
Verification of Access Control Requirements in Web Services Choreography

Federica Paci1 Mourad Ouzzani 2 Massimo Mecella3

1Computer Science Department, Purdue University
paci@cs.purdue.edu

2Cyber Center, Discovery Park, Purdue University
mourad@cs.purdue.edu

3 Dipartimento di Informatica e Sistemistica, SAPIENZA - Università di Roma
mecella@dis.uniroma1.it

Abstract

Web services choreography is used to design peer-to-
peer applications where each peer is potentially a Web ser-
vice. It defines the required behavior of participating Web
services along with their interactions through message ex-
changes. Implementing a complex system described by a
choreography requires selecting actual Web services whose
individual behaviors are compatible with the overall behav-
ior described by the choreography. Although the selected
Web services implement the specified behavior, they may not
be able to interact due to the policies they enforce to protect
their resources. A Web service’resource can be an opera-
tion or a credential type to be submitted to be able to invoke
an operation. In this paper, we propose a novel approach
to determine at design time whether a choreography can be
implemented by a set of Web services based on their access
control policies and the disclosure policies regulating the
release of their credentials. We model both Web services
and Web services choreography as transition systems and
represent Web services credential disclosure policies as di-
rected graphs. We then verify that all possible conversations
of the Web services choreography can be implemented by
matching credential disclosure policies of the invoker Web
service with the access control policy of the Web services
being invoked. We propose a resource release graph to en-
able this verification.

1 Introduction

Web services choreography has been introduced to stan-
dardize the design phase of complex peer-to-peer applica-
tions in which each peer can be implemented by a Web
service. A Web services choreography specifies the behav-
ior that each peer must have along with the interactions be-

tween the peers. Any Web service that would like to join the
choreography would need to conform to that specification.

Several research efforts have been devoted to develop
formalizations for Web services choreography and ap-
proaches for verifying that a choreography implementation
is compliant with the choreography specification [6, 4, 7].
Most of these efforts thus focus on the issue of determining
whether the behavior of the Web services implementing a
choreography matches the one described by the choreogra-
phy specification. However, verifying that a Web services
choreography can be implemented by a set of Web services
is not only a matter of behavior conformance; before be-
ing able to interact with each other, Web services need to
establish a mutual level of trust.

Trust can be established using various strategies, such as
through the use of credentials or reputation systems. In this
paper, we focus on the use of credentials for trust estab-
lishment among Web services participating in a choreog-
raphy. In Web service-based distributed applications where
invokers are not known a priori, access control decisions are
usually made based on the attributes of the entity request-
ing access to a particular resource, rather than his or her
identity. We assume that each Web service is characterized
by credentials certifying that it has certain properties [9].
Moreover, we assume that the invocation of each Web ser-
vice operation is controlled by access control policies; such
policies establish which credentials the invoker Web service
must possess in order to be able to invoke the operation. It
is also important to notice that some of those credentials
may contain sensitive information about the Web services
to which they refer. Therefore, disclosure of such creden-
tials must be regulated by credential disclosure policies. It
is thus clear that verifying whether a choreography can be
implemented requires determining whether the invoker Web
services can disclose the credentials specified in the access
control policies of the Web service providing the invoked
operation.

���������
� � 	�
��� ��� � � � � � � �� � ��� � � ��� � � � � ��� �

� ��������� � ��� � �! ��� � ��� � � � �� � " � ##�� ��� ��� � � ��� �

$�%�&'�)('�*()$�%�()�+�
� � 	!
��!� ��� � � � � ,��-$.� ��� � ��� � � ��� � �� ,��-$/� �
� ��������� � ��� � �! ��� � ��� � � � �� � " � ##0� ��� ��� � � ��� �

$�%�&'�)('�*()� 1!&�23��(
� � 	'
��!� ��� � �� ,/$+�4� ��� � ��� � � ���

� � � � ,'$��4� � � ��������� � ��� � �' �!� � ��� � � � �� � " � ##!� ��� � ��� � � � �

%/1�5/���6(�$�%7&/�6(
� � 	!
�!� ��� � � � � ,�%�$/� ��� � ��� � � ��� � �� ,�%�$/� �
� ��������� � ��� � �! ��� � � � � � � ��� ��" � #+#0� ��� � ��� � � � �

%/1�5/���)(�$�%7&'�6('�4(�� 1'&�23��(
� � 	�
+��� ��� � �� ,'$��*� ��� � ��� � � ��� � � � � ,'$��*� �
� ��������� � ��� � �! ��� � ��� � � � �� � " � ##�� ��� � � � � ��� �

&��053(��
� � 	!
�!� ��� � � � � ,'&���5�� ��� � ��� � � ��� � �� ,'&���5�� �
� ��������� � ��� � �! �!� � ��� � � � �� � " � ##�� ��� � � � � � � �

� �-(�538 � ��9 (��:
� � 	!
�!� ��� ;�< =�> ,)?0@�A0B ��� � ��� � � ��� � <�=�> C�D�E/F �

� �������+� � �G� � �! ��� � �� , ��: � �� � " � ##�� ��� � ��� � � � �

� �-(�538 � �9 (��:IH �38 J
� � 	!
�!� ��� � � � � ,'&���5KB �
� � ��� � � ��� � � C�D�E , H � �

� ��������� � ��� � �! ��� � � � � , ��: , H � �+� � " � #�#!� ��� � ��� � � � �

� �-(�538 � ��9 (��: � % �0�
� � 	'
+�!� ��� � � � � ,�&���5�� ��� � ��� � � ��� � �� , ��: ,�& : � �

� ��������� � ��� � �! ��� � � � � , ��: ,�& : � �+� � " � ##�� ��� � � � � � � �

L!MKN
� � 	�
���� ��� (�2/53� � � � ��� � � ��� (�2'5 � � � � ��������� � ��� � �! �!� O�P A�B Q

R ;�S�T U�U�< V Q O�P A!B B

W X�Y�Z�[�\]�^)[�_ _ [�\])`�[�a b*Y�c�a [�]0\ [�d�Y�[�e�a b-Y�c�a [�f

W ^0[_ _ [\]�XKY�Z�[\]�`�[�a b*Y�c�a [�]0d�Y�c�a [�g�[�e�h�c�i�e�[�f

W X�Y�Z�[�\]�^6[�_ _ [�\])Y�h�j�k�a [�b-Y�c�a [�]0\ [�d�Y�[�e�a b-Y�c�a [�f

W ^0[_ _ [\]�XKY�Z�[\])Y�h�j�k�a [�b*Y�c�a [�]0d�Y�c�a [�gK[�e�h�c�i�e�[�fW X�Y�Z�[�\]�^)[�_ _ [�\])Y�h�j�k�a [�b*Y�c�a [�]6\ [�d�Y�[�e�a b*Y�c�a [�f

W X�Y�Z�[�\]�^6[�_ _ [�\])c�\ j�[�\]0c�\ j�[\ g�[�d�Y�[�e�a f

W ^)[�_ _ [�\])l.\ [�j�m a n-`�[�i�o�Z�]0o�\ [�j�m a l�p�[�oq�]0o�\ [�j�m a gK[�d�Y�[�e�a f

W l�\ [�j�m a n-`�[�i+o�Z�]�^)[�_ _ [�\])o�\ [j�m a l�p�[�o�q�]0o�\ [�j�m a g�[�e�h�c�i�e�[�fW l�\ [�j�m a nK`�[�i�o�Z�]�^6[�_ _ [�\])o�\ [j�m a l�p�[�oq�]0o�\ [�j�m a r)k�m _ Y�\ [3f

W ^6[�_ _ [�\]�X�Y�Z�[�\])c�\ j�[�\]0c�\ j�[�\ g�[�e�h�c�i�e�[�f

� 9 8 1*�-()$�%4()����s
� � 	!
�!� ��� ;< =�> C ?6@�A F ��� � ��� � � ��� ;�< =�> C�;S�T U B Q
R D�V < t T � �G� � �' ��� � � � � , ��: ,0& : � �

� ��" � #+#�� ��� � �� ,!��" � # B B

&��053(��u�-()� 1!&�23�+(
� � 	!
��!� ��� � �� ,6?6@�A C @)B ��� � ��� � � ���
;�< =�> ,6?6@�A C @6B ��� ��������� � ��� � �! ���
� � � � , ��: ,�& : � �� ��" � #+#0� ��� ��� � � ��� �

W ^)[�_ _ [�\]�^)p�m h�h�[�\])e�p�m h�]0e�p�m h�g.[�d�Y�[�e a f

� 9 8 1*�-()$�%3(�����v
R R w)x�y < V Q � �� ,/&���5�� Q

R ;�< z z < V Q�� � � � ,!��" � # � Q R D�V < t�T > {0|�< =�} y+~
� � � � , ��: ,0& : � �+� � " � ##�� ��� � �� ,!��" � # B B

� 9 8 1-�-()� 1'&�23��(
� � 	'
+�!� ��� � � � � ,�?6@�A6B ��� � ��� � � ���
� �� ,�� " � # ,+�4� �� �������+� � �G� � �! ���

� � � � , ��: ,0& : � �
� ��" � #+#�� ��� � � � � ,!� " � # ,��� �

W ^6[�_ _ [�\] ^)p�m h�h�[�\] e�p+m h�] e�p�m h�g.[�d�Y�[�e a f

W ^6p�m h�h�[�\]�^)[�_ _ [�\] e�p�m h�] e�p�m h�g.[�e�h�c�i�e�[�f

W ^)p�m h�h�[�\] ^6[�_ _ [�\] e�p�m h�] e�p�m h�g�[�e�h�c�i�e�[�f

W ^)[�_ _ [�\] X.Y�Z�[�\] c�\ j�[\] c�\ j�[�\ gK[�e�h�c�i�e�[�f

W ^)[�_ _ [�\]�X�Y�Z�[�\])c�\ j�[\]0c�\ j�[�\ g�[�e�h�c�i�e�[�f

W ^)[�_ _ [�\]�X.Y�Z�[�\])Y�h�j�k�a [�b*Y�c�a [�]0d�Y�c�a [�g�[�e�h�c�i�e�[�f

Figure 1. Transition System of Bartering Choreography

In this paper, we propose a novel approach to decide,
at design time, if a choreography can be implemented by
a set of Web services by verifying that their access control
policies and credential disclosure policies match. We rep-
resent the behavior of both the Web services choreography
and the different candidate Web services by a non deter-
ministic transition system. The access control policies of
the candidate Web services are modeled as transition pre-
conditions. We assume that each Web service publishes, in
addition to its behavior, the credentials that it is willing to
disclose and the disclosure policies regulating the release of
these credentials. The disclosure policies are represented as
directed graphs. Our approach verifies then that all possi-
ble conversations of the Web services choreography can be
implemented by a given set of Web services based on their
access control and disclosure policies. We perform this ver-
ification by checking that the message exchanges compos-
ing the conversations can be implemented. More specifi-
cally, we represent each message exchange by its resource
release graph which, through a labeling process, can deter-
mine the implementability of that message exchange. The
resource release graph is a directed graph where the root
node represents the operation that causes the message ex-
change and the child nodes are the credentials specified in
the access control policy of the Web service providing the
operation. To each of these child nodes, we recursively ap-
pend the corresponding disclosure policies of the provider
and invoker Web services. Each node is then labeled as de-
liverable according to its underlying disclosure policies. If
the root node is deliverable, the message exchange can be
implemented. For the message exchanges that are not re-
alizable, i.e., their root nodes are labeled as undeliverables,
we suggest how to modify the access control and disclosure
policies to make them realziable.

The paper is organized as follows. Section 2 introduces
transition system modeling for a Web services choreogra-
phy. In Subsection 3, we describe how to represent the
behavior of a Web service, and its access control and dis-
closure policies. In Section 4, we introduce our verification
approach based on the resource release graph. Section 5
presents the related works. Section 6 concludes the paper.

2 Modeling Web Services Choreography

In our model, a Web services choreography is based on
the notion of roles and message exchanges between roles.
A role defines the behavior a Web service must exhibit to
participate in the choreography. A message exchange rep-
resents the realization of a collaboration between two roles
and the means by which a choreography can evolve. Each
message exchange is associated with an operation offered
by a role and implies an exchange of information between
the invoker role and the role providing the operation. We

model a Web Service choreography as a non determinis-
tic transition system. A sequence of message exchanges is
called conversation.

Definition 1 (WS-Choreography Transition System)
A choreography of roles r1, r2, ..., rn is repre-
sented by a non deterministic transition system
TSchoreo = (S,A, T, so, sf). S is a set of chore-
ography states. Each state is a tuple of the form
((r1, state1),(r2, state2),...,(rn, staten)) where in each
tuple (ri, statei), statei represents the state of role ri.
s0 ∈ S is the initial state and sf ∈ S is the final state.
A is a set of message exchanges. Each message exchange
is represented by a tuple (rs, rd, µ,m), where rs is the
role sender of the message, rd is the role receiver of
the message, µ is an rd’s operation invoked by rs that
triggers the message exchange, and m is the type of the
message sent. T ⊆ S × A × S is the transition relation. A
transition (s, a, s′) ∈ T if a = (rs, rd, µ,m) and the tuples
(rs, states) and (rd, stated) in state s are replaced by the
tuples (rs, state′s) and (rd, state′d) in state s′ (respectively)
due to the invocation of the operation µ.

In this work, we focus on message exchanges where a
role sends a message to invoke another role’s operation. In-
deed, only the invocation of an operation is restricted by an
access control policy; if an operation can be invoked, then
the sending of the reply message to the invoker can be per-
formed as well.

Example 1 Figure 1 is an example of Web services chore-
ography describing a bartering process 1. Each state in the
transition system is labeled with the state in which each role
is; each transition is labeled with the name of the role that
sends a message, the name of the receiver role, the name of
the operation that triggers the message exchange and the
type of the message sent. The choreography involves four
roles: Buyer, Seller, CreditAgency and Shipper.
The Buyer requests a good’s price from the Seller and
the Seller responds with the price. The Buyer can
then either decide not to progress or to request a price
update to the Seller which replies with the updated
price. The Buyer can keep asking for a price update or
decide to place the order. Once the Seller receives the
order from the Buyer, it contacts the CreditAgency
to check the Buyer’s credit. The CreditAgency can
confirm the credit or not. If the the credit is confirmed, then
the Seller contacts both the Shipper to arrange the
shipment of the good and the Buyer to inform it about
the completion of the order. If the Buyer’s credit is not
sufficient, then the Seller informs the Buyer that the

1Adapted from Web Services Choreography
Description Language: Primer --
http://www.w3.org/TR/ws-cdl-10-primer/

Credit Agency Seller Shipper

eBay Seller Certified :
(creditCheck , creditRequest ,)

S0’

S1’

S2’

TRUE :
(creditCheck , creditFailure ,)

TRUE :
(creditCheck , creditResponse ,)

eBay Seller Certified :
(ship , shipRequest ,)

S0’’’

S1’’’

S2’’’

TRUE :
(ship , shipResponse ,)

VeriSign Certified AND CreditLine :
(order , orderRequest ,)

eBay Buyer Certified :
(getQuote , requestQuote ,)

Amazon Account :
(updateQuote , requestQuote ,)

S0’’

S1’’

S2’’

TRUE :
(getQuote , quoteResponse ,)

S3’’

S4’’

TRUE :
(updateQuote , quoteResponse ,)

S5’’

S6’’

TRUE :
(order , orderResponse ,)

Amazon Account :
(updateQuote , requestQuote ,)

Figure 2. Transition systems of Possible Web services for Roles CreditAgency, Seller, and
Shipper

order cannot go through. The following is an example
of a conversation in which the Buyer’s order cannot be
completed because the Buyer’s credit is not sufficient:
(Buyer,Seller, getQuote, requestQuote) •(Seller,

Buyer, getQuote, quoteResponse) •(Buyer, Seller,

updateQuote, requestQuote) •(Seller, Buyer,

updateQuote, quoteResponse) •(Buyer, Seller,

order, orderRequest) •(Seller, CreditAgency,

creditCheck, creditRequest) •(CreditAgency,

Seller, creditCheck, creditFailure) •(Seller,

Buyer, order, orderResponse).

3 Access Control and Credentials

In this section, we first present how a Web service’s be-
havior and the access control policies for its operations can
be modeled. Then, we illustrate how a Web service specifies
disclosure policies for its credentials.

3.1 Web Services Access Control Require-
ments

The behavior of a Web service describes the set of opera-
tions it exports and constraints on the possible conversations
it can execute. The Web service operations can be invoked
only by clients that own the credential types specified in the
access control policies associated with the operations. We
represent the behavior of a Web service and its access con-
trol policies as a non deterministic finite transition system.
The transition system describes the messages that are re-
ceived and sent by a Web service as effect of the execution

of its operations.

Definition 2 (Web service transition system) The transi-
tion system of a Web service WS is a tuple TSWS =
(Σ, S, Prec, δ, s0, sf). Σ is the alphabet of the transition
system. Each element in Σ is a tuple (op,msg, dir) where
op represents a WS’s operation, msg represents an input
or output message of op and dir is equal to → if msg is
an input message or to ← if it is an output message. S is
a finite set of states. s0 ∈ S is the initial state, and sf is
the final state. Prec is the set of transition preconditions.
δ : S × Σ× Prec→ S is the transition relation.

A state in the transition system represents the state of the
interaction between a client and the Web service [8]. A
transition represents the receipt of an input message or the
sending of an output message of an operation. Access con-
trol policies are represented as preconditions that must be
satisfied for a transition to be fired. The precondition for a
transition representing the receipt of an operation’s invoca-
tion message is a conjunction or a disjunction of credential
types specified in the operation access control policy. The
precondition of a transition corresponding to the sending of
an output message is always true since we only need to ver-
ify that the message to invoke an operation can be sent.

Example 2 In Figure 2, we represent the transition systems
of three Web services that may be selected to play the roles
Seller, CreditAgency, and Shipper introduced in
Example 1. The Shipper service receives the invocation
message shipRequest of ship operation and replies
with a shipResponse message. A client that wants to

TRUE

CreditLine

eBay Seller
Certified

 BUYER SERVICE

TRUE

VeriSign
Certified

eBay Buyer
Certified

TRUE

VeriSign
Certified

TRUE

PayPal
Certified

SELLER SERVICE

eBay Seller
Certified

Amazon
Account

UPS
Shipper

PayPal
Certified

CREDIT AGENCY SERVICE SHIPPER SERVICE

TRUE

VeriSign
Certified

TRUE

PayPal
Certified

UPS Shipper

TRUE

FedEx
 Shipper

TRUE

a) b) c) d)

Figure 3. Disclosure Policy Graphs of Web services implementing Buyer, Seller, CreditAgency,
and Shipper Roles

send the invocation message shipRequest must prove to
have a credential of type ebay Seller Certified.

3.2 Web Services Credential Disclosure
Policies

Credentials should be carefully disclosed during an inter-
action. For the purpose of our work, we classify credentials
as being sensitive or non sensitive. Sensitive credentials
can be only released after trust has been established while
non sensitive credentials can be released without restriction.
The submission of sensitive credentials is regulated by dis-
closure policies defined as follows.

Definition 3 (Disclosure policies) A disclosure policy reg-
ulating the disclosure of a credential C is an expression of
the form C ← credexpr where C is the credential type
whose release is protected by the policy and credexpr is
either a conjunction C1 ∧C2 ∧ ...∧Cn of credential types,
a disjunction C1 ∨ C2 ∨ ... ∨ Cn of credential types, or the
boolean value TRUE.

If a disclosure policy is of the form C ← C1 ∧ C2 ∧

... ∧Cn (resp. C ← C1 ∨ C2 ∨ ... ∨ Cn), then the policy is
satisfied only if the consumer of credential C proves to own
the credentials of types C1, C2, ..., and Cn (resp. at least
one credential type from C1, C2, ..., and Cn). If the disclo-
sure policy is of the form C ← TRUE, then credential C

can be released without any restriction. We represent dis-
closure policies as directed graphs called disclosure policy
graphs. Nodes in such graphs can be circular nodes, repre-
senting credential types, or rectangular nodes, representing
the conjunction of credential types.

The disclosure policy graph of C ← C1∧C2∧...∧Cn has
a circular root node labeled with C and a rectangular child
node having circular child nodes labeled with C1, C2, ...,

Cn. The disclosure policy graph of C ← C1∨C2∨ ...∨Cn

is a graph with a circular node labeled with C having circu-
lar child nodes labeled with C1, C2, ..., Cn. The disclosure
policy graph of a disclosure policy C ← TRUE has a cir-
cular root node labeled with C and a circular child node
labeled with TRUE.

Example 3 Figures 3(a, b, c, & d) represents the dis-
closure policy graphs of the Web services implement-
ing Buyer, Seller, CreditAgency, and Shipper
roles respectively. For example, the Buyer Web ser-
vice is willing to disclose the credentials eBay Buyer
Certified and VeriSign Certified without any
restriction. However, CreditLine can be released
only if the credential consumer provides credentials eBay
Seller Certified.

4 Web services Access Control Requirements
Verification

In this section, we present our approach to determine
whether a choreography can be implemented by a set of
Web services by analyzing the access control policies they
enforce and the credentials that they are willing to disclose.
We assume that an application analyst has already provided
the transition system representing the choreography and se-
lected a set of Web services whose behaviors match the ones
of the roles in the choreography [7, 5, 4]. The descriptions
of the Web services specify their behavior, the access con-
trol policies protecting their operations, and disclosure poli-
cies regulating the release of their credentials.

Although the selected Web services implement the be-
havior specified in the choreography, they may not be able
to perform the described conversations due to the access

(Buyer,
CreditLine ,
UNDELIV)

(Buyer,
VeriSign Certified,

DELIV)

(Seller,order,
UNDELIV)

TRUE

(Seller, eBay Seller
Certified,

UNDELIV)

(Buyer,
Amazon Account,

UNDELIV)

(Buyer,
UPS Shipper,

UNDELIV)

(Buyer,
PayPal Certified,

UNDELIV)

Figure 4. Resource Release Graph of
(Buyer, Seller, order, orderRequest) Message
Exchange

control policies they enforce. The verification process con-
sists in checking that all possible conversations going from
the initial state to the final state in the choreography tran-
sition system can be implemented according to the oper-
ation access control and disclosure polices of the selected
Web services. The main step of the verification process is
to check that each message exchange (rs, rd, µ,m) in the
choreography transition system can be implemented or re-
alized. The conversations composed of message exchanges
that are realizable are, in turn, realizable. A message ex-
change (rs, rd, µ,m) is realizable if the disclosure policies
of the Web service implementing role rs allow the release of
credential types specified in µ’s access control policy. The
verification of whether the message exchange (rs, rd, µ,m)
can be implemented is performed by analyzing the resource
release graph. In the following subsections, we first show
how this graph is generated and then introduce the verifica-
tion algorithm.

4.1 Resource Release Graph

The resource release graph of a message exchange
(rs, rd, µ,m) is generated based on µ’s access control pol-
icy and the disclosure policies of the Web services imple-
menting roles rs and rd.

Definition 4 (Resource Release Graph) The resource re-
lease graph of a message exchange (rs, rd, µ,m) is a di-
rected graph (V,E). The set of nodes V contains two differ-
ent types of nodes: (i) circular nodes model credential types
specified in µ’s access control policy or in the disclosure
policies of Web services implementing roles rs and rd and
(ii) rectangular nodes model the conjunction of its circular
child nodes. The root of the graph is a circular node rep-

resenting the operation µ that triggers the sending of mes-
sage m. Each circular node in the graph is labeled with the
tuple (ResourceOwner,ResourceName, State) where
ResourceOwner is equal to rs or rd, ResourceName is
equal to µ or to a credential type name, and State indi-
cates whether the resource associated with the node is de-
liverable (DELIV), not deliverable (UNDELIV), or not
set yet (NULL). E is the set of arcs connecting circular or
rectangular nodes.

If the root of the resource release graph is labeled with
DELIV , the message exchange is realizable. The cre-
ation of the resource release graph of a message exchange
(rs, rd, µ,m) is a two-phase process. In the first phase, the
graph is created based on µ’s access control policy and the
disclosure policies of the Web services implementing roles
rs and rd. In the secnd phase, the graph is traversed from
the root to the leaves to mark the nodes as deliverable or
not based on the disclosure policies of Web services imple-
menting roles rs and rd.

The first phase of graph generation consists of the fol-
lowing steps: (1) A circular node representing the root node
and labeled with (rd, µ, NULL) is created. (2) If the pre-
condition of µ is a conjunction of credential types C1 ∧

C2 ∧ ...∧Cn, a rectangular node along with its child circu-
lar nodes labeled with (rs, C1, NULL), (rs, C2, NULL),
..., (rs, Cn, NULL) are created. An arc links the root
node to the rectangular node. If the precondition is a dis-
junction of credential types C1 ∨ C2 ∨ ... ∨ Cn, circular
nodes labeled with (rs, C1, NULL), (rs, C2, NULL), ...,
(rs, Cn, NULL) are added as child nodes to the root. (3)
If the Web service implementing role rs owns credential
types C1, C2, ..., Cn and the release of these credential
types is ruled by disclosure policies, then each node labeled
with (rs, Ci, NULL) is linked with its disclosure policy
graph. Each circular node in the disclosure policy graph
is labeled with rd, the name of a credential type, and with
NULL. If the Web service implementing rs does not own
any of the credential types Ci, no child node is added to
(rs, Ci, NULL) circular node. (4) If the Web service im-
plementing role rd has disclosure policies associated with
credential types specified in C1, C2, ..., Cn’s disclosure
policies, we repeat step 3 using rd’s disclosure policies. The
two steps 3 and 4 are repeated till the leaves of the graph are
all circular nodes labeled with TRUE or with the name of
a credential type which cannot be provided by the Web ser-
vices implementing rs or rd.

Once built, we traverse the resource graph (second
phase) to label each circular node as deliverable or unde-
liverable. We apply the following labeling rules: (1) a node
having a rectangular child node is labeled with DELIV

only if all its child nodes are labeled with DELIV ; (2) a
node having circular child nodes is labeled with DELIV

if at least one of its child nodes is labeled with DELIV ;

(3) a node having a circular child node labeled with TRUE

is labeled with DELIV ; (4) a leaf node not labeled with
TRUE is labeled with UNDELIV .

4.2 Verification Protocol

The Verification algorithm has as inputs
TSChoreo, the choreography transition system, the precon-
dition tables Prec Table1, P rec Table2...P rec Tablen

and the disclosure policies DiscPolSet1,

DiscPolSet2, ..., DiscPolSetn of the implementing Web
services. It returns the set of conversations Auth Conv

that can be performed by the selected Web services. If
some of the conversations cannot be performed, it returns
the set PolMod of access control and disclosure policies
that need to be modified to implement the conversations.

The procedure computeConversations (TS)
computes the set Conv of all possible conversations in TS

using the approach we proposed in [8] (line 1). Then, for
each conversation convi in Conv, the set Mei of all mes-
sage exchanges (rs, rd, µ,m) composing the conversation
is created (lines 2-3). Mei contains only the message ex-
changes where a Web service sends the operation’s invoca-
tion message to the Web service that provides it. Then, the
set Me of all the Mei is built (line 4). For each message
exchange (rs, rd, µ,m) in Me, the resource release graph
is built by procedure buildResourceReleaseGraph
(line 7). Then, procedure LabelNodes labels the nodes of
the resource release graph with DELIV or UNDELIV

and returns the state of the root node (line 8). If the state of
the root is deliverable, the message exchange (rs, rd, µ,m)
associated with the invocation of operation µ can be per-
formed. (rs, rd, µ,m) is added to the set of authorized mes-
sage exchanges AuthMe (lines 9-10).

Once AuthMe is built and to determine if conver-
sations convi in Conv can be implemented, we check
that Mei is a subset of AuthMe (line 14). If this is
the case, all the message exchanges in convi are realiz-
able. Hence, convi is added to the set Auth Conv of
conversations that can be implemented (line 15). Oth-
erwise, we compute set NoAuthMei, the complement
set of Mei in AuthMe (line 17). We are thus able
to determine which are the parts of the conversation
convi that cannot be implemented. Then, for each
message exchange (rs, rd, µ,m) in NoAuthMei, pro-
cedure computePathWithUndelivNodes determines
the paths in the resource release graph where circular nodes
are marked as UNDELIV (line 19). By determining to
which Web service the undeliverable credential types be-
longs to, we can suggest ways to modify the access control
policies or the disclosure policies of the interacting Web ser-
vices to enable the message exchange.

Example 4 We want to check if the Web services

Algorithm 1: Access Control Requirements
Verification
Require: TSChoreo the transition system of a chore-

ography of n roles, the preconditions tables
Prec Table1, P rec Table2...P rec Tablen

2 and the disclo-
sure policies DiscPolSet1, DiscPolSet2, ..., DiscPolSetn of
Web services implementing role ri i= 1, ..., n

1: Conv:=computeConversations(TS);
2: for convi ∈ Conv do
3: Me i:={(rs, rd, µ, m) ∈ convi:m is µ’s operation invocation

message };
4: end for
5: Me:= {

⋃
Mei};

6: for (rs, rd, µ, m) ∈ Me do
7: RG:=buildResourceReleaseGraph((rs, rd, µ, m));
8: Root Status:=LabelNodes(RG);
9: if Root Status == DELIV then

10: Auth Me.add((rs, rd, µ, m));
11: end if
12: end for
13: for convi ∈ Conv do
14: if Me i ⊆ Auth Me then
15: Auth Conv.add(convi);
16: else
17: NoAuthMei:= Me i - Auth Me;
18: for (rs, rd, µ, m) ∈ NoAuthMei do
19: PolMod:=computePathWithUndelivNodes((rs, rd, µ, m);
20: end for
21: end if
22: end for
23: return (Auth Conv, PolMod);

choreography illustrated in Figure 1 can be imple-
mented by the Web services in Figure 2. The set
Conv contains seven different conversations. We
focus on the conversation reported in Example 1.
Me1={(Buyer,Seller, getQuote, requestQuote),

(Buyer,Seller, updateQuote, requestQuote),

(Buyer,Seller, order, orderRequest), (Seller,

CreditAgency, creditCheck, creditRequest)} is the
set of invocation message exchanges associated with this
conversation. The conversation is not realizable because
the message exchange (Buyer, Seller, order, orderRequest)
is not realizable. The root node in the resource release
graph of (Buyer,Seller, order, orderRequest), reported
in Figure 4, is labeled with UNDELIV . The root is
not deliverable because all the credential types in the
subgraph, having CreditLine as root node, are labeled
with UNDELIV . To make the root node deliverable,
we have several options: we can modify the disclosure
policy of eBay Seller Certified substituting
one of the credentials types Amazon Account, UPS
Shipper and PayPal Certified with one of the
credential types of the Buyer Web service like eBay
Buyer Certified or we can make eBay Seller
Certified immediately deliverable. Another option is
to modify the access control policy of the operation order
substituting the conjunction of credential types VeriSign
Certified and CreditLine with a disjunction.

5 Related Work

Most previous research on Web services choreography
dealt with choreography formalization and verification of
choreographies’ properties. Web services Choreography
Description Language (WS-CDL) [6] is an XML-based
language that gives a global view of the interaction rules
among Web services collaborating to reach a common busi-
ness goal. The works of Busi et al. [4] and Pistore et al. [7]
propose two formal calculi to model Web services choreog-
raphy and Web services orchestration. They also investigate
the interdependencies between choreography and orchestra-
tion and propose a bisimulation-like notion of conformance
between choreography and orchestration of Web services.
Foster et al. [5] propose a formalization of Web services
composition and Web services choreographies based on a
finite state process (FSP) algebra. Moreover, they propose
techniques to verify the compatibility among interacting
compositions of Web services, the conformance between
a choreography and its implementation, deadlock absence,
and safety and progress properties.

The work of Robinson et al. [10] is the only proposal that
investigates the problem of how to enforce access control in
Web services choreographies. They propose a mechanism
to derive access control policies to be enforced by each Web
service covering a choreography role and an architecture to
enforce such policies at runtime. Access control policies
enforcement is enabled and disabled in a just-in-time man-
ner that matches the control flow described in the choreog-
raphy. The work of Robinson et al. has a different focus
from our work. In our work, we focus on design-time
verification before a Web services choreography is actually
deployed. Our approach checks that the interactions, de-
fined in the choreography, can take place according to Web
service providers’ access control policies and Web service
consumers capabilities. Robinson et al., instead, deal with
the automatic derivation of access control policies for the
Web services participating to a choreography and with their
enforcement. In fact, the two approaches can complement
each other.

6 Conclusions

In this paper, we presented an approach to verify that a
choreography can be implemented by a set of Web services
based on their access control policies and the credentials
that they are willing to disclose. We modeled both Web ser-
vices and Web services choreography as transition systems
and we represented Web services credential disclosure poli-
cies as directed graphs. Then, we presented a technique to
verify that all possible conversations of the Web services
choreography can be implemented by matching credential
disclosure policies of the invoker Web services with the ac-

cess control policy of the Web services being invoked.We
have proposed a resource release graph to enable this veri-
fication.

References

[1] Ardagna, C., Damiani, E., De Capitani di Vimercati,
S., and Samarati,P. A Web Service Architecture for en-
forcing access control policies. In Proc. 1st Interna-
tional Workshop on Views on Designing Complex Ar-
chitectures, Bertinoro, Italy, September 2004.

[2] Benatallah, B., Casati, F., and Toumani, F. Web service
conversation modeling: A cornerstone for e-business
automation. IEEE Internet Computing 8, 1, 46–54.

[3] Berardi, D., Calvanese, D., De Giacomo, G, Mecella,
M. Composition of Services with Nondeterministic Ob-
servable Behavior. In Proc. Third International Con-
ference on Service Oriented Computing (ICSOC 2005),
Amsterdam, The Netherlands, December 12-15, 2005.

[4] Busi,N., Gorrieri,R., Guidi,C., Lucchi,R. and Zavat-
taro, G. Choreography and Orchestration Conformance
for System Design. In Proc. of 8th International Con-
ference on Coordination Models and Languages, 2006.

[5] Foster, H., Uchitel, S., Magee, J., Kramer, J. WS-
Engineer: A Rigorous Approach to Engineering Web
Service Compositions and Choreography. In Proc. of
XML 2006 Conference, Boston, USA, December, 2006.

[6] Kavantzas, N. at al. Web Services Chore-
ography Description Language Version 1.0, W3C
Candidate Recommendation, 2005. Online at:
http://www.w3.org/TR/ws-cdl-10/.

[7] Kazhamiakin, R., Pistore, M. Choreography confor-
mance analysis:asynchronous communications and in-
formation alignment. In Proc. of Web Services and For-
mal Methods, Third International Workshop, WS-FM,
2006.

[8] Mecella, M., Ouzzani, M., Paci, F., Bertino, E. Access
Control for Conversation-based Web services. In Proc.
of 15 International World Wide Web Conference (WWW
2006), Edinburgh, Scotland, UK, May 2006.

[9] Namli, T., Dogac, A. Using SAML and XACML for
Web Service Security & Privacy. A Chapter Proposal,
2007.

[10] Robinson, P., Kerschbaum, F., Schaad, A.: From Busi-
ness Process Choreography to Authorization Policies.
In Proceedings of 20th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, Sophia
Antipolis, France, July 31-August 2, 2006.

