
Int. J. Inf. Secur. (2007) 6:255–284
DOI 10.1007/s10207-007-0020-3

REGULAR CONTRIBUTION

A system for securing push-based distribution
of XML documents

Elisa Bertino · Elena Ferrari · Federica Paci ·
Loredana Parasiliti Provenza

Received: 13 November 2006 / Published online: 16 March 2007
© Springer-Verlag 2007

Abstract Push-based systems for distributing infor-
mation through Internet are today becoming more and
more popular and widely used. The widespread use of
such systems raises non trivial security concerns. In par-
ticular, confidentiality, integrity and authenticity of the
distributed data must be ensured. To cope with such
issues, we describe here a system for securing push dis-
tribution of XML documents, which adopts digital sig-
nature and encryption techniques to ensure the above
mentioned properties and allows the specification of
both signature and access control policies. We also
describe the implementation of the proposed system and
present an extensive performance evaluation of its main
components.

Keywords Push-based data dissemination · XML ·
Security policies · Authentication

E. Bertino
CERIAS and CS & ECE Departments, Purdue University,
West Lafayette, IN 47907-2086, USA
e-mail: bertino@cerias.purdue.edu

E. Ferrari
Department of Computer Science and Communication,
University of Insubria, Via Mazzini, 5, 21100 Varese, Italy
e-mail: elena.ferrari@uninsubria.it

F. Paci · L. Parasiliti Provenza (B)
DICO, University of Milan, Via Comelico,
39/41, 20135 Milano, Italy
e-mail: parasiliti@dico.unimi.it

F. Paci
e-mail: paci@dico.unimi.it

1 Introduction

Push-based distribution of digital information is today
widely used to transmit information over the web [1,7,
12,20,45]. According to such an approach, a data
dissemination service periodically or whenever the
information source is updated, broadcasts the same
information to all users subscribed to the service. Of
course, in some environments the information to be
broadcast requires protection from security and privacy
threats. First of all, access control is an essential service
that has to be ensured in distributing sensitive infor-
mation. Additionally, the authenticity of the released
data is also a crucial need, especially when data are dis-
seminated through the Internet. Though several mod-
els, languages, and mechanisms have been developed by
the research community to control the access to sensi-
tive information [9,10,19], for what concerns authentic-
ity [35,40], research is mainly focused on digital signa-
ture techniques. No tools or policy languages have been
devised supporting the specification of which subjects
have to sign which portions of some data. To address
this lack, we have proposed [8] an XML-based policy
language, specifically tailored to XML documents, which
allows one to specify two different kinds of security pol-
icies: conventional access control policies, stating that
a subject can (or cannot) exercise an access privilege
on a data item or a part of it, and a new kind of secu-
rity policies, called signature policies, stating the duty
one or more subjects have to sign a data item or a part
of it. To ensure the security requirements expressed by
the specified policies, in [8] we have also proposed a
framework that adopts selective symmetric encryption
[7], in order to enforce access control, and digital signa-
ture tools to meet strong authenticity requirements [40].

256 E. Bertino et al.

Encryption and digital signature operations can be per-
formed according to two alternative strategies, namely
encrypt-then-sign and sign-then-encrypt, which differ on
the order according to which the two operations are exe-
cuted. Combining encryption and signature operations
must be carefully managed in that a subject must be
able to verify the signature even if s/he can access only
selected portions within an XML document.

In this paper, we present the detailed system architec-
ture and implementation we have made of the high level
framework proposed in [8]. In particular, the prototype
system exploits XML to represent all the information
needed for authentication and access control. To repre-
sent the encryption and signatures affixed on the vari-
ous document portions we adopt theXML Encryption
and XML Signature W3C standards [43,44], which
allow one to respectively express in an XML format
any ciphered datum (even not XML data) along with
the information useful for its decryption and the value
of a signature affixed on any data item together with all
the information for a correct signature validation (i.e.,
the digest and signature algorithms, the signer public
key). However, it is necessary to extend the two stan-
dards in order to meet the requirements of our system
(e.g., a finer encryption granularity). Another important
issue considered in this paper is key management. This
aspect must be carefully considered in that the use of
selective encryption may cause the management of a
high number of keys. To minimize the number of keys
to be distributed to the authorized subjects we adopt a
key management scheme recently introduced in [2] for
key management in access hierarchies and we show in
the paper how it can be customized to our context.

Moreover, in this paper we report the results of the
extensive analysis we have conducted in order to eval-
uate the performance of the entire system, and, more
specifically, of the two strategies: encrypt-then-sign and
sign-then-encrypt. First of all, we identify the parame-
ters that affect the efficiency of each system component.
Then, the performance results we have obtained through
several experiments are analyzed to assess the perfor-
mance of the system for different workloads, which are
the parameters that most affect performance, and which
strategy performs better and under which conditions.
We believe that this is a key result to assess the feasi-
bility of adopting our system in real world push-based
dissemination environments.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 briefly
describes the system for securing push-based distribu-
tion of XML documents proposed in [8]. Besides dis-
cussing the motivations for our work, it describes the key
features of the system, that is, the policy language

adopted by the system and the system architecture.
Section 4 presents the key management scheme we have
applied to optimize the key management process. Sec-
tion 5 describes in details the implementation of the sys-
tem, and discusses the extensions we have made to the
XML Encryption and XML Signature W3C stan-
dards. Section 6 presents the analysis study we have
carried out to estimate the performance of the system.
Finally, Sect. 7 concludes the paper.

2 Related work

The work presented in this paper has strong relation-
ships with security solutions for push-based data dissem-
ination systems [6,7,12,45]. However, several techniques
recently proposed for third-party scenarios [5,15,16,28]
for pull-based distribution of sensitive information are
also relevant to our work since they could be applied
also with data distribution paradigms different from the
pull one.

In what follows, we first review the research proposals
in the area of push-based distribution of digital informa-
tion, focusing on those addressing security issues. Then,
we discuss some security solutions proposed for third-
party scenarios.

2.1 Push-based distribution

Given the recent advances in network technologies—
wireless and cable networks and high-bandwidth
satellite—information push imposes itself as a valid and
efficient alternative with respect to the pull mode when
the same data have to be frequently released to a large
number of users.

Over the last years, in the area of broadcast transmis-
sion many research issues have been addressed, in par-
ticular those related to architectural and data structure
aspects [1]. Some proposals deal with broadcast con-
tent scheduling, others with data structures and update
or concurrency control. However, only recently, a great
attention has been devoted to ensure security properties
[6–8,12,20,45].

Most of these proposed approaches address the prob-
lem of access control that is crucial when information is
disseminated according to the push distribution strat-
egy. In such a case, indeed, the straightforward view-
based techniques for access control, widely used in case
of pull distribution, are not efficient, since the high
number of subjects to which the document has to be
frequently broadcast could lead to the creation, man-
agement, and distribution of a high number of views.
A recent alternative solution [7] exploits encryption

A system for securing push-based distribution of XML documents 257

techniques [20] to efficiently enforce access control
requirements when broadcasting sensitive information
over the Web to a large community of users. It encrypts
different portions of the same document with different
encryption keys, on the basis of the specified access con-
trol policies. Then, the same encrypted copy of the docu-
ment is broadcast to all users; each user only receives the
key(s) corresponding to the portion(s) s/he is enabled to
access. In our system, we use the same idea and combine
it with digital signature techniques to enforce authentic-
ity in addition to confidentiality requirements. Further
work [2,4,5,12,45] adopts more flexible symmetric key
assignment schemes in order to minimize the number of
encryption keys that have to be generated and distrib-
uted.

In [2], Atallah et al. propose a dynamic key man-
agement scheme based on access hierarchies, which we
apply to our context to reduce the number of secret keys
to be distributed to each user to correctly decrypt the
authorized portions.

A cryptography-based solution, known as Crypto-
lopeTM, has been also proposed by IBM [24] to ensure
access control when chunks of information—ranging
from high-value business reports to graphics, videos and
softwares—are distributed online, on diskette, or even
are broadcast on the Internet. IBM Cryptolope is an
electronic package that parcels up chunks of content,
along with pricing and usage rules, in an encrypted file
[21]. Users see the content excerpts—visible as plain text
in the Cryptolope—and decide whether to buy the infor-
mation. If they decide to buy, after filling in a billing form
during an automated session, they receive an electronic
key opening the Cryptolope. Compared to our system,
the proposed solution does not provide great flexibil-
ity and granularity levels in access control; however, it
shows, although only theoretically, an interest of a big
ICT company toward cryptographic-based solutions to
enforce access control in this new data distribution par-
adigm.

Access control, however, is not the only security ser-
vice to be guaranteed when disseminating data accord-
ing to the push approach. Ensuring authenticity is a
key issue when digital data are stored and exchanged
among different information systems, and, particularly,
when pushing electronic documents to a large com-
munity of users. A large number of techniques have
been developed that exploit both symmetric and
asymmetric cryptography, to guarantee authenticity
properties [17,36,40]. Among these proposals, digital
signature technology represents the most important tool
to ensure strong authenticity properties (providing also
non-repudiation assurance). In this area, novel schemes
have been recently proposed to provide digital signa-

tures suitable for different contexts and usages (group
and ring signatures [11,37,38] and threshold and mul-
tisignature schemes [13,30]). However, each of these
approaches solves only a part of the problem related to
data authenticity, disregarding the need of stating which
are the authenticity requirements for the given applica-
tion domain, in terms of high-level policies specifying
who has to authenticate what and under which mode.
This is a crucial requisite in a data dissemination system
where the information to be released could be managed
by different subjects who could be required to certify
in different ways the information they distribute. To the
best of our knowledge our system is the first address-
ing the problem of data authenticity in the context of
push-based systems and providing a high level language
to specify signature policies.

Finally, to ensure both access control and data authen-
ticity requirements the attention of the research com-
munity has been mainly devoted to the development
of cryptography-based techniques composing encryp-
tion and authentication operations both in symmetric
and asymmetric setting: in the context of symmetric
cryptography, several researchers [3,26] have investi-
gated how to efficiently and securely combine encryp-
tion schemes with MAC techniques; in the public-key
setting, instead, a new cryptographic primitive, termed
as “signencryption”—obtained by composing a
public-key encryption technique and a digital signature
scheme—has been introduced [27,46,47]. Unlike these
approaches, we address the problem of access control
and data authenticity in a more complex way, since we
provide both an XML-based language to specify access
control and signature policies as well as a technique to
enforce such policies. Regarding the enforcement tech-
nique adopted by our system, as in the work mentioned
above it combines encryption and authentication opera-
tions in order to enforce the security policies our system
supports. However, the scenario we consider requires a
hybrid composition of the two cryptographic primitives.
For the selective dissemination of documents under the
push mode a symmetric encryption technique is nec-
essary, instead of public-key encryption, because each
decryption key must be shared among all the subjects
entitled by the given policies to access the corresponding
encrypted portion. For authenticity purposes, instead,
we adopt digital signature techniques. Note that, in the
scenario we consider, a public group signature scheme
does not represent an efficient alternative with respect
to a symmetric encryption scheme, given the high costs
of a public-key technique and, additionally, since the set
of subjects that have to share the same decryption key
could frequently change with the update of the access
control policies.

258 E. Bertino et al.

2.2 Secure data distribution in a third party scenario

Several solutions [5,15,16,22,28] have been proposed
to ensure security properties in third party scenarios. In
such a scenario three parties are involved: the
information Owner, which produces the informa-
tion to be disseminated or published over the web, a
Subject which is interested in accessing (a portion of)
such information, and the Publisher, a third party
which is responsible for managing the Owner informa-
tion. Most of the approaches proposed so far aim at
ensuring Subject and Owner security requirements
whenever the Publisher is not trusted. Although the
distribution strategy adopted in these approaches is the
pull one—under which the Publisher answers Sub-
ject queries—some of the ideas underlying the pro-
posed solutions can be applied to the push dissemination
mode as well.

The problem of ensuring data confidentiality against
the Publisher itself has been already addressed
[22,23,39], where the Owner sends to the Publisher
his/her information, previously encrypted, in order to
prevent the Publisher from accessing the information
they manage. In [39] a technique has been proposed
to allow query execution over encrypted textual data,
which supports keyword-based search— single words or
phrases—within an encrypted text. In [23], instead, the
authors describe a solution that allows the Publisher
to manage an encrypted relational database without
knowing its content. In this work database tuples are
encrypted using software or hardware encryption (while
the database schema is not encrypted). To support query
execution on the encrypted database, the database is
equipped with an encrypt and a decrypt function,
which the authorized Subject use with the decryp-
tion key received from the database Owner to execute
a selection query over the encrypted database on the
Publisher side. Such approach also allows the autho-
rized Subjects to insert database tuples by using the
encrypt function provided within the database. By
contrast, according to the technique proposed in [22] the
entire database is encrypted (both tuples and schema)
and it is equipped with additional information, a “coarse
index” for the relational attributes, to allow the query
execution at the Publisher site without the need of
decrypting the stored data. This technique allows the
Publisher to partially execute at its site as many SQL
queries as possible over encrypted data, whereas decryp-
tion and the remainder of the query processing are per-
formed at the Subject site. In all these approaches,
the problem of data confidentiality against unauthorized
Subjects, which is one of the goals of our system, is
marginally addressed through a simple identity based

model adopted by the Information Owner for key
distribution.

In case of an untrusted Publisher, the Subject
also needs to be assured that the portion of information
s/he receives from the Publisher is authentic, that is,
it was actually originated from the Owner and that it has
not been tampered with. A first attempt to address such
problem has been made in the context of query authenti-
cation in outsourced database systems (ODBs) for static
databases (characterized by unfrequent updates) [16].
This work provides a technique, based on Merkle hash
trees [29], to ensure authenticity and non-repudiation
of the query results produced by the Publisher from
relational data. More specifically, it allows the Pub-
lisher to create the so-called verification object (VO),
that is, a hard-to-forge authenticity proof consisting of
a hierarchy of digests that the Subject can use to
authenticate query results by exploiting the Owner’s
signature on the whole database. In [15] the approach
was extended to provide authenticity and completeness
when publishing XML documents over the web using
particular authenticated data structures, called xtries. In
[28], instead, the attention was focused on developing an
algorithm for the construction of verification objects that
are both secure and compact and, moreover, efficient
to compute and verify. The general approach of using
authenticated data structures to provide query authen-
tication was also used in the context of “Edge Com-
puting” [34], where a trusted central server outsources
parts of the database to proxy servers situated at the
edge of a network. By contrast, a different strategy to
query authentication in ODBs appeared in [31,32]. They
propose an alternative approach according to which the
Owner affixes his/her digital signatures at the granularity
of individual tuples, then the Publisher can securely
combine the individual signatures affixed by the Owner
on the tuples matching the Subject query by adopt-
ing the aggregated signature scheme proposed in [31].
The work in [32] further integrates a signature chaining
mechanism to assure completeness of the query results.
Both approaches to query authentication are very useful
whenever a subject has to verify the authenticity of a por-
tion of data signed by an entity (e.g., its owner) and, thus,
can be applied to our system. However, both approaches
assume that the verifier access only to a portion of the
data to be authenticated. In the push distribution sce-
nario we consider, instead, the whole encrypted docu-
ment has to be sent to each user even if s/he can decrypt
only a portion of it (the one for which s/he has the proper
authorizations). We have thus decided to exploit, in our
work, all the information, even if encrypted, sent to each
user to correctly perform the authenticity verification of
each data portion.

A system for securing push-based distribution of XML documents 259

The goal of the work described above is to provide a
mechanism that enables aSubject to verify the authen-
ticity of query results without taking into account any
access control rules in place for the information man-
aged by the Publisher, nor authentication policies
requiring to authenticate different data portions with
different techniques. A comprehensive architecture for
the selective and authentic third-party publication of
XML documents has been proposed for the first time
in [5]. This work integrates a Merkle hash tree tech-
nique for query authentication within a comprehensive
framework for access control, which supports a sub-
ject subscription component, a model to specify creden-
tial-based access control policies and a mechanism to
enforce the stated policies. We borrow from this work
the credential-based access control model and the idea
of selectively encrypting documents to enforce confi-
dentiality. However, the work reported in [5] does not
provide any type of authentication policies. As such
the authentication requirements it addresses are simpler
with respect to the ones addressed in this paper. What
has to be assured in [5] is only that the Publisher does
not maliciously modify the data it manages. By contrast,
our system supports signature policies, as such
we have also to ensure that the generated signatures are
compliant with the requirements stated by the policies.
The problem of ensuring both data authentication and
access control in a third party scenario has been also
addressed in [33]. The main focus, however, is the devel-
opment of a technique to ensure the Subject about
the correctness of relational query results, and its inte-
gration with an access control system applying on the
given database, such that the query results do not contra-
dict the access control policies applying to the database.
Such scheme simply rewrites the queries posed by the
Subject so as to meet the given access control policies
in force for the given database. Again, this work
addresses the problem of developing data authentic-
ity techniques in the simple case where only a sub-
ject, the Information Owner, has to authenticate the
whole information s/he generates. Our work, instead,
aims at enforcing in a comprehensive way data authen-
ticity requirements in a wider scenario where different
subjects have to ensure different authenticity require-
ments to different portions of the same document.

3 Secure push-based distribution of XML documents

In this section we briefly describe our approach for a
secure push-based dissemination system previously pre-
sented in [8]. The system has been designed to deal with
XML documents because XML imposed itself as a stan-

dard format for document exchange over the web, and
several XML-based technologies have been developed
by the research community. However, the approach we
propose can be applied to other document and data
exchange formats. The system adopts an XML-based
language to specify both access control and signature
policies. The system is composed of two main compo-
nents: the server side, to selectively encrypt and sign
XML documents according to the specified security pol-
icies, and the client side, for the decryption and signature
validation of the encrypted and signed document gen-
erated by the server. In the remainder of this section,
we first briefly present the motivation for our work and
describe our running example. Then, we describe the
policy language on which our system relies. Finally, we
illustrate the architecture of the system.

3.1 Motivation

Push-based dissemination systems are today widely
adopted by many companies and organizations to man-
age and deliver their data more timely and efficiently,
allowing their partners and customers to easily receive
information anywhere and anytime (consider, for
instance, virtual organizations, companies that have to
release their industrial projects to their staff and part-
ners or enterprises dealing with electronic commerce
of information—e.g., stock prices, sport news). A push-
based dissemination system has to release the infor-
mation it collects in a selective manner, satisfying in
addition to user preferences also security constraints.
With respect to security, both access control and data
authenticity requirements are crucial within push-based
dissemination systems.

For instance, pay-per-view channels are well-known
examples of commercial push-based dissemination sys-
tems that have to selectively broadcast multimedia data
to a large set of users. Digital libraries along with sys-
tems to distribute electronic news are further exam-
ples of information-centered applications that have to
release their data in a differentiated way. Research pro-
jects often involve several partners from different coun-
tries and require secure dissemination of their project
deliverables and all those documents related to project
management and administration tasks. E-contracting
systems, additionally, provide critical virtual environ-
ments where document authenticity and confidentiality
are fundamental requisites in the dissemination process.

To illustrate our system we consider as running
example an organization, called Enterprice, that has to
selectively disseminate confidential and authentic infor-
mation among its employees, for management purposes.
In particular, we consider the selective dissemination of

260 E. Bertino et al.

Fig. 1 An example of XML
document

information about the employees of the organization.
We assume that such information are contained into
an XML document, called Employee_dossier. An
example of such document is reported in Fig. 1.1

Example 1 The Employee_dossier document, uni-
quely identified by attribute Emp_ID, contains the
employee’s profile, the description of the activities car-
ried out by the employee within the organization, an
evaluation of the employee, information about his/her
career within the organization and his/her benefits.
Three elements, namely Evaluation, Career, and
Benefits, are of particular interest for the remainder
of the discussion. The Evaluation element contains
three sub-elements, representing, respectively, three
different evaluations of the employee. The first is a psy-
chological evaluation, the second is a technical evalua-
tion by the technical manager of the organization, and
the third one an overall assessment about the employee
skills and human abilities. The Career element pro-
vides information on the previous employee’s position(s)
in the organization hierarchy, whereas the Benefits
element specifies the list of the employee benefits.

3.2 X -Sec language

The language on which our system relies is X -Sec [8]. It is
an XML-based language that supports the specification
of credentials and credential-based security policies. In
what follows, we present the main features of such a
language that are relevant to understand the proposed
system. Formal details on X -Sec and a full description
of its features can be found in [8].

1 Appendix A shows the formal graph-based model we adopt
throughout the paper to represent XML documents.

X -Sec allows one to specify security policies at differ-
ent granularity levels, and provides selective protection
both at intensional and extensional level, enabling pol-
icy specification both on a document or a DTD/XML
Schema. As mentioned before, X -Sec supports the
notion of credential as a flexible way to qualify the sub-
jects to which a policy applies. A credential allows one to
identify a subject by means of a set of properties and/or
through the roles a subject has within an organization.
In accordance with X -Sec, all the credentials a subject
possesses are collected into an XML document called
X-profile.

Example 2 Figure 2 shows an example of X-profile col-
lecting all the credentials belonging to John Watson,
which is both a personnel consultant and an employee
supervisor within Enterprice.

3.2.1 X -Sec access control policies

X -Sec provides a template to specify credential-based
access control policies stating which access privilege
(view, navigate, browse_all, write, append,
author_all) a subject can (or cannot) exercise on a
given XML document, or on a portion of it. Subjects

Fig. 2 An example of X -profile

A system for securing push-based distribution of XML documents 261

are qualified by specifying conditions on their profiles,
expressed as X Path [42] compliant expressions, referred
to as credential expressions. An Access Control
Policy Base, briefly denoted with ACPB, is an XML doc-
ument instance of the X -Sec access control policy base
template. Figure 3 illustrates the graph representation
of the template, whereas Table 1 presents a brief descrip-
tion of its attributes. We refer the interested reader to
[8] for a detailed description of such template and its
semantics. As usually, the semantics of an access control
policy acpi, briefly denoted with ε(acpi), is the set of
authorizations enacted by the policy. Each authorization
can be modeled as a tuple (s,o,p,t), where s is a subject,
o is a protection object, p denotes the access privilege
on o, and, finally, t states whether granting or denying
s the access authorization on the object o according to
the privilege p.

Fig. 3 Graph representation of the X -Sec Access Control Policy
Base template

Table 1 Attribute description of the X -Sec Access Control Policy
Base template

Attr_name Attr_value

id character string (acpi) identifying an access
control policy

cred_expr Xpath compliant expression on X -profiles
priv the access mode enabled by the policy (view,

navigate, browse_all, write, append,
author_all)

type policy type: positive (grant) or negative
(deny)

prop_opt the depth level n ∈ N ∪ {∗} to which the policy
propagates

target a DTD/XML-Schema/document name to
which the policy applies

path Xpath compliant expression denoting selected
portions within the target document(s)

Example 3 Figure 4 presents an example of an ACPB,
specifying a set of access control policies, defined for a
document source S including the Employee_dossier
document previously illustrated. According to the first
two policies, managers of Enterprice are authorized to
view all the documents conforming to the Employee_
dossier.dtd, except for those portions containing emp-
loyee administrative data and information about his/her
career, as expressed by their semantics: ε(acp1) =
{(s, o,browse_all ,grant)|s is a manager, o is any
node in the documents conforming to the specified DTD},
and ε(acp2) = {(s, o, browse_all, deny)|s is a man-
ager, o is the Administrative_data element or a
node within the subtree rooted at the Career element }.
The semantics of the third policy, instead, is: ε(acp3) =
{(s, o,browse_all, grant)|s is a secretary, o is a node
within the subtrees rooted at the Administrative_
data, Activity, Career and Benefits elements}.
Therefore, acp3 authorizes a secretary to view all the
information about employee activity within the organi-
zation, his/her career, his/her administrative data
together with the benefits the employee has. Finally
according to the fourth and fifth policies, each mem-
ber of the board of directors is able to view the overall
evaluation and the employee’s information contained
in the document (ε(acp4) = {(s, o,view,grant)|s is
a member of the board of directors, o is a node within
the subtrees rooted at the overall_eval, Resume and
Career elements}), with exception of the employee
reserved data along with his/her salary. (ε(acp5) =
{(s, o,view,deny) |s is a member of the board of
directors, o is a node within the subtree rooted at the
Reserved_data element or it is the salary attri-
bute}).

3.2.2 X -Sec signature policies

X -Sec also supports the specification of credential-based
signature policies, which express the duty of one or more
subjects, whose X -profiles satisfy the specified creden-
tial expressions, of signing the document(s) or document
portions referred in the policy. The characteristics of the
template according to which a signature policy can be
specified are summarized in Fig. 5 and Table 2.

Figure 5 illustrates the graph representation of the
template, whereas Table 2 provides its attribute descrip-
tion. A Signature Policy Base (SPB for short), is there-
fore an XML document instance of the X -Sec signature
policy base template. A remark is needed for the duty
attribute, which provides the signature type (single or
joint) required by the policy. If duty is set to sign,
a single signature policy is specified requiring that only
one subject (identified by only onecred_exprelement)

262 E. Bertino et al.

Fig. 4 An example of Access Control Policy Base

sign_policy_spec+

sign_policy_base

CDATA CDATA

CDATA

CDATA

subj_spec

target path

duty

prop_opt

cred_expr+

content

obj _spec

id

ID

CDATA

Fig. 5 Graph representation of the X -Sec Signature Policy Base
template

Table 2 Attribute description of the X -Sec Signature Policy
Base template

Attr_name Attr_value

id character string (spi) identifying a signature policy
duty the signature type required by the policy (sign/

joint_sign)
prop_opt the depth level n ∈ N ∪ {∗} to which the policy

propagates
target a DTD/XML-Schema/doc name to which the

policy applies
path Xpath compliant expression denoting selected

portions in the target document(s)

signs the authentication object2 specified by the policy.
If duty is set to joint_sign, instead, a joint signature
policy is required, stating that more than one subject

2 The term authentication object denotes the nodeset that must
be signed according to a signature policy.

(each of which is identified by a cred_expr element)
must sign the same authentication objects. Formal defi-
nitions of such template and its semantics are reported
in [8]. The semantics of a signature policy, spi, (denoted
as ε(spi)) is defined as a set of triples (s,o,d), the first
component of which is a subject or a set of subjects s that
potentially must sign, the second component specifies an
authentication object o that must be signed, and, finally,
the last component is the signature duty d expressing
the need of a single signature by only one subject or a
joint signature by more than one subject.

Example 4 Figure 6 presents an example of a SPB
defined for the document in Fig. 1. The first policy is
an example of joint signature policy. It specifies that
each employee must jointly sign his/her profile together
with the employee supervisor, as expressed by its seman-
tics: ε(sp1) = {((s1, s2), o, joint _sign)| s1 is the
employee that owns the considered Employee_dos-
sier document, s2 is one of the employee supervisor,
o is a node within the subtree rooted at the Profile
element}. The second policy is a single signature policy
requiring that a personnel consultant signs the evalua-
tion of the employee (ε(sp2) = {(s, o,sign)| s is a per-
sonnel consultant, o is a node within the subtree rooted at
the Evaluation element}). The third policy is a single
signature policy that imposes that the psychologist who
has written the psychological evaluation of employee
Madison affixes his/her signature on his/her psycholog-
ical evaluation (ε(sp3) = {(s, o,sign)| s is the psy-
chologist who has written the psychological evaluation of
employee Madison, o is thepsychological_eval ele-
ment}). Finally, the fourth signature policy is a joint pol-
icy stating that each pay statement of the employee must
be jointly signed by the employee, by a secretary, and by
the head of the payroll department, as expressed by its
semantics ε(sp4) = {((s1, s2, s3), o, joint_sign)| s1 is
the employee that owns the consideredEmployee_dos-
sier document, s2 and s3 are, respectively, a secretary

A system for securing push-based distribution of XML documents 263

Fig. 6 An example of
Signature Policy Base

and the head of the payroll department, o is the
pay_packet element}.

Note that policy sp2 in Fig. 6 requires that psy-
chological_eval element be signed by a personnel
consultant, whereas according to the signature policy
sp3, the same element must be signed by one among
the psychologists who made the employee psychological
evaluation. In such a case, the question arises of which
signature duty must be enforced, that is, who must sign
the psychological evaluation. A possibility is to com-
bine these signature duties in such a way to require a
joint signature by both a personnel consultant and a
psychologist. Alternatively, it can be a single signature
of a subject which has both the two roles within the
organization (if such a subject exists). In any case, there
is the need to state how to combine different signature
duties expressed on the same authentication object. We
will elaborate on that in the next section.

3.3 System architecture

The system we propose (see Fig. 7) includes a server
and a client side. It exploits cryptographic techniques
to enforce access control and digital signature mecha-
nisms to ensure authenticity requirements. The server
side selectively signs and encrypts the given XML docu-
ment according to the access control and signature poli-
cies the Security Administrator (SA) specifies for it. The
result is a ciphered document along with the symmetric
keys (denoted as ki in Fig. 7) and the generated signa-
ture(s) (denoted with Si in Fig. 7), which are recorded in
a database. For security reasons, each symmetric key in
the database is encrypted with the public key of the sub-
ject to which it refers to. Then, a distribution module is
responsible for broadcasting the encrypted and signed
document to all the subjects subscribed to the system
(each subject si is identified by its X -profile, X -psi in

s1,cs1

s2cs2 s3,cs3

s4 , c s4 s5, cs5 s6, cs6

s7 , c s7 s8, cs8

CLIENT SIDE

Security
Administrator

d

ACPB

SPB

k5 S 7

k2 S 3

s8, cs8

s10, cs10

S 3

S 7SERVER SIDE

Fig. 7 Overall system architecture

264 E. Bertino et al.

 Marking
algorithm

Encrypt-then-Sign
aut

Sign-then-Encrypt
Document
 marking

XML
document

 d

ENCRYPTION
and

SIGNATURE
MODULE

 selectively
 encrypted
 document

 Encryption_Info

MARKING
MODULE

 an overlap
arises among

signature
policies

Reconciliation
submodule

YES

N0

S A

Reconciliation

 XML
Signature(s)

ACPB

SPB

Md

Fig. 8 Server components

Fig. 7). Furthermore, such module provides each receiv-
ing subject with the set of keys and the signatures the
subject needs to decrypt and validate the authenticity
of the document portions s/he can access, on the basis
of the specified policies. Two different approaches for
key and signature distribution are supported: the online
mode, according to which the signature(s) and keys are
directly sent to each subject by the distribution module;
and the offline mode, according to which the decryption
keys and the signatures are stored in an LDAP directory
at the server side and accessed by subjects when needed.
Finally, the client component, which can be downloaded
from the server during the subscription phase to the
distribution service, decrypts the document portions by
means of the received keys, and verifies the authenticity
of the authorized portions, by using the XML Signa-
ture(s) s/he obtains from the distribution module. In the
following, we describe the server and client components
we have implemented, with the only exception of the dis-
tribution module the implementation of which is under
way.

3.3.1 Server side

The server side (see Fig. 8) consists of the following mod-
ules: the Marking module, which contains an optional
submodule, called Reconciliation, and the Encryption
and Signature module. The Marking module receives as
input an XML document d, the access control and sig-
nature policy bases defined for the source S containing
d, and it associates each portion of the document with
the identifiers of the access control and signature policies
applied to that portion. The result is the document mark-
ing, which is a set of triples (el, IDacp, IDsp), where el is an
expression identifying a node in d, IDacp is the identifier

of the access control policy configuration,
PCacp, that contains the identifiers of positive access
control policies applying on el that are not overwritten
by a negative one, and IDsp identifies the signature
policy configuration, PCsp, that is, the set of sig-
nature policy identifiers applying on el.3

Example 5 Consider the Employee_dossier docu-
ment presented in Fig. 1, the ACPB, and SPB illustrated
in Figs. 4, and 6, respectively. The resulting marking is
shown in Fig. 9. Note that keyword tag is used to denote
that the policy marking applies only to the start and end
tags of the corresponding element. Additionally, each
color corresponds to a different access control policy
configuration.

If more than one signature policy applies to the same
document portion, the Marking module activates the
Reconciliation submodule. The reconciliation of signa-
ture policies is needed to make sure that each document
node is marked with at most one signature policy. Its aim
is to substitute with the overlapping policies only one sig-
nature policy that must be used in the signature process.
If the overlapping signature policies require the signa-
ture of the same subject categories, the system auto-
matically solves the overlap by replacing such policies
with only one of them. Otherwise, the SA is required to
choose how to solve the overlap, by selecting one among
the provided reconciliating operators (And, Choice and
Concatenation). The And operator applies only to single
overlapping signature policies: the resulting signature

3 PCacp can contain the keyword tag, if at least two attributes
of element el are marked with two different access control policy
configurations, with the aim to denote that the start and end tag
of the given element must be encrypted with a different key with
respect to its content.

A system for securing push-based distribution of XML documents 265

1

3

position

Evaluation

Resume

Employee_dossier

12

... ...

...

Career

Personal_ data

psychologist_ eval

technical _ eval

14

Instruction

15

16

4

5

name

Reserved

17

health

salary

date

date

content content

criminal

6 7

content

8

content

2

Profile

Emp _ID

9

Administrative
 _data

bank_code

SSN

10

 Activity

18

Benefits

Meal_
tickets

20

content

date role

 pay_packet

production
 _bonus

19

content11

salary

content

working
_days

period

surname

date

acp 1

acp 1
sp 1

acp 3
sp 1

acp 3 ac p4

 acp 1 acp4
sp 1

acp 1 acp4
sp 2

 acp 1 acp4
sp 1

acp 1 acp4
sp 1

acp 1
sp 1

 acp 1
sp 1

 acp 1 acp 3

acp 1 acp 3
sp 4

acp 1 acp4
sp 2

acp 1 acp4
sp 2 acp3 ac p4 TAG

acp 1 ac p 3

 acp 1 ac p 3 acp 1 ac p 3

 acp 1
sp 1

content

13

content

overall_ eval
acp 1 acp4
sp 2 sp 3

...

date

acp 3

acp 3 ac p4

acp 3 ac p4

{ ac p 1 }

{ ac p 3 }

{ ac p 1, acp 3 }

{ ac p 1, acp 4 }

{ ac p 3, acp 4 , TAG }

{ ac p 3, acp 4 }
content

...
...

...

...

...

...

...

... ...

...
... ...

... ...

...

...

...

Fig. 9 Graph representation of the marking of the Employee_dossier document in Fig. 1 according to the security policies shown
in Figs. 4 and 6

policy is a single policy too, whose cred_expr ele-
ment is the composition through the XPath symbol ‘|’
of each credential expression in the overlapping poli-
cies. The Choicek operator, on the contrary, allows the
SA to select the identifier of one among the overlap-
ping policies: the index k represents the identifier of
the selected signature policy. Finally, the Concatena-
tion operator generates a joint signature policy, whose
subject specification contains the credential expressions
of each overlapping policy. The Reconciliation module
creates a table, called Reconciliation, that stores
information about the operators chosen to reconcile the
overlapping policies.

Example 6 With reference to Fig. 6, signature policies
sp2 and sp3 overlap on the psychological_eval
element: sp2 requires a single signature by a personnel
consultant, whereas sp3 states that one among the psy-
chologists who made the psychological evaluation of the
employee must sign the psychological_eval ele-
ment. Therefore, the Reconciliation module is invoked
in order to allow the SA to reconcile the overlapping
policies by selecting one among the reconciliation oper-
ators. In this case, if the SA selects the Concatenation
operator, then the psychological_eval element
must be jointly signed by a personnel consultant and

by a psychologist. Alternatively, the SA can select only
one of the overlapping policy, e.g. sp2, by specifying the
Choice operator of index 2. Finally, the SA can select the
And operator in such a way to require a single signature
by a subject that is both a personnel consultant and the
psychologist who wrote the psychological evaluation of
the considered employee (if such a subject exists).

Afterwards, the Encryption and Signature module is
activated. This module receives as input the document
d, the marking of d generated by the Marking module
and the Reconciliation table, if the Reconciliation
module has been activated; then, it executes both the
encryption and signature operations. Different portions
of the input document are encrypted by using differ-
ent symmetric keys and are authenticated by means of
different signatures according to the specified policies.
More specifically, each document portion that is labeled
with the same access control policy configuration PCacp,
hereafter called access region and denoted with ARacp, is
encrypted with a symmetric key k. Similarly, each doc-
ument portion marked with the same signature policy
configuration PCsp, which we call in what follows signa-
ture region and denoted with SRsp, is authenticated by
means of the same XML Signature generated accord-
ing to the policy in the configuration. The result is an

266 E. Bertino et al.

encrypted document along with the generated XML Sig-
nature(s), and one table, called Encryption_Info,
storing all information which allow the receiver subjects
to correctly decrypt the received document. Encryption
and signature operations can be performed according
to the following strategies: encrypt-then-sign and sign-
then-encrypt. According to the first strategy, the given
document is first encrypted and then signed. By con-
trast, the second strategy affixes the signatures required
by the specified signature policies on the clear document
and then generates the document encryption. Such a
strategy, additionally, requires the encryption of the gen-
erated signature(s), in order to avoid guessing attacks.
Both strategies have their advantages and drawbacks.
The encrypt-then-sign strategy has two main advanta-
ges: the first one is that if a subject has to sign different
document portions each of one cyphered with differ-
ent keys (i.e., a signature region covers several access
regions), the system that supports this strategy gener-
ates only one signature for all the portions. A receiving
subject can, indeed, validate the given signature on the
encrypted document even if he/she can access only a
subset of the signed portion given that he/she receives
the whole encrypted document. The second one is that
is not necessary to encrypt signatures before sending
them to the clients, because signatures are applied on the
cyphered document. Another advantage of this strategy
is the limitation of the number of unnecessary decryp-
tion operations. The receiver subject, in fact, can verify
the authenticity of the document portions s/he can access
without decrypting them. This strategy has, however,
the drawback that the signer authenticates encrypted
content. The sign-then-encrypt strategy, instead, has the
main advantage that the signer sees what s/he authen-
ticates; the drawbacks are first that, when a subject has
to sign different portions cyphered with different keys—
i.e., access regions—, the system has to create a signature
for each access region. Moreover, the documents con-
taining the signatures should be encrypted in order to
avoid sniffing of information about the clear content.
The SA can select the strategy that better fits the char-
acteristics of the considered application domain, based
on the security requirements, efficiency constraints, and
so on.

Finally, note that according to the approach for key
management adopted by the system presented in this
section, if ACPB specifies Nacp access control policies,
the system should generate and manage in the worst
case 2Nacp different symmetric keys, one for each differ-
ent policy configuration that could be generated from
Nacp policies, and distribute to each subject the keys
(encrypted with the subject’s public key) to decrypt
the access regions s/he is entailed to view. In the next

section, we will present the new key management scheme
we have decided to adopt, which requires to perma-
nently store a number of keys linear in the number of
(positive) access control policies.

3.3.2 Client side

The client side consists of only one module, called Ver-
ification and Decryption (see Fig. 10). The client mod-
ule receives as input the encrypted document and the
keys and signatures necessary to decrypt and verify the
authenticity of the document portions the receiver sub-
ject can access. Additionally, for each key also the refer-
ences (expressed as XPath compliant expressions) to the
document portions encrypted with that key are received.
The Verification and Decryption module can operate
according to two different strategies: verify-then-decrypt
and decrypt-then-verify corresponding to the two differ-
ent encryption and signature strategies that the server
can use. The verify-then-decrypt strategy is executed if
the server side has applied the encrypt-then-sign strat-
egy. It performs the validation of the signatures applied
to the encrypted document, and, then, if this operation
successfully executes, the client system notifies which
document nodes have proved to be authentic and then
decrypts the document portions the subject can access.
Otherwise, the system notifies the subject which doc-
ument portions are not authentic and does not exe-
cute the decryption of these portions, thus limiting the
number of unnecessary decryption operations. By con-
trast, the decrypt-then-verify strategy is performed if the
server has operated according to the sign-then-encrypt
approach. According to the decrypt-then-verify strat-
egy, the client first decrypts the document portions the
receiving subject can access along with the signatures
related to such portions, and then it executes the signa-
ture validation process.

Verify-then-Decrypt
aut

Decrypt-then-Verify
decrypted
document

VERIFICATION & DECRYPTION
MODULE

selectively
encrypted
document

 XML
Signature (s)

 k 1 k 2

Fig. 10 Client architecture

A system for securing push-based distribution of XML documents 267

4 Key management

The problem of key management is crucial in our system
that exploits a symmetric encryption technique to selec-
tively protect the access to sensitive information.
According to the key management approach adopted
in [8], for each subject to which policies acp1,…, acpm
apply the system has to sent to the subject the keys—
cyphered with his/her public key—to decrypt each access
region marked with a policy configuration that contains
at least one of the policies acp1,…, acpm. Therefore,
given the high number of subjects to which the document
has to be frequently released, the management and dis-
tribution of secret keys represent a crucial task both for
security and efficiency reasons. Hence, to address such
issue we have extended the system proposed in [8] by
applying the more efficient key management strategy
proposed by Atallah et al. in [2] and by customizing it
to our context. In this work, the authors address the key
management problem in an access hierarchy. In general,
an access hierarchy is modeled as a partially ordered set
of classes where a subject, who is entitled to have access
to a certain class C, can also access its descendant classes
in the hierarchy. An access hierarchy is represented as a
directed graph where the vertexes represent the access
classes and the edges the access relations between them.
A key management scheme based on an access hierar-
chy assigns a key to each access class and distributes
to each subject only a subset of the keys assigned to
the class(es) the subject is authorized to access, that is,
only those one that permit the subject to obtain access
to his/her class(es) and all descendants in the hierarchy.
The scheme proposed by Atallah et al. in [2] associ-
ates with each vertex of the graph a private key ki in
{0, 1}ρ and a label li in {0, 1}ρ (with ρ an integer), which
represent, respectively, the private and public informa-
tion associated with the class represented by that vertex.
Then, it labels each edge between two vertexes vi and
vj in the graph with the public value yi,j = kj XOR
H(ki, lj), where H: {0, 1}∗ → {0, 1}ρ is an hash function
which returns a string of length ρ, for any input binary
string.

A subject, who knows the private key ki assigned to
vertex vi, can easily derive the secret key kj associated
with a child vertex vj by executing the XOR operation
between yi,j and the hash value of ki and the public label
lj. Note that this scheme uses only hash functions for
a vertex to derive each descendant key from its own
key and requires only O(l) bit operations, where l is the
length of the path between the vertexes. Furthermore,
since any hash function is not computationally invert-
ible only the subject which knows the private informa-
tion (secret key) associated with a vertex can deduce the

secret key associated with each descendant vertex in the
hierarchy.

This scheme for key management naturally applies
to our system, where each access region ARacp marked
with an access control policy configuration PCacp (policy
configuration for short) constitutes a (non-trivial) access
class, as formally stated by the following definition.

Definition 1 (Access class) Let d be an XML docu-
ment to be released according to the policies specified
in ACPB. Let us denote with PCd

acp the set of the policy
configurations PCacp identified in the marking Md of d
and with PC1

acp the set of all the possible policy con-
figurations consisting of a single positive access control
policy, that can be generated starting from the policies in
ACPB. The set of nodes in d to which a policy configu-
ration PCacp ∈ PCd

acp ∪ PC1
acp applies is defined as the

access class C associated with PCacp. If PCacp ∈ PCd
acp,

the access class associated with PCacp is the access region
ARacp marked with PCacp, which is said to be a non-triv-
ial access class. Otherwise it is an empty node-set, which
is said to be a trivial access class.

Hereafter we simply denote with PCacpi,j,k the pol-
icy configuration consisting of policies acpi, acpj and
acpk, and with Ci,j,k the corresponding access class.

Note that a subject which is entailed to access a class
C1 marked with PCacp1 = {acp1} is obviously autho-
rized to access class C1,3 marked with PCacp1,3 = {acp1,
acp3} and, in general, all the node-sets marked with at
least acp1. This because the policy configuration asso-
ciated with a class states which subjects can access the
nodes belonging to that class. These are all the subjects
to which one of the policies in the corresponding con-
figuration applies. Therefore, given two access classes C
and C′ marked with PCacp and PC′

acp, respectively, if
PCacp ⊂ PC′

acp, then we can assert that all the sub-
jects which can access C can also access C′. We can
thus define a hierarchy among our access classes from
the inclusion relation between policy configurations in
PCd

acp ∪ PC1
acp.

Definition 2 (Dominance relation) Let PCacp and
PC′

acp be two policy configurations in PCd
acp ∪ PC1

acp.
Let C and C′ be the access classes corresponding to
PCacp and PC′

acp, respectively. We say that C domi-
nates C′ (or equivalently that C′ is dominated by C) —
denoted with C ≥ C′ – if and only if PCacp ⊆ PC′

acp.

The dominance relation between our access classes,
defined above, is a partial order, since it is defined start-
ing from the inclusion relation among policy configura-
tions in PCd

acp ∪ PC1
acp. The dominance relation thus

identifies an access hierarchy among the access classes

268 E. Bertino et al.

defined by Definition 1. In the graph representation of
this access hierarchy a source vertex represents a domi-
nant class, that is, an access class that is not dominated by
any other class in the hierarchy. Such classes are all and
only those classes associated with a policy configuration
in PC1

acp.
We apply the scheme proposed in [2] to the sub-

graph obtained from the graph representing the dom-
inance relation by considering all the vertexes in the
graph but only the edges originating from the source
vertexes. Once each access class has been encrypted
with a different secret key, the scheme in [2] applied
to this subgraph allows to distribute to each subject only
those keys to decrypt the dominant classes the subje-
ct is authorized to access. A subject, indeed, can easily
derive from such keys (and other public information)
all and only the keys needed to decipher their descen-
dants in the hierarchy. More precisely, the scheme in [2]
applied to our subgraph assigns to each vertex v of an
access hierarchy (representing an access class C) a sym-
metric encryption key k and a public label l. As label
l we use the access control policy configuration PCacp

corresponding to the access class. As a consequence,
each edge between vertexes v and v′ (to which k′ and
PC′

acp have been assigned) is labeled with the XOR of
k′ and H(k, PC′

acp), which allows only who knows k the
derivation of the symmetric key k′ associated with v′.
Example 7 Figure 11 illustrates the labeled class hier-
archy associated with the Employee_dossier docu-

ment in Fig. 1 to which the access control policies in Fig. 4
apply. The graph contains six different non-trivial access
classes C1, C3, C1,3, C1,4, C3,4, and C3,4,TAG correspond-
ing, respectively, to the policy configurations {acp1},
{acp3}, {acp1,acp3}, {acp1, acp4}, {acp3,
acp4}, and {acp3,acp4,tag} applying to the
Employee_dossierdocument, as shown in Fig. 9, plus
the trivial class C4 associated with the policy configura-
tion {acp4}. The graph in Fig. 11 will be published on
the web by the server to allow each subject to correctly
derive the keys the subject needs from the keys s/he
received related to the dominant classes s/he is autho-
rized to access. For instance, a subject, who is a secre-
tary, is authorized to access (non-trivial) classes C3, C1,3,
C3,4 and C3,4,TAG, that is, all the access regions in the
Employee_dossier document to which at least pol-
icy acp3 applies. Unlike the standard approach for key
management, s/he will receive along with the encrypted
XML document, and the XML signatures, only key k3
ciphered with his/her public key. Then his/her client
module will use k3 to decrypt the access class C3 and
to derive keys k13, k34 and k34TAG (for decrypting C1,3,
C3,4 and C3,4,TAG) from k3 (received by the server) and
the edge labels y3,13, y3,34 and y3,34TAG. By contrast, a
member of the Board of Directors, to which policy acp4
applies, will receive the key k4 associated with the triv-
ial class C4, which s/he will use only to derive k14, k34
and k34TAG for decrypting the (non-trivial) access classes
C1,4, C3,4 and C3,4,TAG s/he is authorized to access.

Fig. 11 The access hierarchy
for our running example

k1, PCacp1

C1

k14, PCacp1 ,4

k3, PCacp3

C3

k34 TAG, PCacp3 , 4 TAG

C3,4, TAG

k13 XOR H(k3,PCacp 1 ,3)

k13XOR H(k1,PCacp 1 ,3)

C1,3
k13, PCacp1 ,3

C1,4

k34 XOR H(k3,PCacp3 ,4)

k14 XOR H(k1,PCacp 1 ,4)

y1 ,14

y1 ,13
y3 ,13

y3 ,34

y1 ,14 =

y1 ,13 =

y3 ,13 =

y3 ,34 =

k4, PCacp4

C4

y4 ,34
y4 ,14

k34 XOR H(k4,PCacp 3 ,4)k14 XOR H(k4,PCacp 1 ,4)y4 ,14 = y4 ,34 =

k34, PCacp3 ,4 C3,4

y3 , 34 TAG

y4 , 34 TAG

k34TAGXOR H(k3,PCacp 3 ,4, TAG)k34TAG XOR H(k4,PCacp 1 ,4, TAG)y4 , 34 TAG = y3 , 34 TAG =

A system for securing push-based distribution of XML documents 269

5 System implementation

In this section, we describe the implementation of server
and client sides. The system has been developed in Java
and uses the eXcelon XML Platform 3.5 [18] as XML
document storage technology. XML data are recorded
in a storage unit, called XMLstore, where data can be
manipulated using the Document Object Model (DOM)
[41]. All the necessary information for the correct func-
tioning of the system is encoded in XML.

5.1 Server implementation

The implementation of the server module consists of
five Java components, called Server, Marking, Reconcili-
ation, Sign_then_Encrypt and Encrypt_then_Sign, which
are composed of several methods. The first component
states the input parameters of the system and activates
the other four Java components, which correspond to the
system modules described in the previous section. The
Server module makes use of a repository, called XML-
store, which stores the XML document d to be
encrypted and signed along with its DTD/XML Schema,
the ACPB and SPB containing, respectively, the access
control and signature policies defined for d, and, finally,
an XML document providing information about the
subjects involved in the dissemination process, such as
personal data, subject X-profiles and other information
useful during the signature operation (e.g., the subject’s
public key). The Server component receives as input
parameters the name of the XMLStore along with the
names of the input documents it contains. Its task is to
create a session with the eXcelonXMLStore and then to
activate the Marking component, to generate the docu-
ment marking. If there are overlaps among the signature
policies applying to d, the Reconciliation component is
invoked. After that, the SA chooses which component
to execute for the encryption and signature operations:
the Encrypt_then_Sign component is activated when-
ever the encrypt-then-sign strategy is selected, otherwise
the Sign_then_Encrypt component is activated. In the
following sections we illustrate the implementation of
the above mentioned components.

5.1.1 Marking component

The Marking component performs the marking opera-
tion, using the strategy illustrated before. The first step
it performs is the SAX parsing [25] of the input XML
document d, in order to state the type (IDREF, URI
or others) of the attributes in the document. Then, the
DOM parsing of d is performed. The next step is the
insertion of an ID attribute into all the elements of

d, performed by the Add_Id method. This is needed
to easily refer each element in the input document (as
well as in the encrypted document, as we will explain in
the following) by means of the inserted (not sensitive)
ID attributes. Then, the methods Create_acc_con-
trol_pol_list and Create_sign_pol_list,
generate the lists containing, respectively, all the access
control and signature policies defined for d or for its
DTD/XML Schema from the input ACPB and SPB, by
using XPath. Policy lists are implemented by the Vector
Java class. Each element of the list representing a policy
is an object, that is, an instance of the Policy Java class.
Such object includes a class variable for each policy spec-
ification element and one class variable for the XPath
expressions specifying the nodes the policy is applied to.
Then, the method Compare_lists verifies whatever
a positive policy is overwritten by a negative one, and,
in this case, it updates the class variable related to the
positive policy, excluding the nodes denied by the nega-
tive one. After this, access control and signature policies
lists are merged. Then, the method Label traverses,
for each node n belonging to d, the list to determine
the identifiers of the policies applied to n. The resulting
marking is modeled through an XML document that has
the same elements of the input document d: to each ele-
ment three child nodes are appended containing, respec-
tively, the marking of the element, of its attributes and
data content. Representing the document marking in
an XML format simplifies the access to the information
it contains because it can be manipulated using DOM
and XPath. An example of such document is given in
Fig. 12. After the creation of the document marking, the
Marking component verifies for each element of the
marking if the start and end tag of the element have
to be encrypted with a different key with respect to its
attributes and content. If this is the case, the component
marks the considered element with the “tag” label. At
the end, the document marking is stored in the XML-
Store.

5.1.2 Reconciliation component

The Reconciliation component is invoked by the Mark-
ing component whenever a set of signature policies over-
lap on the same document portion. The component first
verifies the type of the overlap (trivial or not). If the
overlap is trivial, that is, the overlapping policies on a
document region require the signature(s) by the same
subject categories, the overlap is automatically solved
by selecting anyone of the overlapping policies. Oth-
erwise, an interactive phase is activated in which the
SA is required to choose how to reconcile the over-
lapping policies. For each overlapping signature policy

270 E. Bertino et al.

Fig. 12 Marking of the subtrees rooted at Evaluation and
Career elements of theEmployee_dossierdocument in Fig. 1,
according to the ACPB and SPB shown in Figs. 4 and 6

configuration in the XML document, a method, called
Reconciliate, that notifies the SA of overlaps among
signature policies is invoked and the nodeset with respect
to which the overlap arises is displayed. Then, the SA
can decide how to combine the overlapping policies to
associate with them only one signature policy, selecting
from a menu one among And, Choice and Concatena-
tion operators. Information on the selected operator are
stored into an XML document, called Reconcilia-
tion. More precisely, for each overlapping signature
policy, the document contains an element, called Con-
figuration, consisting of two attributes: Config and
Operator. The Config attribute provides the identi-
fiers of the overlapping signature policies, whereas the
Operator attribute specifies the operator selected by
the SA in order to reconcile the overlapping policies.

Example 8 Figure 13 shows an example of the Rec-
onciliation document created by the Reconciliation
component with respect to the document marking par-
tially shown in Fig. 12. It specifies the reconciliation
operators chosen by the SA for combining the over-
lapping policies sp2 and sp3 on the psychologi-
cal_eval element.

Fig. 13 An example of Reconciliation document

5.1.3 Encrypt_then_Sign and Sign_then_Encrypt
components

The Encryption and Signature module includes two
major components: Encrypt_then_Sign and Sign_then_
Encrypt. The first one operates according to the encrypt-
then-sign strategy described before, whereas the second
one applies the sign_ then_encrypt strategy. Both com-
ponents generate and represent document encryption
and signature according to the W3C XML Encryption
andXML Signature standards [43,44]. However, both
standards have been extended to make them suitable for
our requirements, (e.g., a finer encryption granularity, a
compact representation of joint signatures). Such exten-
sions are described in Sects. 5.1.4 and 5.1.5, respectively.
Both components executes the BuildSets method to cre-
ate the sets MARK1 and MARK2, whose elements are
the identifiers of the access control and signature policy
configurations contained in the document marking. The
method also generates a set El for each access control
policy configuration l in MARK1 and for each policy con-
figuration l /∈MARK1 containing only a positive access
control policy in the policy list created from the input
ACPB. Each of these sets, El with l ∈ L = MARK1∪
{{acpi} where acpi is a positive policy in ACPB and
{acpi} /∈ MARK1}, contains the XPath expressions of
those document nodes marked with the access con-
trol policy configuration l. Then, the Encrypt_then_Sign
component generates a set Tm, for each signature pol-
icy configuration identified by m in MARK2. Tm con-
tains the XPath expressions of document nodes to which
signature policy configuration m applies. Sets MARK1
and MARK2 are implemented as instances of the Vector
Java class. Sets El, l ∈ L, instead, are implemented as
instances of a Java class, called SetEl, that has three
class variables l, elements and key l is a string repre-
senting the identifier of the access control policy config-
urations; elements is an instance of the Vector Java
class that contains the XPath expressions identifying
those nodes to which the configuration l applies; key
is a string representing the value of the encryption key
with whom all the nodes belonging to elements must
be encrypted. By contrast, the sets Tm, m ∈MARK2 are
represented as instances of a Java class, called SetTm,
that has two class variablesm andelements:m is a string
that represents the signature policy configuration iden-
tifier, whereas elements is an instance of the Vector
Java class containing the XPath expressions denoting the
nodes to which configuration m applies. After executing
BuildSets, the generate_keys method is invoked in order
to generate an encryption key for each l ∈ L, which
is used to encrypt the nodes to which the access con-
trol configuration l is applied. Then, an instance of the

A system for securing push-based distribution of XML documents 271

class ClassHierarchy is created. The constructor of this
class creates the hierarchy of access classes presented
in Sect. 4. The vertexes of the class are instances of
the class LabeledVertex representing access control
policy configurations. Each instance of LabeledVer-
tex has two class variables: id representing the policy
configuration and key representing the secret key asso-
ciated with the access control policy configuration. The
arcs between the vertexes are instances of the class Di-
rectedLabeledEdge: they represent the partial order
relation among access control policies configurations.
The class DirectedLabeledEdge has a class variable
called label that is the result of the XOR operation
between the hash value of the id value of the La-
beledVertex target of the edge and the symmetric
key of the LabeledVertex source of the edge, and
the symmetric key of the LabeledVertex source of
the edge. The hierarchy is used, later on, by the dis-
tribution module, whose implementation is ongoing, to
decide which decryption keys must be sent to the sub-
jects. The distribution system will send only the decryp-
tion keys corresponding to access classes that are not
dominated by any other class in the hierarchy. Hence,
the encrypt_doc method performs the encryption, node
by node, of the input documentdby using the TripleDES
algorithm [40]. The resulting encrypted document de is
modeled in a format compliant with the XML Encryp-
tion standard (see Sect. 5.1.4 for a detailed description
and an example of the document encryption). Finally,
the nodes on which no access control policy applies
are replaced with an element called Node. The result-
ing encrypted document is stored into the XMLStore.
After the encryption, the Encrypt_then_Sign compo-
nent creates and stores in the XMLStore an XML doc-
ument, called Encryption_Info, containing all the
information necessary to correctly decrypt the ciphered
document. This document contains an element, called
Configuration, for each access control policy config-
uration in L. Each Configuration element has one
Id attribute and two child nodes: Nodes and Key. The
Id attribute identifies an access control policy configu-
ration. The Nodes element, instead, specifies the XPath
expressions denoting the nodes to which the configu-
ration applies, whereas the Key node contains the key
used to encrypt the specified nodes. The Key element
is optional: when an access control policy configuration
is dominated by other policy configurations in the hier-
archy previously created, the corresponding Config-
uration element has no Key child node. The client
module will retrieve the information to derive the key
related to the access control policy configurations cor-
responding to Configuration elements not having a
Key subelement. Then, the GenerateSignatures method

is activated to sign the encrypted document by using the
DSA-SHA1 algorithm [40]. For each signature policies
configuration m in MARK2 the set Tm containing the
XPath expressions denoting the nodes in document d to
which m applies is associated with m. Then, if m identi-
fies a non overlapping signature policy configuration, the
XML Signature related to the encrypted nodeset speci-
fied in Tm is created. Otherwise, if m is an overlapping
signature policy configuration, first, the Operator cho-
sen by the SA to manage the overlap is selected from the
Reconciliation document. Then, the XML Signa-
ture required by the signature policy resulting from the
application of Operator is created. All the signatures
required by the specified signature policies are created
according to a format compliant to the XML Signa-
ture standard (see Sect. 5.1.5 for the format description
along with one example of a generated signature).

By contrast, after creating the sets MARK1, MARK2
and El, the BuildSets method executed by the Sign_then_
Encrypt component generates, for each signature policy
configuration m in MARK2, the sets Tlm with l in L, hold-
ing the XPath expressions of nodes to which signature
policy configuration m and access control policy configu-
ration l apply. Then, the Sign_then_ Encrypt component
performs the GenerateSignatures method to generate
the signature. First, each set Tlm is associated with the
signature policies configuration m in MARK2. For each
set Tlm, an XML Signature element associated with m is
created according to the signature policy m or the policy
resulting from the reconciliation phase, as described for
the other component. Afterwards, the encryption pro-
cess is performed: the generate_keys method generates
an encryption key k for each access control policy config-
uration l in L. Then, an instance of the class ClassHierar-
chy is created to generate the hierarchy of access classes.
After that, the encrypt_doc method encrypts the docu-
ment portion on which l applies together with the signa-
ture affixed on such portion. The resulting encrypted
document de is generated and represented as previ-
ously explained. Finally, the XML document Encryp-
tion_Info is created and stored into the XMLStore.

5.1.4 XMLEncryption extensions

To represent the encrypted version of the XML doc-
ument to be securely disseminated, we have chosen
to be compliant, as much as possible, with the XML
Encryption standard [43]. Such standard provides an
XML format to represent data encryption as well as
all the information needed for the decryption opera-
tion. According to the standard, the encryption of a
datum is an XML document whose root element is
referred to as EncryptedData. Besides optionally

272 E. Bertino et al.

specifying the algorithm and the (encrypted) key used
for the encryption operation, the EncryptedData ele-
ment contains theCipherData element, that envelopes
the cipher datum within its CipherValue subelement,
or references it within the CipherReference subele-
ment by means of an URI attribute. The encryption
granularity allowed by the standard allows one to repre-
sent the encryption of arbitrary data (XML documents
included), an XML element, or an element content, con-
sidered as the text (representing both markup or char-
acter data) between the start and end tag of the element.
Hence, the standard does not allow the selective encryp-
tion of the data content of the element, its attributes and
its subelements. Furthermore, the current standard does
not allow nesting an EncryptedData element within
another one.

However, as previously explained, our system allows
access control at a finer granularity level than the ele-
ment one, in that different access requirements can be
specified at attribute level, and, thus, a different encryp-
tion of start and end tags, element data content, and
attributes can be needed. Additionally, it is useful to
maintain the structure (that is, the branching relation-
ships among all the nodes) of the clear-text document
also on the resulting encrypted document, in order to be
able to use XPath during decryption. Therefore, some
extensions are needed to the XML Encryption stan-
dard in order to meet the requirements of our system.
First of all, we allow the nesting of EncryptedData
elements, in such a way to maintain at EncryptedDa-
ta level the structure of the input document. Second,
we have extended the XML Encryption standard in
order to allow the selective encryption at attribute, ele-
ment data content, and tag level. For this purpose, we
have extended the domain of the Type attribute of the
EncryptedData element to add the values Attri-
bute, Text and Tag (the Text value has been inserted
to denote only the element data content).

Example 9 Figure 14 presents the encrypted version of
the elements Career and Position of our running
example, whose identifiers in the document marking
illustrated in Fig. 12 are 16 and 17, respectively. Based
on the document marking, the entire Career element
is marked with the same access control policy configu-
ration, that is {acp3,acp4}. Therefore, both the ele-
ment tag and its date attribute are ciphered with the
same key as a unique data item. The Career element
is therefore replaced by an EncryptedData element,
with a child node, called CipherData, that envelopes
the encrypted element. It contains two attributes, Id,
specifying the id value (16) of the clear-text element,
and Type, whose value is the string Element. On the

EncryptedData

Cipher-
 Data

content

QA + tYiomFUE0 ...

Type

Id

Text

17

Id
16

Encrypted-
 Data

CipherValue

Type

Element

Tag

Cipher-
 Data

content

AS213ghlokjh

CipherValue

EncryptedData

Type

Id

17.t
Cipher-
 Data

CipherValue

content

DaSQg

Attribute

Encrypted-
 Data

Type
Id

17.a1

CipherData

CipherValue

content

TiPJl

Fig. 14 Graph representation of the encryption of elements
Career and Position, according to the ACPB presented in
Fig. 4

contrary, the salary attribute of the Position element
is labeled with a different access control policy configu-
ration, that is, {acp3}, with respect to the other element
portions. Therefore, the start and end tags, the element
content and the salary and date attributes are sepa-
rately encrypted, and each of them is replaced, within
the encrypted document de, by an EncryptedData
element containing the cyphered datum, as shown by
Fig. 14. To maintain, as much as possible, the structure
of the input document, the EncryptedData element
related to the element tags is inserted as a child node
of the EncryptedData element conveying the encryp-
tion of the Career element. Moreover, the Encrypt-
edData elements corresponding to the attributes and
data content of the Position element are appended
to the encrypted element corresponding to the tags of
the Position element.

5.1.5 XML Signature extensions

All signatures generated by our system along with infor-
mation required for the signature validation are mod-
eled in a format compliant with the XML Signature
standard [44]. Such standard specifies an XML format
to represent a signature of a datum together with all the
information related to the signature generation that are
relevant for its validation. The standard allows one to

A system for securing push-based distribution of XML documents 273

digitally sign any digital content (data object), including
XML. Digital signatures are represented as an XML
element, called Signature, that contains all informa-
tion about the signature such as the data object being
signed, the algorithm used for signature generation, the
signature value and the signer’s public key. The Signa-
ture element contains a Reference element for each
data object being signed. All the Reference elements
are collected into a SignedInfo element, which con-
tains the information that is actually signed. The Sig-
natureValue element contains the encrypted digest of
the canonical form of the whole SignedInfo element.
The KeyInfo element, instead, indicates the key to be
used to validate the signature. The possibility our system
supports of requiring a joint signature by more than one
subject on the same authentication object requires an
extension to the standard in order to be able to repre-
sent, within a single XML Signature, several signature
values computed over the same SignedInfo element.
We thus need to specify within a single XML Signa-
ture more than one signature value (corresponding to
the same SignedInfo element) along with the signer.
To achieve this goal, we have inserted a Subjects child
node in the Signature element. This element can con-
tain more than one Subject element, which in turn
contains two child nodes: SignatureValue, specify-
ing the canonical form of the SignedInfo element
encrypted with the private key of the subject, and Key-
Info, containing the subject’s public key.

Example 10 Figure 15 shows the XML Signature doc-
ument containing the signatures affixed on the psy-
chological_eval element (with Id attribute equal
to 13) by a personnel consultant (subj 1, for instance,
John Watson which is a personnel consultant as
expressed by his X -profile partially shown in Fig. 2)
and by a psychologist (subj 2), according to the SPB
and Reconciliation document specified for the
Employee_dossier document. As we can see from
Fig. 15, each of the two signatures generated by the
two signers are inserted as a child node of a Subject
element which is in turn contained into a Subjects
element within the XML Signature document.

5.2 Client implementation

The client side is implemented by three Java compo-
nents, called Client, Verify_then_Decrypt and Decrypt_
then_Verify. Additionally, an XMLStore has been
created, which contains the ciphered document broad-
cast by the distribution module, a view of the Encryp-
tion_Info document, generated on server side, that
contains only those decryption keys—ciphered with the

Fig. 15 The XML Signature of the psychological_eval ele-
ment according to the SPB and Reconciliation document
shown in Figs. 6 and 13

subject’s public key—corresponding to the dominant
access classes for which the receiver has the proper
authorization, along with the references to such por-
tions (in terms of XPath compliant expressions), and,
finally, the XML documents containing the XML signa-
tures authenticating the portions the receiver can access.
The Client component is the main class of the client
side: it receives as input the names of the XMLStore
and the documents it contains. The component creates
a session with the eXcelon’s XMLStore [18] to extract
the ciphered document, the Encryption_Info
document and the signature(s). Then, it executes the
decryption and signatures validation process. The
Verify_then_Decrypt component realizes the verify-then-
decrypt strategy. Such a component is activated if, on
server side, the Encrypt_then_Sign component has been
executed to create the encrypted and signed document.
Otherwise, the Decrypt_then_Verify component is exe-
cuted. Both of them first execute theKey_derivation
method, which derives the decryption keys of those
access control policy configurations whose keys have
not been sent. These policy configurations are the ones
represented in the Encryption_Info document by a
Configuration element with no Key child node. The
Verify_then_Decrypt component first checks the valid-
ity of all the XML Signatures applied to the encrypted

274 E. Bertino et al.

document and stored in the XMLStore. The component
executes the Verify_Signatures method performing the
reference and signature validation, as described by the
W3C Recommendation [44], with some differences due
to the extensions we have made to the current stan-
dard. More specifically, in the validation process, for
each Subject specified in the Subjects element con-
tained in the XML Signature, the signature value speci-
fied by the corresponding element is validated by means
of the public key inserted into the corresponding Key-
Info node. If the validation of a signature value fails,
the component informs the SA about which document
portions proved not to be authentic. Otherwise, if the
validation of all signature values successfully ends for
all the XML Signatures in the XMLStore, the Decrypt
method is executed. It adopts a decryption strategy node
by node that firstly, checks, for each EncryptedDa-
ta element in de, if the Encryption_Info contains
the key necessary to decrypt it. If this is the case, the
content of the CipherData element is decoded with
the selected key and the EncryptedData element is
replaced by the corresponding deciphered element. If
the EncryptedData element cannot be decrypted, it
is replaced with an element called Node. The resulting
document is, then, stored in the XMLStore.

On the contrary, the Decrypt_then_Verify component,
first performs the Decrypt method to decrypt the doc-
ument portions the receiver can access along with the
XML Signatures affixed on these portions, and then it
validates the received XML Signature(s) through the
Verify_Signatures method.

6 Performance evaluation

We have carried out an extensive performance evalu-
ation of the implemented system to understand which
parameters affect its effectiveness and in which degree.
There are many dimensions that could influence the per-
formance of our system, as we extensively discuss in the
next section: the number of specified security policies,
the number of nodes of the XML document to be pro-
tected, the number of existing overlaps among different
signature policies, and so on. Therefore, we have exe-
cuted a set of experiments in order to evaluate system
performance along these dimensions. Besides reporting
the performance of the overall system we have per-
formed specific tests on each system module (i.e., Mark-
ing, Reconciliation, Encryption and Signature together
with the client Verification and Decryption module).
Additionally, we have performed a number of experi-
ments to evaluate and compare the performance of the
two strategies our system supports (that is, the encrypt-

then-sign and sign-then-encrypt on server side, and the
correspondent verify-then-decrypt and decrypt-then-ver-
ify on the client side) taking into account the different
characteristics of the two approaches.

In what follows, we first illustrate the parameters we
have identified which affect the performance of our sys-
tem. Then we describe the dataset we have chosen to
evaluate each system module. Finally, we present and
discuss the most significant results obtained from the
experiments we have executed.

6.1 Relevant parameters

For each software component implementing a system
module, we have identified all the parameters affect-
ing its performance. In the following, we discuss such
parameters.

The labeling operation executed by the Marking com-
ponent, obviously, depends on the number of security
policies with which each document node must be
marked. Also the type of specified access control pol-
icies (positive vs. negative) differently affects the time
required by the marking operation, because a negative
policy causes the deletion of the label of the positive
policy it overwrites from the specified nodes. Another
parameter affecting the performance of the labeling task
is the number of tag configurations, due to the fine
granularity of the specified policies. Finally, the struc-
ture of the input document and, especially, the number
of nodes is an essential parameter to assess the effi-
ciency of the marking operation. In evaluating the per-
formance of the Reconciliation component, instead, a
parameter to take into account is the number of over-
laps among different signature policies. Additionally, for
each single overlap the number of overlapping policies
affects the component performance, together with the
structure of the document region on which the overlap
arises and, especially, the number of nodes belonging
to such a region. Finally, the performance of both the
Encrypt_then_ Sign and Sign_then_Encrypt components
is obviously affected by the structure of the input doc-
ument and, above all, by the document size in terms of
number of nodes. Additionally, the performance of the
two components also depends on the number of access
regions marked with an access control policy configura-
tion in the document marking, because for each region
a different secret key has to be generated and man-
aged. The number of signature regions also affects the
efficiency of the two components (affecting the num-
ber of signature operations to be performed on the
given document). Moreover, for each region a relevant
parameter to assess is the number of signers required
by the signature policy. However, we have to point out

A system for securing push-based distribution of XML documents 275

that, for the same number of signature regions, the
Sign_then_Encrypt component could require a greater
number of signature operations than the Encrypt-then-
Sign component. More precisely, if a signature policy
requires that one or more subjects sign different por-
tions of a document, each of which must be encrypted
with a different key, the Encrypt_then_Sign component
requires the generation of only one XML Signature;
the other component, instead, requires the generation
of an XML Signature for each portion ciphered with
the same key, in order to allow the signature valida-
tion of each access region intersecting the considered
signature region. This behavior could impact the perfor-
mance of the Decrypt_then_Verify component, on the
client side. In any case, the Verify_then_Decrypt compo-
nent has to validate a single XML Signature, whereas the
Decrypt_then_Verify component could be required to
validate more than one signature. Therefore, the perfor-
mance of the Sign_then_Encrypt component, on server
side, and the corresponding Decrypt_then_Verify com-
ponent, on client side, also depend on the number of
intersections between access and signature regions.

If each signature region intersects only one access
region, that is, the overall intersection number is equal
to the number of signature regions, then the two compo-
nents perform the same number of signature operations.
Otherwise, if such intersection number is higher than
the number of signature regions, the Sign_then_Encrypt
component has to execute a number of signature opera-
tions higher than the number of regions to be differently
signed. We have, thus, performed a number of experi-
ments to investigate and compare the performance
trends of the two components, Encrypt_then_Sign and
Sign_then_Encrypt, on server side, along with Verify_
then_Decrypt and Decrypt_then_Verify, on client side,
when increasing the overall number of intersections
between access and signature regions. Additionally, we
have investigated and compared the performance of
both the two components when increasing the number
of nodes of the input document.

Table 3 summarizes, for each system component, the
main parameters considered during performance evalu-
ation.

6.2 Datasets

In what follows, we describe the datasets we have gen-
erated to evaluate the performance of each system com-
ponent by varying each parameter illustrated in Table 3,
when maintaining the other ones fixed.

To assess the efficiency of the Marking component
with respect to the number of security policies specified
in the policy bases, we have considered an Employee_

Table 3 Parameters affecting the performance of our system

Considered parameters
Component Parameters

- Number of security policies,
Marking - Type of access control policies,

- Number of document nodes,
- Number of tag configurations

- Number of overlaps,
Reconciliation - Number of overlapping policies,

- size of the region on which
an overlap arises

Encrypt_then_Sign - Number of document nodes,
& - Number of access regions,
Verify_then_Decrypt - Number of signature regions

& signers

- Number of document nodes,
Sign_then_Encrypt - Number of access regions,
& - Number of signature regions
Decrypt_then_Verify & signers,

- Number of of intersections
between access and signature
regions

dossier document, which is an extension of the one
illustrated in Fig. 1: it contains 200 nodes, 100 of which
are elements. Then, we have generated three pairs
of policy base documents, ACPB_10 and SPB_10,
ACPB_50 and SPB_50, ACPB_100 and SPB_100, in
such a way to increase the number of both the access
control and signature policies specified for the base
Employee_dossier document (containing 200
nodes), where ACPB_i and SPB_i specifies i policies,
∀i = 10, 50, 100. As for access control, only positive
policies have been specified. Furthermore, to evaluate
how much the performance of the Marking compo-
nent is affected by the policy type (positive vs. nega-
tive), we have generated the access control policy bases
ACPB_15p and ACPB_20p which add, respectively, 5
and 10 positive policies to the policy base ACPB_10.
Then, the policy bases ACPB_5n and ACPB_10n, have
been defined, where the previous 5 and 10 positive pol-
icies have been changed into negative ones. Then, in
order to analyze the effect of the document size on the
marking efficiency, we have increased the number of
nodes of the base Employee_dossier document to
600, 1,000, 1,400, and 1,800 nodes, by repeating spe-
cific subtrees of the base Employee_dossier docu-
ment, while maintaining for each resulting document
the element number equal to the half of the whole
node number. All such documents are conforming to
the same DTD. Finally, the access control policy bases
ACPB_1_TAG and ACPB_10_TAG, have been created:
they contain 10 positive access control policies and deter-
mine, respectively, 1 and 10 TAG configurations.

276 E. Bertino et al.

To evaluate the performance of the Reconciliation
component for increasing values of the number of over-
laps, we have considered the baseEmployee_dossier
document, the access control policy base ACPB_10, gen-
erated to test the Marking component, along with the
signature policy base SPB_10, which specifies 10 non-
overlapping signature policies.

Then, the policy bases SPB_1triv-overlap, SPB_
1overlap and SPB_10overlaps have been generated
(all of them specify 10 signature policies), where the first
document provides one trivial overlap between two sig-
nature policies on a single element, the last two, instead,
specify, respectively, 1 and 10 overlaps between two sig-
nature policies on the same element. By contrast, to
vary the number of signature policies overlapping on
the same element, we have defined the policy bases
SPB_1overlap_5 pol and SPB_1overlap_10pol provid-
ing one overlap among 5 and 10 signature policies,
respectively. Finally, policy bases SPB_1overlap_5nodes
and SPB_1overlap_10 nodes have been generated to
analyze the efficiency of the Reconciliation component
when increasing the size of the region on which an over-
lap arises.

To evaluate the performance of the encrypting and
signing components, on server side, and the correspond-
ing decryption and signature validation components, on
client side, when the number of access regions increases,
the access control policy bases ACPB_10, ACPB_50
and ACPB_100, and the same signature policy base
SPB_100 have been considered in such a way that each
signature region intersects only one access region (the
number of access regions intersecting a same signa-
ture region altogether, for every signature region, is
equal to 100, that is, the fixed number of signature
regions). All these policy bases are defined for the base
Employee_dossier document. For what concerns the
signature regions, the signature policy bases SPB_10,
SPB_50 and SPB_100 have been considered together
with the policy base ACPB_10, all defined on the base
Employee_dossier document. Moreover, we focus
on a single signature region and we have recorded the
signature times when increasing the number of signers
(from 1 to 10). Finally, to assess the performance of the
Sign_then_Encrypt component, on the server side, and
the corresponding Decrypt_then_Verify, on the client
side, and compare them with the alternative ones, we
have increased the number of intersections between
access and signature regions, while maintaining the
number of access and signature regions fixed. The sig-
nature policy base SPB_10 is considered, while, ten
different access control policy bases: ACPB_10kint,
k ∈ N, 1 ≤ k ≤ 10 have been defined. All of them
specify 10 access control policies, in such a way that 10k

access regions specified by the access control policy base,
ACPB_10kint, k ∈ N, 1 ≤ k ≤ 10 intersect the sig-
nature regions determined by the policy base SPB_10.
In case of 10 intersections, there is a perfect overlap
between the 10 access and signature regions, therefore
both components create 10 XML Signatures. We have
analyzed the performance of the two strategies when
increasing such intersection number, from 10 to 100 first
on the base Employee_dossier document and sub-
sequently on the input documents with 600, 1,000 and
1,400 nodes, previously described. Finally, we have com-
pared the performance of the two components when
increasing the document nodes from 200 to 1,800 for
10 and 100 intersections between access and signature
regions.

We point out that each policy base has been defined in
such a way that all the document portions are subject to
both an access control and a signature policy. The whole
input document is, thus, encrypted and digitally signed.

6.3 Experimental results

We have performed our experiments on an AMD Ath-
lon 64 Processor 3000 with 2 GHz processor and with
512 MB of RAM, under Microsoft Windows XP Profes-
sional OS. In the testing phase, the same work load of the
system was ensured. Additionally, for each test eleven
trials have been executed and the averages of the results
obtained from the last ten trials have been computed,
excluding the results of the first test. The performance
of the server and client system has been measured in
terms of CPU time (in milliseconds).

In the following, we present and analyze for each sys-
tem component the most relevant results obtained from
the performed experiments, and we compare the effi-
ciency of the Encrypt_then_Sign and Sign_then_Encrypt
components, on server side, along with the Verify_
then_Decrypt and Decrypt_then_Verify, on client side.

6.3.1 Marking

The performance of the Marking component proved
to be mainly affected by the dimension of the input
document in terms of the number of document nodes.
Figure 16 shows that the time required by the Marking
component quickly grows (from 1.5 to 9 s) when increas-
ing the number of nodes of the Employee_dossier
document to be marked. The number of security poli-
cies with which the input document has to be labeled has
also an impact on the efficiency of the marking opera-
tion. As we expected, the time required by the Marking
component grows when the number of specified secu-
rity policies increases. In particular, we have found an

A system for securing push-based distribution of XML documents 277

0

2000

4000

6000

8000

10000

200 600 1000 1400 1800

Number of document nodes

C
P

U
 t

im
e

in
 m

s

Fig. 16 Marking performance when increasing the number of
nodes of the input document

increase around 1 s between the cases with 20 and 200
security policies. The reason of such trend is that an
increase in the number of security policies implies a
higher time to create the lists of access control and sig-
nature policies and to traverse the merged list, with the
aim to determine the identifiers of all the policies that
apply to each node of the input document. In this exper-
iment, only positive access control policies have been
considered. Additionally, we observed that a positive
access control policy is as expensive as a negative one,
which applies to the same document region. By contrast,
a TAG configuration results in a slightly higher marking
time than the case without TAG configuration, because
in addition a different labeling operation of the start and
end tag of an element has to be executed. Obviously, a
higher number of TAG configurations much affects the
performance of the marking operations (around 40 ms
in case of 10 tag configuration).

6.3.2 Reconciliation

The time requirements of the Reconciliation component
grow when increasing the number of overlaps between
two signature policies on a single element, because an
increase in the number of overlaps implies a higher
reconciliation time. For each overlap, the component
has to perform: (1) the verification of the overlap type

(trivial or not); (2) the reconciliation of the overlapping
signature policies according to the operator specified by
the SA; and (3) the creation of the corresponding ele-
ment in theReconciliationdocument specifying the
operator selected by the SA. We found that, in case of
a trivial overlap, the reconciliation takes more than half
the time required to solve a non trivial one. Such time is
due, above all, to the time required to check the policy
overlap type (trivial or not), which is higher than the
time taken by the actual reconciliation phase and the
insertion of the selected operator in the Reconcilia-
tion document. In case of 10 overlaps the time required
by the Reconciliation component is about 150 ms. Obvi-
ously, for each single overlap, a number of overlapping
signature policies higher than two implies a higher rec-
onciliation time. In case of a single overlap among 10
signature policies, the time slightly increases of about
42 ms with respect to the case with two overlapping pol-
icies. Indeed, the number of policies to be compared
in order to verify if the overlap is trivial increases. Our
experiments, however, proved that the size of the docu-
ment region on which an overlap arises does not much
affect the time required for the reconciliation.

6.3.3 Encrypt_then_Sign vs. Sign_then_Encrypt

Here, we present and compare the performance of the
Encrypt_then_Sign and Sign_then_Encrypt components
when varying the parameters we have identified.

Figure 17a shows the performance of the two compo-
nents when the number of access regions increases (from
10 to 100), while the number of signature regions is fixed
to 100 (which is also equal to the number of intersections
between access and signature regions). In such a case,
both the components have to create the same number of
XML Signatures, which is equal to 100. We notice that
the time requirements of the Encrypt_then_Sign com-
ponent slowly grows (from 12.5 to 13 s) when increas-
ing the number of access regions, because, even if a
higher number of secret keys are generated and man-
aged, the size of the document to be encrypted is fixed.

0

5000

10000

15000

20000

10 50 100

Number of access regions

C
P

U
 t

im
e

in
 m

s

Encrypt_then_Sign

 Sign-then-Encrypt

100 SIGNATURE
 REGIONS

(a)

0

5000

10000

15000

20000

10 50 100

Number of signature regions

C
P

U
 t

im
e

in
 m

s

Encrypt_then_Sign

 Sign-then-Encrypt

(b)

10 ACCESS
 REGIONS

Fig. 17 CPU time requirements of the two server components when increasing a the number of access, and b signature regions

278 E. Bertino et al.

The time requirements of the Sign_then_Encrypt com-
ponent, instead, shows a linear increase (from 7 to 17.5
s), because the component has to encrypt also the 100
XML Signatures with the same keys by which the cor-
respondent access regions are encrypted. Further, we
observe from Figure 17a that the Sign_then_Encrypt
component performs better than the other one for a
number of access regions less than or equal to 50. The
reason is that, over this value, a finer granularity in
encrypting the XML Signatures along with the access
regions they refer to is more expensive than affixing
all the signatures on the encrypted text, whose dimen-
sion is greater than the corresponding clear text, as we
will better explain in the following. With respect to the
signature regions, Fig. 17b shows the performance of
the two components when the number of such regions
increases (from 10 to 100), while the number of access
regions is set to 10, whereas the intersection number of
the two kinds of regions is equal to the number of sig-
nature regions. This assures that each time both compo-
nents generate the same number of XML Signature(s)
(which is equal to the number of signature regions).
We can notice from Fig. 17b that the times of both the
Encrypt_then_Sign and Sign_then_Encrypt components
grow when the number of signature regions increases,
because it results in the generation of a higher num-
ber of XML Signatures. In this case, we observe that,
even if the two components create the same number
of XML Signatures, the Sign_then_Encrypt component
performs better than the other one (only for 10 signa-
ture regions the CPU time of the Encrypt_then_Sign is
very close to the other one). The reason of this trend
is due to the fact that the signature process on the
encrypted data is more expensive than on clear text.
As explained before, we adopt a format compliant to
the XML Encryption standard [43] to represent the
encrypted document according to which the encrypted
nodes of the input document are wrapped into a differ-
ent XML document, whose height is two units greater
than that of the input document, and which contains
three times the nodes of the clear document. This implies
for the Encrypt_then_Sign component a greater time
than the other component to select the (encrypted)
nodes to be signed and to sign them. This observation
is strengthened by the results obtained from the experi-
ments to assess the impact of an increase in the number
of signers that have to sign a same document region: for
each signer, the signature time has been estimated to
be about 20 ms, in case the Sign_then_Encrypt compo-
nent is activated, 36 ms, if the other component is exe-
cuted. However, as we have seen from Fig. 17a, when
the number of access regions is close to the number
of signature regions the Encrypt_then_Sign component

is more efficient than the Sign_then_Encrypt (see the
case when the number of access regions is higher than
50 in Fig. 17a, and the case of 10 signature regions
in Fig. 17b), because the signatures on the encrypted
text become less expensive than the encryption of the
XML Signatures (on the correspondent clear text) along
with the higher number of access regions. Anyway, the
Encrypt_then_Sign component is more efficient than
the other one especially when the number of intersec-
tions between the access and signature regions is higher
than the number of signature regions, because in this
case the Encrypt_then_Sign component avoids “break-
ing the signatures”, which is, instead, needed by the
other component. In particular, we have increased the
number of intersections from 10 to 100, while main-
taining the number of the access and signature regions
equal to 10. In case of 10 intersections, which is also
equal to the number of specified signature regions, both
components create the same number of XML Signa-
ture(s). When the number of intersections is higher
than 10, instead, the Sign_then_Encrypt component has
to create an XML Signature for each different access
region intersecting a signature region. Figure 18a shows
the performance of the two components while varying
the intersection number mentioned above, for the base
Employee_dossier document containing 200 nodes.
The time requirements of the Encrypt_then_Sign com-
ponent are constant when increasing the number of
intersections, because this component always generates
10 XML Signatures. The time requirements of the other
component, instead, linearly grows, because an increase
in the intersection number implies a higher signature
time, since the component has to generate a greater
number of XML Signatures, as well as a higher encryp-
tion time, since an increasing number of signature doc-
uments must be encrypted. Figure 18a shows that the
Encrypt_then_Sign component is always the most effi-
cient (only in case of 10 intersections the times are the
same). However, since the signature on the encrypted
region is more expensive than on the corresponding
clear text, especially when the region dimension
increases, the performance of the Encrypt_then_
Sign component becomes worse more quickly than the
other component when increasing the number of nodes,
as we can see from Figs. 18b–18d. We notice, indeed,
that the abscissa of the intersection point P between the
two curves moves to the right: for the base Employee_
dossier document the two components have the same
performance in case of 10 intersections between access
and signature regions. However, if we increase the doc-
ument nodes to 600, 1,000 and 1,400, the performances
of the two components become equal, respectively, for
15, 25 and 55 intersections. Additionally, we observe

A system for securing push-based distribution of XML documents 279

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s
Encrypt_then_Sign

 Sign_then_Encrypt

(a)
200 NODES

xP

P

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s

Encrypt_then_Sign

 Sign_then_Encrypt

(b)
600 NODES

P

xP

xP xP

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s

Encrypt_then_Sign

 Sign_then_Encrypt

(c)
1000 NODES

P

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s

Encrypt_then_Sign

 Sign_then_Encrypt

(d)
1400 NODES

P

Fig. 18 Encrypt_then_Sign versus Sign_then_Encrypt when increasing the number of intersections between access and signature regions
for an XML document containing a 200, b 600, c 1,000, and d 1,400 nodes

that before P the time requirements of the two compo-
nents have approximately the same behavior (even if
the Sign_then_Encrypt times are slightly lower). After
P, instead, the Encrypt_then_Sign component becomes
definitely the most efficient. Finally, Fig. 19a represents
on the same graph the CPU times of the Encrypt_then_
Sign and Sign_then_Encrypt components, while vary-
ing the number of nodes of the input XML document
in case of 10 intersections between access and signa-
ture regions. In this case, the two curves are very sim-
ilar: both grow when the number of nodes increases
(from 2,3 s for 200 nodes to about 14 s for 1,800 nodes),
showing the same trend (only for input documents con-
taining more than 1,000 nodes the Sign_then_Encrypt
component performs slightly better than the other one).
However, if the intersection number is higher than 10
the Sign_then_Encrypt component gets worse than the
other one: in case of 100 intersections the Sign_then_
Encrypt component is always the less efficient for every
input document we have considered (200, 600, 1,000,
1,400, 1,800 nodes), as we can see from Fig. 19b.

6.3.4 Overall server system

Here, we briefly discuss the performance of the overall
system on server side based on the results previously
shown and considering as main parameters the number
of access and signature regions, the intersection num-
ber between access and signature regions, and, finally,
the size of the input document. Then, some discussions
about the performance of the two server components to
encrypt and sign the input document are presented.

When the number of either access or signature regions
increases, the time required by the Marking component

increases, given the increase in the number of either
access control or signature policies specified in the pol-
icy bases, as seen in Sect. 6.3.1. The reconciliation times,
instead, are zero in both cases, since the considered
SPBs do not result in any overlap among the specified
signature policies. Thus, for an increase in the access
and signature regions, the CPU time of the system on
the server side is given by the marking time plus the time
to encrypt and sign the input document performed by
either the Encrypt_then_Sign or the Sign_then_Encrypt
components. The performance trends, in terms of CPU
times, of the server system are similar to those shown
in the previous subsection, which have been observed
for the two server components that encrypt and sign the
input document. This is due to the fact that the server
system performance is mainly affected by the times of
the two components for the encryption and signature
operations that are more expensive than the marking
process. When increasing the number of access regions,
the system times are about 16 s, if the Encrypt_then_Sign
component is performed; they linearly increase from 9
to 20 s, whenever the other component is executed. By
contrast, when the number of signature regions grows,
the system times increase whatever strategy is applied
(from 4 to about 9.3 s for the Sign_then_Encrypt com-
ponent, from about 4 to 14.6 s for the other component).
Similarly, when increasing the number of intersections
between access and signature regions as well as the num-
ber of the document nodes, the system performance
is characterized by the same trend registered for the
Encrypt_then_Sign and Sign_then_Encrypt components,
that has been previously described.

To conclude, in order to state which server compo-
nent is the most efficient in encrypting and signing an

280 E. Bertino et al.

0

5000

10000

15000

20000

200 600 1000 1400 1800
Number of document nodes

C
P

U
 t

im
e

in
 m

s
Encrypt_then_Sign

 Sign_then_Encrypt

(a)

10 INT
0

5000

10000

15000

20000

200 600 1000 1400 1800
Number of document nodes

C
P

U
 t

im
e

in
 m

s

Encrypt_then_Sign

 Sign_then_Encrypt

(b)

100 INT

Fig. 19 Encrypt_then_Sign versus. Sign_then_Encrypt when increasing the number of document nodes for a 10 and b 100 intersections
between access and signature regions

input document d according to the ACPB and SPB
specified for such document, we adopt the following
method. After the marking process, we compute the
number of access and signature regions, NA and NS,
respectively, together with the number of their inter-
sections I. Additionally, we compute the number N of
the document nodes to which both access and signature
policies apply. Then, if I = NS, N ≤ 200, and the num-
ber of access regions is definitely less than the number of
signature regions, NA << NS, the Sign_then_Encrypt
component is more efficient. By contrast, if NA → NS,
the Encrypt_then_Sign component is the most efficient.
If I = NS and N > 200, instead, the Sign_then_Encrypt
component is always the most efficient (an increase in
the number of nodes affects much more the Encrypt_
then_Sign component rather than the other one). If
I > NS and N ≤ 200, the Encrypt_then_Sign com-
ponent better performs for every intersection number
I > NS. However, if N > 200 the Encrypt_then_Sign
component is more efficient than the other one when-
ever I is higher than XP, that is, the abscissa of the inter-
section point P (whose trend is illustrated in Fig. 20)
between the two curves shown in Figs. 18.

6.3.5 Verify_then_Decrypt versus Decrypt_then_Verify

As described in Sect. 5, the system on the client side
mainly consists of the two alternative components, Ver-
ify_then_Decrypt and Decrypt_then_Verify. Thus, we
present the time requirements of the client system by
reporting and comparing the times of both such two
components. In analyzing such components, we take into
account the worst case in which the considered receiving
subject can access the whole input document and, thus,
s/he has to validate all the XML Signature(s) generated
on server side.

Figure 21a shows the CPU times of both the Ver-
ify_then_Decrypt and Decrypt_then_Verify components
when increasing the number of access regions, while
maintaining fixed to 100 both the numbers of signa-
ture regions and intersections between access and signa-

0

10

20

30

40

50

60

200 600 1000 1400

Number of document nodes

A
b

sc
is

sa
 o

f
th

e
in

te
rs

ec
ti

o
n

 p
o

in
t

P

XP

Fig. 20 Abscissa of the intersection point P between the two
curves representing the performance of the Encrypt_then_Sign
and Sign_then_Encrypt components when increasing the size of
the input document

ture regions. The time requirements of the Verify_then_
Decrypt component are constant, since decryption is
performed node by node starting from the root element,
and it is, thus, independent from the access regions in
which the document is split. A higher number of access
regions causes, instead, a linear increase in the time
requirements of the Decrypt_then_Verify component,
because it has to decrypt 100 XML Signatures before
validating them, and the number of decryption opera-
tions it has to perform is equal to the increasing num-
ber of access regions. Indeed, all the XML Signatures
applied on the same access region are grouped together
and cyphered with the same key used to encrypt the
access region. With respect to the effect of an increase
in the number of signature regions on the efficiency
of the client component (while keeping the number of
access regions equal to 10, and the number of intersec-
tions of the two kinds of regions equal to the number
of signature regions), we notice that the time of the Ver-
ify_then_Decrypt component linearly grows because this
component has to validate, in each case, an increasing
number of XML Signatures (affixed on the encrypted
data) equal to the number of signature regions. By

A system for securing push-based distribution of XML documents 281

0

2000

4000

6000

8000

10000

10 50 100

Number of access regions

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify

(a)

100 SIGNATURE
 REGIONS 0

2000

4000

6000

8000

10000

10 50 100

Number of signature regions

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify

(b)

10 ACCESS
 REGIONS

Fig. 21 CPU time requirements of the client system when increasing the number of a access, and b signature regions

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify

(a)
200 NODES

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify
P

xP

(b)
600 NODES

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100
Number of intersections

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify

P

xP

(c)
1000 NODES

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Number of intersections

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify

1400 NODES
(d)

P

xP

Fig. 22 CPU time requirements of the client system when increasing the number of intersections between access and signature regions
for an XML document containing a 200, b 600, c 1,000, and d 1,400 nodes

contrast, the time requirements of the Decrypt_then_
Verify component slowly grow because, in each case, it
performs the decryption of the same input document
along with the same number of signature documents
grouped by the fixed 10 access regions. Moreover, the
validation times on clear data slowly grow when increas-
ing the number of signature regions, and, therefore, of
the signatures to be validated.

Figure 22 shows the performance of the two client
components when increasing the intersection number
between access and signature regions for the
Employee_dossier documents containing 200, 600,
1,000, and 1,400 nodes. The trend of the CPU times we
have observed on client side for the Decrypt_then_Verify
and Verify_then_Decrypt components is equal to the
Sign_then_Encrypt and Encrypt_then_Sign trend, on the
server side with some differences we explain in what fol-
lows. First, the times of the two client components are
lower than the ones observed on the server side, because
the decryption and signature validation are obviously
less expensive than the encryption and signature genera-

tion performed on the server side. Second, the
Verify_then_Decrypt component performs better than
the other one for an input document containing 200
and 600 nodes, whatever is the number of intersections.
By contrast, for an input document containing more
than 600 nodes the performance of the two components
depends on the number of intersections between access
and signature regions, as we can see from Fig. 22. Finally,
Fig. 23a and b show that the performance of both the
client components grows when increasing the number
of nodes and the number intersections between access
and signature regions are equal to 10 and 100, respec-
tively. The most relevant result, which strengthens the
results observed on the server side, is the fact that the
dimension of the input document affects much more
the Verify_then_Decrypt component than the other one:
we observe that the CPU time requirements of the Ver-
ify_then_Decrypt component exponentially grow, while
the times of the other component are characterized
by a linear increase. The reason is that, as previously
explained, the signature validation as well as its

282 E. Bertino et al.

Fig. 23 CPU time
requirements of client system
when increasing the number
of nodes of the input
document for a 10 and b 100
intersections

0

2000

4000

6000

8000

10000

200 600 1000 1400 1800
Number of document nodes

C
P

U
 t

im
e

in
 m

s

Verify_then_Decrypt

Decrypt_then_Verify

(a)

10 INT
0

2000

4000

6000

8000

10000

200 600 1000 1400 1800
Number of document nodes

C
P

U
 t

im
e

in
 m

s

Verify_then_DecryptDecrypt_then_Verify

(b)

100 INT

0

10

20

30

40

50

60

70

80

600 1000 1400

Number of document nodes

A
b

sc
is

sa
 o

f
th

e
in

te
rs

ec
ti

o
n

 p
o

in
t

P

XP

Fig. 24 Abscissa of the intersection point P between the two
curves representing the performance of the Decrypt_then_Verify
and Verify_then_Decrypt components when increasing the size of
the input document

generation on the encrypted text is strongly affected by
the number of document nodes. However, we observe
that, if the intersection number is definitely higher than
the number of signature regions, the Verify_then_Decrypt
component performs better than the other one.

To conclude both strategies, as implemented by our
system, proved to perform in a reasonable time the
working load that a push-based system should proba-
bly execute in a real context. Obviously, each compo-
nent better performs in specific conditions. From the
experimental results we can conclude that in order to
choose which component adopting on server side for
the encryption and signature operations, based on the
efficiency of the client components, the number NS of
signature regions along with the intersection number I
between access and signature regions and the number N
of document nodes must be considered. If I = NS, then
the Sign_then_Encrypt must be performed on server
side, because the corresponding Decrypt_then_Verify
component is more efficient than the other one. By
contrast, if I > NS and the number N of the docu-
ment nodes that must be encrypted and signed is less
than or equal to 600, the Encrypt_then_Sign compo-
nent has to be performed on the server side, since the

corresponding Verify_then_Decrypt component has the
best performance for any value of the intersection num-
ber. On the contrary, for document nodes higher than
600 the choice between the two components on server
side depends on both the node number and the inter-
section number XP between the access and signature
regions (see Fig. 24). Whenever I ≤ XP we can choose
of applying indifferently one of the two components,
given the small difference of their times. If I > XP,
instead, the Encrypt_then_Sign component must be exe-
cuted on server side.

7 Conclusions

In this paper we have described the architecture and the
implementation of a system able to meet authenticity
and confidentiality requirements in push-based dissem-
ination environments. Additionally, we have presented
the evaluation study we have carried out to assess the
performance of the implemented system and, above all,
of the two strategies it supports, when varying several
parameters. The two strategies meeting different secu-
rity properties proved to efficiently work with different
working loads. The system we developed thus provides
great flexibility by allowing the SA to choose the strat-
egy that better fits the different characteristics – security
requirements, efficiency constraints—of the considered
application domain. We believe that the results of our
analysis can be a valuable contribution to better custom-
ize the security mechanism trading-off between security
guarantees and efficiency. As a future work, we plan to
complete the implementation of the distribution compo-
nent which is currently under development and to inves-
tigate other methods to securely and efficiently enforce
both access control and authenticity properties in data
dissemination. Moreover, we plan to enrich the system
and the policy language with the possibility of express-
ing a greater number of authenticity requirements, such
as the possibility of specifying anonymous and thresh-
old signature policies. To support this, the system should
adopt new signature schemes that provide additional
requirements besides the traditional authenticity and
non-repudiation properties.

A system for securing push-based distribution of XML documents 283

Acknowledgements The work reported in this paper has been
partially supported by the EU under the IST Project TrustCoM
and by the Sponsors of CERIAS.

A Appendix

In this paper, we adopt a formal model for XML doc-
uments (based on [14]), defined as follows. Let IE be
a set of element identifiers, Label a set of element tags
and attribute names, and Value a set of attribute/ele-
ment values. An XML document is formally defined as
follows.

Definition 1 (XML document) An XML document d is
a tuple d= (Vd, v̄d, Ed, φEd), where

• Vd = Ve
d ∪ Va

d is a set of nodes representing ele-
ments and attributes, respectively. Each v ∈ Ve

d has
an associated element identifier idv ∈ IE , whereas
each v ∈ Va

d has an associated value val ∈ Value;
• v̄d is a node representing the document element

(called document root);
• Ed = Ee

d ∪ Ea
d ⊆ Vd × Vd is a set of edges, where

e ∈ Ee
d is an edge representing an element-subele-

ment relationship or a link between elements due to
IDREF(s) attributes (called link edge), and e ∈ Ea

d
is an edge representing an element-attribute rela-
tionship;

• φEd : Ed → Label is the edge labeling function.

References

1. Al-Mogren, A., Dunham, M.: Data broadcast classification.
In: IEEE pp 221–241 (2005)

2. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and effi-
cient key management for access hierarchies. In: ACM CCS
(2005)

3. Bellare, M., Rogaway, P.: Encode-then-encipher encryption:
how to exploit nonces or redundancy in plaintexts for efficient
cryptography. Advances in Cryptology· Asiacrypt 00 LNCS
(1976) (2000)

4. Bertino, E., Carminati, B., Ferrari, E.: A temporal key
management scheme for broadcasting XML documents. In:
Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS’02) (2002)

5. Bertino, E., Carminati, B., Ferrari, E.: Securing XML data
in third-party distribution systems. In: CIKM ’05: proceed-
ings of the 14th ACM international conference on informa-
tion and knowledge management, pp 99–106. ACM Press,
New York (2005)

6. Bertino, E. , Castano, S. , Ferrari, E. : Author- x: a compre-
hensive system for securing XML documents. IEEE Internet
Comput. 5(3), 21–31 (2001)

7. Bertino, E., Ferrari, E.: Secure and selective dissemination
of XML documents. ACM Trans. Inform. Syst. Secur. 5(3),
290–331 (2003)

8. Bertino E., Ferrari, E., Parasiliti Provenza, L.: Signature and
access control policies for XML documents. In: Proceedings
of 8th European symposium on research in computer security
(ESORICS 2003) LNCS 2808(3):1–22 (2003)

9. Bertino, E., Sandhu, R.: Database security — concepts,
approaches, and challenges. IEEE Trans. Dependable Secure
Comput. 2(1), 2–19 (2005)

10. Castano S., Fugini M., Martella G., Samarati P.: Secure data-
base systems. In: Diaz O., Piattini M. (eds.), Advanced Da-
tabases: Technology and Design, Artech House, London
(2000)

11. Chaum D., van Heijst, E.: Group signatures. In: Eurocrypt
91, vol. 547, pp 257–265. Springer, Berlin (1991)

12. Chiou, G.H., Chen, W.T.: Secure broadcasting using the
secure lock. IEEE Trans. Softw. Eng. 15(8) (1989)

13. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. Cryptol-
ogy Crypto 89:307–315 (1989)

14. Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D.:
A query language for xml. In: Int’l Conference on World
Wide Web. (1999) Available at: http://www.research.att.
com/suciu

15. Devanbu, P.T., Gertz, M., Kwong, A.: Flexible authentication
of xml documents. J. Compu. Secur. 12(6), 841–864 (2004)

16. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.
Authentic third-party data publication. In: DBSec, pp 101–
112 (2000)

17. ElGamal, T.: A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Trans. Info.
Theory 31, 469–472 (1985)

18. eXcelon Corporation: eXcelon XML Platform (2001). Avail-
able at http://www.exln.com

19. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R.,
Chandramouli, R.: Proposed nist standard for role-based
access control. TISSEC 4(3), 224–274 (2001)

20. Fiat A., Noar M. (1994) Broadcast encryption. Advances in
Cryptology (Crypto 93) LNCS (773):480–491

21. Gladney H., Lotspiech J. (1997) Safeguarding digital library
contents and users. D-Lib Magazine. (1997) Available at
http://www.dlib.org/dlib/may97/ibm/05gladney.html

22. Hacigümüs H., Iyer B.R., Li C., Mehrotra S.: Executing sql
over encrypted data in the database-service-provider model.
In: SIGMOD Conference, pp 216–227 (2002)

23. Hacigümüs H., Mehrotra S., Iyer B.R.: Providing database as
a service. In: ICDE, pp 29–38 (2002)

24. IBM: CryptolopeTM (1996). Available at http://domi
no.research.ibm.com/comm/wwwr_thinkresearch.nsf/pages/
packinginfo396.html

25. List, X.D.M.: Simple API for XML (SAX). (1998) Under the
coordination of David Megginson. Available at http://www.
saxproject.org/

26. M., B., C., N.: Authenticated encryption: relations among
notions and analysis of the generic composition paradigm.
ASIACRYPT 5(3), 290–331 (2000)

27. Malone-Lee, J., Mao, W.: Signcryption using RSA. CT-RSA
LNCS (2612), 211–225 (2003)

28. Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M., Kwong,
A., Stubblebine, S.G.: A general model for authenticated data
structures.. Algorithmica 39(1), 21–41 (2004)

29. Merkle, R.C.: A certified digital signature. Advances in Cryp-
tology-Crypto ’89 (1989)

30. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup mul-
tisignatures. In: ACM Conference on Computer and Com-
munications Security, pp 245–254. ACM Press, New York
(2001)

31. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and
integrity in outsourced databases. In: NDSS (2004)

284 E. Bertino et al.

32. Narasimha, M., Tsudik, G.: Dsac: integrity for outsourced
databases with signature aggregation and chaining. In:
CIKM, pp 235–236 (2005)

33. Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying
completeness of relational query results in data publishing.
In: SIGMOD Conference, pp 407–418 (2005)

34. Pang, H., Tan, K.L.: Authenticating query results in edge
computing. In: ICDE, pp 560–571 (2004)

35. Pollmann, C.G.: The XML security page. Available
at http://www.nue.et-inf.uni-siegen.de/g̃euer-poll-mann/
xml_security.html

36. Rivest, R.L., Shamir, A., Adleman, L.M.: A method
for obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM 21, 120–126 (1978)

37. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In:
ASIACRYPT 2001, vol. 2248, pp 552–565. Springer, Berlin
(2001)

38. Shamir, A.: How to share a secret.. Commun. ACM 22,
612–613 (1979)

39. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for
searches on encrypted data. In: IEEE Symposium on Security
and Privacy, pp 44–55 (2000)

40. Stallings, W.: Network Security Essentials: Applications and
Standards. Prentice Hall, Englewood Cliff (2000)

41. W3C: Document Object Model (DOM) (1998) Available at
http://www.w3.org/DOM

42. W3C: XML Path Language (XPath). (1999) Available at
http://www.w3.org/TR/xpath/

43. W3C: XML-Encryption Syntax and Processing (2000).
Available at http://lists.w3.org/Archives/ Public/xml-encryp-
tion/2000Aug/att-0001/01-xmlencoverview.html

44. W3C: XML-Signature Syntax and Processing (2002). Avail-
able at http://www.w3.org/TR/xmldsig-core/

45. Zhang, J., Varadharajan, V., Mu, I.: Securing XML document
sources and their distribution. In: Proceedings of the 18th
international conference on advanced information network-
ing and application (AINA’04) (2004)

46. Zheng, Y.: Digital signcryption or how to achieve cost (signa-
ture & encryption) << cost (signature) + cost (encryption).
CRYPTO’97 LNCS (1294), 165–179 (1997)

47. Zheng, Y.: Identification, signature and signcryption using
high order residues modulo an rsa composite. Public Key
Cryptography (PKC 2001) LNCS (1992), 48–63 (2001)

Elisa Bertino is professor of
Computer Science and Elec-
trical and Computer Engi-
neering at Purdue University
and serves as Research Direc-
tor of the Center for Education
and Research in Informa-
tion Assurance and Security
(CERIAS). She has been a vis-
iting researcher at the IBM
Research Laboratory, at the
Microelectronics and Com-
puter Technology Corpora-
tion, at Rutgers University, at
Telcordia Technologies. Prof.
Bertino is a Fellow member of

IEEE and a Fellow member of ACM and received the 2002 IEEE
Computer Society Technical Achievement Award for “For out-
standing contributions to database systems and database security
and advanced data management systems”.

Elena Ferrari is a full pro-
fessor of Computer Science
at the University of Insubria,
Italy. She received the MS
degree in Computer Science
from the University of Milan
(Italy) in 1992. In 1998, she
received a Ph.D. in Computer
Science from the same uni-
versity. Her research activities
are related to various aspects
of data management systems,
including web security, access
control and privacy, multime-
dia and temporal databases.
On these topics she has pub-

lished more than a hundred scientific publications. Dr. Ferrari is
in the Editorial Board of the VLDB Journal and the International
Journal of Information Technology. She is a member of the ACM
and senior member of IEEE.

Federica Maria Francesca Paci
is a Ph.D. student at the Uni-
versity of Milan, Italy. She
received a degree in Com-
puter Science from the Uni-
versity of Milan in February
2004 with full marks. Dur-
ing the spring of 2005 and
the spring and fall semes-
ter of 2006 Federica was a
research scholar at Computer
Science Department and CE-
RIAS of Purdue University,
West Lafayette, USA. Feder-
ica has also been involved in

the TrustCom project. Her main research interests include the
development of access control models for constraint workflow
systems, Web services access control models and secure distribu-
tion of XML documents.

Loredana Parasiliti Provenza
holds a post-doc position at
the Department of Computer
Science and Communication of
the University of Milan (Italy).
She received the Laurea degree
in Mathematics with full marks
from the University of Messina
(Italy) in 2001 and the Mas-
ter’s degree in Information and
Communication Security from
the University of Milan in 2002.
In 2006, she took the Ph.D.
degree in Computer Science at
the University of Milan. Her
research interests include specifi-

cation, design and development of languages and mechanisms for
authenticity enforcement in Data Dissemination Systems, XML
Security, Visual Interactive Systems, Theory of Visual Languages
and Privacy Preserving Data Mining.

	A system for securing push-based distributionof XML documents
	Abstract
	Introduction
	Related work
	Push-based distribution
	Secure data distribution in a third party scenario
	Secure push-based distribution of XML documents
	Motivation
	X-Sec language
	X-Sec access control policies
	X-Sec signature policies
	System architecture
	Server side
	Client side
	Key management
	System implementation
	Server implementation
	Marking component
	Reconciliation component
	Encrypt_then_Sign and Sign_then_Encrypt components
	XMLEncryption extensions
	XML Signature extensions
	Client implementation
	Performance evaluation
	Relevant parameters
	Datasets
	Experimental results
	Marking
	Reconciliation
	Encrypt_then_Sign vs. Sign_then_Encrypt
	Overall server system
	Verify_then_Decrypt versus Decrypt_then_Verify
	Conclusions
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

