions

of the form “nameA op l, the client has to perform a OCBE

protocol for each of the identity attributes in Condition

set. The OCBE protocol to be executed corresponds to the

comparison operator specified in the policy conditions. The

OCBE protocol is executed between the enforcement point

which acts as the sender Se, and the client that plays the

role of the receiver Re. We have added an additional step to

the protocol to let the enforcement point know if the client

satisfies the policy condition. The enforcement point chooses

the message M to be a random bit string, which will be used

as a secret of Se. At the end of the protocol, after opening

the envelope, Re shows Se the decrypted message M ′. The

client satisfies the conditions in the policy if M = M ′, or

fails if otherwise. Since the random bit string M contains

no useful information, a qualified client must choose to

show the correctly decrypted secret message M , in order

to continue the interaction with the enforcement point.

If a client proves that it satisfies all the conditions Cond1,

Cond2, . . .Condn in a role provisioning policy Pol : R ←
Cond1, Cond2, . . .Condn”, n ≥ 1, it is assigned to the

role R. The enforcement point issues a certificate to the

client asserting the roles the client has been assigned and the

identity attributes the possession of which has been verified

by the enforcement point. We denote such certificate as role

provisioning certificate.

1. In the rest of the paper, for presentation simplicity, we use the term
client to refer both the actual end-user and to the system running on behalf
of the user on the user machine or other personal device or proxy



Definition 5.3 (Role Provisioning Certificate): Let P be

the enforcement point and C be a client of a business process

BP . A role provisioning certificate released by P to C
upon a successful role provisioning policy verification is a

tuple 〈 Issuer, Owner, IdentityAttr, Roles, V alidity,

Signature〉 where Issuer is the identifier of P , Owner
is the identifier of C, IdentityAttr is the set of identity

attributes that P has verified are owned by C, Roles is the

set of roles to which C has been assigned,V alidity is a

tuple (NotBefore, NotAfter) where NotBefore is the

issuance date of the certificate and NotAfter is the date

after which the certificate is no longer valid and Signature
is the signature of P on the whole certificate.

Role provisioning certificates make unnecessary for the

client to prove it satisfies a role provisioning policy every

time the clients requests the execution of a human activity.

When a client claims the execution of an activity Activityi,

the client just present the role provisioning certificates, if

any, to the enforcement point. The enforcement point, first,

evaluates if the certificate is not expired and the validity of

the signature’s retrieving issuer’s public key. If the certificate

is valid, the enforcement point checks that the client is

assigned to one of the roles that are authorized to execute

Activityi. If this is not the case, the enforcement point checks

if there is at least one role to which the client is assigned

that dominates the roles that have the permission to perform

Activityi. If such role can be found, the enforcement point

starts the authorization process based on the evaluation of the

permission the client has and on authorization constraints.

Otherwise, the enforcement point tries to assign the client

to one of the roles that have the permission of performing

Activityi based on role provisioning policies defined for these

roles.

Example 5.2: Assume a client John Smith claims the

execution of activity <invoke> test-referral in

the patient diagnosis and treatment process introduced

in Example 1. The role authorized to perform such ac-

tivity is Laboratory Assistant the role provision-

ing policy of which is Laboratory Assistant ← Cer-

tified LaboratoryAssistant, Bachelor = Medical Technol-

ogy. This policy requires the client to have a labora-

tory assistant certification and to have a bachelor in

Medical Technology. The client, running on behalf of

John Smith, to prove he satisfies the policy for role

Laboratory Assistant, carries out an AgZKPK pro-

tocol for the condition Certified LaboratoryAssistant and

a OCBE protocol for the policy condition Bachelor =

Medical Technology with the enforcement point. If the

execution of AgZKPK and OCBE protocols is successful,

the enforcement point issues to the John the following

role provisioning certificate that John can present when

he will request the execution of another human activity:

〈EP , JohnSmith, {Certified LaboratoryAssistant,
Bachelor}, {LaboratoryAssistant},(01−15−2009, 02−

15− 2009), 3AFJSfFIO43 = 0D33SF 〉.

6. System Architecture

The RBAC-WS-BPEL architecture includes several com-

ponents shown in Figure 4. The WS-BPEL engine is

responsible for scheduling and synchronizing the various

activities within the business process according to the

specified activity dependencies, and for invoking Web ser-

vices operations associated with activities. The RBAC-WS-

BPEL Enforcement Service offers two WSDL interfaces,

one for the process and one for the clients. The first

interface provides the operations intiateActivity and

onActivityResult for starting and completing the ex-

ecution of a WS-BPEL human activity respectively. The

second interface provides the operation listActivity,

that allows clients to visualize the activities they can claim

and the operation claimActivity to claim and execute

them [6]. The Client Interface allows a user to invoke

the operations listActivity and claimActivity of

RBAC-WS-BPEL Enforcement Service.

We have extended the RBAC-WS-BPEL architecture with

an additional component, that is, the Identity Manager Ser-

vice. Such components provides the functionalities for user

enrollment. It manages users’ identity records that are stored

in a dedicated repository. We have also extended the Client

Interface with the functionalities to prove the satisfaction

of a role provisioning policy by carrying out AgZKPK

and OCBE protocols and to manage the role provisioning

certificates and the certificates containing the identity records

issued by the Identity Manager Service.

Figure 4. RBAC-WS-BPEL architecture

7. Implementation and Experimental Results

We have implemented the role provisioning protocol and

integrated it in the RBAC-WS-BPEL Client Interface and

Enforcement Service. We have also implemented the Identity

Manager Service as a Java servlet. Moreover, we have

chosen ODE as BPEL engine and Oracle 10g DBMS to store



clients identity records and role provisioning certificates. We

have performed several tests to evaluate the performance of

the privacy-preserving role provisioning approach. We have

collected the following data:

1) the time taken by the Client Interface to generate the

AgZKP by varying the number of policy conditions to

be verified from 1 to 50;

2) the time taken by the RBAC-WS-BPEL Enforcement

Service to verify an AgZKP by varying the number of

policy conditions to be verified from 1 to 50;

3) the time taken by the Enforcement Service to verify

a role provisioning policy condition by using OCBE

protocols by varying the value of parameter ℓ from 5
to 20; the time includes the time to create the envelope

and the time to verify that the value sent by the user

matches the encrypted value sent by the Enforcement

Service;

4) the time taken by the Client Interface to generate the

commitments ci = gdihri , 0 ≤ i ≤ ℓ − 1 and the

time to open the envelope sent by the Enforcement

Service by varying the value of parameter ℓ from 5
to 20; the commitments ci = gdihri , 0 ≤ i ≤ ℓ − 1
are computed to prove to the Enforcement Service that

the user satisfies the condition in the role provisioning

policy.

To run the experiment we have generated a WS-BPEL

process composed by 21 activities, a set of 50 potential users,

a role hierarchy of 7 roles, and a set of role provisioning

policies of increasing complexity. We have measured the

execution time in CPU time (milliseconds). Moreover, for

each test case we have executed twenty trials, and computed

the average execution time over all the trial executions.

Figure 5 reports the times to generate an AgZKP and

to verify it for varying values in the number of identity

attributes specified in the role provisioning policy. The

execution time to generate the AgZKP (represented by the

blue line in the graph) is almost constant for increasing

values in the number of identity attributes. The reason is

that the creation of AgZKP only requires a constant number

of exponentiations. By contrast, the time that the RBAC-

WS-BPEL Enforcement Service takes to perform identity

attributes verification linearly increases with the number of

identity attributes to be verified. The reason is that during

the verification the Enforcement Service has to multiply all

the commitments to verify the resulting aggregate signature.

Figure 6 shows that the value of parameter ℓ has a

high impact on the execution time of the policy conditions’

verification. Such time linearly increases with the value of

ℓ. The reason is that when the value of ℓ increases, the

Enforcement Service has to compute a higher number of

σj
i = (cig

−j)y, Cj
i = H(σj

i ) ⊕ ki to be sent to the Client

Interface and the Client Interface, in order to decrypt the

envelope, has to compute a higher number of σ′

i = ηri ,

Figure 5. First and Second Test Cases Results

Figure 6. Third and Fourth Test Cases Results

and k′

i = H(σ′

i) ⊕ Cdi

i , for 0 ≤ i ≤ ℓ − 1. Therefore,

in the implementation of our approach, the parameter ℓ
must be kept as small as possible in order to reduce the

computational cost.

8. Related Work

The closest proposals to ours are BPEL4People [1], the

approach by Koshutanski et al. [3], and the one by Xiang-

peng et al. [8]. BPEL4People is a recent proposal to handle

person-to-person WS-BPEL business process. With respect

to RBAC-WS-BPEL, in BPEL4People users that have to

perform the activities of a WS-BPEL business process are

directly specified in the process by user identifier(s) or by

groups of people’s names. No assumption is made on how

the assignment is done or on how it is possible to enforce

constraints like separation of duties.

Koshutanski et al. propose an authorization model for

business processes based on Web services. The model by

Koshutanski et al. and RBAC-WS-BPEL both assume an

RBAC model and support authorizations constraints on the

set of users and roles. They also consider the problem of

taking authorization decision on the execution of business



process’s activities. The main difference with RBAC-WS-

BPEL is in the approach to take authorization decision. In

the model by Koshutanski et al., an authorization decision

is taken by orchestrating the authorization processes of each

Web service, the activities of which are orchestrated in the

business process, while in RBAC-WS-BPEL an authoriza-

tion decision is taken independently for each activity in the

process.

Xiangpeng et al. propose an RBAC access control

model for WS-BPEL business process. Roles correspond to

<partnerRole> elements in the WS-BPEL specification

and are organized in a hierarchy. Permissions correspond to

the execution of the basic activities in the process specifica-

tion. In addition, separation of duty constraints can be spec-

ified. Compared to such model, RBAC-WS-BPEL’s BCPL

provides a constraints language supporting the specification

of a broader range of authorizations constraints.

All such previous approaches do not make any assumption

on how the assignment of users to roles is performed.

Therefore our approach is the the first to propose a concrete

solution to support human activity execution in WS-BPEL

processes and to assign users to roles in order to make

authorization decision on the execution of such activities.

9. Conclusion

In this paper we have proposed a protocol supporting a

dynamic assignment of users to roles that have the permis-

sion to execute a human activity claimed by the users. The

assignment is based on the notion of role provisioning policy

that specifies conditions on the users’identity attributes.

Since identity attributes encode sensitive information about

users, we have developed a privacy-preserving role provi-

sioning protocol that allows users to prove compliance with

role provisioning policies while disclosing no information

about their identity attributes. We have implemented our

role provisioning protocol in the context of RBAC-WS-

BPEL, a RBAC access control framework for WS-BPEL

processes previously developed by us. We have implemented

our protocol and performed several test to evaluate the

protocol’s performance.

Acknowledgment

This work was supported in part by the National Science

Foundation under the ITR Grant No. 0428554 “The Design

and Use of Digital Identities”, by AFOSR grant A9550-08-

1-0260, and by the U.S. Department of Homeland Security

under Grant Award Number 2006-CS-001-000001, under

the auspices of the Institute for Information Infrastructure

Protection (I3P) research program. The I3P is managed by

Dartmouth College.

References

[1] A. Agrawal et al. WS-BPEL Extension for
People (BPEL4People), Version 1.0, 2007.
http://www.adobe.com/devnet/livecycle/pdfs/bpel4peo-
ple spec.pdf.

[2] A. Alves. et al. Web Services Business Process Execu-
tion Language, Version 2.0, OASIS Standard, April 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

[3] H. Kostutanski and F. Massacci. An access control framework
for business processes for web services. In Proceedings of the
ACM Workshop on XML Security, pages 15–24, October 2003.

[4] J. Li and N. Li. Oacerts: Oblivious attribute certificates. IEEE
Transactions on Dependable and Secure Computing, 3(4):340–
352, 2006.

[5] F. Paci, E. Bertino, and J. Crampton. An access control
framework for ws-bpel. International Journal of Web service
Research, 5(3):20–43, 2008.

[6] F. Paci, E. Bertino, S. Kerr, A. Lint, A. Squicciarini, and
J. Woo. Veryidx - a digital identity management system for
pervasive systems (invited paper). In Proceedings of 6th IFIP
Workshop on Software Technologies for Future and Embedded
Ubiquitous Systems (SEUS), October 2008.

[7] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO ’91: Proceedings
of the 11th Annual International Cryptology Conference on
Advances in Cryptology, pages 129–140, 1991.

[8] Z. Xiangpeng, A. Cerone, and P. Krishnan. Verifying bpel
workflows under authorisation constraints. In In Proceedings
of Fourth International Conference on Business Process Man-
agement (BPM 2006), 2006.


