
User Tasks and Access Control over Web Services

Jacques Thomas*, Federica Paci**, Elisa Bertino*, and Patrick Eugster*

*Purdue University, CERIAS
**Universita degli Studi di Milano

Abstract

Web services are a successful technology for enterprise
information management, where they are used to expose
legacy applications on the corporate intranet or in business-
to-business scenarios. The technologies used to expose ap-
plications as web services have matured, stabilized, and are
defined as W3C standards. Now, the technology used to
build applications based on web services, a process known
as orchestration, is also maturing around the Web Ser-
vices Business Process Execution Language (WS-BPEL).
WS-BPEL falls short on one feature though: as it is fo-
cused on orchestration of fully automatic web-services, WS-
BPEL does not provide means for specifying human inter-
actions, even less their access-control requirements. Hu-
man interactions are nonetheless needed for flexible busi-
ness processes. This lacking feature of WS-BPEL has been
highlighted in a white paper issued jointly by IBM and
SAP, which “describes scenarios where users are involved
in business processes, and defines appropriate extensions
to WS-BPEL to address these.” These extensions, called
BPEL4People, are well explained, but their implementation
isn’t. In this paper, we propose a language for specifying
these extensions, as well as an architecture to support them.
The salient advantage of our architecture is that it allows
for the reuse of existing BPEL engines. In addition, our
language allows for specifying these extensions within the
main BPEL script, hence preserving a global view of the
process. We illustrate our extensions by revisiting the clas-
sic loan approval BPEL example.

1. Introduction

Web Services Business Process Execution Language
(WS-BPEL, BPEL for short) [12] is a language to specify

the orchestration of web services. A BPEL specification de-
fines how a business process can be created by composing
web services. A BPEL process specification thus contains
the following elements: (1) declaration of the web services
that will be orchestrated, (2) declaration of the control flow
between the invocation of the different web services, (3)
declaration of the variables used to maintain the state of the
business process, and (4) declaration of the data flow.

BPEL is an orchestration language well suited for auto-
mated business processes. Many business processes, how-
ever, require human interactions. Human interaction can be
required either to provide more flexibility, or because the
very nature of the activity to be performed requires human
interaction; this is where BPEL falls short. Let us con-
sider the loan approval example process from the BPEL
specification (fig. 1) to illustrate this claim. The example
deals with a process that could be used in a bank to pro-
cess loan applications. When the requested amount is su-
perior to $10 000 or if the risk associated with the loan (as
returned, after processing, by the loan assessment web ser-
vice) is high, then the process calls a loan approval web ser-
vice. Clearly, this approval can require human interaction,
but there is no provision in the BPEL standard to specify
this interaction.

BPEL4People [14] characterizes scenarios that can not
be specified with BPEL and makes a compelling case for
the need to extend BPEL with support for specifying hu-
man activities. But BPEL4People is still only a functional
specification. The white paper mostly describes which in-
teractions should be supported, not how they should be sup-
ported or their access be controlled.

Currently, there are three main approaches for support-
ing human interactions with web services: server-side,
middleware, and client-side. The server-side approach
consists in extending a BPEL engine, to have it support
BPEL4People; this is the path taken by Intalio with the
release of Intalio|Tempo [13], which is a BPEL engine

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

Invoke

Loan

Assessment

Invoke

Loan

Approval

High Risk

< $10.000 >= $10.000

Low Risk
Return application

Receive application

Figure 1. The BPEL 1.1 loan
approval example

extended to support BPEL4People (although there is still
no specification of BPEL4People besides the white paper).
The middleware approach was taken by Oracle with the
TaskManager web service [22]. The TaskManager can be
viewed as a request queue, where the BPEL process can
insert tasks that have to be performed by humans. In
the client-side approach, the user interface becomes a full-
fledged software running on the computer of the user and
it exposes a web service that can be used to push tasks di-
rectly to the user. MagooClient, from MagooSoftware, is an
example of this approach [18].

The server-side approach has the following advantages.
The definition of the user tasks is tightly integrated in the
definition of the business process, the extended BPEL en-
gine can enforce access control on the tasks, and no addi-
tional software is required. At the same time, replacing the
BPEL engine would void the time previously invested in
integrating it in the IT infrastructure, together with intro-
ducing new bugs that always come with new software.

Both the middleware approach and the client-side ap-
proach have the advantage of overcoming the limitations
of an existing BPEL server, without requiring its replace-
ment. Such an approach however has the disadvantage that
the logic of human tasks is now handled by another entity,
hence loosing the global view on the process logic. In ad-
dition, the client-side approach runs into the problem of
having to schedule users to performs tasks without violat-
ing separation of duty constraints, which has proven to be a
hard problem [6, 17].

In this paper, we propose a solution that combines the

benefits of all the three approaches mentioned above:

• We propose an architecture to extend the functionali-
ties of a standard BPEL engine without modifying it

• We describe a language to specify these functionali-
ties: user tasks and their access control

The language that we propose has a deliberate strong fo-
cus on the access control aspect of a business process, as
new regulations like the Sarbanes Oxley act of 2002 [27]
moved the need for high assurance from the military and
governmental space into the corporate world. We designed
this language to offer a rich support for modeling exceptions
to access control rules, as exceptions are needed to properly
reflect business practices, e.g. that a hierarchical superior
can override a decision from one of his subordinates. At
the same time, we decided against integrating any of the
corresponding rules a priori in the system, to preserve its
flexibility.

In order to extend the capabilities of the BPEL engine
rather than replacing it, the handling of user tasks is del-
egated to a task manager web service. To keep the entire
specification of the process contained in the BPEL script,
the language extensions that describe a user task are in-
serted as annotations of a regular invoke BPEL activity,
which we ”compile” down to pure BPEL syntax using an
XSLT transformation [32]. We present these annotations
and illustrate their usage by revisiting the classic loan ap-
proval example from the BPEL specification [12], where
we replace the automatic loan approval web service by user
tasks.

The rest of this paper is organized as follows: architec-
ture of the system and language integration in section 2;
language extensions in section 3; structure and runtime in-
teractions of the task manager in section 4; compilation of
the extended language into pure BPEL in section 5; related
work in section 6. Section 7 concludes our paper and in-
cludes a presentation of the related work.

2. Architecture

In this section, we describe the design of our extensions
to BPEL. Namely, we first present the architecture used to
support BPEL processes extended with user tasks. Then
we describe how we add our extensions into the BPEL lan-
guage.

2.1. BPEL4People as a Service

In our system, people activities are supported by a web
service –the people activity manager–, which offers services

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

similar to Oracle’s TaskManager [22], except that it also en-
forces access control based on the business process specifi-
cation, hence hoisting this responsibility from the process-
specific code. The policy decision point as well as the en-
forcement point are thus provided as a service offered by
the infrastructure. Factoring out the enforcement mecha-
nism guarantees a consistent and systematic enforcement of
the policy, as opposed to relying on the application devel-
oper to insert the proper security controls in the application
code.

We therefore propose an architecture based on the fol-
lowing components (fig. 2):

• an unmodified BPEL engine, which runs the BPEL
process.

• the people activity manager, which is responsible for
providing an interface for users to perform tasks, man-
aging the user’s tasklists, and enforcing the security
policy. The people activity manager is described fur-
ther in section 4.

• an identity management infrastructure, which provides
user attributes to the people activity manager, so that it
can make access-control decisions based on these at-
tributes. For instance, the group membership informa-
tion could be used for deciding whether to let a user
perform a task.

2.2. Language Integration

The last integration design choice concerns the specifi-
cation language. We want to avoid modifying the BPEL
specification language, so that existing BPEL engines can
be used to run our system. Fortunately, the BPEL XML
Schema definition was designed in an extensible fashion:
the root tExtensibleElement is extensible, as the name
implies. The most interesting parts in the schema definition
of tExtensibleElement are the following:

<s e q u e n c e>
<any namespace=” ## o t h e r ” minOccurs=” 0 ”

maxOccurs=” unbounded ” p r o c e s s C o n t e n t s =” l a x ” />
</ s e q u e n c e>
<a n y A t t r i b u t e namespace=” ## o t h e r ”

p r o c e s s C o n t e n t s =” l a x ” />

The meaning of this declaration is that any number of at-
tributes from any namespace can be placed inside any
element that extends tExtensibleElement. For our
purpose, we want to be able to extend the invoke activity.
Since the type of an invoke activity (tInvoke) extends
the type of an activity (tActivity), which itself extends
tExtensibleElement, the net result is that we can insert
our extensions directly into a BPEL specification, provided
they are defined in another namespace than BPEL.

Moreover, the processContents="lax" option indi-
cates that the engine does not need to process extensions

that it does not know of. This enables us to add our exten-
sions directly inside the invoke activity specification and
at the same time still comply with the BPEL XML schema
definition.

Inserted as such, these activities would be ignored by a
standard BPEL engine. We thus describe in section 5.2 how
we use XSLT to automatically compile an extended BPEL
process definition, where the extensions are ignored, into a
BPEL process that delegates all the people activities to the
people activity manager.

3. Extensions to the BPEL Language

In this section we describe the extensions to BPEL that
we propose in order to specify people activities. These ac-
tivities are modeled as editing tasks. We believe that this
model encompasses all the cases of human interaction with
a web service (actually with any computer program, for that
matter).

In order to specify people activities, we therefore have
to specify which values will be edited by the task (the busi-
ness logic aspect of the task) and, since we are interested in
access control, the access control requirements that the user
must meet to be allowed to perform the task (the access con-
trol aspect of the task). The extensions for task specification
fall in two categories: the business logic extensions, which
specify the data edition performed by the task, and the ac-
cess control extensions, which specify the conditions that a
user must meet to perform the task.

Usually, some of the conditions that a user must meet
are criterias pertaining to his digital identity. The domain of
digital identity management is already well developed, with
both models and technologies. Rather than redefining and
then reimplementing existing solutions, our system aims at
integrating with them.

The first step in extending a BPEL process with a user
task is to add an invocation to the task manager. With the
loan approval example (fig. 1), this leads to replacing the
invocation of the loanApproval web service, by an invoca-
tion of the task manager, which entails replacing the original
invoke:
<i n vo ke p a r t n e r L i n k =” a p p r o v e r ”

p o r t T y p e =” l n s : l o a n A p p r o v a l P T ”
o p e r a t i o n =” approve ” . . / . . >

. . / . .
</ i nv ok e>

by the following invoke:

<i n vo ke p a r t n e r L i n k =” taskManager ”
p o r t T y p e =” tm:TaskReques tPT ”
o p e r a t i o n =” t a s k R e q u e s t ” . . / . . >

. . / . .
</ i nv ok e>

Below, we present our extensions and illustrate them by
completing this extension of the loan approval example.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

W
S

D
L

W
S

D
L

User Interface

list possible activities

perform an activity

Unmodified

BPEL engine

People activities specification

BPEL specification

Extended BPEL specification

Resolve People Attributes

ID management

system

People Activity Request

People Activity Response

People Activity

Manager

Figure 2. System Architecture

3.1. Business Logic Extensions

These extensions specify which data will be exchanged
between the business process and the user task: they de-
scribe the variables that will be visible inside the form that
will be presented to the user. For each variable, the follow-
ing information is specified:

Variable name: this should be the identifier of a variable
that is visible from the lexical scope where the task is
defined in the process.

Interaction mode: input, output, input/output. This is very
similar to the directional attribute for parameters of an
operation when declaring an interface in CORBA’s inter-
face description language. More precisely:

• input: the data is provided to the task as a parame-
ter; modifications to this variable are not propagated
back to the process.

• output: this data will be produced by the task.

• input/output: this data will be edited by the task.

From the user perspective, input, output and input/out-
put modes are respectively equivalent to read, write, and
read/write modes.

Name mapping: this allows for renaming the variable for
the duration of the task. This way, the user can be pre-
sented with variable names that, in the context of the task,
are more meaningful than the names used inside the busi-
ness process definition.

Default value: for editing tasks, it is often useful to have
fields be pre-filled with a value. Variables from the pro-
cess can be used as default values, using the facilities al-
ready provided in the BPEL specification.

We specify business logic extensions using the following
syntax:

<v a r i a b l e s>
<v a r name=” ncname ” mapsto=” ncname ” ? mode=” i | o | i o ”

d e f a u l t =” X P a t h Q u e r y S t r i n g ” />
</ v a r i a b l e s>

For our example, the fact that a user task is used to de-
cide the acceptance or rejection of a loan application can be
expressed as follows:

<i n vo ke . . / . . >
<p e o p l e A s p e c t>

<v a r i a b l e s>
<v a r name=” r e q u e s t ” mode=” i ” />
<v a r name=” a p p r o v a l ” mode=” o ” />

</ v a r i a b l e s>
</ p e o p l e A s p e c t>

</ i nv ok e>

3.2. Access Control Extensions

The access-control extensions are composed of two
parts: the authorizations describe the set of users allowed
to perform a task, while the constraints describe how these
permissions should be filtered. The filtering can be used
to enforce separation of duty (e.g. “a user can not perform
the second approval if he already performed the first one”)
or content-based access-control (e.g. “this clerk can only
manipulate checks below a certain amount”).

3.2.1. Authorizations

Authorizations can be based either on the identity of the
user requesting the access, referred to as IBAC, the role of
the user, or other attributes of the user. Our work so far only
considers role based access control (RBAC) and IBAC. It
can, however, be easily extended to support attribute-based
access control, building on the methods used to provide
RBAC support. The syntax for specifying authorizations
is given in fig. 3.

The simplest way to specify these authorizations is by
statically specifying the user allowed to perform a task; this
can be done using the <constant> element. A more flex-
ible way to specify the groups of authorized users is to de-
clare them as queries that are run against an organizational

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

<a u t h o r i z a t i o n s>
A u t h o r i z a t i o n +

</ a u t h o r i z a t i o n s>

A u t h o r i z a t i o n : : = B a s e A u t h o r i z a t i o n
| <or> A u t h o r i z a t i o n A u t h o r i z a t i o n </ o r>
| <and> A u t h o r i z a t i o n A u t h o r i z a t i o n </ and>
| <n o t> A u t h o r i z a t i o n </ n o t>

B a s e A u t h o r i z a t i o n : : = <i d> A u t h o r i z a t i o n S p e c </ i d>
| <r o l e> A u t h o r i z a t i o n S p e c </ r o l e>

A u t h o r i z a t i o n S p e c : : =
<c o n s t a n t> <!−− i d e n t i f i e r −−> </ c o n s t a n t>

| <v a r i a b l e> <!−− XPath query −−> </ v a r i a b l e>
| <que ry> <!−− LDAP f i l t e r s t r i n g −−> </ que ry>

Figure 3. Syntax for authorizations

<i n vo ke . . / . . >
<p e o p l e A s p e c t>

<v a r i a b l e s> . . / . . </ v a r i a b l e s>
<a u t h o r i z a t i o n s>

<or>
<r o l e> <c o n s t a n t> ” loanRiskManager ”

</ c o n s t a n t> </ r o l e>
<r o l e> <c o n s t a n t> ” branchManager ”

</ c o n s t a n t> </ r o l e>
</ o r>

</ a u t h o r i z a t i o n s>
</ p e o p l e A s p e c t>

</ i nv ok e>

Figure 4. Only users with the role ”loan-
RiskManager” or ”branchManager” can per-
form this task

directory, like an LDAP directory [16]; this can be achieved
by using the <query> element. In BPEL4People, perform-
ing a query against an organizational directory is called Peo-
ple Resolution; the query itself is called a People Link. This
runtime evaluation, rather than a static definition in the busi-
ness process, allows changes to the groups of authorized
users without the need to modify the definition of the busi-
ness process. Finally, one more way to specify authoriza-
tions is by referring to a variable of the business process, us-
ing the <variable> element around an XPath query that
retrieves the variable. Referring to process variables is used
to support delegation and escalation, where tasks have to be
re-assigned from within the business process.

This syntax allows to specify both constant terms, for
cases where the authorizations are static, and queries, so
that the authorizations can be more dynamic by being the
result of a query against an organizational directory. For the
queries, we chose to use LDAP filter strings [16].

Fig. 4 shows an example of how to express that only loan
risk managers or local branch managers can approve a loan.

3.2.2. Authorization constraints

Authorization constraints can be based on the execution his-
tory, in which case they are either Separation of Duty con-

<c o n s t r a i n t s>
C o n s t r a i n t +

</ c o n s t r a i n t s>

C o n s t r a i n t : : = B a s e C o n s t r a i n t
| <or> C o n s t r a i n t C o n s t r a i n t </ o r>
| <and> C o n s t r a i n t C o n s t r a i n t </ and>
| <n o t> C o n s t r a i n t </ n o t>

B a s e c o n s t r a i n t : : = H i s t o r y C o n s t r a i n t
| C o n t e n t C o n s t r a i n t
| I D C o n s t r a i n t
| True
| F a l s e

H i s t o r y C o n s t r a i n t : : =
<happened>

<t a s k>
<name>

<!−− t a s k name −−>
</ name>
<p e r f o r m e d b y>

(<sameuse r /> | <s a m e r o l e />)
</ p e r f o r m e d b y>
<outcome>

(<s u c c e s s />|< f a i l u r e />)
</ outcome>

</ t a s k>
</ happened>

C o n t e n t C o n s t r a i n t : : = <c o n t e n t c o n s t r a i n t =” q u e r y S t r i n g ” />

I D C o n s t r a i n t : : = A u t h o r i z a t i o n

Figure 5. Syntax for authorization constraints

straints (SoD) [24] or Binding of Duty constraints (BoD)
[11]. SoD constraints express the fact that a set of tasks have
to be executed by different users; BoD constraints express
the dual: a set of tasks that must be executed by the same
user. Authorization constraints can also be based on other
aspects of the activity: the content of the document being
edited, the time of the access request, or even the location
from where the access is requested. We integrated only the
content-based constraints, which fit naturally inside BPEL
by formulating them as XPath queries; the time-based or
location-based constraints require some more infrastructure
that will be the topic of future work. These constraints
would, however, be easily integrated in our framework by
extending its constraint language. The syntax used to ex-
press authorization constraints is given in fig. 5.

For our example, if we want to enforce dual controls
(separation of duty) on very large amounts, we will need to
chain two human tasks, one for each approval, as illustrated
in fig. 6.

3.2.3. Modeling Exceptions

Our language can model exceptions to both the authoriza-
tions and authorizations constraint.

Negative Permissions A negative permission [7] speci-
fies that a certain group of individuals should be denied ac-

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

<s e q u e n c e>
<i n vo ke name=” a p p r o v a l 1 ” . . / . . >

<p e o p l e A s p e c t>
<v a r i a b l e s> . . / . . </ v a r i a b l e s>
<a u t h o r i z a t i o n s> . . / . . </ a u t h o r i z a t i o n s>

</ p e o p l e A s p e c t>
</ i nv ok e>
<i n vo ke name=” a p p r o v a l 2 ” . . / . . >

<p e o p l e A s p e c t>
<v a r i a b l e s> . . / . . </ v a r i a b l e s>
<a u t h o r i z a t i o n s> . . / . . </ a u t h o r i z a t i o n s>
<c o n s t r a i n t s>

<n o t>
<happened>

<t a s k>
<name>” a p p r o v a l 1 ”</ name>
<p e r f o r m e d b y> <sameuse r />
</ p e r f o r m e d b y>
<outcome> <s u c c e s s />
</ outcome>

</ t a s k>
</ happened>

</ n o t>
</ c o n s t r a i n t s>

</ p e o p l e A s p e c t>
</ i nv ok e>

</ s e q u e n c e>

Figure 6. Example of a dual control for the ap-
proval task

cess. As such, a negative permission is an exception to an
otherwise permissive policy. If we first specify the target
group as an authorization, say AG, then we can negate
this authorization as in the term ¬AG, hence denying
access to members of the group.

Exceptions to the Constraints Our language is also able
to model exceptions to the constraints. Suppose we have a
constraint C that applies to all users, but we would like to
lift it for only some users. Such a case can be modeled
as follows. First, an IDConstraint, say IDC, is cre-
ated based on an authorization specification that matches
the group of users that should be exempted from the con-
straint. Then, the rule augmented with the exception can be
represented as the disjunction of C and IDC: C ∨ IDC.

4. The People Activity Manager

In this section, we explain in more detail the central com-
ponent of our architecture: the people activity manager. We
first describe its structure; then we show the steps involved
in handling a people activity.

4.1. Structure

The people activity manager serves two purposes in our
system. First, it serves a structural purpose. By exposing
its interface as a web service, we can use it to extend the
functionalities provided on top of a legacy BPEL engine,

without extending the engine itself. Second, taking advan-
tage of its placement as a mediator of all interactions be-
tween humans and the business process, the people activity
manager serves its functional purpose: it is responsible for
enforcing the security policy for people activities. In other
words, the people activity manager is a reference monitor
[2]. For processes that require high availability, the people
activity manager would therefore have to be replicated to
avoid constituting a single point of failure.

In order to fulfil its functional and structural purposes,
the people activity manager comprises the elements illus-
trated in fig. 7. There are four information repositories,
to store the four categories of data that are needed for the
people activity manager to function. The current activities
repository stores the set of activities that are not yet com-
pleted; these activities can be freshly submitted ones, ac-
tivities for which a user claimed ownership (to perform the
activity), or revoked activities (when a user decides not to
perform a task after claiming ownership on it). The con-
figuration repository stores the specification of each type of
people activity. As we explained when presenting the spec-
ification language in section 3, this specification includes
both the business logic and the access control aspects. The
directory server, which is part of an external identity man-
agement system, contains the assignments of users to orga-
nizational roles; the people activity manager queries the di-
rectory server to verify that the access control specification
and the role assignments grant the user the right to perform
the task he or she claims. The history repository is used
to record the history of the actions that were performed on
people activities; the people activity manager queries the
history repository to enforce the separation of duty con-
straints.

The people activity manager exposes two interfaces, one
that provides services to the BPEL engine (on the left in
fig. 7), the other that provides services to the user interface
(on the right in fig. 7). Following our discussion of the in-
tegration strategies in the introduction, the people activity
manager is implemented as a web service, hence the dec-
laration of these interfaces use the web service definition
language (WSDL).

4.2. Runtime Interactions

Now we describe the interactions that happen at runtime
when a people activity needs to be performed:

• On the BPEL engine

1. The business process is at a stage where a people
activity should be invoked.

2. The invocation message is prepared by filling it
with the values required for a user to perform the
task and for the access-control to be performed.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

Decision

Point

Policy

Activities

People

Current

Configuration History

Directory Server

People Activity Manager

interface
WSDL

interface
WSDL

newActivity

cancelActivity

listActivities

claimActivity

completeActivity

revokeActivity

Figure 7. Structure of the People Activity
Manager

The format of the message is explained in section
5.1; in section 5.2, we explain how the code that
prepares the invocation message is generated from
the extended BPEL process.

3. The invocation message is sent to the people activ-
ity manager

• The people activity manager does the following, based on
the invocation message:

1. Evaluate the authorizations by querying the orga-
nizational directory.

2. Filter the authorizations based on the authorization
constraints. In that case, two types of queries may
have to be emitted: queries to the organizational
directory and calls to the history database.

3. For each user that is authorized and that satisfies
the constraints, the task is added in the user’s task
list.

• Through the user interface, a user requests to perform a
task:

1. The people activity manager verifies that the user is
still authorized to perform the task. This is needed
since the history of the system can change between
the time when a task is added to a user’s task list
and the time when this user requests to perform
this task. For instance, this user could have per-
formed in the meantime a task that conflicts (due
to an SoD constraint) with the task he is requesting
to perform.

2. The interface implementation retrieves the task pa-
rameters from the activity manager, and the user
becomes the owner of the activity.

3. The people activity manager removes the task from
the task lists of the other users that were authorized
to perform it.

4. Depending on the setting of the variables (in, out,
inout), the user can or cannot view and edit the
variables he is presented with. Some of these fields
may be pre-filled.

5. Ideally, the user interface enforces the
XMLSchema type of the variables (input val-
idation).

6. The user submits the completed task, which results
in the user interface sending back the updated vari-
able values to the task manager.

• The people activity manager performs the following ac-
tions, based on the updated values it received from the
user interface:

1. Validate the values with respect to their
XMLSchema types.

2. Verifies the values against the content-based access
control constraints (some users may be restricted
in the range of values that they can enter for a vari-
able)

3. If the validation and the verification succeed, the
values are passed back to the BPEL engine. Lo-
cally, the task is recorded in the history as being
successfully completed.

4. If either the validation or the verification fails, the
task is recorded in the history as failed. The people
activity manager has to re-evaluate the list of users
that can perform the task, and repopulate the task
lists. There can be constraints that filter out users
that have already failed to successfully perform the
task (the number of failed attempts can be a param-
eter of such a constraint), as suggested by Bertino
et al. [6].

• Once the task has either raised a fault or succeeded, the
BPEL engine does the following:

1. If the task raised a fault, the proper fault handler is
invoked.

2. If the task succeeded, the updated values are copied
into the state of the business process. The execu-
tion of the business process is then resumed.

5. Implementation Over a Legacy BPEL En-
gine

In this section, we describe how the features from the
previous sections can be implemented over a legacy BPEL

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

<message>
<p r o c e s s d a t a>

<!−− da ta needed t o per form t h e t a s k −−>
<v a r name=” ncname ”>v a l u e</ v a r>+

</ p r o c e s s d a t a>

<a c c e s s c o n t r o l d a t a>
<!−− da ta needed t o e n f o r c e t h e c o n s t r a i n t s −−>
<p r o c e s s name=” ncname ” />
<i n s t a n c e i d i d =” ncname ” />
<t a s k i d i d =” ncname ” />
<v a r name=” ncname ”>v a l u e</ v a r>+

</ a c c e s s c o n t r o l d a t a>
</ message>

Figure 8. Message format between the BPEL
engine and the people activity manager

engine. Since the support for user tasks is provided as a
web service, we decided to overload the invoke activity
as a way to integrate user tasks in BPEL. This overload-
ing actually requires three parts in the implementation: (1)
defining a message format for the invocation of the people
activity manager, (2) inserting extra BPEL code in the pro-
cess definition so that the process interacts nicely with the
people activity manager, and (3) implementing the required
access control and business logic features inside the peo-
ple activity manager. The following focuses on the first two
parts as they are within our main contributions. Section 6
comes back to the third part.

5.1. Message Format for People Activities
Invocation

While running a BPEL process, when the BPEL process
engine encounters an invoke that is a people activity, it has
to send sufficient information to the people activity man-
ager, so that the people activity manager can properly assist
in performing the task. The activity manager should receive
two sets of variables from the business process: the vari-
ables that will be either displayed or edited, and the vari-
ables that are needed for the access control (either to per-
form authorization or enforcement of the authorization con-
straints). The message format used to transfer this informa-
tion is illustrated in fig. 8.

We show below how we use XSLT to transform a BPEL
specification with our extensions into a pure BPEL speci-
fication that runs on a legacy BPEL engine. The weaving
process we are about to describe will inject into the BPEL
specification the code that is required to generate the in-
voke messages in such a way that they contain enough infor-
mation for the people activity manager to properly manage
people activities.

<i n vo ke i n p u t V a r i a b l e =” peop leMessage ”
o u t p u t V a r i a b l e =” peop leMessage ”>

<p e o p l e a s p e c t>
<!−− t a s k s p e c i f i c a t i o n −−>

</ p e o p l e a s p e c t>
</ i nv ok e>

Figure 9. A people activity, before weaving in
the people aspect

<s e q u e n c e>
<!−− message p r e p a r a t i o n code −−>

<!−− o r i g i n a l invoke ,
whose e x t e n s i o n s w i l l be i g n o r e d −−>

<!−− message e x t r a c t i o n code −−>
</ s e q u e n c e>

Figure 10. A people activity, after weaving in
the people aspect

5.2. Weaving in the People Aspect, using
XSLT

As we explained in section 2.2, the extensions we pro-
pose for BPEL will be ignored by all BPEL engines that do
not support them natively. To solve this problem, we use an
XSLT stylesheet to transform the extended process defini-
tion into a process definition that relies only on the standard
BPEL features. The principle of the transformation is, for
each people activity, to gather all the variables of the pro-
cess that will either be edited or that are needed for access
control, include these variables in an invocation message,
and then invoke the people activity manager.

People activities are easily identifiable as they contain a
people aspect section, which contains the task specifica-
tion, expressed in the language described in section 3 (cf
fig. 9).

The XSLT processing wraps this invoke activity into a
sequence activity. In this sequence activity, the invoke
is surrounded by generated code (fig. 10). The message
preparation code populates the invocation message with the
process data that the task needs; the message extraction
code copies back the values modified by the user.

6. Related Work

Adding user tasks to BPEL processes amounts to
retrofitting workflows on top of a Service Oriented Archi-
tecture (SOA). The study of workflows [30, 31] is a well
established field.

The need to use access control and Separation of Duty
(SoD) to guarantee the integrity of information processing
was highlighted early on by Saltzer and Schroeder [24];

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

many other works followed, including the work by Clark
and Wilson [10] and Nash and Poland [19], which both dis-
cussed the use of SoD to gain assurance in the integrity of
the data manipulated by business processes. The work on
ADAGE presented in [25] strongly influenced the design of
our language. The recent work by Li and Wang [17] con-
tains a thorough overview of SoD research. More recently,
there has been a renewed interest in workflows and SoD
[3, 6, 11, 5], together with the seminal work from Li and
Wang [17] on the complexity of evaluating SoD constraints
when they are used for scheduling.

There have been many proposals to add security to web
services, starting with the integration of RBAC in a web
server [4]: formulating RBAC policies in XML [8] [23];
wrapping access control proxies around a web service [29];
injecting policy-enforcing code in a web service [26]. Fi-
nally, the XACML standard [20] offers a generic way to
express security policies together with their semantics; the
SAML standard [21] offers a generic means of exchanging
authentication and authorization information between do-
mains.

As BPEL (and service orchestration in general) is fairly
new, there is little related work, both on the access-control
issues that arise when a composite process spans several ad-
ministrative domains [9, 15], and on the support of user
tasks [5, 18, 13]. [9] and [15] address issues related to
trust-negociation and federated identity, which complement
our work. The recent work by Bertino et al. [5] proposes
a model for the specification of authorizations and autho-
rization constraints in the context of workflows on top of
BPEL, building on [11]. Its implementation would how-
ever require replacing the BPEL engine. Besides Oracle’s
TaskManager [22], two commercial products deal with han-
dling of user tasks for BPEL processes: Magoo Client [18]
and Intalio|Tempo [13]. Magoo Client is a user-interface
that is reachable as a web service, so that the BPEL process
can directly push task assignments to the user. With this
approach, all the user scheduling and access control would
have to be expressed in BPEL, which does not seem realis-
tic. Intalio|Tempo is supposed to be a full implementation
of BPEL4People, with architectural choices similar to ours,
but at the time of this writing we were not able to find a
version to evaluate.

We used ideas from work on aspect oriented program-
ming for XML [1]. Unlike AspectXML, we chose to in-
clude the people aspect directly in the business process def-
inition, in order to maintain a global view of the process
within the BPEL script.

7. Conclusions

We presented an architecture that adds support of user
tasks to a BPEL engine, together with a language to specify

the access-control requirements of these interactions. A dis-
tinct advantage of our design choices is that they are com-
patible with existing BPEL engines.

We recognize that the task manager could be a single
point of failure. This perceived limitation, however, can be
solved by replicating the task manager and using Web Ser-
vices Reliable Messaging (WS-RM) [28] to ensure graceful
failover from one replica to the other.

We are currently investigating the addition of full end-
to-end validation of data types. We are also looking into
expressing the authorizations using a standard language.
There are two candidate languages: XACML and WS-
Policy. It seems that the focus of XACML on access control
will fit our purpose better than WS-Policy.

8. Acknowledgements

We would like to thank Laurent Caillette, Marin Markov,
Massimo Mecella, and Jan Vitek for valuable feedback and
insightful conversations.

References

[1] Aspect XML. http://www.aspectxml.org, 2007.

[2] James P. Anderson. Computer security technology
planning study. Technical report, Air Force Electronic
Systems Division, 1972.

[3] V. Atluri and W. Huang. An authorization model for
workflows. In ESORICS ’96, 1996.

[4] J. F. Barkley, A. V. Cincotta, D. F. Ferraiolo,
S. Gavrilla, and D. R. Kuhn. Role based access con-
trol for the world wide web. In Proc. 20th NIST-
NCSC National Information Systems Security Confer-
ence, 1997.

[5] E. Bertino, J. Crampton, and F. Paci. Access con-
trol and authorization constraints for WS-BPEL. In
ICWS’06, 2006.

[6] E. Bertino, E. Ferrari, and V. Atluri. The specification
and enforcement of authorization constraints in work-
flow managem ent systems. TISSEC, 2(1), Feb. 1999.

[7] E. Bertino, P. Samarati, and S. Jajodia. An extended
authorization model for relational databases. TKDE,
Volume 9 , Issue 1, 1997.

[8] R. Bhatti, J. B.D. Joshi, E. Bertino, and A. Ghafoor.
Access control in dynamic xml-based web-services
with x-rbac. In ICWS’03, 2003.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

[9] P. A. Bonatti and P. Samarati. A uniform framework
for regulating service access and information release
on the web. Journal of Computer Security, 10(3),
2002.

[10] D. Clark and D. R. Wilson. A comparison of com-
mercial and military computer security policies. In
S&P’87, 1987.

[11] J. Crampton. A reference monitor for workflow sys-
tems with constrained task execution. In SACMAT’05,
2005.

[12] IBM, BEA Systems, Microsoft, SAP AG, and Siebel
Systems. Business process execution language for
web services version 1.1, May 2003.

[13] Intalio. Intalio|tempo. http://tempo.intalio.org/, 2007.

[14] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau,
A. Rickayzen, C. von Riegen, P. Schmidt, and I. Trick-
ovic. WS-BPEL extension for people – BPEL4People,
2005.

[15] Hristo Koshutanski and Fabio Masacci. An access
control framework for business processes for web ser-
vices. In ACM Workshop on XML security, 2003.

[16] LDAP series of RFCs: RFC 4510 to 4519, June 2006.

[17] N. Li and Q. Wang. Beyond separation of duty: An
algebra for specifying high-level security policies. In
CCS’06, 2006.

[18] Magoo Software Limited. Integrating user tasks
into bpel processes. http://www.magoosoft.com/
pdf/BpelUserTasks.pdf, June 2006.

[19] M. J. Nash and K. R. Poland. Some conundrums con-
cerning separation of duty. In S&P’90, 1990.

[20] OASIS. eXtensible Access Control Markup Lan-
guage, version 2.0, February 2005.

[21] OASIS. Security Assertion Markup Language, ver-
sion 2.0, March 2005.

[22] Oracle Inc. BPEL tutorial; tutorial 6: Working with
the TaskManager service. http://www.oracle.

com/technology/products/ias/bpel/pdf/

orabpel-Tutorial6-TaskManagerServiceTutorial.

pdf, 2006 .

[23] A. Ghafoor R. Bhatti, E. Bertino. A trust-based
context-aware access control model for web-services.
In ICWS’04, 2004.

[24] J. H. Saltzer and M. D Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 1975.

[25] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In CSFW’97, 1997.

[26] Emin Gü Sirer and Ke Wang. An access control lan-
guage for web services. In SACMAT ’02, 2002.

[27] Sarbanes-Oxley Act of 2002. Pub. L. No. 107-204,
116 Stat. 745, 2002.

[28] Oasis Web Services Reliable Messaging TC. Ws-
reliability 1.1, 2004.

[29] Jeroen van Bemmel, Maarten Wegdam, and Ko Lager-
berg. 3PAC: Enforcing access policies for web ser-
vices. In ICWS’05, 2005.

[30] W. van der Aalst and K. van Hee. Workflow Manage-
ment: Models, Methods, and System. The MIT Press,
2002.

[31] W. van der Aalst and K. van Hee. Workflow patterns.
http://www.workflowpatterns.com, 2007.

[32] W3C. XSL transformations (XSLT) version 2.0,
November 2005.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 28, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

