
International Journal of Web Services Research, 3(3), 27-60 July-September 2006 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

ABSTRACT

This paper presents an innovative access control model, referred to as Web service Access Control
Version 1 (Ws-AC1), specifically tailored to Web services. The most distinguishing features of
this model are the flexible granularity in protection objects and negotiation capabilities. Under
Ws-AC1, an authorization can be associated with a single service and can specify for which
parameter values the service can be authorized for use, thus providing a fine access control
granularity. Ws-AC1 also supports coarse granularities in protection objects in that it provides
the notion of service class under which several services can be grouped. Authorizations can then
be associated with a service class and automatically propagated to each element in the class.
The negotiation capabilities of Ws-AC1 are related to the negotiation of identity attributes and
the service parameters. Identity attributes refer to information that a party requesting a service
may need to submit in order to obtain the service. The access control policy model of Ws-AC1
supports the specification of policies in which conditions are stated, specifying the identity
attributes to be provided and constraints on their values. In addition, conditions may also be
specified against context parameters, such as time. To enhance privacy and security, the actual
submission of these identity attributes is executed through a negotiation process. Parameters
may also be negotiated when a subject requires use of a service with certain parameters values
that, however, are not authorized under the policies in place. In this paper, we provide the for-
mal definitions underlying our model and the relevant algorithms, such as the access control
algorithm. We also present an encoding of our model in the Web Services Description Language
(WSDL) standard for which we develop an extension, required to support Ws-AC1.

Keywords: access control; authorization; security; trust negotiation; WSDL

INTRODUCTION
Web services are a key component of the

emerging, loosely coupled, Web-based comput-
ing architectural paradigm. They represent the
core element for building complex application

services provided either by single companies or
by a set of cooperating companies. The area of
Web services today, thus, is an active area charac-
terized by academic research, industrial develop-
ments as well as standardization efforts.

An Adaptive Access Control Model
for Web Services
Elisa Bertino, Purdue University, USA

Anna C. Squicciarini, Purdue University, USA
Lorenzo Martino, Purdue University, USA
Federica Paci, University of Milano, Italy

IDEA GROUP PUBLISHING

This paper appears in the publication, International Journal of Web Services Research, Volume 3, Issue 3
edited by Liang-Jie Zhang © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITJ3332

28 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

However, despite such intense research
and development efforts, current Web service
technology does not provide yet the flexibility
needed to “tailor” a Web service according
to preferences of the requesting subjects,
thus failing to fulfil the mass-customization
promises made at the beginning of the Web
services era. At the same time, Web service
providers demand enhanced adaptivity capa-
bilities in order to adapt the provisioning of a
Web service to dynamic changes of the Web
service “environment” according to their own
policies. Altogether, these two requirements
call for policy-driven access controls model
and mechanisms, extended with negotiation
capabilities.

Models and languages to specify access
and management control policies have been
widely investigated in the area of distributed
systems (Damianou, Dulay, Lupu, & Sloman,
2001). Standardization bodies have also pro-
posed policy-driven, standard access-control
models (Oasis XACML, 2004). The main
goals of such models are to separate the access
control mechanism from the applications and to
make the access control mechanism itself eas-
ily configurable according to different, easily
deployable access control policies.

The characteristics of the open Web
environment, where interacting subjects are
mostly unknown to each other, has led to the
development of the trust negotiation approach
as a suitable access control model for this en-
vironment (Yu, Winslett, & Seamons, 2003;
Herzberg, Mihaeli, Mass, Naor, & Ravid, 2000;
Bertino, Ferrari, Squicciarini, 2003). Trust
negotiation itself has been extended with adap-
tive access control, in order to adapt the system
to dynamically changing security conditions
(Ryutov, Zhou, Neuman, Leithead, & Seamons,
2005). In such work, a framework is proposed
that integrates trust negotiation techniques with
a middleware (Ryutov & Neumman, 2002),
providing access control and application-level
intrusion detection and response. Automated
negotiation is also being actively investigated
in different application domains, such as e-busi-
ness and Grid computing. However, a common

key requirement that has been highlighted is
the need of a flexible negotiation approach
that enables the system to dynamically adapt to
changing conditions. In addition, the integration
of trust negotiation techniques with Semantic
Web technologies, such as semantic annotations
and rule-oriented access control policies, has
been proposed (Gavriloaie, Nejdl, Olmedilla,
Seamons, & Winslett, 2004). In this approach,
the resource under the control of the access
control policy is an item on the Semantic Web,
with its salient properties represented as RDF
properties. RDF metadata, managed as facts
in logic programming, are associated with a
resource and are used to determine which poli-
cies are applicable to the resource.

When extending a Web service with ne-
gotiation capabilities, the invocation of a Web
service has to be managed as the last step of a
conversation between the client and the Web
service itself. The rules for such a conversation
are defined by the negotiation protocol. Such a
negotiation protocol should be described and
made publicly available in a similar way as a
Web service operation is publicly described
through WSDL (W3C WSDL, 2005) dec-
larations. An eXtensible Markup Language
(XML)-based, machine-processable negotia-
tion protocol description allows an electronic
agent to automatically generate the messages
needed to interact with the Web service. Of
course, the client and the Web service must be
equipped with a negotiation engine that evalu-
ates the incoming messages, makes decisions
and generates the outgoing messages according
to the agreed-upon protocol.

The models already proposed for peer-
to-peer negotiations assume that both parties
are equipped with the same negotiation engine
that implements the mutually understood ne-
gotiation protocol. This assumption, however,
might not be realistic and may prevent the wide
adoption of negotiation-enhanced access control
models and mechanisms.

In this paper, we address the outlined re-
quirements by proposing a Web service access
control model and an associated negotiation
protocol. The proposed model, Ws-AC1, is

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

based on a declarative and highly expressive
access control policy language. Such a language
allows one to specify authorizations containing
conditions and constraints not only against the
Web service parameters but also against the
identity attributes of the party requesting the
service and context parameters that can be
bound, for example, to a monitor of the Web
service operating environment. An additional
distinguishing feature of Ws-AC1 is the range of
object protection granularity it supports. Under
Ws-AC1, the Web service security administrator
can specify several access control policies for
the same service, each one characterized by
different constraints for the service parameters,
or can specify a single policy that applies to all
services in a set; to support such granularity, we
introduce the notion of service class to group
Web services. To the best of our knowledge Ws-
AC1 is the first access control model developed
specifically for Web services characterized by
articulated negotiation capabilities. We believe
that a model like Ws-AC1 has important applica-
tions, especially when dealing with privacy of
identity information of users and with dynamic
application environments.

To represent the negotiation protocol,
we also propose an extension to the WSDL
standard. The main reason of that choice is
that, although the Web Services Choreography
Description Language (WS-CDL) is the emerg-
ing standard for representing Web services
interactions, WS-CDL is oriented to support
a more complex composition of Web services
in the context of a business process involving
multiple parties.

The paper is organized as follows: We first
present an overview of our approach to access
control for Web services, and the formal model
of Ws-AC1. We then describe how the Ws-AC1
service description and the Ws-AC1 policies
can be represented in WSDL and WS-Policy
(IBM, BEA Systems, Microsoft, SAP AG,
Sonic Software & VeriSign, 2004), respectively.
Finally, we discuss related works and present
the conclusion and directions for future work.

SYSTEM OVERVIEW
Ws-AC1 is an implementation-independ-

ent, attribute-based access control model for
Web services, providing mechanisms for nego-
tiation of service parameters. In Ws-AC1, the
requesting agents (also referred to as subjects)
are entities (human being or software agents),
the requests by which have to be evaluated and
to which authorizations (permissions or deni-
als) can be granted. Subjects are identified by
means of identity attributes qualifying them,
such as name, birth date, credit card number
and passport number. Identity attributes are
disclosed within access requests invoking the
desired service.

Access requests to a Web service (also
referred to as provider agent) are evaluated
with respect to access control policies. Note
that for the sake of simplicity, our model does
not distinguish between the Web service and
the different operations it provides; that is, we
assume that a Web service provides a single
operation. Our proposed access model can be
applied to the various operations provided by
a Web service without any extension.

Access control policies are defined in
terms of the identity attributes of the requesting
agent and the set of allowed service parameters
values. Both identity attributes and service pa-
rameters are further differentiated in mandatory
and optional ones. For privacy and security
purposes, access control policies are not pub-
lished along with the service description, but
are internal to the Ws-AC1 system. Ws-AC1
also allows one to specify multiple policies at
different levels of granularity. It is possible to
associate fine-grained policies with a specific
service as well with several services. To this
end, it is possible to group different services in
one or more classes and specify policies refer-
ring to a specific service class, thus reducing
the number of policies that need to be specified
by a policy administrator. A policy for a class
of services is then applied to all the services of
that class, unless policies associated with the
specific service(s) are defined. We present in the
following sections the conditions under which
services can be grouped into classes and the

30 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

criteria used by Ws-AC1 to select the policies
to use upon a service request.

Moreover, to adapt the provision of the
service to dynamically changing conditions, the
Ws-AC1 policy language allows one to specify
constraints, dynamically evaluated, over a set of
environment variables, referred to as Context, as
well as over service parameters. The context is
associated with a specific service implementa-
tion, and it might consist of monitored system
variables, such as the system load.

As illustrated in Figure 1, the access con-
trol process of Ws-AC1 is organized into two
main sequential phases. The first phase deals
with identification of the subject requesting
the service. The second phase, executed only
if identification succeeds, verifies the service
parameters specified by the requesting agent
against the authorized service parameters.

The identification phase is adaptive, in that
the provider agent might eventually require the
requesting agent to submit additional identity
attributes in addition to those originally submit-
ted. Such an approach allows the provider agent
to adapt the service provisioning to dynamic
situations: for example, after a security attack,
the provider agent might require additional
identity attributes to the requesting agents. In
addition, to enhance the flexibility of access
control, the service parameter verification phase
can trigger a negotiation process. The purpose
of this process is to drive the requesting agent
toward the specification of an access request
compliant to the service specification and poli-
cies. The negotiation consists in an exchange
of messages between the two negotiating
entities to limit, fix or propose the authorized
parameters the requesting agent may use. The

Figure 1. Conceptual organization of access control in Ws-AC1

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

negotiation of service parameters allows the
provider agent to tailor the service provisioning
to the requesting agent preferences or, at the
opposite, to “enforce” its own preferred service
provisioning conditions.

THE WS-AC1 MODEL:
FORMAL DEFINITIONS
In this section we formally specify the

main notions underlying the Ws-AC1 access
control model. We refer to an example of a Web
service, called DrugStore, supplying medicines
and drugs to general customers and to private
clinics and hospitals. We start by presenting the
notion of service description, which specifies
the information necessary to invoke the service.
We then introduce, respectively, the notion of
Web service context, access request and access
control policy.

Definition 1 (Service Description)

A service description is a tuple of the
form Serv-descr = <s; Parameters; AuthAt-
trs> where:

• s is a service identifier;
• Parameters = [Pspec1,..,Pspecn] where

Pspeci, i=1,…,n, is a triple of the form
(Pi, DomainPi, ParamType Pi) such that:
 Pi is a parameter name;
 DomainPi denotes the set of values

the parameter can assume;
 ParamTypePi ∈ {mand, opt} speci-

fies whether the parameter is man-
datory or optional;

• AuthAttrs = [(A1, AttrTypeAi), (A2,
AttrTypeA2)….,(Ak, AttrTypeAk)] where
(Ai, AttrTypeAi), i=1,…,k, represents an
identity attribute; Ai is the name of the
attribute, and AttrTypeAi indicates if the
attribute is mandatory or optional.

Given a service description of a service
s, in the following we represent with MandAtt
the set of mandatory attributes in AuthAttrs and
MandPar the set of mandatory parameters in
Parameters. Further, we refer to as PN the set
of parameter names in Serv-descr.

A service description serves the following
main purposes:

1. It allows the potential clients of the
service to obtain the description of both
the identity attributes (AuthAttrs) and
the service parameters (Parameters)
needed to submit a request to the ser-
vice. Identity attributes are properties,
such as name, birth date, credit card and
passport, qualifying a requesting agent.
Service parameters represent information
the requesting agent has to provide to
activate the operation supported by the
service, and also information related to
level of quality of service required by the
requesting agent.

2. It conveys (and specifies) to potential
clients of the service the following in-
formation:
 which identity attributes are manda-

tory and optional;
 which service parameters are man-

datory and optional.

While mandatory identity attributes and
service parameters must be assigned a value
by the requesting agent as part of the initial
request for the service, the optional ones do not
have such a requirement. However, depending
on their values, submission of the mandatory
attributes by the requesting agent may not be
enough for gaining access to the service. As
such, values for the optional identity attributes
may be required by the service agent during
the subsequent negotiation process. We further
elaborate on requesting agent authentication in
the following section.

Accesses in Ws-AC1 are either granted or
denied on the basis of access conditions referring
to the identity attributes of the requesting agent
and in terms of the parameters characterizing
the service.

Example 1. Serv-descr = <DrugStore;
((MedicineName, string, opt) (MedicineAct
ivePrinciple,string,mand), (Price, {Lowest,
Medium, High}, mand), (Quantity,{} ,mand));

32 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

(CustomerId, mand)> is the DrugStore service
description where:

• DrugStore is the service identifier
• MedicineName, MedicineActivePrin-

ciple, Price and Quantity are the service
parameters necessary to invoke the
DrugStore service. MedicineName is
an optional parameter and indicates the
name of the medicine the customer wants
to order. MedicineActivePrinciple speci-
fies the active principle of the medicine
the customer wants to purchase, Price
represents customer preference about
the medicine price and Quantity is the
number of the medicine items required
by the customer.

• CustomerId is the attribute used by the
Ws-AC1 system to identify the service
requester. CustomerId can be the name
of a final user or the name of a Hospital
or a private Clinic.

The Ws-AC1 system associates with the
service a context, composed of a set of variables
that can influence service provisioning. The
formal definition is given in what follows.

Definition 2 (Web Service Context)
Let s be a service identifier. Let SV be set

of names of the Ws-AC1 system variables. The
context of s is a set serv_context = {CP1: cp1,
CP2: cp2, …, CPm : cpm}, where CPi is a variable
name in SV and cpi is the value assigned to the
corresponding variable, i=1,…,m.

The context is evaluated by the Ws-AC1
system to enforce access control to the service
as explained later in this section. The Ws-AC1
system updates the context variables each time
an access request is received or the context
changes. In what follows, the set of context
variable names for a service s is abbreviated
with CVN.

Example 2. An example of context that can
be associated with the DrugStore service is

serv_contextDrugStore = [UsersConnected:1000],
where UsersConnected records the number of
users connected to the service during a given
time period.

The invocation of a service is formalized
as an access request in which the requesting
agent has to provide the information specified
in the service description; that is, its qualifying
attributes, the parameters of the Web service
and the Web server identifier.

Definition 3 (Access Request)
An access request is a tuple acc = (a, s,

p) where:

• a = [A1: a1, A2: a2,…. , Am: am] where Ai is an
identity attribute of the requesting agent
and ai is the associated value, i=1,…,m

• s is a service identifier;
• p = [P1: p1, P2: p2,…., Pk: pk] where Pi is a

parameter characterizing the service and
pi is the associated value, i=1,…,k..

Example 3. Referring to the service description
introduced in Example 1, the access request must
contain the identity attribute CustomerId and
the service parameters MedicineActivePrin-
ciple, Price and Quantity. An example of such
an access request is the following:

acc = ([CustomerId: Chicago Hospital]; Drug-
Store; [MedicineActivePrinciples: salicylic
acid, Price:Medium; Quantity:20000]).

The Ws-AC1 system evaluates access
requests with respect to the access control poli-
cies protecting the required service. The same
service may be protected by several access
control policies. Informally, an access control
policy is expressed by means of three compo-
nents: a component to authenticate the requester,
a component for specifying the parameters to
which the policy applies to and a component
for specifying the parameter values allowed by
the service. To authenticate requesters, policies
may convey attribute conditions specifying

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

the conditions that each identity attribute of
the requesting agent has to satisfy in order to
access the service.

To enhance flexibility, the model allows
one to specify for each service the set of legal
parameter values that the service parameters
can be assigned. Legal parameter values are de-
fined by ad-hoc rules, referred to as constraints,
defined over the set of the service parameters
and/or the set of the service context variables.
Constraints are evaluated dynamically. It is thus
possible to adapt the access control policies to
dynamically varying conditions. The formal
definition of the constraints is given in what
follows. The definition refers to the following
sets: PN, the set of the parameters names; CVN,
the set of context variable names.

Definition 4 (Constraint)
Let serv-descr be a service description of

a service s, and let serv_context = (CP1, CP2, …,
CPm) be the associated context. A constraint is
represented by a logic rule of the form:

H ← L1, L2,.........., Ln, not F1, not F2,..........not Fm

where:

• H is the head of the rule and is an expres-
sion of the form ArgName Op Values
where ArgName is an element in PN,
Op is a comparison operator1 or the ∈
operator, and Values can be a set of values
defined through enumeration or a range
expression [vbegin,vend], or can be a single
value;

• L1, L2, …Ln, not F1, not F2,….,not Fm is
the body of the rule; each Li, i=1,…,n, or
Fk k=1,…,m, in the body of the rule can
be an expression of the form ArgName op
Values, where ArgName is either an ele-
ment in PN or in CVN. The body of a rule
is empty to denote always true rules.

A constraint restricts the set of values
associated with a parameter on the basis of the
current values of the context variables and/or

of the values assumed by other services’ pa-
rameters. In the following, given a constraint
Constrk, we denote with Legal_ValuesConstrk(Pi)
the Values set of values assigned to the parameter
Pi in the head of Constrk and with Target Constrk
the service parameter name Pi in H.

Example 4. With respect to the Web service
presented in Example 1, following constraints
can be specified:

• Quantity=10MedicineActivePrinciple
=salicylAcid; Price=Low

• Price=HighStockLevel<100,Medicin
eActivePrinciple=sildenafil citrato

The first constraint states that if the re-
questing agent wants to purchase a medicine,
the active principle, which is salicyl acid, paying
the lowest price, it can order only 10 items.

The second constraint specifies that when
the stock level of the requested medicine is less
than 100, and the user wants to order a medi-
cine, the active principle of which is sildenafil
citrate, it can only place the order paying a
high price per medicine.

As already mentioned, access control
policies in Ws-AC1 can be specified at dif-
ferent granularity levels. Precisely, a policy
can govern access to either a single service
(corresponding, in our model, to a Web service
description) or a class of services. Services
can be clustered in classes and be referred as a
whole in a policy. In the following, we represent
a class of services as a set of service identifiers
WSClass={s1,..,sk}, where si, i=1,…, k, denotes
a service identifier.

 Example 5. The DrugStore service introduced
in Example 1 is an element of the WSClass
BuyOnline. BuyOnline is composed of three
Web services: DrugStore, FoodStore and On-
lineStore. FoodStore is a Web service allowing
one to buy any kind of food online. OnlineStore
is a Web service that allows one to buy different

34 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

kinds of products belonging to different catego-
ries, like Books, Music, Electronics.

DrugStore, FoodStore and OnlineStore
are characterized by the same mandatory iden-
tity attribute CustomerId and by the mandatory
parameters Price and Quantity.

In the following, we use the dot notation
to refer to a component of a tuple; that is, we
use R.a to denote component a of tuple R.

For the sake of simplicity, we provide first
the notion of access control policy for a single
service and then, in Definition 6, we formalize
the notion of access control policies for a class
of services.

Definition 5 (Service Access Control
Policy)

Let s be a service, and let serv-descr =
<s; Parameters; AuthAttrs> be its descrip-
tion. An access control policy specified for s is
defined as a tuple pol = <st; C; ParamConstr;
ParamSet>, where:

• st denotes the identifier of s;
• C is a list of the form {CA1, CA2, …..,

CAn}, n≥1, where CAi, i=1,…,n, is either
an attribute condition or an attribute
name;

• ParamConstr = {Constr1, Constr2, …..,
Constrk}, k≥1, is a (possibly) empty set
of constraints defined over parameters
in ParamSet such that for each Constri,
Constrj , i ≠ j, Targetconstr i ≠ Targetconstr;

• ParamSet is a set of parameter names
referring to the description of st, such
that ParamSet⊆ Parameters.

The above definition shows that the
proposed access control allows one to specify
fine-grained access control policies, in that one
can associate a policy with a single service and
even specify with which input parameters the
service has to be invoked under a given policy.
However, to simplify access control administra-
tion as much as possible, it is also important
to support access control policies with coarse

granularities. Such a requirement is addressed
in our model by associating access control poli-
cies with classes of services. In other words, a
single policy can be specified for all services
belonging to a given class of services. However,
to be regulated by a single policy, a service
class has to include Web services satisfying the
condition that the set of mandatory parameters
and the set of mandatory attributes for all the
services in the class be the same.

Definition 6 (Class Access Control
Policy)

Let WSClass={s1,..,sk} be a class of ser-
vices. Let si , i=1,…k, be a service identifier in
WSClass and serv-descri = <si; Parameters;
AuthAttrs> be the corresponding service de-
scription. An access control policy specified for
WSClass is defined as a tuple pol = <class; C;
ParamConstr; ParamSet > where:

• class is the class identifier;
• C is a list of the form {CA1, … CAn} and

each CAi, i=1,…,n, is either an attribute
condition or an attribute name. Each
attribute name is a mandatory attribute
for every service si ∈ WSClass;

• Paramset is a set of parameter names.
For each si in WSClass and for each
p in Paramset, p ∈ si.Parameters and
si.p.ParamType=mand;

• ParamConstr = {Constr1, Constr2, …..,
Constrk} is a (possibly) empty set of
constraints defined over parameters in
ParamSet such that for each Constri,
Constrj, i ≠ j Targetconstr i ≠ Targetconstr.

The semantics of policies specified at
class level is that they apply to any service in
the class.

The advantage in supporting class poli-
cies for the service providers managing a large
number of services is obvious. Service provid-
ers have the possibility of clustering as many
services as they wish and specifying a unique
policy while being able to refine policies for
particular services, if required.

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Example 6. With reference to the DrugStore
Web service introduced in Example 1, consider
the following access control policies:

pol1 = < DrugStore; {CustomerId ∈{Ann
Meeker, John Smith}, PatientCardId
∈{AS128456, AX3455643} };

 { MedicineActivePrinciple, PriceFare,
Quantity };

 Quantity=10MedicineActivePrinciple
=salicyl acid,PriceFare=low>

pol2= <DrugStore; {CustomerId = John Smith,
PatientCardId = AS12345};

 { MedicineActivePrinciple, Price , Quan-
tity }; { }>

pol3= < DrugStore; {CustomerId = Chica-
goHospital , DoctorPrescriptionId =
34567};

 { MedicineActivePrinciple, Price};

Price=HighStockLevel<10,MedicineActive
Principle=sildenafil citaato

Policy pol1 states that users Ann Meeker
and John Smith having a PatientCardId equal
either to AS128456 or to AX3455643 can invoke
the service. Specifically, the policy constraints
limit the quantity that can be ordered to 10
items.

Policy pol2 states that the user John Smith
having a PatientCardId equal to AS123451
can access the service. The policy does not
impose any restriction on the values the service
parameters can assume.

Finally, policy pol3 requires that the Chi-
cago hospital providing a doctor prescription
for a drug containing sildenafil citrato can
only get the drug at a high price if the doctor
submitted the request when the stock level of
the medicine is less than 10 .

WS-AC1 IDENTITY ATTRIBUTE
NEGOTIATION

Ws-AC1 evaluates access requests with
respect to the access control policies protecting

the corresponding services or, respectively, the
service classes, if no ad hoc policies are specified
for the required services. Each access request
is first evaluated with respect to the identify-
ing attributes submitted. If the attribute values
specified by the requesting agent in the access
request do not satisfy all the conditions of any
corresponding access control policy, the access
request is said to be partially compliant. The
system can then require the requesting agent
to provide the additional attributes specified
by the policy but not appearing in the service
description.

In the following subsection, we present
the formal definitions of total and partial
compliance of an access request with respect
to an access control policy and the notion of
parameter matching of an access request with
respect to an access control policy. Then, we
describe the main steps of the identification
process of the user requesting the service, based
on the negotiation of attributes.

Formal Definitions
An access request in Ws-AC1 can be either

totally or partially compliant with a (single or
class) access control policy.

Definition 7 (Total Compliance of
Identity Attributes)

Let acc = (a, s, p) be an access request,
and let pol = <st; C; ParamSet; ParamConstr>
be an access control policy.

Acc totally complies (denoted as TC) with
pol if both the following conditions hold:

1. if st= s then acc.s = pol.s else acc.s ∈
pol.Class;

2. for each attribute condition C of the form
C = A op k, C ∈ pol.C, ∃ j : A = acc.a.Aj
∧ C is true according to value acc.a.aj
assigned to Aj.

In case no access control policy for the

required service is specified, a class policy
referring the class the required service belongs
to has to be evaluated. In such a case, condi-

36 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

tion 1 is formulated in terms of a Web service
class policy.

By definition, an access request is totally
compliant with an access control policy if all
the attribute conditions specified in the policy
are evaluated true, according to the attribute
values specified in the access request.

If no access control policy exists for which
the access request is totally compliant, the re-
quest is rejected. However, Ws-AC1 gives the
requester the possibility of providing additional
attributes to fully comply with an access control
policy. To this end, we introduce the concept of
partial compliance of an access request.

Definition 8 (Partial Compliance of
Identity Attributes)

Let acc = (a, s, p) be an access request, and
let pol= <st; C; ParamSet; ParamConstr> be an
access control policy. Acc partially complies
(denoted as PC) with pol if both the following
conditions hold:

1. If st= s then acc.s = pol.s else acc.s ∈
pol.Class;

2. An attribute Aj in acc.a and an element AC
in pol.C such that either C= A op k and is
evaluated true according to the value of
Aj or C is a attribute name equal to Aj.

As stated by the definition, an access
request for a specified service is partially com-
pliant with an access control policy if a subset
of the attribute names of the policy appears in
the access request, or if some attribute of the
access request appears in some condition of
the policy and the condition evaluates to true
according to the attribute value submitted in the
access request. In the case of partial compliance
of the attributes, Ws-AC1 asks the requesting
agent to disclose the attributes not provided in
the submitted request, but specified in the ac-
cess control policies the access request partially
complies with. Moreover, an access request may
be totally compliant with respect to a policy,
but it may specify parameter values not allowed
by the service. In this case also, the access
request cannot be accepted as-is. This leads us

to introduce another form of partial compliance
with respect to a policy. Such a notion is based
on the definition of parameter matching for an
access request given next.

Definition 9 (Parameter Matching)
Let acc = (a, s, p) be an access request,

and let pol = <st; C; ParamSet; ParamConstr>
be an access control policy. Acc is parameter
matching (denoted als as PM) with respect to
pol if both the following conditions hold:

1. If st= s then acc.s = pol.s else acc.s ∈ pol.
Class

2. each parameter acc.p.P in acc ∈ Le-
gal_Values Constrk (P) where Constr is a
constraint in pol. ParamConstr or if does
not exist a constraint Constr ∈ pol. Para-
mConstr such that Target Constr = Pi, acc.p.P
must belong to DomainP

As shown in the definition, an access re-
quest is parameter matching if each parameter
value requested is acceptable; that is, it either
satisfies a policy constraint (if applicable) or
falls in the corresponding parameter domain.
In the end, access to a Web service can only
be granted if an access request fully satisfies
an access control policy. This requires both the
successful identification of the requesting agent
and the agreement on the parameter values for
invoking the service. The next section details the
requesting agent identification process through
attribute negotiation.

THE NEGOTIATION PROCESS
FOR IDENTITY ATTRIBUTES

As mentioned in the previous discussion,
upon receiving an access request, the system
determines whether any access control policy
exists for the required service or for the class the
service belongs to for which the access request
is totally compliant for the identity attributes.
If such a policy is found, the pending request
is further evaluated for parameter matching, to
check if access can be granted. If no policy for
which the access request is totally compliant

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

is found, instead of rejecting the request, the
Ws-AC1 system checks if the access request
is partially compliant with any of the enforced
policies. If this is the case, the system asks the
requesting agent to provide additional attributes.
In particular, the requesting agent has to submit
the attributes not provided in the request, speci-
fied in the access control policies the access
request partially complies with. Such attributes
are requested by server to the requesting agent
with an ad hoc message, referred to as request
for attributes or rfa.

Definition 10 (Request for Attributes)
Let acc= (a, s, p) be an access request and

PartialCompliantPolSet = (pol1 ,… polk) be
the set of access control policies acc partially
complies with. An rfa is a disjunction of at-
tributes sets rfa = AttrSet1 V AttrSet2 V ………
V AttrSetk , where each AttrSeti = (A1, A2,…., Am),
i=1,…,k, is the set of attributes names specified
in poli.C not contained in acc.a.

If more than one access control policy is
found, Ws-AC1 selects among these policies the
ones the access request parameter is matching
with. If the result of the selection is not empty,
then the rfa will contain an attributes set for
each selected access control policy. Otherwise,
rfa will contain an attribute set for each ac-
cess control policy the access request partially
complies with. The requesting agent, thus, has
the freedom to decide which set of attributes
to reveal. The message used by the requesting
agent to reply to an rfa sent by the server is
referred to as response for attributes or rsfa.

Definition 11 (Response for Attributes)
Let rfa = AttrSet1 V AttrSet2 V ……… V

AttrSetk be a request for attributes. A response
for attributes is a tuple rsfa = [Attr1:a1, Attr2:
a2,…., Attrm:am] where each Attri ∈ AttrSeti,
i=1,…,n, is one of the attributes sets specified
in the corresponding rfa, and ai is the associ-
ated value.

After receiving the rsfa message, the
Ws-AC1 system verifies if the access request

updated with the attributes just submitted is now
totally compliant with one of the access control
policies the original access request was partially
compliant with. In case the access request now
provides all attributes required by one of the
access control policies, the system evaluates if
the requesting agent can access the service on
the basis of the parameters’ values specified.
It is important to note that the identification
process is not iterative: It lasts two rounds in
the worst case — one round for sending attri-
butes request and another one for the reply. In
case no fully compliant policy can be found,
the request is rejected without possibility of
further negotiation.

Algorithm 1 describes the negotiation
process for identity attributes submitted by a
requesting agent. In Figure 2, the main steps
of the algorithm are described. The algorithm
accepts in input two different types of mes-
sages: an access request acc or a response for
attributes rsfa.

If the input message is an access request,
the algorithm builds TotalCompliantPolSet;
that is, the set of access control policies the
request acc totally complies with (step 7). If
the set is empty, the algorithm builds a so-called
PartialCompliantPolSet; that is, the set of ac-
cess control policies the request acc partially
complies with (step 10). If there are no policies,
the access to the service is denied to the user
(steps 11-12). Otherwise, the request for attri-
bute message rfa is created by invoking function
Generate-RFA() (steps 14-20). To generate the
request for attributes message, the algorithm can
adopt two strategies. First, it checks if acc is
parameter matching with some of the policies
in the set PartialCompliantPolSet. In this case,
the algorithm builds the set SelectedPol, a sub-
set of PartialCompliantPolSet containing the
policies with which acc is parameter matching
(steps 14-16). If SelectedPol is not an empty
set, the function Generate-RFA() is activated
and generates a request for an attribute message
containing an attributes set for each policy in
SelectedPol: the set of attributes specified in rfa
contains the attributes specified in the policy,
not provided by the user in acc (steps 17-18).

38 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Instead, if SelectedPol is empty, Generate-RFA()
is activated and generates a request for attribute
message containing an attributes set for each
policy in PartialCompliantPolSet (step 20).

If set TotalCompliantPolSet is not empty,
the algorithm returns this set, as it represents
the input for the service parameter negotiation
process (step 25).

In case the input message is a response
for attributes, the algorithm first updates the
access request acc previously received, invok-
ing Update-acc().Update-acc() adds to acc the
attributes the service requester has specified
in the request for attributes. Then, it builds

the set of access control policies the updated
acc totally complies with (step 7), referred to
as TotalCompliantPolSet. If such set is empty,
the algorithm ends by denying the service ac-
cess (step 23).

Example 7. Consider the access request “acc”
introduced in Example 3 and the access control
policies specified in Example 5. Acc does not
totally comply with pol1, pol2, pol3, but it par-
tially complies with pol3. In fact, the attribute
condition CustomerId = ChicagoHospital is
evaluated to true according the CustomerId
attribute value specified in acc. Hence, the

INPUT:
Message: an access request acc= (a, s, p) or a rfsa = [Attr1: a1, Attr2 : a2,…., Attrm : am]

OUTPUT:
“Access denied” or
A request for attributes message rfa = AttrSet1 v AttrSet2 v …… v AttrSetk or
TotalCompliantPolSet , the set of access control policies, the request acc totally complies with.

1) If message is an access request acc
2) msg-type:= false
3) Else
4) If message is a rsfa
5) acc = Update-acc(acc, rsfa)
6) msg-type:= true
7) endif
8) Let TotalCompliantPolSet be the set of access control policies, the request acc totally complies with.
9) If TotalCompliantPolSet = ø
10) If msg-type:= false
11) Let PartialCompliantPolSet be the set of access control policies, the request acc partially complies

with.
12) If PartialCompliantPolSet = ø
13) return “Access denied”
14) Else
15) Foreach poli ∈ PartialCompliantPolSet
16) If acc is parameter matching with poli
17) SelectedPol = SelectedPol ∪ poli
18) If SelectedPol <> ø
19) rfa = Generate-RFA(SelectedPol, acc)
20) Else
21) rfa = Generate-RFA(PartialCompliantPolSet, acc)
22) return rfa
23) Else
24) return “Access denied”
25) Else
26) return TotalCompliantPolSet

Algorithm 1. Generation of a request for attributes

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Access
Request

acc

Any pol TC with acc? Authentication successyes

Select pols pc acc

yes

No

Any pol PC with acc?Authentication failure
Deny access

Build rfa and sent it
to subject

Update acc with received
rsfa

no

no

yes

Parameter
negotiation

Any pol TC with updated
acc?

Ws-AC1 system asks the service requester for
attribute rfa = {DoctorPrescriptionId} where
DoctorPrescriptionId is the attribute name
specified in pol3, not provided in acc.

Parameter Negotiation
In the following sections, we describe the

other relevant negotiation process of Ws-AC1;
that is, the parameter negotiation. First, we pro-
vide formal definitions of request acceptance.
Then, we illustrate the conditions triggering a
negotiation process and formalize the type of
messages and the protocol to follow.

Access Request Acceptance
Given a set of policies totally compliant

with the requesting agent request, first the Ws-
AC1 system checks whether an access control

policy exists that makes the access request
fully acceptable.

Definition 12 (Full acceptance)
Let acc = (a, s, p) be an access request,

and let pol = (s; C; ParamSet; ParamConstr)
an access control policy. Acc is fully accept-
able (denoted also as FA) by pol if both the
following conditions hold:

1. acc is totally compliant with respect to
pol, according to Definition 7.

2. acc is parameter matching with respect
to pol according to Definition 9.

In case the access request is fully accept-
able, the server grants the requesting agent
access to the service.

Figure 2. The negotiation of identity attributes in Ws-AC1

40 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

An access request is not fully acceptable
and can be negotiated if it is totally compliant
with a policy but is not parameter matching.
Precisely, one of the following conditions
occurs:

1. The access request is specified using all
the parameters appearing in one or more
access control policies, and contains
parameter values that are not legal under
these policies.

2. The access request is specified using a
subset of the parameters provided by the
policies enforced for the required service.
Therefore, the requesting agent has to
provide the missing parameters.

The requesting agent, thus, is given the
possibility of negotiating with the incorrect
parameters, as illustrated in the following
section.

INPUT:
An access request acc= (a, s, p) and a rsfa = [Attr1: a1, Attr2 : a2,…., Attrm : am]

OUTPUT:
Update access request acc’ = (a’, s, p)

1) acc’ = acc
2) for i = 0 to | rsfa |
3) acc’. a = acc’. a ∪ rsfa.Attri ∪ “: “∪ rsfa.Attri .ai
4) return acc’

Algorithm 2. Function Update_acc()

INPUT:
A set of access control policies PolSet
An access request acc= (a, s, p)

OUTPUT:
A request for attributes rfa = AttrSet1 v AttrSet2 v ……… v AttrSetk

1) rfa = ø
2) PolAttrSet = ø
3) Foreach acc.a.Ai
4) AttrSet = AttrSet ∪ Ai
5) rfa = rfa ∪ “ < “
6) Foreach poli ∈ PolSet
7) Foreach poli.C.Ck = Ak op k
8) PolAttrSet = PolAttrSet ∪ Ak
9) PolAttrSet = PolAttrSet – AttrSet
10) Foreach Ai ∈ PolAttrSet
11) rfa = rfa ∪ Ai ∪ “ , “
12) rfa = rfa ∪ “ v “
13) PolAttrSet = ø
14) rfa = rfa ∪ “ > “
15) return rfa

Algorithm 3. Function Generate-RFA()

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Example 8. With respect to our running ex-
ample, consider the following policies:

pol1= <DrugStore; {CustomerId = John Smith,
DoctorId}; {Quantity}; { Quantity ∈ [1,
5000]←}>

pol2= <DrugStore; {CustomerId = John
Smith}; {Quantity }; {Quantity ∈ [1,
1000]←}>

acc = <CustomerId: John Smith; DrugStore;
MedicineActivePrinciples: salicylic acid,
Price:High; Quantity:2500 >

The access request above partially com-
plies with policy pol1 and fully complies with
policy pol2. The requesting agent can then opt
for negotiating parameters and purchase the
drugs in the quantity allowed, or it can also
disclose its DoctorId and obtain authorization
to buy up to 500000 items.

The Negotiation Process for
Parameters

The process of parameter negotiation
consists of message exchanges between the two
parties. The provider agent starts the negotiation
by sending to the requesting agent a message
proposal, containing a combination of admit-
ted values for the parameters of the required
service. We call such a message negotiation
access proposal (NAP). Given a totally com-
pliant access request acc and an access control
policy, a NAP is a tuple of the form nap = <
NegId; ap, end> where:

• NegId is the negotiation identifier denot-
ing the current negotiation.

• ap = {P1: p1,..., Pn: pn} is a list of pairs
where Pi is a parameter name belonging
to ParamSet and pi is the corresponding
value, i=1,...,n.

• end ∈ {yes, no} is a flag denoting whether
or not the NAP is the last one in the ne-
gotiation process.

The parameters included in a NAP depend
on the misplaced values in the submitted ac-
cess request. If the access request is specified
using non-admitted parameter values (case a)
of the previous section, the generated NAP will
suggest legal values for the incorrect parameter
values. The current version of Ws-AC1 does
not provide any inference engine for checking
conflicts among the enforced access control
policies. Therefore, policies may overlap or
may subsume one another. Hence, the same
access request may be negotiated against sev-
eral policies. If this case holds, the requesting
agent will receive as many NAPs as the policies
having all the parameter names p appearing
both in ParamSet and in the p component of
the access request. Of course, although this ap-
proach maximizes the success chances of the
negotiation process, it has the drawback that
in case of a large number of fully compliant
policies, the requesting agent will be flooded
by alternative NAPs. We will explore alterna-
tive approaches to better deal with this issue in
our future work.

If the required service parameters are
not specified at all in the access request (case
b), the policies to be considered are the access
control policies having at least one parameter
name in common with the received access
request. Here, the NAP will be composed by
the parameter values chosen by the requesting
agent whenever possible, and parameter values
set by the system for the remaining parameters.
As in the previous case, only policies having
a parameter p appearing both in ParamSet
and in the p component of the access requests
are selected. Note that the criteria adopted for
defining parameter values in a NAP are based
on a “user-oriented” criteria. This means that
given a non-fully acceptable access request, the
fewest number of modifications on the original
access request are applied. In other terms, all
the acceptable parameter values are kept, while
the non-acceptable ones are replaced with legal
values. The replacement might be executed
according to different approaches. A straight-
forward solution consists of specifying constant
default parameter values to be used for filling

42 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

the missing or wrong ones. A more sophisticated
approach is to determine such values on the
fly while the proposal is generated. A possible
solution in this sense is to make use of scripts,
as proposed by Bertino et al. (2005).

Basically, the idea is to represent parameter
values and context variables in a relational form

and query them with ad hoc scripts. Scripts,
in turn, may or may not be parametric. In the
current work, we do not rely on a relational
representation of service parameters and context
variables. Parameters might also be dynamically
determined by invoking ad hoc procedures hav-
ing as input parameter names and returning legal

Algorithm 4. Negotiation algorithm

INPUT:
Message: an access request acc= (a, s, p) or a nap = [P1: p1, P2 : p2,…., Pm : pm]
Policies of the form

OUTPUT :
“Access denied”
“Access Granted”,
NAPList={nap1,…,napn}, negotiation access proposal lists, each of the form < NegId ; ap,, end>

1) If message is an access request acc
2) If a policy pol s. t. acc.s = pol.s¬
3) Let tWSclass be the class service s belongs to
4) PolSet= {pol1, …polk} be the policies for WSclass
5) else
6) PolSet={pol1, …polk} be the set of policies such that acc.s= pol.s
7) Let accPNames be the set of parameter names in acc. p
8) Foreach poli in PolSet s.t. Poli.ParName = AccReqPNames
9) Case1= Case1 Poli
10) i=1;
11) Repeat
12) If acc.p.pi in PoliParName s.t. acc.p.pi Legal_Values(pz)
13) Case1= Case1 - Poli
14) Case2= Case2 Poli
15) exit=true
16) else
17) i=i+1,
18) until i=|accPNames| or exit=true
19) If Case1 ø
20) Let polk be a randomly chosen policy in Case1
21) Return “Access granted”
22) else
23) If Case2
24) CreateProposal(PolSet, acc)
25) Foreach poli in PolSet s.t. Poli.ParName AccReqPNames
26) If acc.p.pi Legal_Values(pz)

 Case3= Case3 (Poli
27) CreateProposal()
28) endfor
29) If Case3

 “Access denied”
30) end for

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

values for those names. How these procedures
are actually encoded depends, however, on the
specific Web service implementation. As this
aspect goes beyond the scope of this work, we
do not further elaborate on it.

The negotiation algorithm is reported
in Algorithm 4. The process is iterative and
the NAP exchanges are carried on until the
requesting agent, based on the received NAP,
submits a fully acceptable request or the process
is interrupted by one of the parties. The wish
of closing the negotiation is explicitly notified
to the counterpart, and it is represented in the
algorithm by setting to yes the flag end in the
NAP message.

Table 1 summarizes the actions taken by
Ws-AC1 upon receiving an access request.

ENCODING WS-AC1 USING WS
STANDARDS

In this section, we illustrate how the main
components of the Ws-AC1 model can be rep-
resented according to the existing Web services
standards. In particular, we provide the WSDL
encoding of the Ws-AC1 service description
of DrugStore service introduced in Example 1

and the specification of Ws-AC1 access control
policies according to WS-Policy standard.

Encoding Ws-AC1 Services with
WSDL

WSDL 2.0 is an XML language for
describing Web services as a set of network
endpoints that operate on messages. The WSDL
description of a Web service consists of two
parts. The first, called the abstract part, describes
a Web service in terms of messages it sends and
receives. In particular, the types clause specifies
the structure of the exchanged messages using
XML Schema. The sequence and cardinality
of exchanged messages is described by mes-
sage exchange patterns (MEP). An operation
associates MEP with one or more messages. An
interface groups these operations in a transport
and wire independent manner. In the concrete
part of the description, bindings specify the
transport and wire format for interfaces. A ser-
vice endpoint associates network address with a
binding. Finally, a service groups the endpoints
that implement a common interface.

The main issue in describing in WSDL a
Web service supporting the Ws-AC1 model is to

Type of Acc compliance
to pol #pol Action

Acc is Totally Compliant with pol 0 Verify if exists some pol such that acc PC pol holds

≥1 For each pol, verify if acc PM pol

Acc Partially Compliant with pol 0 Deny access

≥1 Request missing attributes for all PC pol’s; then
verify if acc PM pol holds

Acc Parameter Matching with pol

0 Negotiate parameters
1 Grant access, if totally compliant, too

> 1 Negotiate by sending NAPS for each of the
parameter matching policies.

Acc Fully Acceptable by pol

0 Deny access
1 Grant access
> 1 Grant access randomly selecting a policy

Table 1. Actions to be taken. Key: Acc-access request, pol-access control policy

44 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

specify the interactions between the requesting
agents and the service provider corresponding to
the identity attributes and parameter negotiation
phases. Indeed, in Ws-AC1, the service provider
and the requesting agent can be involved in
different interactions, consisting each of a mes-
sage exchange. For example, to an initial access
request message, the service provider can reply
either with a request for attributes message, if
the access request is partially compliant with
access control policies; with a NAP message if
the requesting agent has not specified correct
values for the service parameters; or with an ac-
cess denied message. Further, during the identity
attribute negotiation phase, the requesting agent
can answer to a RFA message with a RSFA or
with an access denied message, while during
parameter negotiation phase, it can reply to a
NAP message with another NAP message or it
can simply refuse the last received NAP. Since
we assume that the Web service supports only
one operation, the operation can have multiple
input and output messages, corresponding to
Ws-AC1 Access Request, RSFA, RFA, NAP
messages. Hence, it is necessary to specify
which are the messages in input and output
and the order according to which they are ex-
changed between the requesting agent and the
service provider.

Here, we propose an extension to the
WSDL language that allows one to specify the
interactions between a requesting agent and
the service provider. We have defined a new
message exchange pattern and we extended the
syntax of the WSDL interface element. Since
WSDL 2.0 supports only MEP with at maximum
one input message and one output message, we
defined a new MEP called multi-in-multi-out.
This MEP allows one to specify for an opera-
tion exposed by the Web service and multiple
input and output messages, and allows one to
specify which is the first input message to the
operation. The input element representing the
first message in input to the operation has an
attribute initial set to the value true. Further-
more, to specify all the possible interactions,
we added an interaction_protocol_reference

subelement to the interface element, pointing
to an XML document defining the possible
interactions between the requesting agent and
the service provider. The document consists of
two components: the first defines all the possible
interactions specifying the messages involved
in the interaction; the second lists the allowable
sequences of interactions. All interactions are
included in an element Interactions. Each inter-
action is represented by an Interaction element
having two child nodes, InboundMessage and
OutboundMessage, and attributes type and
Id. An InboundMessage is a message that the
service accepts in input, an OutboundMessage
is a message sent by the service. The attribute
type specifies the type of interaction and can be
one of the following: Receive for an inbound
message, ReceiveSend for receiving an inbound
message and then sending an outbound message
as reply. The possible sequences of interactions
are collected in a Protocol element. Each alter-
native sequence of interactions is represented by
an Interactions_Sequence element containing
an Interaction subelement for each interaction
composing the sequence.

Another approach to specify interac-
tions, quite similar to ours, has been recently
proposed by Paurobally and Jennings (2005).
This approach is based on the combined use of
two Web services languages, WS-Conversation
Language (WSCL) and WS-Agreement; it al-
lows one to specify non-trivial interactions in
which several messages have to be exchanged
before the service is completed and/or the inter-
action may evolve in different ways depending
on the state and needs of the requesting agents
and of the service provider. With respect to such
an approach, our method has the advantage
that the interactions are referred in the WSDL
service description and, hence, the requesting
agent knows not only the information neces-
sary to invoke the Web service but also how to
communicate with the service provider without
retrieving any further information.

Example 9. To illustrate the proposed exten-
sions to WSDL language, we consider the

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

DrugStore service introduced in Example 1. In
Figure 3 is reported a sketch of the DrugStore
service description in WSDL, while Figure 4
represents the related XML document describing
the possible interactions.

The types element specifies the structure
of the messages characterizing Ws-AC1:
AccessRequest, ResponseforAttributes, Re-
questforAttributes, NAP, NapRefused and
AccesDenied. The interface element, called
DrugStoreInterface, is constituted by only
one operation, DrugStoreOnline. Since this
operation can have more than one input and
output message (AccessRequest, NAP, etc.), it
supports the proposed MEP multi-in-multi-out.
To specify that AccessRequest is the first mes-
sage in input to DrugStoreOnline, its attribute
initial is set to true.

The interface element contains an that
is reference for the interaction_protocol and
pointing to the XML document protocol_de-
scription.xml defining the interactions between
the requesting agent and the service.

For example, the Interaction element
AccRequest-to-Nap represents the interaction
involving the messages AccessRequest and
NAP. This interaction is of type ReceiveSend:
It means that the service receives an AccessRe-
quest message from the requesting agent and
replies with a NAP message. According to the
interaction protocol, AccRequest-to-Nap can be
followed by Nap-to-Nap and Nap-to-AccGrant
interactions or by Nap-to-AccGrant interaction,
or by Nap-to-Nap and Nap-to-AccDen interac-
tions or by a NapRefud-to-AccDen.

Specifying WS-AC1 Access Control
Policies in WS-Policy

Ws-AC1 access control policies can be
implemented in a format compliant to WS-
Policy, the current standard for Web service
policy specification. The main motivation for
using WS-Policy to represent WS-AC1 policies
is that, although access control policies are pri-
vate to the Web service — and therefore should
not in principle be made publicly available

— representing them according to a standard
might make it possible to exchange them among
different Web services sites (end-points) where
the same Web service is deployed.

WS-Policy is a specification that defines
a general framework to describe a broad range
of Web service policies. WS-Policy defines
a policy as a collection of alternatives. Each
alternative is a collection of assertions. Gen-
erally speaking, a policy assertion represents
an individual requirement, a capability and
so forth. For instance, a policy assertion can
specify a particular authentication scheme, a
transport protocol selection, a privacy policy,
quality of service characteristic and so forth.
The normal form schema of a policy accord-
ing to WS-Policy is shown in Figure 5. In this
schema, * indicates 0 or more occurrences of an
item, while the [] indicates that the contained
items must be treated as a group.

The <wsp:Policy > element is used as
a policy container. The <wsp:ExactlyOne>
element is used to define a collection of policy
alternatives. The <wsp:All> element instead is
used to define a collection of policies assertions,
each of which must be satisfied. A policy alter-
native can be considered as a particular scheme
of interaction that the requester of the service
must be able to satisfy. Note that a requester
can choose only a single policy alternative
among the alternatives provided by the policy.
Moreover, if a policy alternative is chosen, the
requester must be able to satisfy all the policy
assertions included in that policy alternative.
Figure 6 reports an example of policy that
adheres to WS-Policy specification. This ex-
ample, taken from the WS-Policy specification,
shows two policy alternatives, each composed
by a single policy assertion. The policy has to
be interpreted in the following way: If the first
alternative is selected, only the Kerberos token
type is supported; conversely, if the second
alternative is selected, only the X.509 token
type is supported.

The assertions used in a policy expression
can be defined in public specifications, like
WS-SecurityPolicy, WS-PolicyAssertion, or

46 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Figure 3. DrugStore service description in WSDL

<?xml version=“1.0”?>
<description name=“DrugStore”
 targetNamespace=http://example.com/DrugStore.wsdl
 ...
 <types>
 <schema xmlns=“http://www.w3.org/2000/10/XMLSchema”>

 <element name=“RequestforAttributes” type=“ RequestforAttributesType”>
 <element name=“ResponseforAttributes” type=“ ResponseforAttributesType”>
 <element name=“Nap” type=“ NapType”>
 <element name=“AccessDenied” type=“ xs:string” default=“ Access Denied”>
 <element name=“NapRefused” type=“ xs:string” default=“ NapRefused”>

 <complexType name=“AccessRequest Type
 “ ...
 </complexType>

 <complexType name=“RequestforAttributesType “>
 ...
 </complexType>

 <complexType name=“ResponseforAttributes Type “>
 ...
 </complexType>

 <complexType name=“NapType “>
 ...
 </complexType>

 </schema>
 </types>

 <interface name=“ DrugStoreInterface”>
 <interaction_protocol_reference xlink: type= “simple” xlink:href=”protocol_description.xml”/>
 <operation name=“DrugStoreOnline” pattern=“multi-in-multi-out”/>
 <input messageLabel=“In” element=“AccessRequest” initial=“yes”>
 <input messageLabel=“In” element=“ ResponseforAttributes “/ >
 <input messageLabel=“In” element=“Nap” />
 <input messageLabel=“In” element=“NapRefused”/>
 <output messageLabel=“Out” element=“RequestsforAttributes “ />
 <output messageLabel=“Out” element=“DeniedAccess” />
 <output messageLabel=“Out” element=“Nap”/>
 </operation>
 </interface>

<binding name=“ DrugStoreOnlineBinding “ interface=“ DrugStoreInterface “
 type=“http://www.w3.org/2005/05/wsdl/soap”
 wsoap:protocol=“http://www.w3.org/2003/05/soap/bindings/HTTP”>
 <operation ref=“ DrugStoreOnline “ /></binding>

<service name=“DrugStoreService” interface=“ DrugStoreInterface “>
 <endpoint name=“ DrugStorePort “ binding=“ DrugStoreOnlineBinding “
 address =“http://example.com/DrugStoreOnline”/>
 </endpoint>
 </service>
</description>

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Figure 4. protocol_description.xml

<Protocol_Description>
 <Interactions>
 <Interaction type = “ReceiveSend “ Id= “AccRequest-to-AccDen” >
 <InboundMessage type = “AccessRequest “/>
 <OutboundMessage type = “DeniedAccess “/>
 </Interaction>

 <Interaction type = “ReceiveSend “ Id=“AccRequest-to-Nap “>
 <InboundMessage type = “AccessRequest “/>
 <OutboundMessage type = “Nap“ />
 </Interaction>

 <Interaction type = “ReceiveSend “ Id=“AccRequest-to-ReqForAttr” >
 <InboundMessage type = “AccessRequest “/>
 <OutboundMessage type = “RequestsforAttributes “ />
 </Interaction>

 <Interaction type = “ ReceiveSend“ Id=“RespForAttr-to-Nap”>
 <InboundMessage type = “ResponseforAttributes“ />
 <OutboundMessage type = “Nap“ />
 </Interaction>

 <Interaction type = “ Receive“ Id=“RespForAttr-to-ACCGran”>
 <InboundMessage type = “ResponseforAttributes“ />
 </Interaction>

 <Interaction type = “ReceiveSend “ Id=“Nap-to-Nap” max_num_
act=”unbounded”>

 <InboundMessage type = “Nap“ />
 <OutboundMessage type = “Nap“ />

 </Interaction>

 <Interaction type = “Receive “ Id=“Nap-to-AccGran” >
 <InboundMessage type = “Nap“ />
 </Interaction>

 <Interaction type = “ReceiveSend “ Id= “NapRefus-to AccDen”>
 <InboundMessage type = “NapRefused “/>
 <OutboundMessage type = “DeniedAccess “/>
 </Interaction>

 <Interaction type = “ReceiveSend “ Id=” ResponseForAttr-to-AccDen”>
 <InboundMessage type = “ResponseforAttributes “/>
 <OutboundMessage type = “DeniedAccess “/>
 </Interaction>

 <Interaction type = “ReceiveSend “ Id=” Nap-to-AccDen” >
 <InboundMessage type = “Nap“/>
 <OutboundMessage type = “DeniedAccess “/>
 </Interaction>
 </Interactions>

<Protocol>
 <Interactions_Sequence Id=”SQ1”>
 <Interaction name= “AccRequest-to-AccDen”/>
 </ Interactions_Sequence >

(continued on the following pages)

48 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

 <OR>
 <Interactions_Sequence Id=”SQ2”>
 <Interaction name=“AccRequest-to-Nap“/>
 <Interaction name=“Nap-to-Nap“/>
 <Interaction name=“Nap-to- AccDen “/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ3”>
 <Interaction name=“AccRequest-to-Nap“/>
 <Interaction name=“Nap-to-Nap“/>

<Interaction name=“Nap-to-ACCGran“/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ4”>
 <Interaction name=“AccRequest-to-Nap“/>
 <Interaction name=“ Nap-to-AccGran “/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ5”>
 <Interaction name=“AccRequest-to-Nap“/>
 <Interaction name=“NapRefus-to-AccDen“/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ6”>
 <Interaction name=“AccRequest-to-ReqForAttr”/>
 <Interaction name=“ResponseForAttr-to-OK AccGran
“/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ7”>
 <Interaction name=“AccRequest-to-ReqForAttr”/>
 <Interaction name=“ResponseForAttr-to-AccDen “/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ8”>
 <Interaction name=“AccRequest-to-ReqForAttr”/>
 <Interaction name=“ReqForAttr-to-Nap/>
 <Interaction name=“ Nap-to- AccGran “/>
 </ Interactions_Sequence>
 <OR>
 </ Interactions_Sequence>
 <OR>

 <Interactions_Sequence Id=”SQ9”>
 <Interaction name=“AccRequest-to-ReqForAttr”/>
 <Interaction name=“RespForAttr-to-Nap”/>
 <Interaction name=“Nap-to-Nap“/>
 <Interaction name=“Nap-to- AccGran “/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ10”>
 <Interaction name=“AccRequest-to-ReqForAttr”/>
 <Interaction name=“RespForAttr-to-Nap”/>
 <Interaction name=“NapRefus-to-AccDen“/>
 </ Interactions_Sequence>
 <OR>
 <Interactions_Sequence Id=”SQ11”>

Figure 4. protocol_description.xml (cont.)

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 49

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

 <Interaction name=“AccRequest-to-ReqForAttr”/>
 <Interaction name=“RespForAttr-to-Nap”/>
 <Interaction name=“Nap-to-Nap“/>
 <Interaction name=“NapRefus-to-AccDen“/>
 < / I n t e r a c t i o n s _ S e q u e n c e >

 </Protocol>

</Protocol_Description>

Figure 5. Normal form schema of a policy according to WS-Policy

Figure 4. protocol_description.xml (cont.)

<wsp:Policy ... >
 <wsp:ExactlyOne>
 [<wsp:All> [<Assertion ...> ... </Assertion>]* </wsp:All>]*
 </wsp:ExactlyOne>
</wsp:Policy>

they can be defined by the entity owning the
Web service. The assertions of the first type are
named standard assertions and are understand-
able potentially from any client. The assertions
defined by the entity owning the Web service
instead can be understood only from those
clients to which the entity has already released
the specifications.

To encode Ws-AC1 access control poli-
cies, we define a new type of policy assertions,
since no public specification we are aware of
defines assertions suitable for expressing at-
tribute conditions and parameter constraints
required by WS-AC1 policy formalism (see
Definitions 5 and 6).

All the WS-AC1 policy components are
suitable to be represented as policy assertions.
The associations between WS-AC1 policy
components and the WS-Policy assertions are
summarized in Table 2.

Figure 5 reports an example of a simple
Ws-AC1 policy represented in a format compli-
ant to WS-Policy.

Example 10. Consider the policy pol3 intro-
duced in Example 5. The representation of pol3

in a format compliant to WS-Policy is reported
in Figure 7.

Algorithm 5 formalizes the steps neces-
sary to represent one or more Ws-AC1 policies
in a format compliant to WS-Policy. Basically,
the algorithm merges all the Ws-AC1 policies
associated with the same service into a single
policy WS-Policy compliant. Given a service
name, each Ws-AC1 policy that applies to that
service or to its related class becomes a WS-
Policy alternative. Note that because all the
Ws-AC1 policies referring to the same service
are merged into a single policy conforming to
WS-Policy, such policy can be uniquely iden-
tified by the service name (see, for instance,
Example 10).

Funct ions At t r ibu teName(CA i) ,
Operator(CAi) and AttributeValue(CAi) extract,
respectively, the name of the identity attributes,
the comparison operator and the costant K ap-
pearing in an attribute condition CAi . Function
Body(Constri) returns the set of conditions in
the body of constraint Constri , while, function
Head(Constri), extracts the head of Constri

50 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

SYSTEM IMPLEMENTATION
The Ws-AC1 implementation consists

of a client program and service system. The
client is a Web-based application, developed
using JSP. WS-AC1 service infrastructure has
been developed using Java, Tomcat and AXIS.
Tomcat is a servlet/JSP container, while AXIS
is a SOAP engine, which makes transparent

to the developer the management of SOAP
messages.

The service architecture is composed of
different Java classes that manage the exchange
of the different type of messages supported by
Ws-AC1, such as RFA and NAP and the identity
attributes and service parameters negotiation
protocol. In particular, RFA and NAP composi-

WS-AC1 access control component Assertion Type
St <ServiceIdReference></ServiceIdReference>
C <AttributeConditions>

 <AttributeCondition>+ <AttributeName></AttributeName>
<Operator></Operator>? <AttributeValue></
AttributeValue>?

 </AttributeCondition>
</AttributeConditions>

ParamSet <ParameterSet>
<ParameterName></ParameterName>+

</ParameterSet>
ParamConstr <ParameterConstraints>

 <Constraint Id>+
 <Conditions>
 <Condition></Condition>+
 </ Conditions>
 <Consequence></Consequence>
 </Constraint>

Table 2. WS-AC1 policy assertions

Figure 6. Example of policy

<wsp:Policy xml:base=http://dico.unimi.it wsu:Id=MyPolicy>
<wsp:ExactlyOne>
<wsp:All>
<wsse:SecurityToken>
<wsse:TokenType>wsse:Kerberosv5TGT</wsse:Token-
Type>
/wsse:SecurityToken>
</wsp:All>
<wsp:All>
<wsse:SecurityToken>
<wsse:TokenType>wsse:X509v3</wsse:TokenType>
</wsse:SecurityToken>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

tion is executed by two different classes: class
CreateRFA to generate request for attributes,
and class CreateNAP to generate NAP. The
system also uses a database managed by Oracle
9.2 to store the access control policies and the
context variables on the basis of which access
control is enforced.

An Example of Execution
In this section we show an example of

the case study implemented to test Ws-AC1
applicability. The client program is executed
specifying a URL address (see Figure 8). In

the example, several services are proposed to
users browsing the Web.

Once one of the available services is se-
lected, the client is asked to select the parameter
values to invoke the service and also to input
his or her authentication attributes. The forms
to fill out are reported in Figures 9 and 10.

Once the required fields are filled, Ws-
AC1 processes the request and then returns a
reply. If new attributes are needed to satisfy
any policy for the invoked service, an attribute
request is displayed, as shown in Figure 10. In
case a parameter negotiation is possible, the

Figure 7. A Ws-AC1 policy represented in a format compliant to WS-Policy compliant

pol= < DrugStore; {CustomerId = ChicagoHospital , DoctorPrescriptionId = 34567};
 {Price}; {

, Price = Low} >
<wsp:Policy >
 <wsp:ExactlyOne>
 <wsp:All>
 <ServiceIdReference>
 DrugStore
 </ServiceIdReference>
 <AtributeConditions>
 <AttributeCondition>
 <AttributeName>CustomerId</AttributeName>
 <Operator>=</Operator>
 <AttributeValue>ChicagoHospital</AttributeValue>
 </AttributeCondition>
 <AttributeCondition>
 <AttributeName>DoctorPrescriptionId</AttributeName>
 <Operator>=</Operator>
 <AttributeValue>34567</AttributeValue>
 </AttributeCondition>
 </AttributeConditions>
 <ParameterSet>
 <ParameterName>Price</ParameterName>
 </ParameterSet>
 <ParameterConstraints>
 <Constraint Id=“1”>
 <Conditions>
 <Condition>StockLevel < 10</Condition>
 <Condition>MedicineActivePrinciple=sildenafil citrato</Condition>
 <Condition> Price = Low </Condition>
 </ Conditions>
 <Consequence> Price = High </Consequence>
 </Constraint>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

52 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Algorithm 5. Algorithm for translating Ws-AC 1 policies in WS-policy compliant format.

Input:
s: the service identifier;
PolSet = {pol1, pol2, ., poln}: set of Ws-AC1 access control policies applying to the service s where each
poli = < st; C; ParamSet; ParamConstr ; ParamSet >

Output:
OutPol: a Ws-Policy compliant policy

1) OutP ol = “<wsp:Policy wsu:Id =“ s “>“
2) OutP ol = OutPol “<wsp:ExactlyOne>“
3) foreach poli PolSet
4) OutPol = OutPol “<wsp:All>“
5) OutPol = OutPol “<ServiceId Reference>“ “ s “ “</ServiceId Reference>“
6) OutPol = OutPol “<AttributesConditions>“
7) foreach CAi in poli C
8) OutPol = OutPol “<AttributeCondition>“
9) OutPol = OutPol “<AttributeName>“
10) OutPol = OutPol “ AttributeName(CAi) “
11) OutPol = OutPol “</AttributeName>“
12) OutPol = OutPol “<Operator>“
13) OutPol = OutPol “ Operator(CAi) “
14) OutPol = OutPol “</Operator>“
15) OutPol = OutPol “<AttributeValue>“
16) OutPol = OutPol “ AttributeValue(CAi) “
17) OutPol = OutPol “</AttributeValue>“
18) OutPol = OutPol “<AttributesCondition>“
19) OutPol = OutPol “<ParameterSet>“
20) foreach Pi in poli .ParamSet
21) OutPol = OutPol “<ParameterName>“
22) OutPol = OutPol “<AttributeName>“
23) OutPol = OutPol “</ParameterName>“
24) OutPol = OutPol “</ParameterSet>“
25) OutPol = OutPol “<ParameterConstraints>“
26) foreach Constri in poli .ParamConstr
27) OutPol = OutPol “<Constraint Id = “ “ i “ “ >“
28) OutPol = OutPol “<Conditions>“
29) foreach Condi in Body(Constri)
30) OutPol = OutPol “<Condition>“
31) OutPol = OutPol “ Condi “
32) OutPol = OutPol “</Condition>“
33) OutPol = OutPol “</Conditions>“
34) OutPol = OutPol “<Consequence>“
35) OutPol = OutPol “ Head(Constri) “
36) OutPol = OutPol “</Consequence>“
37) OutPol = OutPol “</Constraint>“
38) OutPol = OutPol “</ParameterConstraints>“
39) OutPol = OutPol [“</wsp:All>“
40) OutPol = OutPol [“</wsp:ExacltyOne>“
41) OutPol = OutPol [“</wsp:Policy>“
42) return OutPol

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 53

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

message in Figure 11 is displayed. Here, the
user is allowed either to select the counterpro-
posal proposed by the system, or he or she can
submit a new request.

Based on the attributes and the parameters
sent in the new counterproposal, access is either
granted or denied.

Figure 8. Service selection

Figure 9. Identity attribute insertion

RELATED WORK
Security support is one of the major chal-

lenges for the wide-scale adoption of service-
oriented computing. Important security issues
are related to secure message transmission,
access control and identity management. Our
work is related to the development of policy-
driven access control models for Web services.

54 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Figure 10. Service parameter insertion

Figure 11. Request for additional identity attributes

Figure 12. Parameter negotiation

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 55

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Policy-driven access control has been exten-
sively investigated in the last years, but only
limited work has been carried out for access
control models specifically tailored to Web
services. The most significant proposals are
by OASIS XACML profile for Web services
(2003); Wonohoesodo and Tari (2004); Gun
and Wang (2002); Ardagna, Damiani, De Ca-
pitani di Vimercati and Samarati (2004); and
Kagal Paolucci, Srinivasan, Denker, Finin and
Sycara (2004).

The most recent version of OASIS
XACML profile for Web-services (referred to
as XACML2) extends the former version of the
standard to address access control requirements
of Web services. While XACML provides an
extensible, XML-encoded language to express
both policies and access control decision
requests/responses, the extensions proposed
in XACML2 allow one to express policies
associated with Web services end-points.
XACML2 supports the specification of policies
for a WSDL port (the whole service), WSDL
operation or WSDL message, or a combination
of them. The policies associated with a port are
represented by a <PolicySet> element, that in
turn can include other <PolicySet> elements
representing the policies for an operation or a
message. Each <PolicySet> element contains
<Policy> elements, which are associated with
a single aspect of an end-point policy where an
aspect is an independent set of technical features
and parameters associated with the use of the
Web service (for example, data rate allocation).
The <Target> subelement of a <Policy> element
identifies the set of conditions governing the
aspect (referred to as objective) of the end-
point policy. Further, a <Policy> element must
contain a set of <Rule> elements that define
acceptable alternative solutions for achieving
the objective. A < Rule> element includes a set
of <Apply > elements containing predicates
expressing conditions on attributes. Attributes
can be of three different types: unconstrained,
constrained and authorized. An unconstrained
attribute is such that its value can be set by the
policy-user; for instance, the minimum time
between re-transmission of an unacknowledged

message. The value of a constrained attribute,
on the other hand, is out of the control of the
policy-user. Examples of constrained attributes
are environmental attributes like time, or sub-
ject’s attributes, the values of which are set by
some an entity or user different from the policy-
user (for instance, the status of the subject in
a customer loyalty program). The value of an
authorized attribute is asserted by an authority,
like the policy-user’s role.

Another interesting feature of the new
XACML2 is that it adopts the XACML mecha-
nisms for combining either multiple policies or
multiple rules in a single policy, to blend the
policies of the service consumer, expressing
the preference/requirements of the consumer
about the service provision and the policies
of the service provider. The <PolicySet> ele-
ment, resulting from the combination process,
represents a solution to both the consumer and
provider policy statements. A service invocation
using this solution conforms with the policy of
both the consumer and the provider.

The XACML profile for Web services and
Ws-AC1 have similar features. Both XACML2
and Ws-AC1 allow the definition of policies at
a level of the entire service or at a level of the
single service operation; in addition, XACML2
supports the specification of policies at a mes-
sage level. They both support the definition of
multiple policies for the same Web service: In
XACML2, this is achieved by defining a <Poli-
cySet> element having a <Target/Resource>
subelement referring the WSDL port. In Ws-
AC1, the policies related to the same service
have the same service identifier or belong to the
same service, while XACML2 does not support
this capability. In fact, Ws-AC1 allows the
specification of policies for a specific instance
of a Web service or for a group of services.
Further, the formulation of the policies is based
on the specification of constraints on attributes.
A Ws-AC1 policy expresses conditions against
the identity attributes of the service consumer
and constraints specifying the acceptable values
of service parameters on the base of the con-
text and of the values of the other parameters,
while a <Rule> element in XACML2 contains

56 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

predicates that are constraints on attributes. The
identity attributes of Ws-AC1 are equivalent to
the authorized attributes of XACML2, while the
context variables and the service parameters
correspond, respectively, to the environmen-
tal attributes and the constrained attributes in
XACML profile. Furthermore, the negotiation
capabilities of Ws-AC1 can be matched with
the process of combining the policies of the
service consumer and of the service provider.
Both can be seen as an approach to drive the
consumer toward a specification of a service
invocation compliant with the policies, thus
reaching a trade-off between the requirements
of the consumer and the provider.

In Wonohoesodo and Tari (2004), the
authors propose two RBAC-access control
models: SWS-RBAC for single Web services,
and CWS-RBAC for composite Web services.
Both enforce access control at two levels, the
service level and attribute level. In both models,
a service has minimum access modes applied
to one or many attributes (an attribute can be
either a service’s parameter or a returned value)
and a role is associated with a list of services;
clients, who are assigned the role, have permis-
sion to execute. In addition, a role is related
with a list of attributes the client has access to
and the access types. The permission to invoke
a service is granted to a client if he is assigned
to a role that has the requested service granting
to it and which satisfies all the minimum access
requirements on attributes used by the service.
In the CWS-RBAC model, the role to which a
client is assigned to access a composite service
must be a global role, who is mapped on local
roles of the service providers of the component
Web services. As in Ws-AC1, access control is
enforced at service and service parameter levels:
Instead of defining the set of service parameters
values acceptable to access, Wonohoesodo and
Tari specify the access modes (read, write,
modify) on service parameters the client must
have to invoke the service.

Gün Sirer and Wang (2002) proposed an
approach for formally specifying and enforcing
security policies that is independent from the
Web service implementation. Security policies

are specified using a language called WebGuard
based on temporal logic and are processed by an
enforcement engine to yield site- and platform-
specific access control. This code is integrated
with a Web server and platform-specific libraries
to enforce the specified policies on a given Web
service. The emphasis is posed on automating
and componentizing security and access control
services for Web services. In our work, we fo-
cus on specification of flexible access control
policies, and provide mechanisms for enforc-
ing access control in an adaptive manner. As
we do not deal with automating our security
policies, we believe it might be interesting to
integrate our approach with that of Gün Sirer
and Wang (2002).

Another significant work is the one of
Ardagna et al. (2004). They present a Web
service architecture for enforcing access control
policies, which are expressed in WS-Policy. The
architecture is similar to the one proposed in
the XACML standard and is characterized by
three main components: PDP (Policy Decision
Point), PEP (Policy Enforcement Point) and PAP
(Policy Administration Point). The PDP realizes
the interface between a service and the access
control architecture. When a client requests
to invoke a service, the service forwards the
request to the PDP, which, in turn, sends it to
the PEP. The PEP asks the PAP for the policies
applicable to the request and evaluates it against
the applicable policies. Then, it returns the final
decision to the PDP, which issues the service
access. Compared with Ws-AC1, the proposed
model enforces access control only on the base
of the attributes in credentials submitted by
the clients. No negotiation capability for the
attributes is offered: If the credentials of the
client do not match the policies, the system
raises an exception and denies access to the
service. It would be interesting to investigate
if the architecture proposed by Ardagna et al.
can be applied to implement WS-AC1.

The work from Kagal et al. (2004) ad-
dresses security of semantic Web services by
using policy annotations for OWL-S service
descriptions. An OWL-S description, similar
to the service description of Definition 1, com-

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 57

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

prises a profile, process model and grounding
of the Web service. The authors add to these
basic annotations other annotations about
security, trust and privacy policies for the se-
mantic Web. These annotations are used by the
client to select the service to invoke. Indeed,
the authors propose an algorithm to combine
the security requirements of the client with the
security policies of the service provider in the
OWL-S service description. The result of the
combination process is used to select the service.
It will be interesting to investigate how and if it
is possible to integrate Kagal et al.’s approach
with ours to obtain a comprehensive system
protecting privacy and enforcing authorizations
adaptively and flexibly.

In 2004, a first preliminary model for Web
services access control was proposed by Bertino
et al. The system, called WS-Aba, supports at-
tribute-based access control and a first simple
notion of access negotiation of Web service
parameters. However, no actual protocol for
supporting access negotiation was provided. In
a subsequent work, the authors designed WS-
AC (Bertino, Squicciarini, Paloscia, & Martino,
2004), providing a more sophisticated approach
for parameter negotiations. A formalization of
the protocol was developed, along with algo-
rithms showing how to encode access control
policies with WS-Policy standard. The system
presented in this paper extends and enhances
WS-AC under several aspects. First, WS-AC
relied on a relational representation of Web
services parameters and context variables. Ws-
AC1 is not tightly coupled with any specific
representation of the data to be used, offering
more flexibility on data representation and
encoding. In WS-AC, policies were specified
only at a fine-grain level, and no possibility of
encoding coarse-grained policies was provided.
Further, in WS-AC, user authentication was
not adaptive: a subject could only submit the
requested attributes once and was not allowed
to adjust requests. Also, the notion of context
was vague and exploited only for negotiations.
Other relevant extensions of Ws-AC1 deal with
the effort we made in encoding all the messages
using the WS stack. This led us to notice an

important shortcoming in one of the adopted
standards; that is, WSDL. As such, we also
proposed some extensions to obtain a standard
compliant access control system.

CONCLUSION
In this paper, we presented an adaptive

access control model for Web services. The
model is characterized by varying protection
granularities, in that an access control policy
can be associated with both a single service
with specific parameter values or with a set of
services. Such a range of granularity allows
one to specify general policies and to refine
them as needed for specific services. The other
novel characteristic of our model is related to
negotiation capabilities. The model allows two
parties to negotiate both the identity attributes
that a requesting agent has to submit and the
values to be used for the service parameters.
In this paper, we provided formal definitions
of the basic concepts of our model as well as
all relevant algorithms implementing the main
functions of our model. As part of our work,
we also developed a specification of our model
in terms of the WSDL standard. An important
result we have obtained here is the development
of an extension of WSDL; such an extension
is required to model the fact that an operation
may have multiple input and output messages
and not a single input and output message, as
in the current version of the standard.

In current work, we rely on heuristics to
determine how to modify the original access
request when a NAP is to be proposed. We
would, however, like to automate the process
of parameter selection based on some more
formal reasoning. Further, we are currently
exploring the possibility of adopting Ws-AC1
for composite services. We are thus evaluating
extensions of the current system in order to
fully support Ws-AC1 authentication methods
in composite services. Other issues we plan
to explore are related to attacks the Ws-AC1
system might be subject to. For instance, it is
not clear what can be learned by an attacker
on a test-and-fail basis. As additional future
work, we plan to investigate the integration

58 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

of our model with existing standards, such
as XACML. Finally, since this aspect is still
missing in the WS-Security stack, we would
like to integrate our model with mechanisms
supporting user privacy, to allow clients to
confidently send private credentials to unknown
services.

ACKNOWLEDGMENTS
The developments presented in this paper

were partly funded by the European Commis-
sion through the IST program under Framework
6 grant 001945 to the Trustcom Integrated
Project, by the National Science Foundation
under Grant No. 0430274 and the sponsor of
CERIAS.

REFERENCES
Ardagna, C., Damiani, E., De Capitani di

Vimercati, S., & Samarati, P. (2004). A
Web service architecture for enforcing
access control policies. In Proceedings of
the 1st International Workshop on Views
on Designing Complex Architectures,
Bertinoro, Italy (pp. 25-35).

Bertino, E., Ferrari, E., & Squicciarini, A.C.
(2003). X-TNL: An XML-based language
for trust negotiations. In Proceedings of
the 4th IEEE International Workshop on
Policies for Distributed Systems and Net-
works, Lake Como, Italy (pp. 81-84).

Bertino, E., Squicciarini, A.C., & Mevi, D.
(2004). A fine-grained access control
model for Web services. In Proceedings
of the IEEE International Conference on
Service Computing (SCC 2004), Shang-
hai, China (pp. 33-40).

Bertino, E., Squicciarini, A.C, Paloscia, I., &
Martino, L. (2005). Ws-Ac: A fine grained
access control system for Web services
(unpublished). Accepted for publication
in World Wide Web Journal.

Damianou, N., Dulay, N., Lupu, E., & Sloman,
M. (2001). The ponder policy specifica-
tion language. In Proceedings of the
IEEE International Workshop on Policies
for Distributed Systems and Networks,
Bristol, UK (pp. 18-38).

Gavriloaie, R., Nejdl, W., Olmedilla, D., Sea-
mons, K.E., & Winslett, M. (2004). No
registration needed: How to use declara-
tive policies and negotiation to access
sensitive resources on the Semantic
Web. In Proceedings of the 1st European
Semantic Web Symposium, Heraklion,
Greece (pp. 342-356).

Gün Sirer, E., & Wang, K. (2002). An access
control language for Web services. In
Proceedings of the ACM Symposium on
Access Control Models and Technologies
(SACMAT 2002), Monterey, California,
USA (pp. 23-30).

Herzberg, A., Mihaeli, J., Mass, Y., Naor,
D., & Ravid, Y. (2000). Access control
systems meets public infrastructure, or:
Assigning roles to strangers. In Proceed-
ings of the IEEE Symposium on Security
and Privacy, Oakland, California, USA
(pp. 2-14).

IBM, BEA Systems, Microsoft, SAP AG, Sonic
Software, VeriSign. (2004). WS-policy-
Web services policy framework. Retrieved
from http://msdn.microsoft.com/web-
services/default.aspx?pull=/library/en-
s/dnglobspec/html/ws-policy.asp

Kagal, L., Paolucci, M., Srinivasan, N., Denker,
G. Finin, T., & Sycara, K. (2004). Au-
thorization and privacy for semantic Web
services. In Proceedings of the AAAI
2004 Spring Symposium on Semantic
Web Services, Palo Alto, California, USA
(pp. 50-56).

OASIS eXtensible Access Control Markup
Language (XACML) Version 2.0. (n.d.).
Committee draft 02. Document identifier:
access_control-xacml-2.0-core-spec-cd-
02. Retrieved September 30, 2004, from
http://docs.oasis-open.org/xacml/access_
control-xacml-2.0-core-spec-cd-02.pdf

OASIS XACML. (n.d.). Profile for Web-ser-
vices (Working Draft 04). Document iden-
tifier: draft-xacml-wspl-04. Retrieved
September 29, 2004, from http://docs.
oasis. open.org/committees/ documents.
php?wg_abbrev=xacml

Paurobally, S., & Jennings, N. R. (2005).

International Journal of Web Services Research, 3(3), 27-60 July-September 2006 59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Protocol engineering for Web services
conversations. International Journal of
Engineering Applications of Artificial
Intelligence, 18(2), 237-254.

Ryutov, T., Zhou, L., Neuman, C., Leithead,
T., & Seamons, K.E. (2005). Adaptive
trust negotiation and access control. In
Proceedings of the ACM Symposium on
Access Control Models and Technologies
(SACMAT 2005), Stockholm, Sweden
(pp. 139-146).

Ryutov, T., & Neuman, C. (2002). The speci-
fication and enforcement of advanced
security policies. In Proceedings of
the IEEE International Workshop on
Policies for Distributed Systems and
Networks, Monterey, California, USA
(pp. 128-138).

Ryutov, T., Neuman, C., Kim, D., & Zhou, L.
(2003). Integrated access control and
intrusion detection for Web servers. IEEE
Transactions on Parallel and Distributed

Systems, 14(9), 841-850.
Wonohoesodo, R., & Tari, Z. (2004). A role

based access control for Web services.
In Proceedings of the IEEE International
Conference on Service Computing (SCC
2004), Shanghai, China (pp. 49-56).

World Wide Web Consortium. (2005). WSDL-
Web services description language
2.0 (W3C Working Draft). Retrieved
from http://www.w3.org/TR/2005/WD-
wsdl20-primer-20050510/

Yu, T., Winslett, M., & Seamons, K. (2003).
Supporting structured credentials and
sensitive policies through interoperable
strategies for automated trust negotiation.
ACM Transactions on Information and
System Security, 6(1), 1-42.

ENDNOTE
1 The comparison operators we refer to are:

≠, <, >, =, ≤, ≥.

Elisa Bertino is professor of computer science and ECE and research director of CERIAS at
Purdue University. Previously, she was a full professor in the Department of Computer Science
at the University of Milan (Italy). From 1990-1993, she was a full professor in the Department
of Computer and Information Science at the University of Genova (Italy). Her main research
interests include object-oriented databases, distributed databases, deductive databases, multi-
media databases, interoperability of heterogeneous systems, integration of artificial intelligence
and database techniques, database security. In those areas, she has published more than 250
papers in refereed journals, such as ACM Transactions on Database Systems, ACM Transac-
tions on Office Information Systems, IEEE Transactions on Knowledge and Data Engineering,
Acta Informatica, Information Systems, and in proceedings of international conferences and
symposia. She has participated in several research projects sponsored by the Italian National
Research Council and the European Economic Communities. She is or has been on the editorial
board of the following scientific journals: ACM Transactions on Information and System Secu-
rity, IEEE Transactions on Knowledge and Data Engineering, Data & Knowledge Engineering
Journal, Journal of Computer Security, International Journal of Theory and Practice of Object
Systems, Journal of Distributed and Parallel Databases, Very Large Databases (VLDB) Journal,
International Journal of Information Technology.

Anna Cinzia Squicciarini is a post doc at Purdue University, US. She received her Phd at Univer-
sity of Milan, Italy, in October 2005. During fall 2003 she was a visiting researcher at Swedish
Institute of Computer Science, Stockholm. She also was a research scholar at Colorado State
University, Fort Collins (CO), U.S. during the spring of 2004; and at Purdue University in the

60 International Journal of Web Services Research, 3(3), 27-60 July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

spring of 2005. Her main research interests include trust negotiations, privacy, models and
mechanisms for privilege and contract management in virtual organizations. Currently, she is
a visiting scholar at Purdue University, West Lafayette, where she is exploring research issues
related with identity management and Web sevice access control models. She has given talks at
several research institutions in Italy and abroad, including IBM T.J. Watson Labs and Colorado
State University. She has served as a PC member of Semantic Web and Policy WORKSHOP
(SWPW), ECIW 2006, STD3S, and is reviewer of IEEE magazines and journals like IEEE Se-
curity & Privacy, IEEE Computing, ACM TISSEC and others.

Lorenzo Martino is a visiting assistant professor at the Computer and Information Technol-
ogy Department and at the Cyber Center of the Purdue University. Previously he was a senior
researcher at the Department of Computer Science and Communication at the University of
Milan, Italy, where he leads research efforts in the area of security for virtual organizations.
Before joining the University, he held positions as senior engineer and project manager at vari-
ous companies; in this capacity, he lead several projects related to information management
and application interoperability in the financial and trading on-line areas. His major research
interests include security for Web services and trust negotiation.

 Federica Maria Francesca Paci is a PhD Student at the University of Milan, Italy. She received
a degree in computer science from the University of Milan in February 2004 with full marks.
During the spring of 2005 Federica was a research scholar at Computer Science Department
and CERIAS of Purdue University, West Lafayette, U.S.A. Her main research interests include
the development of access control models for constraint workflow systems, Web services access
control models and secure distribution of XML documents.

