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With organizations increasingly depending on Web services to build complex applications, security and
privacy concerns including the protection of access control policies are becoming a serious issue. Ideally,
service providers would like to make sure that clients have knowledge of only portions of the access control
policy relevant to their interactions to the extent to which they are entrusted by the Web service and
without restricting the client’s choices in terms of which operations to execute. We propose ACCONV, a
novel model for access control in Web services that is suitable when interactions between the client and the
Web service are conversational and long-running. The conversation-based access control model proposed
in this article allows service providers to limit how much knowledge clients have about the credentials
specified in their access policies. This is achieved while reducing the number of times credentials are asked
from clients and minimizing the risk that clients drop out of a conversation with the Web service before
reaching a final state due to the lack of necessary credentials. Clients are requested to provide credentials,
and hence are entrusted with part of the Web service access control policies, only for some specific granted
conversations which are decided based on: (1) a level of trust that the Web service provider has vis-à-vis the
client, (2) the operation that the client is about to invoke, and (3) meaningful conversations which represent
conversations that lead to a final state from the current one. We have implemented the proposed approach
in a software prototype and conducted extensive experiments to show its effectiveness.
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search Institute, Qatar Foundation, Qatar; E. Bertino, Cyber Center, CERIAS, and Department of Computer
Science, Purdue University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1559-1131/2011/07-ART13 $10.00

DOI 10.1145/1993053.1993055 http://doi.acm.org/10.1145/1993053.1993055

ACM Transactions on the Web, Vol. 5, No. 3, Article 13, Publication date: July 2011.



13:2 F. Paci et al.

1. INTRODUCTION

Interoperation among different organizations is today a pressing need. Governmental,
military, financial, medical, and private institutions increasingly participate to dis-
tributed collaborative infrastructures. Hence, distributed, heterogeneous systems are
becoming very common, as globalized organizations integrate applications running on
different platforms. As a consequence, there is a growing demand for architectures
and technologies that support the connection and the flexible sharing of resources
through the use of standardized protocols. Web services are the preferred standards-
based approach to implement distributed and heterogeneous systems. The adoption
of Web services offers potential for lower integration costs and greater flexibility and
interoperability.

Security is a key enabler for achieving the interoperability goal of Web service-based
applications. But securing Web service-based applications is both critical and challeng-
ing. The most important security issues for Web service-based applications are related
to identity management, secure message transmission, and access control. In this
article we focus on the problem of how to enforce access control.

An access control model protects the Web services operations from clients that do
not satisfy the authorization requirements of the Web services provider. Access con-
trol enforcement implies to find solutions to properly represent the identity of service
consumers (identification), to verify that service consumers are who they claim to be
(authentication), and to decide if service consumers are allowed to use Web services
(authorization).

Since the relation between Web service consumer and Web service provider is much
more loose than in traditional client-server applications, the conventional identifi-
cation techniques based on a previous knowledge of users’ identities such as user
identifier and password are inadequate. By contrast, Web service users are usually
identified by means of their own relevant properties, for example, employment status
or citizenship. Such properties are typically conveyed in digital credentials. Digital
credentials are assertions describing one of more properties about a given subject,
referred to as the owner of the credential, certified by trusted third parties called
Certification Authorities (CAs). As a consequence, access control policies are expressed
as conditions on the properties contained in Web service users’ digital credentials.

Several policy-driven access control models for Web services have been recently
proposed, but none of them provides an effective access control scheme that can
adequately meet the unique security challenges posed by the Web services paradigm.
The most relevant proposals are by OASIS with the WS-XACML profile for Web
services [2007], Wonohoesodo and Tari [2004], Sirer and Wang [2002], Bhatti et al.
[2004], Emig et al. [2007], Bertino et al. [2006], Olson et al. [2006], Kagal et al. [2004],
Denker et al. [2003], and Agarwal et al. [2004]. All these proposals assume that the
invocation of each operation provided by a Web service is independent from the others
and access control is enforced either at the level of a single Web service operation or
at the level of the whole Web service.

However, in practice clients interact with Web services through a conversation
process in which, at each step, a specific operation offered by the Web service is
invoked. The potential operations that can be invoked depend on the state of the
current conversation between the client and the Web service. As an example consider
a travel agent Web service. Booking a trip at such service generally involves search-
ing for the trip, browsing the details and rules about possible options for the trip,
booking a specific package, checking out, paying, and so forth. Thus, conversations
allow one to capture an important aspect of Web services, namely their “behavioral
semantics.”
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An important requirement for a client is to be able to complete any conversation
it engages with a Web service. Therefore, in order to avoid situations in which the
client is not able to progress with the execution of a conversation because it does not
have the proper credentials, an access control model for conversational Web services
should verify upfront that a client is able to provide the credentials to be authorized
to terminate the conversations the client is really interested in engaging with the Web
service.

An important requirement for Web service providers is related to the disclosure of
access control policies. Since access control policies can contain sensitive information,
a Web service provider should not disclose access control policies until it has estab-
lished sufficient trust in the client based on the credentials submitted earlier by the
client [Koshutanski and Massacci 2007; Seamons et al. 2001; Yu et al. 2003]1. There-
fore, an access control model for conversational Web services should guarantee that
only the access control policies of conversations that the client wants to perform are
disclosed to the client.

Current approaches to access control that assume the enforcement of policies at
the level of a whole Web service or of a single Web service operation do not meet the
aforesaid requirements. When access control is enforced at the level of the whole Web
service, a client has to provide in advance all credentials associated with all offered
operations. Such an approach guarantees that a client will always be able to complete
any conversation offered by the Web service. However, it has the drawback that the
client will be able to know all the Web service access control policies up-front before any
trust relationship has been established between the client and the Web service. An-
other drawback is that the client may have to submit more credentials than needed,
thus violating the important security principle of the “least privilege principle” [Saltzer
and Schroeder 1974]. The other approach is to require only the credentials associated
with the next operation that the client wants to perform. This strategy has the advan-
tage of requiring from the client only the credentials necessary to gain access to the
requested operation. The drawback is that, after several steps, the client may reach a
state from which it cannot progress because of the lack of credentials.

An alternative strategy adopted by the Semantic Web service community is based on
rich service descriptions. Semantic Web services declare up front the types of creden-
tials, defined according to some ontologies, to be possibly asked of the client [Agarwal
et al. 2004]. The actual credentials are requested during the interaction between the
client and the Web service. Clients can then reason in advance about compatibilities
between the Web service’s requirements and their own and decide if they can engage
in a conversation with the Web service. While clients know only the types of the cre-
dentials to be requested, they may know enough about the access control policy of
the Web service, thus making this Semantic Web service approach very similar to the
first approach outlined before, that is, ask all credentials associated with all offered
operations.

In this article, we present ACConv, a credential-based access control model for
conversational Web services that addresses the preceding issues. ACConv has the

1Client’s credentials can contain sensitive information and they also need to be protected by access control
policies. The protection of sensitive credentials from unappropriated disclosures is an interesting problem
that has been widely investigated and many solutions have been proposed that can be integrated into the
access control model for conversational Web services that we propose in this article. A possible solution to
protect the disclosure of sensitive credentials is to establish an initial level of trust between the Web service
and the client through a trust negotiation process. An alternative solution to protect sensitive credentials
is to adopt Oblivious Attribute Certificates (OACerts) [Li and Li 2006], an attribute certificate scheme that
allows the client to obtain a service if and only if the attribute values in the certificate satisfy the policy of
the service provider, yet the service provider learns nothing about these attribute values.
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following features: (1) Web service providers limit the disclosure of their access control
policies to the policies that are related to the conversations the client wants to carry
out with the Web service; (2) the risk for clients to be dropped out of a conversation
because of the lack of necessary credentials is minimized. Note that the risk is
minimized but not eliminated: clients might still not be able to progress if they want
to perform an operation that is not part of the conversations for which the associated
access control policies are satisfied. In line with current semantic approaches, we
thus model all possible conversations as finite transition systems (a.k.a. finite state
machines) [Stirling 1996; Berardi et al. 2005], in which the final states represent
the states in which the interaction with the client can be ended. We refer to the
conversations that lead to a final state as meaningful conversations. The Web service
provider defines the conversation access control policy for each meaningful conver-
sation and groups the policies in sets of policies having the same sensitivity level.
The disclosure of each set of policies is protected by another type of security policy
referred to as trust policy. When the client requests an operation, it is entrusted with
the set of access control policies whose trust policy is satisfied by client’s credentials
and with a set of conversations referred to as allowable conversations. The allowable
conversations are the conversations protected by the set of access control policies the
client is entrusted with. The client is then requested to provide the credentials listed
in the access control policies of allowable conversations starting with the execution
of the operation invoked by the client. The allowable conversations starting with the
execution of the operation chosen by the client and the access control policy of which
is satisfied by client’s credentials are referred to as granted conversations. Part of the
work described in this article has been initially investigated in Mecella et al. [2006].

The article is organized as follows. Section 2 presents the main components of our
conversation-based access control model for Web services. Section 3 describes the ac-
cess control enforcement process for Web services, the algorithms to compute mean-
ingful conversations, and demonstrates the correctness of our approach. Section 4
describes the architecture that implements our approach. Section 5 investigates the
access control enforcement for composite Web services. Section 6 presents extensive
experiments comparing our conversation-based access control enforcement, ACConv,
with two other types of access control enforcement strategies. Section 7 discusses
related work. Section 8 concludes the article. The appendix describes a complete ex-
ample of a complex Web service including its access control and trust policies.

2. CONVERSATION-BASED ACCESS CONTROL

In this section, we introduce the basic concepts of Web service conversations, creden-
tials, and access control. We then elaborate on the fundamental concepts underlying
the proposed approach.

2.1 Conversational Model for Web Services

We represent the behavioral semantics of a Web service as the set of operations it
exports and constraints on the possible conversations clients can execute. For a large
class of Web services, as discussed in Benatallah et al. [2003], all such aspects can be
represented as a finite transition system (refer to the WSMO choreography concept).
We do not provide details about the semantic description of an operation since it is
outside the scope of our work. Such semantics would be typically expressed according
to a given OWL/OWL-S/WSMO ontology. Thus, a service is generally characterized
by two facets: (i) static semantics, dealing with messages, operations, and parameters
exchanged and their types, and (ii) dynamic semantics, dealing with the correct
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sequencing of operations that represents the external workflow offered by the service.
The focus of our work is on the dynamic semantics.

Definition 2.1 (Web Service)2. A Web service WS is a tuple (�, S, s0, δ, F), where:

— � is the set of operations offered by WS; each operation in � denotes an interaction
between WS and a client;

— S is a finite set of states;
— s0 ∈ S is the single initial state of WS;
— δ ⊆ S× � × S is the service transition relation of WS;
— F ⊆ S is the set of final states of WS.

We represent (si, op, sj) ∈ δ by si
op−→ sj, and we call op the label of the transition.

The transition relation can be extended to finite length sequences of operations or
conversations, defined as traces in Stirling [1996]. A conversation between two or
more states s1 and sn, s1, sn ∈ S, is a sequence of operations op1· op2· . . . opn, opi ∈ �,
i = 1,. . .,n, such that s1

op1−→ s2, s2
op2−→ s3, . . ., sn−1

opn−→ sn exist. A conversation conv: op1·
op2· . . .opn between two states s1 and sn is denoted as s1

op1·op2·...opn=⇒ sn.
We should observe that a Web service is often nondeterministic in that given a state

and an action the Web service can transit to two different states. For example, in a
Web service with an action pay item, firing this action may lead to a state payment OK,
accepting the payment, or a different state payment refused, if the credit card is not
valid or the amount is above the credit limit. As a result, the client, when deciding
which action to execute next, cannot be certain of which choices will be available in
the next state since this depends on the transition actually executed.

2.2 Access Control Model

Credentials are the mean to establish trust between a client and a service provider.
Credentials contain assertions about properties qualifying a given client, referred to
as the owner. They are issued by a trusted Certification Authority (CA), which has
the required domain expertise to assert that the credential owner has the set of at-
tributes listed in the credential. The CA signs the credential with its private key so
that when the credential owner uses the credential for authentication purposes, the
service provider verifies the signature of the CA on the credential by using the CA’s
public key.

Definition 2.2 (Credential). A credential C is a tuple (Issuer,Owner, T ype,Attr,Sign)
where Issuer is the identifier of the CA that issues the credential, Owner is the identi-
fier of the credential owner, T ype denotes the type of the credential, Attr = {A1, . . . ,An}
is the set of attributes characterizing the credential type T ype, and Sign is the signa-
ture of the Issuer on the whole credential. An attribute Ai is a pair (nameAi, valueAi),
where nameAi is the name of the attribute Ai and valueAi is a value in the attribute
domain domAi of Ai.3

The invocation of the operations provided by a Web service is protected by access
control policies defined by the Web service provider. These policies define conditions
that clients’ credentials would have to satisfy for the client to be granted the right to
execute a given operation. Operation access control policies are formally defined as
follows.

2From a formal point of view, we adhere to the setting proposed in Berardi et al. [2005].
3Throughout this article, we will use the dot notation to access fields of this tuple (e.g., given a credential C,
C.Issuer represents the CA that issued the credential).
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Definition 2.3 (Attribute Condition). An attribute condition Cond is an expression
of the form: “T ype : nameA op l”, where T ype is a credential type, nameA is the name
of an attribute A that characterizes T ype, op is a comparison operator such as =, <, >,
≤, ≥, �=, and l is a value that can be assumed by attribute A.

Given a credential C and a condition Cond = T ype : nameA op l, if (i) C.T ype =
Cond.T ype and (ii) ∃ Ā ∈ C.Attr such that nameĀ = Cond.nameA and valueĀ satisfies
Cond.(nameA op l), we say that C satisfies Cond denoted as C � Cond.

Definition 2.4 (Term). A term T is a Boolean expression involving attribute condi-
tions Cond1, . . . , Condn connected by Boolean operators ∨ and ∧.

Given a set CC of credentials {C1, . . . , Cn} and a term T , we say that CC satisfies T ,
denoted as CC � T , if for each Condi in T exists Ci ∈ CC such that Ci satisfies Condi.

Definition 2.5 (Operation Access Control Policy). Let WS = (�, S, s0, δ, F) be a Web
service and op be an operation in �. An access control policy P for op is an expression
of the form “op if T1, T2, . . . Tn”, n ≥ 1, where T1, T2, . . . Tn are terms.

Given a set CC of credentials {C1, . . . , Cn} and an operation access control policy P:
op if T1, T2, . . . Tn, we say that CC satisfies P, denoted as CC � P if for each Ti ∈ P, CC
satisfies Ti.

We extend the definition of operation access control policies to conversations.

Definition 2.6 (Conversation Access Control Policy). Let WS = (�, S, s0, δ, F) be a
Web service, conv : s1

op1·op2·...opn=⇒ sn be a conversation, and P1, . . .Pn be the operation
access control policies for op1 · . . . opn respectively. A conversation access control policy
Pconv for conv is an expression of the form “conv if P1, . . . ,Pn”, n ≥ 1.

Given a set CC of credentials {C1, . . . , Cm} and a conversation access control policy
Pconv : conv if P1, . . . ,Pn, we say that CC satisfies Pconv , denoted as CC � Pconv , if for
each Pi ∈ Pconv , {C1, . . . , Cm} satisfies Pi.

The definition of conversation access control policy captures the intuition that a
client, owning the credentials satisfying a conversation policy, is granted access to all
the operations in this conversation. If the conversation is such that it reaches a final
state, then the satisfaction of the policy assures that the client will be authorized to
reach the end of the conversation. The service provider will not have to deny access to
some actions in the middle of the conversation because of the lack of authorization.

We assume that conversation access control policies are monotonic. This assumption
is necessary to have conflict-free access control policies. We want to avoid that given
a conversation access control policy conv if P1, . . . ,Pn, a set of credentials {C1 . . . Cm}
satisfying policy Pi inhibits the satisfaction of a different policy P j. Besides avoid-
ing policy conflicts, monotonicity guarantees that policies are correct and analyzable.
However, monotonicity does not allow one to express certain types of policies, most
notably those that make explicit use of negative credentials such as revocation lists
or other type of policies such as Chinese Wall policy and separation of duty policies.
The difficulty with nonmonotonic policies is that the service provider must have the
exact set of credentials from a client to make a sound access control decision. If a client
knows or can predict that a certain credential will result in the decrease of its privi-
leges, it may prefer not to reveal it. A service provider cannot distinguish whether the
absence of certain credentials is caused by not having the credential or not disclosing
it. To solve this problem, a possible solution is to collect credentials directly from the
credential issuers rather than only from the client. However this solution introduces
new problems. One problem is privacy: the issuer could disclose information about the
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clients, that is, the credential, to anyone who wants the credential. It also requires
issuers to be always online, which may not be practical.

With respect to credentials’ validity during the execution of a conversation, we as-
sume that once a credential has been checked (and found valid at this time), its validity
is considered to last for the whole conversation it has been requested for. This means
that our approach assumes incremental consistency as discussed in Lee and Winslett
[2006]. More complex schemes, like internal, endpoint, and interval consistency, are
more precise about the relationship among validity checking and effective authoriza-
tion time. However, investigating them is outside the scope of the current article and
left for future work.

2.3 Meaningful Conversations and Trust Policies

In our approach, clients interact with a Web service by invoking operations according
to a conversation. Clients are usually interested in conversations that lead to some
final states. We refer to these conversations as meaningful conversations.

Definition 2.7 (Meaningful Conversations). Let WS = (�, S, s0, δ, F) be a Web ser-
vice and s be a state in S. The set of meaningful conversations originating from s,
denoted as Ms, is the set {conv | s conv=⇒ t, t ∈ F}.

To perform meaningful conversations, clients have to provide the credentials spec-
ified by the conversation access control policies. Access control policies can contain
sensitive information and should be protected from inappropriate access. Sensitive ac-
cess control policies should not be disclosed until the service provider has established
sufficient trust with the clients [Seamons et al. 2001; Yu et al. 2003]. Therefore, to
protect conversations’ access control policies, we introduce a second type of policies,
called trust policies. Trust policies specify conditions on the credentials submitted by
the client that must be satisfied to entrust the client with a set of conversation access
control policies. Since conversation access control policies can have different sensitiv-
ities, the Web service provider groups them into sets based on these sensitivities. A
trust policy is defined for each set of conversation access control policies.

Definition 2.8 (Trust Policy). Let WS = (�, S, s0, δ, F) be a Web service and s a state
in S. Let Ms be the set of meaningful conversations originating from s and Cls be the
set of conversation access control policies associated with the conversations in Ms. A
trust policy that protects the access control policies in set Cls, denoted as Ps

Cls, is an
expression of the form “Cls if T1, T2, . . . Tm”, where T1, T2, . . . Tm are terms4.

The satisfaction of a trust policy by a client will hence define the level of trust that
the Web service has on the client in state s. Based on the notion of trust policy, we
introduce the notion of allowable conversations, that is, the set of meaningful conver-
sations that are protected by the conversation access control policies which in turn are
protected by the trust policy satisfied by the client. Furthermore, we introduce the
concept of granted conversations, that are the allowable conversations that start with
the execution of op, that is, the specific operation the client has requested.

Definition 2.9 (Allowable Conversations). Let WS = (�, S, s0, δ, F) be a Web service,
s be a state in S, and CC be the set of credentials the client has submitted prior to
state s. Let Ps

Cls be the trust policy satisfied by client’s credentials in CC and Cls be the
set of conversation access control policies protected by Ps

Cls. The set As of allowable

4Terms are defined in Definition 2.4.
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conversations associated with the client in state s is a set of conversations defined as
{conv | conv ∈ Ms, and Pconv ∈ Cls}.

Definition 2.10 (Granted Conversations). Let WS = (�, S, s0, δ, F) be a Web service,
s be a state in S, and CC be the set of credentials the client has submitted prior to
state s. Let Ps

Cls be the trust policy satisfied by client’s credentials in CC and Cls be
the set of conversation access control policies protected by Ps

Cls. Let As be the set of
allowable conversations associated with the client and op be the operation requested
by the client in state s. The set of granted conversations associated with the client in
state s and based on the operation op chosen by the client is a set of conversations
defined as {conv | conv ∈ As, conv = op · conv ′, CC � Pconv}. We denote this set as
Gs |op.

To summarize, in our approach we consider three different sets of conversations.

— The set of meaningful conversations associated with a state s of WS is static and
computed offline (not at enforcement time). Its computation is necessary for the
Web service provider to determine the conversations for which it has to define access
control policies. Once access control policies are defined, the Web service provider
groups the policies according to their sensitivity.

— The set of allowable conversations is dynamically associated with a client in a given
state of the interaction with the Web service. The Web service provider assigns the
client a set of conversation access control policies, the trust policies of these are
satisfied by the client’s credentials. The meaningful conversations protected by the
conversations’s access control policies the client is entrusted with are the allowable
conversations.

— The set of granted conversations is dynamically associated with a client in a given
state of the interaction with the Web service. The set of granted conversations is the
subset of allowable conversations starting with the operation chosen by the client,
and for which the client’s credentials satisfy the corresponding conversation access
control policies.

3. ACCESS CONTROL ENFORCEMENT

In this section, we describe two important aspects of ACConv: computation of mean-
ingful conversations and ACConv’s access control enforcement protocol.

3.1 Meaningful Conversations Computation

To enforce the proposed access control model, a Web service provider has to compute for
each state s of the Web service all the possible meaningful conversations Ms. Once, for
a state s, the meaningful conversations Ms are determined, the Web service provider
specifies the access control policies for each operation and then derives the conver-
sation access control policy for the meaningful conversations Ms. The conversation
access control policies can have different sensitivity according to the level of protection
required by the conversations. Therefore, the Web service provider groups the con-
versation access control policies associated with state s in sets Cls of policies having
the same sensitivity level. The disclosure of each set of access control policies Cls is
protected by a trust policy Ps

Cls that is defined by the Web service provider.
The number of meaningful conversations for a state s is finite if the Web service

transition system is acyclic. The meaningful conversations can be computed by a sim-
ple breadth-first traversal of the transition system. However, if the transition system
contains cycles, the number of meaningful conversations can be potentially infinite
and so is the number of conversation access control policies. Fortunately, if a client
performs a conversation that involves a cycle, the service provider has to verify that
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the client is authorized to invoke the operations in the cycle only one time. Since we
assume that once client’s credentials have been checked, they are valid for the whole
conversation execution they have been requested for. Thus, the meaningful conver-
sations in which a cycle is traversed only once are equivalent to the conversations in
which a cycle is traversed an infinite number of times.

Based on the preceding assumption, we propose an algorithm to compute all the pos-
sible meaningful conversations for each state of a Web service transition system. The
algorithm is based on the concept of strongly connected component (SCC for short). A
strongly connected component is the maximal subgraph of a directed graph such that
for every pair of vertexes (u, v) in the subgraph, there is a directed path from u to v and
a directed path from v to u [Tarjan 1972]. The transition system of a Web service can
be considered as a directed graph where a transition between two states is a directed
edge without the label. Therefore, a new acyclic graph can be generated whose nodes
represent the different strongly connected components of the initial Web service tran-
sition system WS. In the new graph, the cycles are “collapsed” into strongly connected
components while the states which are not involved in cycles will remain unchanged
in the new graph. In what follows, we denote as c(s), the strongly connected component
to which a state s belongs to.

The graph of the strongly connected components can be formally defined as follows.

Definition 3.1 (Directed Graph of the Strongly Connected Components). Let WS
= (�, S, s0, δ, F) be a Web service. The directed graph of the strongly connected
components for WS is a graph GSCC = 〈NSCC, ESCC〉 where NSCC = {c | c is a strongly
connected component in WS} is the set of vertexes, and ESCC = {〈c1, c2〉 | c1, c2 ∈ NSCC,
c1 �= c2, ∃s1

op−→ s2 ∈ δ, op ∈ �, s1, s2 ∈ S, c1 = c(s1), c2 = c(s2)} is the set of direct edges.

GSCC can be efficiently computed through the classical Tarjan’s algorithm [Tarjan
1972] or more recent optimizations [Nuutila and Soisalon-Soininen 1993].

To compute the meaningful conversations we exploit the notion of directed graph
of strongly connected components and the following properties of strongly connected
components.

Definition 3.2 (Ingoing and Outgoing Nodes). Let WS = (�, S, s0, δ, F) be a Web ser-
vice. Let GSCC = 〈NSCC, ESCC〉 be the graph of strongly connected components of WS
and scc be a strongly connected component in NSCC. A state s ∈ S such that c(s) = scc
is an in-going node of scc if ∃s1

op−→ s ∈ δ, op ∈ �, s1 ∈ S, c(s1) �= scc. A state s ∈ S such
that c(s) = scc is an out-going node of scc if ∃ s

op−→ s1 ,op ∈ �, s1 ∈ S, c(s1) �= scc.

Definition 3.3 (Cardinality). Let WS = (�, S, s0, δ, F) be a Web service. Let GSCC

= 〈NSCC, ESCC〉 be the graph of strongly connected components for WS and scc be a
strongly connected component in NSCC. The cardinality of scc, denoted as card(scc), is
the cardinality of the set Oscc = {op ∈ �| ∃s1

op−→ s2 ∈ δ, s1, s2 ∈ S, c(s1) = c(s2) = scc }.
Definition 3.4 (Covering Traversing Path). Let WS = (�, S, s0, δ, F) be a Web ser-

vice. Let GSCC = 〈NSCC, ESCC〉 be the graph of strongly connected components for WS
and scc be a strongly connected component such that scc ∈ NSCC. Let Iscc be the set of
ingoing nodes of scc, Oscc be the set of scc outgoing nodes, Nscc be the set of nodes of
scc, and Escc be the set of arcs of scc. A path s1, . . . , sn is a covering traversing path for
scc if it satisfies the following conditions: (a) s1 = u, sn = v, (u, v) ∈ Iscc × Oscc, (b) is the
shortest path between nodes u and v, (c) ∀ si, ∃si

op−→ si+1 ∈ δ, op ∈ �, si, si+1 ∈ S, c(si) =
c(si+1) = scc, (d) ∀ e: sk

op−→ sj ∈ Escc, ∃ si
op−→ si+1, si, si+1 ∈ Nscc, i = 1 . . . n, op ∈ Oscc.
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ALGORITHM 1: compute()

Input: s: State;
WS: Web Service;
conv: Conversation;
Meaningful Conversation: SetOfConversation

Output: Meaningful Conversation: SetOfConversation

(1) if s has no out-going transition (i.e., is a leaf)
(2) if isNewConversation(conv)
(3) Meaningful Conversation.add(conv);
(4) return (Meaningful Conversation);
(5) else
(6) if | conv.length()| > rank(c(s))
(7) return (Meaningful Conversation);
(8) else
(9) if s ∈ WS.F (i.e., s is final) AND isNewConversation(conv)
(10) Meaningful Conversation.add(conv);
(11) foreach s

a−→ t
(12) compute(t, conv · a, Meaningful Conversation);

Definition 3.5 (Coverage). Let WS = (�, S, s0, δ, F) be a Web service. Let GSCC =
〈NSCC, ESCC〉 be the graph of strongly connected components for WS and scc be a
strongly connected component such that scc ∈ NSCC. Let Iscc be the set of ingoing
nodes of scc and Oscc be the set of scc outgoing nodes. Let CTSscc be the set {s1, . . ., sn |
s1, . . ., sn is a covering traversing path for scc}. The coverage of scc is the min {n ∈ N |
n = length(s1, . . ., sn), s1, . . ., sn ∈ CTSscc}.

Definition 3.6 (Rank). Let WS = (�, S, s0, δ, F) be a Web service. Let GSCC = 〈NSCC,
ESCC〉 be the graph of strongly connected components for WS and scc be a strongly
connected component such that scc ∈ NSCC. The rank of scc, denoted as rank(scc) is
defined as follows.

rank(scc) =

⎧⎪⎨
⎪⎩

coverage(scc) if scc is the root of GSCC

1 + coverage(scc) + max(rank(m)) where m is the number of all the possible
predecessors of scc

Details on how the coverage and rank of a strongly connected component can be com-
puted can be found in Gonnet and Baeza-Yates [1991].

Intuitively, the rank expresses the maximum length of the meaningful conversa-
tions in which a cycle is traversed only once.

The compute() algorithm computes for the given state s the set of meaningful con-
versations Ms. The algorithm uses the concept of rank to avoid possible infinite recur-
sion. The isNewConversation() algorithm checks if a given conversation is already in
the Meaningful Conversation set, that is, the set of meaningful conversations for the
given state s.

3.2 Enforcement Protocol

Our access control enforcement protocol ensures that Web service providers disclose to
clients only the access control policies of conversations these clients want to perform.
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Fig. 1. Access control enforcement process.

Therefore, clients have to provide only the credentials necessary to be granted the
execution of the conversations they are interested in.

In fact, the Web service providers ask clients to provide the credentials specified
in the access control policies of allowable conversations starting with the operation
chosen by the clients. If clients provide the requested credentials, they can perform
any of the allowable conversations starting with the chosen operation. Since clients
are requested to provide in advance all the credentials in order to be authorized to
perform conversations starting with the operation they have selected, the risk that
clients are not able to progress the interaction with the Web service is minimized.
The risk is minimized but not eliminated: clients might still not be able to progress
if they want to perform an operation that is not part of the granted conversations. In
this case, our enforcement protocol tries to entrust clients with another set of access
control policies and with another set of granted conversations.

The enforcement process is represented in Figure 1. The enforcement is triggered
whenever a Web service receives an invocation of an operation Op from a client. If
Op is included in the set of granted conversations, Op is executed and the result is re-
turned to the client. Otherwise, the credentials presented by the client are evaluated
against the trust policies of the set of access control policies protecting conversations
starting with Op. If the client’s credentials satisfy a trust policy, the client is associated
with a set of access control policies and with the corresponding set of allowable conver-
sations. Thus, the client is requested to provide the credentials specified in the access
control policies of the subset of allowable conversations starting with Op. If the client
provides the requested credentials, the client is granted the execution of the allowable
conversations starting with Op, that are the granted conversations. If the client does
not match any trust policy, the client is entrusted only with the access control policy of
operation Op. Therefore, the client is asked to provide only the credentials required by
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Op access control policy. When the client requests the next operation, the enforcement
system tries to entrust the client with a set of access control policies and of granted
conversations on the basis of the current operation requested.

The Enforcement() algorithm represents the overall enforcement process. The first
step is to check if the current operation Op is contained in the set of operations com-
posing the set Granted Conversations. If this is the case, the operation is executed.
Otherwise, TrustAssignment() is executed to check if the client can be entrusted with
a set of conversation access control policies and of allowable conversations. If this is
not the case, the client is entrusted only with PolOp, the operation access control policy
associated with Op. Then, the method Select Cred returns the set of credentials listed
in the policy PolOp that the client has not yet provided. Thus, the client is requested to
submit only the credentials in the set returned by Select Cred. If the client’s creden-
tials in set Cred Set satisfy Op policy, Op is performed; otherwise the client is denied
the execution of Op.

If the client is entrusted with a set of conversation access control policies Pol Set
and a set of allowable conversations Conv Set, the algorithm first computes the sub-
set Conv of Conv Set containing the conversations that start with the execution of Op
and the subset Pol of Pol Set containing the access control policies of conversations in
Conv. Then, the client is asked to provide the credentials listed in the access control
policies in Pol. The set Conv of conversations which access control policies are satisfied
by the client’s credentials becomes the new set of granted conversations. If the client
does not satisfy any of the policies in Pol, the algorithm checks if client’s credentials
satisfy the access control policy associated with Op. If this is the case, the execution
of Op is granted to the client, otherwise the interaction with the client is terminated.
The algorithm isGranted() checks if the operation Op invoked by the client
is contained in the set of operations composing the conversations in set
Granted Conversations.

The TrustAssignment() algorithm determines which trust policy Ps
Clsi

is satisfied by
Client Cred, that is, the set of credentials submitted by the client prior to state s. If
the client’s credentials satisfy a trust policy Ps

Clsi
, the client is entrusted with the set

of access control policies Clsi and with the set of allowable conversations As
Clsi

. Other-
wise, the client is entrusted only with the access control policy POp associated with the
operation Op chosen by the client and with an empty set of allowable conversations.

We refer the reader to Appendix A for a complete example of enforcement based
on operation and conversation access control policies defined for the Amazon Flexible
Payment Web service.5

3.3 Validation

The following theorems prove the correctness of our approach by showing that a client
can execute only the meaningful conversations for which the client satisfies the conver-
sation access control policies (Theorem 3.7) and a client cannot be denied the execution
of a conversation the client should be granted access to (Theorem 3.8).

THEOREM 3.7. Let WS = (�, S, s0, δ, F) be a Web service, s be a state in S, and CC
be the set of credentials the client has already submitted. Let Ps

Cls be the trust policy
satisfied by client’s credentials in set CC and Cls be the set of conversation access control
policies protected by Ps

Cls. Let As be the set of allowable conversations associated with
the client in state s and Op be the operation requested by the client in state s. Let
Gs |Op = {conv | conv ∈ As, conv = Op · conv ′ , CC � Pconv , Pconv ∈ Cls} be

5Refer to http://aws.amazon.com/fps.
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the set of granted conversations. Let Satisf iedPol = {Pconv | Pconv ∈ Cls, conv ∈ Gs |Op,
CC � Pconv} be the set of conversation access control policies that are satisfied by the
client’s credentials in set CC and that protect the granted conversations. The client can
perform only the meaningful conversations in Gs |Op.

PROOF. The proof of this theorem is by contradiction. Suppose that the client is
granted the execution of a conversation conv ′′ = Op · conv ′ that is not in the set of
granted conversations Gs |Op. Since the client is authorized to perform conv ′′, there
exists a conversation access control policy Pconv ′′ such that the set of client credentials
CC satisfies Pconv ′′ , denoted as CC � Pconv ′′ . Therefore, Pconv ′′ must belong to the set
Satisf iedPol and conv ′′ must belong to Gs |Op. This contradicts our assumption and
thus the demonstration of the theorem follows.

THEOREM 3.8. Let WS = (�, S, s0, δ, F) be a Web service, s be a state in S, and CC
be the set of credentials the client has already submitted. Let Ps

Cls be the trust policy
satisfied by client’s credentials in set CC and Cls be the set of conversation access control
policies protected by Ps

Cls. Let As be the set of allowable conversations associated with
the client in state s and Op be the operation requested by the client in state s. Let
Gs |Op = {conv | conv ∈ As, conv = Op · conv ′ , CC � Pconv , Pconv ∈ Cls} be
the set of granted conversations. Let Satisf iedPol = {Pconv | Pconv ∈ Cls, conv ∈ Gs |Op,
CC � Pconv} be the set of conversation access control policies that are satisfied by
the client’s credentials in set CC and that protect the granted conversations. The client
cannot be denied the execution of granted conversations in Gs |Op.

PROOF. The proof of this theorem is by contradiction. Assume that the client wants
to perform a granted conversation conv ′′ = Op · conv ′ but the execution of this con-
versation is denied to the client. The execution of conv ′′ is denied to the client only
if the client’s credentials in the set CC do not satisfy Pconv ′′ , that is, the conversation
access control policy of conv ′′. But, because conv ′′ is one of the granted conversations,
Pconv ′′ must belong to Satisf iedPol set, that is, the set of conversation access control
policies that are satisfied by client’s credentials in set CC. This contradicts the initial
assumption and thus the demonstration of the theorem follows.

4. IMPLEMENTATION OF THE ENFORCEMENT SYSTEM

4.1 Architecture

The system architecture of ACConv is compliant with the XACML standard [Moses
2005]. The main components of the access control enforcement system are a Policy
Enforcement Point (PEP), a Policy Decision Point (PDP), and a Policy Administration
Point (PAP). With respect to the XACML architecture, we have added a component
called Execution Controller System (ECS), see Figure 2.

The ECS provides the security administrator with a simple graphical interface,
through which she can compute the meaningful conversations and define trust and
access control policies. In particular, the ECS interface allows the security administra-
tor to specify the access control policies for the operations provided by the Web service.
Then, the ECS combines operation access control policies to obtain the conversation
access control policies. Once the conversation access control policies are computed, the
security administrator can group the policies based on their sensitivity and can define
a trust policy to protect the release of each set of policies. Access control policies and
trust policies are then stored in two repositories that are managed by the PAP com-
ponent. Besides providing functions to set up the enforcement access control process,
the ECS also tracks, at runtime, the state of the interaction between the client and the
service.
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ALGORITHM 2: Enforcement()

Input: s: State
Op: Operation /* Operation chosen by the client */
Granted Conversations: SetOfConversation /* Set of granted conversations */
AC Pol: SetOfSetofACPol /* Set {Cls1 . . . Clsn} of sets of access control policies associated with state s */
T P Set: SetOfTrustPol/*Set of {Ps

Cls1
. . . Ps

Clsn
} trust policies associated with state s */

Client Cred: SetOfCredential /* Credentials already submitted by the client */

Output: Result: Message
(1) var Conv Set: SetOfConversation;
(2) var Cred Set: SetOfCredentialType
(3) var Pol Set: SetofACPol;
(4) var Op Set: SetofOperation;
(5) var Granted: Boolean;
(6) Receive(Execute(O P));
(7) Granted := isGranted(s, Op, Granted Conversations);
(8) if Granted
(9) Result := Execute(Op);
(10) Return(Result);
(11) else
(12) {Conv Set, Pol Set} := TrustAssignment(s, Op, AC Pol, T P Set, Client Cred);
(13) if Conv Set == ∅
(14) Pol :={PolOp};
(15) {C1, . . . ,C j} := Select Cred(PolOp, Client Cred);
(16) Request Cred({C1, . . . ,C j});
(17) Submitted Cred :=Receive Cred;
(18) Client Cred.add(Submitted Cred);
(19) if Client Cred � PolOp
(20) Result := Execute(Op);
(21) Return(Result);
(22) else
(23) Result := “Fault′′;
(24) Return(Result);
(25) else
(26) Conv := { conv | conv ∈ Conv Set ∧ conv = Op · conv ′};
(27) Pol := {Poli ∈ Pol Set|Poli = Polconv ∧ conv ∈ Conv};
(28) foreach Poli ∈ Pol
(29) {C1, . . . ,C j} := Select Cred(Poli, Client Cred);
(30) Cred Set.add({C1, . . . ,C j});
(31) Request Cred(Cred Set);
(32) Submitted Cred :=Receive Cred;
(33) Client Cred.add(Submitted Cred);
(34) foreach Poli ∈ Pol
(35) if Client Cred � Poli
(36) Granted Conversations.add({ conv ∈ Conv|Poli = Polconv});
(37) if Granted Conversations �= ∅
(38) Result := Execute(Op);
(39) Return(Result);
(40) else
(41) if Client Cred � PolOp
(42) Result := Execute(Op);
(43) Return(Result);
(44) else
(45) Result := “Fault′′;
(46) Return(Result);

The PEP Module is the interface between the Web service’s clients and the ECS.
According to the enforcement process described in Section 3, when the client invokes
the first operation, it sends a request message along with a set of initial credentials.
Once the PEP receives the message, it stores the credentials in a local repository and
forwards to the ECS the name of the operation selected by the client. The ECS up-
dates the state of the interaction and returns to the PEP the identifiers of the possible
sets of access control policies the client can be entrusted with in that state and the
corresponding sets of allowable conversations (steps 2–3). Then, the PEP sends to the
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ALGORITHM 3: isGranted()

Input:
s: State
Op: Operation/* Operation chosen by the client */
Granted Conversations: SetOfConversation /* Set of granted conversations */

Output:
Granted: Boolean;

(1)
var Granted: Boolean;

(2) Granted := false;
(3) foreach Conv ∈ Granted Conversations
(4) OpSet :=getOperation(Conv);
(5) Granted Operations.add(OpSet);
(6) if Op ∈ Granted Operations
(7) Granted := true;
(8) else
(9) Granted := false;
(10) return(Granted);

PDP the identifier of the sets of conversation access control policies and the sets of
allowable conversations (step 4).

The PDP’s Trust Level Assignment (TLA) module interacts with the PAP which
manages the policies, to retrieve the trust policies associated with the current state.
Then, it queries the credential repository to evaluate clients’ credentials against trust
policies. The client is entrusted with the set of conversation access control policies
of which the trust policy is satisfied. The TLA module notifies to the Policy Selection
(PS) module the identifier of the set of policies the client has been associated with
and the set of allowable conversations. The PS module asks the PAP to retrieve the
conversation access control policies in the policies set assigned to the client (steps
8–9). Then, the PS module returns the set of policies to the PEP with the set of
allowable conversations (step 10). Thus, the PEP asks the client to provide the
credentials required by the policies that it has not yet provided and evaluates them
against the policies (steps 11–12). If the client’s credentials satisfy the policies, the
client can perform any operation that composes the granted conversations. Then, the
PEP triggers the execution of the operation by the internal middleware and returns
the result to the client (steps 13–15). As the PEP stores the granted conversations,
every time the client invokes an operation, it first checks if the operation is one of
those that compose the granted conversations. If this is the case, the PEP sends to
the ECS the name of the requested operation and then triggers the execution of the
operation. Otherwise, the PEP requests the ECS to provide the set of the identifiers
of the sets of access control policies, and the sets of allowable conversations the client
can be entrusted with in the current state of the interaction.

4.2 Implementation Details

The preceding architecture has been implemented using Globus Toolkit 4 [Globus
2011]. To achieve secure communications between the client and the server hosting the
Web service, the system uses the GRID Security Infrastructure (GSI) secure message
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ALGORITHM 4: TrustAssignment()

Input:
s: State
Op: Operation /* Operation chosen by the client */
{Cls

1 . . . Cls
n}: SetOfSetofACPol /*Set of sets of access control policies associated

with state s */

{Ps
Cls1

. . . Ps
Clsn

} : SetOfTrustPol/*Set of trust policies associated with state s */
Client Cred: SetOfCredential /* Credentials already submitted by the client */

Output:
Conv Set: SetOfConv /*Set of allowable conversations*/
Pol Set: SetofACPol /*Set of conversation access control policies assigned to
the client*/

(1) var Conv Set: SetOfConv;
(2) var Pol Set: SetofACPol
(3) var Satisf ied Pol: TrustPol;
(4) Conv Set :=∅;
(5) foreach Ps

Clsi
∈ {Ps

Cls1
. . . Ps

Clsn
}

(6) if Client Cred � Ps
Clsi

(7) Pol Set.add(Cls
i );

(8) Conv Set.add(As
Clsi

);
(9) Satisf ied Pol := Ps

Clsi
;

(10) break;
(11) if Satisf ied Pol == null

(12) Pol Set.add({POp});
(13) return {Conv Set,Pol Set};

mechanism, which is based on the WS-Security specification [Lawrance and Kaler
2006].

The system uses the XACML standard version 1.1 for representing the operation ac-
cess control policies and trust policies. This version is implemented by Sun’s XACML
implementation [Sun 2003]. Moreover, the system uses the SAML standard version
1.1 for representing the credentials. This standard is implemented from OpenSAML
[Internet2 2006]. A Web service transition system is represented by an XML file, ac-
cording to a specific XML Schema.

The software implementing our system is organized into four components: (i) the
PDP module which is developed as a custom GSI authorization mechanism; the TLA
and PS modules used by the PDP, which are implemented as Java classes; (ii) the PAP
module which is a Java class used by the TLA for retrieving the trust policies and by
the PS for retrieving the conversation access control policies; (iii) the service module
which contains a Web service used by the client to communicate with the system; and
also includes a Java superclass that a given Web service class must extend for being
able to use the system; (iv) the handler module, which contains a JAX-RPC handler
that allows one to extract from the WS-Security header, contained in the incoming
messages, the information required by the system (in particular the SAML assertions).

On the client side, to use a Web service deploying our system, two software compo-
nents are needed: (i) a client module which contains the client-side logics for carrying
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Fig. 2. System architecture for a single Web service.

out the access control protocol (as described in Section 3), and (ii) a handler module
which inserts into outgoing messages the information required from the system (in
particular the WS-Security header and the SAML assertions).

With respect to a traditional Web service platform, the implemented system is a
kind of “wrapper” of the actual Web service. It intercepts every request to the Web
service and requires a description of the transition system associated with the Web
service and a set of access policies (operation access control policy and trust policies).
The description of the transition system can be specified by the Web service developer,
while the access policies can be specified by the security administrator. With respect
to the client side, we only require the initialization of the component that manages
the requests for credentials. This component uses the credentials associated with the
client, which can be issued by a SAML Authority or can be generated by the user.

To prepare a Web service to use our system, the steps to follow are: (i) the service
developer defines the service’s interface using WSDL; (ii) the service developer writes
the XML document describing the transition system of the Web service; (iii) the se-
curity administrator defines the access policies for the Web service; (iv) the service
developer implements the service (using Java in our case); (v) the service developer
generates a GAR file (Globus Archive) and deploys it with a GT4 tool (this step de-
pends on the Globus Toolkit); (vi) the service client uses the WSDL file to generate
proxy client classes; and (vii) the service client initializes the component that manages
the requests and gives that component access to client’s credentials. The client can
now communicate with the Web service protected with the proposed system.

5. ACCESS CONTROL FOR COMPOSITE WEB SERVICES

A key strength of Web services is at they can be composed to build new Web services
called composite services. The Web services being composed are usually referred to as
component services. Composition involves two different aspects [Berardi et al. 2005]:
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(1) synthesis which is concerned with producing a specification, called composition
schema, of how to coordinate the component services to fulfill the client request; and (2)
orchestration which relates to the enactment of the composite service and the coordi-
nation among component services by executing the composition schema. The composi-
tion schema can be generated manually by a designer or (semi-)automatically [Berardi
et al. 2005]. An orchestration engine can then invoke the component services according
to the schema. In many cases, the behavior of the composite service and the component
services can be modeled using transition systems. A transition system is also used to
represent the composition schema [Berardi et al. 2005].

5.1 Enforcement

The composite service does not take any authorization decision during the enforce-
ment process. Instead, the component services which provide the operations invoked
by the client decide whether the execution has to be granted. Each component service
determines the set of conversation access control policies the client can be entrusted
with based on the trust policy it satisfies. Once the client is assigned to a set of
conversation access control policies, the enforcement process is the same as the one
for single Web services described in Section 3. However, there are few differences.
First, the client does not directly communicate with the component services but with
the composite service. The composite Web service has to forward the client’s requests
to the component services and vice versa and caches the credentials a client submits
to the component services. The caching mechanism avoid to ask credentials that the
client has already provided and that are not expired. The intermediary role played by
the composite Web service requires that the composite Web service is trusted both by
the client and the component services. In fact, the client hands over its credentials to
the composite Web service and delegates to it the decision to whom these credentials
can be disclosed. The trust relationship between the client and the composite Web
service can be created by carrying out a trust negotiation when the client starts the
interaction with the composite Web service.

It is important that there is a trust relationship also between the composite Web
service and the component Web services because, on one side, the composite Web ser-
vice needs to be sure that it is not disclosing client credentials to a malicious Web
service, and, on the other side, the component Web services need to establish sufficient
level of trust in the composite Web service before partially revealing their access con-
trol policies to the composite service. To bootstrap such a relationship, the composite
Web service and the component service carry out a trust negotiation when the com-
posite Web service forwards to the component Web service the request of the client to
invoke an operation that the component Web service provides. Another difference be-
tween the enforcement process for single and composite Web services is that the client
is assigned to a different set of conversation access control policies by each component
service rather than just one. Moreover, the set of allowable conversations assigned by
a component Web service to the client might include conversations that are not part
of the composition schema. If this is the case, the client is asked to provide only the
credentials for the allowable conversations that are composed of operations that are
in the composition schema. This avoids that the client has to provide credentials for
conversations she will never invoke because they are not provided by the composite
Web service.

5.2 Architecture

The system architecture for composite Web services is composed of multiple access
control enforcement systems, one for each component service, and of a repository for
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Fig. 3. System architecture for a composite Web service.

storing clients’ credentials (see Figure 3). The structure of the access control system
for the component Web services is similar to the system that we have described in
Section 4.1 for single Web services.

The orchestration engine has two functions: it manages clients’ credentials and in-
vokes the component Web services’s operations necessary to fulfill a clients’ request.
When a client invokes an operation (step 1), the orchestration engine first stores in its
local repository the credentials the client sent with the invocation. Then, the orches-
tration engine contacts the component service enforcement system that according to
the composition schema is entitled to perform the operation. The PEP of the compo-
nent service checks if the client is authorized to execute the operation. If this is the
case, the operation is performed; otherwise the PDP returns to the PEP the entrusted
conversations’ access control policies. The PEP sends to the orchestration engine the
request for the credentials specified in the conversation access control policies (step
3). The orchestration engine, then, determines which of the credentials, among those
requested by the component Web services, are stored in its local credential repository
and thus only requests to the client the credentials that the client has not yet provided
(step 4). Once the client provides the credentials (step 5), the orchestration engine
sends them to the component service’s PEP (step 6). If the client’s credentials are
compliant with the access control policies, the operation is executed and the result is
returned to the client through the orchestration engine (steps 7–8). Otherwise, the
access is denied.

6. VALIDATION AND EXPERIMENTS

In this section, we describe the experiments we have run to evaluate whether the
ACConv enforcement strategy strikes a good balance between the single-operation
strategy and the request-all strategy.

On one hand, the request-all strategy requires the client to provide in advance all
the necessary credentials in order to be authorized to perform all the conversations
supported by a Web service. With this approach, the client has to submit credentials
also related to conversations that it will never perform, but it is sure it will be able to
complete any conversation it carries on with the Web service.
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On the other hand, the single-operation strategy requires the client to provide only
the credentials needed to satisfy the access control policy of the operation the client
invokes during the interaction with the Web service. Therefore, the client is not re-
quested to provide unnecessary credentials, but it might not be able to complete the
execution of a conversation because it does not have the necessary credentials. In
contrast, our approach should strike a good balance between asking to clients the cre-
dentials needed to be authorized to progress the interaction with the Web service, and
giving assurance to clients that they can eventually reach a final state.

6.1 Relevant Parameters

We evaluate ACConv according to three parameters: the loss, the number of credential
disclosures, and the number of credential requests. The loss is the number of opera-
tions that have been executed by a client before being dropped out of a conversation
because it does not have the credentials necessary to perform the subsequent opera-
tions. Executing an operation requires the service provider to allocate resources, and
if the conversation is suddenly interrupted in a nonfinal state, all these resources have
been “wasted.” The number of credential disclosures measures the number of cre-
dentials clients have to provide in order to be authorized. The number of credential
requests indicates the number of times clients are solicited to provide credentials.

To evaluate whether the ACConv enforcement process is a good trade-off between
request-all and single-operation strategies, we also compute the loss ratio, the num-
ber of credential disclosures ratio, and the number of credential requests ratio. The
loss ratio is the ratio lossACConv

losssingle−op
where lossACConv and losssingle−op are the loss of the AC-

Conv strategy and the single-operation strategy respectively. The number of credential
disclosures ratio is the ratio NumCredACConv

NumCredrequest−all
where NumCredACConv is the number of cre-

dential disclosures of the ACConv and NumCredrequest−all is the number of credential
disclosures for request-all strategy. We compute the loss and the number of credential
disclosures ratios in this way because the maximum possible loss is generated by the
single-operation strategy whereas the request-all strategy maximizes the number of
credential disclosures. To compare the number of credential requests in our strategy
with the number of requests of request-all and single-operation strategies, we compute
the number of credential requests ratio as the ratio NumCredReqACConv

NumCredReqrequest−all
( NumCredReqACConv

NumCredReqsingle−op
)

between ACConv strategy’s number of credential requests and request-all (single-
operation) number of credential requests.

We now show how the loss, the number of credential disclosures, and number of
credential requests can be computed for each access control enforcement strategy. We
make the following assumptions:

— WS is a Web service providing n operations;
— conv : s1

op1·op2·...opn=⇒ sn is a conversation of n different operations op1, op2, . . . opn
provided by WS;

— j is the number of operations that compose the granted conversations;
— each operation access control policy opi if T1, T2, . . . Tl, i = 1, . . . , n is such that each

term Tk, k = 1, . . . , l is an attribute condition Cond = T ype : nameA op v and T ype is
different for each k.

Request-All. As the client has provided the credentials to be authorized to perform
all the operations supported by the Web service, the loss associated with conversation
conv by the request-all strategy is equal to 0. Since each access control policy states
conditions on l different credential types, the number of credential disclosures associ-
ated with conv is l*n. The number of credential requests is equal to 1 since the client is
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requested to provide all the necessary credentials to be authorized and provides them
at once.

Single-Operation. The loss associated with conv, when the single-operation strategy
is adopted, is equal to lossopi = (i−1) where opi is the operation of conv that the client is
not authorized to perform. In other words, the loss is represented by the execution of
the operations that precede opi in the conversation, that is op1, . . ., opi−1. The number
of credential disclosures associated with conv is l*n. Since the client is requested to
provide the credentials each time it requests an operation, the number of credential
requests in this case is equal to n.

ACConv. If conv is one of the granted conversations assigned to the client, the loss is
equal to 0. Otherwise the loss is computed in the same way as for the single-operation
strategy. The number of credential disclosures is equal to l∗ j. The number of credential
requests is equal to 1.

6.2 Datasets and Experimental Methodology

To make the computation of the loss, the number of credential disclosures, the number
of credential requests, the loss ratio, the number of credential disclosures ratio, and
number of credential requests ratio independent of the type of Web service transition
system, client profile6, Web service provider trust and access control policies, and the
client behavior 7, we have implemented a Java application that:

— randomly generates transition systems;
— randomly generates a client profile;
— creates trust and access control policies;
— randomly simulates client behavior;
— implements the enforcement process of ACConv, single-operation and request-all

strategies.

We have considered three classes of transition systems. The first class contains tran-
sition systems with a number of states varying from five to ten, the second with a
number of states varying from fifteen to twenty, and the third with a number of states
varying from twenty to thirty. For each class of transition systems, the Java applica-
tion has created ten transition systems. Then, for each transition system, the Java
application has simulated the enforcement process of ACConv, single-operation, and
request-all strategies, and has computed the loss, the number of credential disclosures,
the number of credential requests, and the loss ratio, the number of credential disclo-
sures ratio, and the number of credential requests ratio, as described in details in what
follows.

(1) Transition System Generation. The Java application receives as input the number
of states, the number of transitions, and the number of final states that a transition
system must have. To generate a transition system, it builds a adjacency matrix
having a number of columns and rows equal to the number of states given in input.
Then, the application fills in a number of matrix’ entries equal to the number of
transitions given as input; the position of each transition is randomly assigned.

6Here by client profile we mean the set of credentials that a client is willing to disclose to the Web service
provider.
7The client behavior is modeled as the operations invoked by the client during the interaction with a Web
service.
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(2) Meaningful Conversation Computation. The Java application computes the set of
meaningful conversations associated with the initial state of the generated transi-
tion system.

(3) Reference Set of Credentials Generation. The Java application creates a reference
set of credentials. Such set of credentials has cardinality equal to the maximum
number of transitions in the generated transition system. Such number of creden-
tials allows the generation of access control policies such that each policy specifies
conditions on different types of credentials. A sensitivity level is associated with
each credential in the reference set. The sensitivity of the credentials is then used
to compute the sensitivity of the access control policies that specify conditions on
such credentials.

(4) Client Profile Generation. The Java application creates a client profile by randomly
choosing a set of credentials from the reference set.

(5) Trust and Access Control Policies Generation. The Java application has to generate
an access control policy for each operation labeling a transition in the Web service
transition system. Each access control policy opi if T1, T2, . . . Tl, i = 1, . . . , h is such
that each term Tk, k = 1, . . . , h is an attribute condition Cond = T ype : nameA op v
and T ype is different for each k = 1, . . . , h, where h is a randomly chosen number
between 0 and 10. h represents the number of different credential types on which
each policy specifies conditions. Once the operation access control policies are gen-
erated, the Java application computes the access control policies for the meaning-
ful conversations associated with the transition system’s initial state. Then, it
computes the sensitivity of the conversation access control policies based on the
sensitivity of the credentials on which the policies specify conditions and groups
the policies based on their sensitivity. Then, for each set of policies, the Java appli-
cation defines a trust policy using the same approach used to generate operation
access control policies.

(6) Client Behavior Simulation. The Java application simulates the choice of the client
by randomly selecting a conversation from the set of meaningful conversations
associated with the initial state of the transition system.

(7) Enforcement Process Simulation. The Java application simulates the execution
of the ACConv, single-operation and request-all strategies’ enforcement process.
Then, the Java application calculates the loss, the number of credential disclosures,
and the number of credentials associated with the conversation chosen to simulate
the behavior of the client for the three different access control strategies. Then, for
each strategy, the Java application calculates the average value of loss, the number
of credential disclosures, and the number of credential requests. Finally, the Java
application calculates the average of loss, the number of credential disclosures, and
the number of credential requests ratios.

6.3 Experimental Results

Figure 4(a) shows the average of the loss ratio values for the three classes of transition
systems. The average loss ratio varies in the range [0.2, 0.45] with the number
of states and transitions characterizing the classes of transition system we have
considered. This means that the loss associated with the ACConv strategy is 30%
of the loss associated with the single-operation strategy, which has the maximum
loss. Figure 4(b) illustrates how the number of credentials ratio varies with the
class of transition systems considered. The number of credentials ratio values fall
in the range [0.3, 0.6]. Therefore, the number of credentials requested from a user
in the ACConv strategy is still lower than the number of credential requests by the
request-all strategy that maximizes the number of credentials a user is asked to
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Fig. 4. Average of loss ratio and number of credentials ratio values.

Fig. 5. Average of number of credential requests ratio values.

provide. Finally, Figures 5(a) and (b) report the average of the number of credential
requests ratios for the three classes of transition systems. The experimental results
show that the number of times a user is asked to provide credentials in the ACConv
strategy represents a good trade-off between the request-all strategy that minimizes
the number of credential requests and the single-operation strategy that maximizes it.
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We notice that the values of loss ratio, the number of credentials ratio, and number
of credential requests ratio increase with the number of transitions. Such an increase
is motivated by the fact that with the increase of the number of transitions, the client
can perform longer conversations and to complete the execution of these conversa-
tions, the client might be entrusted with more than one set of conversation access
control policies, and be asked to provide the credentials to satisfy such policies. Thus,
the loss associated with each conversations increases, and so the number of creden-
tials disclosed by the client and the number of times the client is requested to provide
credentials.

Despite this, the results obtained for ACConv are satisfactory. The first class of
transition systems, that represents, according to a recent survey [Benatallah et al.
2003], the most common real Web services, is characterized by a loss that is less than
25% of the loss for the single-operation strategy. Moreover, the number of credentials
a user is asked to provide by ACConv is only 30% of the number of credentials for the
request-all strategy. Finally, the number of credentials is 20% the number of creden-
tials for the single-operation strategy that is characterized by the highest number of
credential requests.

7. RELATED WORK

The problem of disclosure of access control policies has been investigated in Seamons
et al. [2001], Yu et al. [2003], Koshutanski and Massacci [2007], and Frikken et al.
[2006]. Seamons et al. [2001] and Yu et al. [2003] assume that access control policies
can contain sensitive information that should be protected from inappropriate access
by strangers during negotiation. They distinguish between policy disclosure and policy
satisfaction which allows one to control when a policy can be disclosed from when a
policy is satisfied. Koshutanski and Massacci [2007] propose a negotiation scheme
for access rights based on two kinds of security policies, access control policies and
disclosure control policies. Access control policies state which credentials a client must
satisfy to be authorized for a particular resource, while disclosure control policies state
which credentials among those occurring in the access control policies are disclosable
to (i.e., can be asked to) the client. Frikken et al. [2006] propose a privacy-preserving
trust negotiation solution under which clients and service providers are able to learn
whether trust can be established without either party revealing to the other party
anything about their own private credentials and policies. In ACConv we support an
approach to protect access control policies similar to one proposed in Seamons et al.
[2001] and Koshutanski and Massacci [2007]. We use two different kinds of security
policies: access control policies and trust policies. Access control policies state the
credentials a client has to provide to be granted the execution of a conversation. Trust
policies state the credentials that must be requested from a client in order to only
disclose to the client the set of access control policies associated with the conversations
the client is interested in performing.

With respect to access control for Web services, several policy-driven access control
models have been proposed, but none of them has investigated access control enforce-
ment for conversational Web services besides ACConv. The most relevant approaches
in this area are by OASIS with the WS-XACML profile for Web services [Anderson
2007], Wonohoesodo and Tari [2004], Sirer and Wang [2002], Bhatti et al. [2004], Emig
et al. [2007], Bertino et al. [2006], Olson et al. [2006], Kagal et al. [2004], Denker et al.
[2003], and Agarwal et al. [2004].

XACML consists of an XML-based language for expressing access control policies
and a request/response protocol that specifies how to determine if a given action is
allowed or not and how to interpret the result. Recently, the XACML Technical Com-
mittee has proposed a Web Service Profile of XACML (WS-XACML) [Anderson 2007]
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that specifies how to use XACML in Web services environment. WS-XACML intro-
duces two new types of policy assertion to allow Web service providers and consumers
to specify their authorization, access control, and privacy requirements and capabili-
ties regarding Web services interactions. Moreover, WS-XACML proposes an approach
to verify whether client’s capabilities and Web service provider’s requirements match
and vice versa. The ACConv enforcement process is similar to the WS-XACML process
for matching client’s capabilities and Web service provider’s requirements. In ACConv
we verify that a client has all the credentials to be granted the execution of the conver-
sations the client is interested in.

Wonohoesodo and Tari [2004] propose SWS-RBAC and CWS-RBAC, two RBAC
(Role-Based Access Control) models, respectively, for single and composite Web ser-
vices. Web services providers’ access control requirements are represented as permis-
sions that can be defined both at service and service parameters level. Permissions
associates access modes, such as read, modify, execute, write, with parameters. A role
is associated with a list of services that it has the permission to execute and with a
list of permitted access modes on the service parameters. Therefore, a user in order
to access a service must have been assigned to a role that must be granted permission
to the service and that has, at least, the minimum access modes on the service para-
meters. In CWS-RBAC, clients must nominate a global role before they can execute
composite services which are mapped onto local roles of the component Web services.
The main difference between ACConv and the access control models of Wonohoesodo
and Tari [2004] is the type of access control enforcement: ACConv is a credential-based
access control model, while SWS-RBAC and CWS-RBAC are RBAC models.

Sirer and Wang [2002] propose an approach for formally specifying and automati-
cally enforcing security policies. Security policies are specified using a language called
WebGuard based on temporal logics. They propose an enforcement engine that au-
tomates the task of converting security policies into access control code specific to a
particular platform. The enforcement code is integrated in the Web service code and is
executed when a Web service’s invocation starts and ends. With respect to the ACConv
policy language, WebGuard is more expressive because it allows one to express ac-
cess control requirements as temporal conditions on actions executed by clients in the
past or that they will execute in the future. However, WebGuard does not provide any
mechanism to protect access control policies disclosure while in ACConv the disclosure
of access control policies is ruled by trust policies.

Bhatti et al. [2004] propose X-GTRBAC, a trust-based, context-aware, role-based ac-
cess control model for Web services with temporal extensions. X-GTRBAC incorporates
the features of the NIST RBAC model and extends it with the specification of temporal
constraints related to role, thus enabling user-to-role assignment, permission-to-role
assignment, and role activation. Moreover, in X-GTRBAC the assignment of a client to
a role is based on the use of distributed TM credentials. Access control policies specify
which role is entitled to invoke a given service and temporal and nontemporal contex-
tual constraints. An aspect in common with ACConv is related to client identification
that is based on identity attributes.

Emig et al. [2007] propose an access control model that is a combination of tradi-
tional hierarchical role-based (RBAC) and attribute-based (ABAC) access control mod-
els. From ABAC it inherits the way service consumers are authenticated: a consumer
is identified by a set of attributes. From RBAC it inherits the definition of hierarchy of
roles and the definition of policies as a set of permissions. An access control policy is a
combination of permissions combining an object, that is an operation or the whole Web
service, and a set of attributes that the consumer has to provide with constraints that
take into account the object-associated input parameters and the environment state
(like date, time, or any other attribute related to neither the client nor object). Unlike
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traditional RBAC models, the permissions are not associated with a role but with a
set of client’s attributes. Moreover, a role does not identify a business role but a set of
client’s attributes. The main differences with ACConv are that access control policies
in the model by Emig et al. [2007] allow one to express conditions not only on client
credentials but also on contextual parameters, such as date and time, and that the
access control enforcement is not flexible. If clients cannot be assigned to a role on the
basis of the attributes they present, they are denied access to the service. In ACConv,
when a client is denied access, the client is requested to provide additional credentials
to be assigned to a new set of conversation access control policies.

Bertino et al. [2006] propose WS-AC1, an access control model with flexible protec-
tion object granularity and negotiation capabilities. WS-AC1 is based on the specifica-
tion of policies stating conditions on the values of the identity attributes and service
parameters that a client must provide to invoke the service. Conditions may also be
specified against context parameters, such as time. Further, it is possible to define fine-
grained policies by associating them with a specific service as well as coarse-grained
policies, to be applied to a class of services. The negotiation capabilities of WS-AC1
are related to both identity attributes and service parameters. Through a negotiation
process, the client is driven toward an access request compliant with the service de-
scription and policies. Both WS-AC1 and ACConv are credential-based access control
models and are characterized by a flexible policy enforcement process.

Olson et al. [2006] propose an authorization service for Web services based on trust
negotiations. In trust negotiation, access policies for resources in the system are writ-
ten as declarative specifications of the attributes that authorized users must possess.
Entities in the system possess digital credentials issued by third parties that attest
their attributes, along with policies that limit access to their sensitive resources and
credentials. The trust negotiation process allows the parties to mutually disclose their
credentials and policies that incrementally establish trust. In order for a client to be
granted access to a Web service, the client has to carry out a successful trust negoti-
ation with the authorization service that protects the invocations for that particular
Web service. The access control enforcement of ACConv and Olson et al.’s [2006] model
are both based on an incremental disclosure of policies and credentials between clients
and service providers. However, the model of Olson et al. [2006] does not protect the
disclosure of access control policies, while ACConv does.

Finally, other interesting proposals are related to Semantic Web services. The ap-
proaches by Denker et al. [2003] and Agarwal et al. [2004] propose to extend OWL-S
service descriptions with ontologies that represent Web service provider authorization
policies and privacy policies. Both types of policies are expressed in the Rei language
[Kagal 2002], which is an RDF Schema-based language for policy specification. It is
based on deontic concepts of rights, prohibitions, obligations, and dispensations. These
constructs have four attributes: actor, action, provision, and constraint. A constraint
specifies some conditions over the actor, action, and any other context entity that must
be true at invocation, whereas provision describes conditions that should be true after
invocation. Provisions are the actor’s obligations.

Agarwal et al. [2004] propose a credential-based access control model for Semantic
Web services. They adopt DAML-S [Ankolekar 2002] to represent Web service descrip-
tions in a machine interpretable manner. A DAML-S description has three main parts:
ServiceProfile, ServiceModel, and ServiceGrounding. ServiceProfile provides a high-
level description of a service and its provider; ServiceModel details both the control
structure and data flow structure of the process represented by the service; Service-
Grounding specifies how a service can be accessed. Moreover, Agarwal et al. [2004]
adopt SPKI/SDSI credentials [Clarke et al. 2001] to identify the service consumers to
which access control policies apply. Access control policies express a set of permissions
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and their temporal validity. They are published in the DAML-S description of the ser-
vice as preconditions of the process described int the service model part. As access
control policies are public, a client can compute the set of SPKI/SDSI credentials to
prove its eligibility to access a service.

The approaches by Agarwal et al. [2004] and Denker et al. [2003] have some aspects
in common with ACConv. First, service consumers are identified by means of creden-
tials that contain attributes. Second, the enhanced service descriptions used in those
approaches specify not only the functionalities offered by a service but also their be-
havioral semantic as in ACConv, where the behavioral semantics is represented by a
transition system. The main difference is that in those approaches access control poli-
cies are all public, while in ACConv the disclosure of access control policies is protected
by trust policies.

8. CONCLUSIONS

In this article, we presented ACConv, a novel approach for access control enforcement
in conversation-based Web services. Our focus is on access control enforcement and
limited disclosure of access control policies. While most existing approaches assume
a single-operation model in which operations are independent from each other, we as-
sume conversational Web services. Our approach strikes a trade-off between limiting
the disclosure of access control policies and allowing clients to complete the execution
of a conversation they are interested in. Such approach is based on the notion of mean-
ingful conversation; these are conversations which from a given state reaches a final
state in the Web service transition system. The conversation access control policies
associated with meaningful conversations are grouped in sets of policies having the
same sensitivity level. The disclosure of each set of policies is protected by a trust
policy. When a client requests an operation, it is associated with a set of access control
policies and a set of conversations referred to as allowable conversations. The set of ac-
cess control policies is the set of policies, the trust policy of which is satisfied by client’s
credentials. The allowable conversations are conversations which are protected by the
set of access control policies the client has been entrusted with. The allowable conver-
sations which start with the execution of an operation chosen by the client and which
access control policy is satisfied by the clients’ credentials are referred to as granted
conversations. Our approach applies to both simple and composite Web services. We
implemented ACConv in a software prototype using the Globus toolkit. The experi-
ments have shown that our approach strikes a good trade-off between the request-all
and single-operation strategies.

APPENDIX – COMPLETE RUNNING EXAMPLE

We show how ACConv can be applied to the Amazon Flexible Payments Web service8

(Amazon FPS for short). The Amazon FPS provides a set of operations that allows
clients to accept payments for selling goods or services, raise donations, execute recur-
ring payments, and send payments. We have considered only a subset of the operations
provided by the Amazon FPS to illustrate the ACConv enforcement process, that is the
service that allows users to make payments and to manage their transactions. A de-
scription of these operations is reported in Table I. Figure 6 shows the Amazon FPS
transition system with the selected operations. The different labels represent the op-
erations that a client can invoke from any given state. Final states are represented by
gray circles.

8http://aws.amazon.com/fps
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Table I. Selection of Amazon FPS Operations

Operation Description
GetAccountBalance returns the current balance of a customer account
GetAccountActivity retrieves transactions from an account for a given time period
GetTransaction fetches the details of a transaction
Pay initiates a transaction to move funds from the buyer to the recipient
Reserve reserves the transaction amount on the buyer’s credit card or

debit card for later settlement
Settle charges an amount previously reserved against the buyer’s credit card
Refund refunds a successfully completed payment transaction
Cancel voids a transaction is in a reserved state or waiting to be processed
FundPrepaid transfers money to the account balance

Fig. 6. Amazon FPS transition system.

From the initial state S0, a client can select the operations GetAccountActivity,
GetTransaction, or GetAccountBalance. A client can list the information about
the transactions associated with her account for a given time period by invok-
ing GetAccountActivity operation or she can view the information about a specific
transaction by executing operation GetTransaction. Once invoked the operation
GetTransaction, the client can decide which operation to invoke according to the sta-
tus of the transaction as follows.

— If the transaction is pending, the client can invoke operation Pay to complete the
transaction. The execution of Pay operation can fail (state S10 is reached) or it can
be successful (state S11 is reached).

— If the transaction is reserved, the client can invoke operation Settle to complete
the transaction. The execution of Settle operation can fail (state S12 is reached) or
it can be successful (state S13 is reached).

— If the transaction has been successfully completed, the client can invoke the opera-
tion Refund to have his/her money back. The execution of Refund operation can fail
(state S14 is reached) or it can be successful (state S15 is reached).

— If the transaction is reserved or pending, the client can invoke the operation Cancel
to void the transaction.

ACM Transactions on the Web, Vol. 5, No. 3, Article 13, Publication date: July 2011.



ACCONV – An Access Control Model for Conversational Web Services 13:29

Fig. 7. Gscc of Amazon FPS.

From the initial state, the client can also decide to check her account balance by
invoking GetAccountBalance, and then make a one-time payment by executing Pay
operation or to reserve the amount of the transaction on her credit card by invoking
Reserve operation. The execution of Pay and Reserve operations can fail because the
client has not enough funds, and, thus, the client can invoke the operation FundPrepaid
to add money to her account. If the execution of the Reserve operation is successful,
the client can perform the Settle operation to charge his/her credit card of the amount
previously reserved.

To illustrate ACConv enforcement process, we focus our attention on the initial state
S0. Figure 7 shows the graph of the strongly connected components for the Amazon
FPS. We exploit this graph to compute meaningful conversations. Each node in the
graph is associated with a triple (cardinality, coverage, rank). Note that the graph is
quite similar to the original Amazon FPS transition system because it contains only
one strongly connected component composed by the states S2, S3, and S6. This strongly
connected component is represented by node C2. C2 has one ingoing node and outgoing
node, that is, S2. This strongly connected component is associated with the following
triple of values (3, 4, 5), indicating, respectively, cardinality, coverage, and rank. The
cardinality value is equal to 3 because there are three different operations labeling
the transitions between states S2, S3, and S6: Reserve, Pay, and FundPrepaid. The
coverage is equal to 4 because the shortest conversation going from state S2 to state
S2 and including all the operations labeling the transitions between states in C2 is Pay
• FundPrepaid • Reserve • FundPrepaid of length 4. Finally, the rank is equal to 5
according to the formula rank(C2 ) = 1 + coverage(C2) + rank(C2) because the coverage
of C2 is equal to 4 and the rank of its predecessor node C2 is equal to 0. The set MS0

of meaningful conversations originating from S0 contains the following conversations
(in the case of conversations with nondeterministic operations, the reached state is
specified).

— conv1 : GetAccountActivity
— conv2 : GetAccountActivity • GetTransaction
— conv3 : GetAccountActivity • GetTransaction • Refund reaching state S15
— conv4 : GetAccountActivity • GetTransaction • Pay reaching state S10
— conv5: GetAccountActivity • GetTransaction • Settle reaching state S12
— conv6 : GetAccountActivity • GetTransaction • Cancel
— conv7: GetAccountActivity • GetTransaction • Settle reaching state S13
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Table II. Operation Access Control Policies

Operation Access Control Policies

GetAccountBalance if AmazonID, AmazonPaymentAccountNumber

GetAccountActivity if AmazonID

GetTransaction if AmazonID

Pay if CreditCard : Type = Visa ∨ CreditCard : Type = MasterCard ∨
BankAccountInfo, AmazonPaymentAccountNumber

Reserve if CreditCard : Type = Visa ∨ CreditCard : Type = MasterCard ∨
BankAccountInfo, AmazonPaymentAccountNumber

Settle if TRUE

Refund if CreditCard : Type = Visa ∨ CreditCard : Type = MasterCard ∨
BankAccountInfo, AmazonPaymentAccountNumber

Cancel if TRUE

FundPrepaid if CreditCard : Type = Visa ∨ CreditCard : Type = MasterCard ∨
BankAccountInfo

— conv8 : GetAccountActivity • GetTransaction • Pay reaching state S11
— conv9 : GetAccountActivity • GetTransaction • Refund reaching state S14
— conv10 : GetTransaction
— conv11 : GetTransaction • Refund reaching state S14
— conv12 : GetTransaction • Settle reaching state S13
— conv13 : GetTransaction • Cancel
— conv14 : GetTransaction • Pay reaching state S10
— conv15 : GetTransaction • Settle reaching state S14
— conv16 : GetTransaction • Pay reaching state S11
— conv17 : GetTransaction • Refund reaching state S15
— conv18 : GetAccountBalance
— conv19 : GetAccountBalance • Pay reaching state S5
— conv20 : GetAccountBalance • Pay reaching state S6
— conv21 : GetAccountBalance • Reserve reaching state S4
— conv22 : GetAccountBalance • Reserve reaching state S3
— conv23 : GetAccountBalance • Reserve • Settle reaching state S7
— conv24 : GetAccountBalance • Reserve • Settle reaching state S8
— conv25 : GetAccountBalance • Pay • FundPrepaid
— conv26 : GetAccountBalance • Reserve • FundPrepaid
— conv27 : GetAccountBalance • Pay • FundPrepaid • Reserve reaching state S3
— conv28 : GetAccountBalance • Pay • FundPrepaid • Pay reaching state S5
— conv29 : GetAccountBalance • Reserve • FundPrepaid • Pay
— conv30 : GetAccountBalance • Reserve • FundPrepaid • Reserve
— conv31 : GetAccountBalance • Reserve • FundPrepaid • Reserve • Settle reaching

state S7
— conv32 : GetAccountBalance • Reserve • FundPrepaid • Reserve • Settle reaching

state S8
— conv33 : GetAccountBalance • Pay • FundPrepaid • Reserve • Settle reaching

state S7
— conv34 : GetAccountBalance • Pay • FundPrepaid • Reserve • Settle reaching

state S8
— conv35: GetAccountBalance • Pay • FundPrepaid • Reserve • FundPrepaid • Reserve
— conv36 :GetAccountBalance • Pay • FundPrepaid • Reserve • FundPrepaid • Reserve

• Settle reaching state S8
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Table III. Conversation Access Control Policies

Policy identifier Conversation Access Control Policies
pol1 conv1 if AmazonID

pol2 equal to pol1
pol3 conv3 if AmazonID, CreditCard : Type = Visa ∨

CreditCard : Type = MasterCard ∨ BankAccountInfo,
AmazonPaymentAccountNumber

pol4 conv4 if AmazonID, CreditCard : Type = Visa ∨
CreditCard : Type = MasterCard ∨ BankAccountInfo,
AmazonPaymentAccountNumber

pol5 equal to pol1
pol6 equal to pol1
pol7 equal to pol1
pol8 equal to pol3
pol9 equal to pol3
pol10 equal to pol1
pol11 equal to pol3
pol12 equal to pol1
pol13 equal to pol1
pol14 equal to pol3
pol15 equal to pol1
pol16 equal to pol3
pol17 equal to pol3
pol18 conv1 if AmazonID,AmazonPaymentAccountNumber

pol19, pol20, pol21, pol22, equal to pol3
pol23, pol24, pol25, pol26

pol27, pol28, pol29, pol30

pol31, pol32, pol33, pol34

pol35, pol36, pol37

— conv37 :GetAccountBalance • Pay • FundPrepaid • Reserve • FundPrepaid • Reserve
• Settle reaching state S7.

Access control policies protecting single operations are listed in Table II. Con-
versation access control policies of conversations in MS0 are reported in Table III.
The service provider groups these access control policies on the basis of the policies’
sensitivity. The different sets of access control policies and the trust policies regulating
their disclosure to clients are reported in Table IV. Now suppose that the client being
in state S0 invokes the operation GetAccountBalance and provides her eBayGold
credit card number proving that she is a rewarded eBay customer. The credential
presented by the client is evaluated against the trust policies associated with CS0

l2 ,
the conversation access control policy set that protects conversations conv18, conv19,
conv20, conv21, conv22, conv23, conv24, conv25, conv26, conv27, conv28, conv29, conv30,
conv31, conv32, conv33, conv34, conv35, conv36, conv37 that start with the execution
of GetAccountBalance, the operation chosen by the client. The client satisfies the
trust policy protecting CS0

l2 , and as a consequence is asked to provide the credentials
AmazonID, her Social Security Number, and one credential among CreditCard,
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Table IV. Sets of Conversation Access Control Policies and Trust
Policies Protecting Them

Access Control Policy Sets Trust Policy

ClS0
1 :{pol1,pol2,pol5, ClS0

1 if PicureID : Age > 21
pol6,pol7,pol10

pol12,pol13,pol15

pol18}
ClS0

2 :{pol3,pol4,pol8, Cls0
2 if eBayGoldCreditCard ∨

pol9,pol11,pol14, pol16, SSN
pol17, pol19, pol20, pol21

pol22, pol23, pol24, pol25

pol26, pol27, pol28, pol29

pol30, pol31, pol32, pol33

pol34, pol35, pol36, pol37}

BankAccountInfo and AmazonPaymentsAccountNumber that are requested in the
conversation access control policies in set CS0

l2 .
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