
Privacy-Preserving Management of Transactions’ Receipts
for Mobile Environments

Federica Paci
CS Department

Purdue University
West Lafayette, Indiana
paci@cs.purdue.edu

Ning Shang
CS Department

Purdue University
West Lafayette, Indiana

nshang@cs.purdue.edu

Sam Kerr
CS Department

Purdue University
West Lafayette, Indiana

skerr@cs.purdue.edu

Kevin Steuer Jr
CS Department

Purdue University
West Lafayette, Indiana

ksteuer@cs.purdue.edu

Jungha Woo
CS Department

Purdue University
West Lafayette, Indiana

wooj@cs.purdue.edu

Elisa Bertino
CS Department

Purdue University
West Lafayette, Indiana

bertino@cs.purdue.edu

ABSTRACT

Users increasingly use their mobile devices for electronic
transactions to store related information, such as digital
receipts. However, such information can be target of sev-
eral attacks. There are some security issues related to M-
commerce: the loss or theft of mobile devices results in a ex-
posure of transaction information; transaction receipts that
are send over WI-FI or 3G networks can be easily inter-
cepted; transaction receipts can also be captured via Blue-
tooth connections without the user’s consent; and mobile
viruses, worms and Trojan horses can access the transaction
information stored on mobile devices if this information is
not protected by passwords or PIN numbers. Therefore, as-
suring privacy and security of transactions’ information, as
well as of any sensitive information stored on mobile devices
is crucial. In this paper, we propose a privacy-preserving ap-
proach to manage electronic transaction receipts on mobile
devices. The approach is based on the notion of transaction
receipts issued by service providers upon a successful trans-
action and combines Pedersen commitment and Zero Knowl-
edge Proof of Knowledge (ZKPK) techniques and Oblivious
Commitment-Based Envelope (OCBE) protocols. We have
developed a version of such protocol for Near Field Commu-
nication (NFC) enabled cellular phones.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: [Security and protection]

General Terms

Security
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1. INTRODUCTION
The combined use of the Internet and mobile technolo-

gies (e.g. mobile devices, mobile and wireless communica-
tion) is leading to major changes in how individuals commu-
nicate, conduct business transactions and access resources
and services. People are able to communicate anytime, any-
where with anyone. Technological advances as well as the
increased number of mobile applications have resulted in
new additions in end-user equipment. Smart mobile devices
are equipped with various communication technologies, such
as GSM/GPRS, 802.11-WLAN, Bluetooth, NFC and RFID
chips as well as GPS for location awareness. Mobile devices
today offer a broad spectrum of functions, including web
browsers, operating systems (e.g Symbian), environments
(e.g., Java virtual machine) for running mobile applications,
and e-mail clients.

In such context, establishing mutual trust between users
and service providers is critical. A possible approach to
establish trust is to view the transactions users have car-
ried out in the past. The history of former transactions
informs about users behavior, their ability and dispositions
and thus helps to decide whom to trust. Yahoo! Auction,
Amazon, eBay are examples of systems that rate both users
and service providers based on their past interactions his-
tory. Maintaining the history of users’ transactions and es-
tablishing trust based on these transactions and other fac-
tors is a complex task. An important component of any
such solution is represented by systems managing receipts of
transactions. By receipts we refer to information that char-
acterizes a transaction, like the amount paid and the service
provider with which the transaction was carried out.

Managing transaction receipts on mobile devices is very
challenging. On one hand, the sharing of information about
transactions should be facilitated among service providers.
A customer should be able to disclose to a service provider a
view of his/her past transactions with other service providers
in order to get discounts or to prove good behavior over the
past. On the other hand, transaction receipts need to be
protected as they may convey sensitive information about
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a user and can be the target of attacks. Moreover, users
should be able to control which service provider has access
to information about their past interactions. Assuring pri-
vacy and security of transactions’ receipts, as well as of any
sensitive information, in the context of mobile environments
is further complicated by the fact that mobile devices are
not secure. Recent statistics [4] show that millions of lost
or stolen mobile devices which store users’ sensitive data
have been reported. In addition to loss or theft, there are
an increasing number of viruses, worms and Trojan horses
target mobile devices. Moreover, current attacks against
Bluetooth and well-known WLAN and GPRS vulnerabili-
ties show that it is very easy for attackers to compromise
mobile devices [14]. Another issue is related to how ser-
vice providers determine whether users are trusted based
on their past transactions. Trust establishment should be a
policy-driven process. Service providers should specify poli-
cies stating the conditions users’ transaction receipts must
satisfy for a user to be trusted and/or to get a service with
favorable conditions. An example such a policy is that a
user can receive a discount if he/she has spent $50 or more.
Thus an important requirement is the introduction of a pol-
icy language that allows service providers to express condi-
tions against transaction receipts.

To address such issues, we propose a policy-based ap-
proach for the management of users transaction history on
mobile devices that provides:

1. integrity, confidentiality and privacy of users transac-
tion information;

2. selective and minimal disclosure of transaction infor-
mation;

3. trust establishment based on transaction history.

Our approach allows a user to prove to a service provider
that he/she has performed a transaction satisfying a set of
conditions by such service provider without revealing any in-
formation about the transaction. The approach is based on
the notion of transaction receipts issued by service providers
upon a successful transaction. Our approach combines Ped-
ersen commitment and Zero Knowledge Proof of Knowledge
(ZKPK) techniques and Oblivious Commitment-Based En-
velope (OCBE) protocols [6] to assure privacy of informa-
tion recorded in the receipts. We have developed a version of
such an approach for Near Field Communication (NFC) [9]
enabled cellular phones. A NFC device embedded in the cel-
lular phone is able to communicate not only with Internet
via wireless connections but also with smart card readers.
In addition, the cellular phone applications, referred to as
MIDlets, can access the phone’s tag for reading and writing
data.

The rest of the paper is organized as follows. Section 2
introduces the basic notions on which our approach is based.
Section 3 presents our privacy-preserving approach to man-
age transaction receipts; it introduces all key notions of our
approach, including the notion of verification policy, and de-
scribes our protocols. Section 4 analyzes the properties of
our approach. Section 5 introduces the system architecture
whereas Section 6 discusses the implementation and reports
experimental results. Section 7 overviews related work. Fi-
nally, Section 8 concludes the paper and outlines some future
work.

2. BASIC NOTIONS
In this section, we introduce the basic cryptographic no-

tions on which our transaction receipts management ap-
proach is based.

2.1 Pedersen commitment
The Pedersen Commitment scheme, first introduced in [10],

is an unconditionally hiding and computationally binding
commitment scheme that is based on the intractability of
the discrete logarithm problem.1 The scheme is originally
described with a specific implementation that uses a sub-
group of the multiplicative group of a finite field. We re-
mark that this choice of implementation is not intrinsic to
the Pedersen commitment scheme itself – it can be imple-
mented with any suitable abelian groups, e.g., elliptic curves
over finite fields. Therefore, we rewrite the Pedersen com-
mitment scheme in a more general language as follows.

Pedersen Commitment
Setup
A trusted third party T chooses a finite cyclic group G of
large prime order p so that the computational Diffie-Hellman
problem2 is hard in G. Write the group operation in G as
multiplication. T chooses an element g ∈ G as a generator,
and another element h ∈ G such that it is hard to find the
discrete logarithm of h with respect to g, i.e., an integer α
such that h = gα. T may or may not know the number α.
T publishes G, p, g and h as the system’s parameters.
Commit
The domain of committed values is the finite field Fp of p
elements, which can be represented as the set of integers
Fp = {0, 1, . . . , p − 1}. For a party U to commit a value
x ∈ Fp, it randomly chooses r ∈ Fp, and computes the
commitment c = gxhr ∈ G.
Open
U shows the values x and r to open a commitment c. The
verifier checks whether c = gxhr.

2.2 Zero-knowledge proof of knowledge (ZKPK)
protocol

It turns out that in the Pedersen commitment scheme
described above, a party U referred to as the prover, can
convince the verifier, V, that U can open a commitment
c = gxhr, without showing the values x and r in clear. In-
deed, by following the zero-knowledge proof of knowledge
(ZKPK) protocol below, V will learn nothing about the ac-
tual values of x and r. This ZKPK protocol, which works for
Pedersen commitments, is an adapted version of the zero-
knowledge proof protocol proposed by Schnorr [12].

Zero-knowledge proof of knowledge (Schnorr proto-
col)
As in the case of Pedersen commitment scheme, a trusted
party T generates public parameters G, p, g, h. A prover

1Let G be a (multiplicatively written) cyclic group of order
q and let g be a generator of G. The map ϕ : Z→ G, ϕ(n) =
gn is a group homomorphism with kernel Zq . The problem
of computing the inverse map of ϕ is called the discrete
logarithm problem (DLP) to the base of g.
2For a cyclic group G (written multiplicatively) of order q,
with a generator g ∈ G, the Computational Diffie-Hellman
Problem is the following problem: Given ga and gb for
randomly-chosen secret a, b ∈ {0, . . . , q − 1}, compute gab.
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U who holds private knowledge of values x and r can con-
vince a verifier V that U can open the Pedersen commitment
c = gxhr as follows.

1. U randomly chooses y, s ∈ F
∗

p, and sends V the element
d = gyhs ∈ G.

2. V picks a random value e ∈ F
∗

p, and sends e as a chal-
lenge to U.

3. U sends u = y + ex, v = s + er, both in Fp, to V.

4. V accepts the proof if and only if guhv = d · ce in G.

We use this protocol in Section 3.3.3 for proof of receipt
ownership.

2.3 OCBE protocols
The Oblivious Commitment-Based Envelope (OCBE) pro-

tocols, proposed in [6], provide the capability of enforcing
access control policies in an oblivious way. Three communi-
cations parties are involved in OCBE protocols: a receiver
Re, a sender Se, and a trusted third party T. More pre-
cisely, the OCBE protocols ensure that the receiver Re can
decrypt a message sent by Se if and only if its committed
value satisfies a condition given by a predicate in Se’s access
control policy, while Se learns nothing about the committed
value. The possible predicates are comparison predicates
=, 6=, >,≥, < and ≤.

The OCBE protocols are built with several cryptographic
components:

1. The Pedersen commitment scheme.

2. A semantically secure symmetric-key encryption algo-
rithm E , for example, AES, with key length k-bits. Let
EKey[M ] denote the encrypted message M under the en-
cryption algorithm E with symmetric encryption key
Key.

3. A cryptographic hash function H(·) : {0, 1}∗ → {0, 1}k.
When we write H(α) for an input α in a certain set,
we adopt the convention that there is a canonical en-
coding which encodes α as a bit string, i.e., an element
in {0, 1}∗, without explicitly specifying the encoding.

Given the notation as above, we summarize the EQ-OCBE
and GE-OCBE protocols, i.e., the OCBE protocols for =
and ≥ predicates, respectively, in what follows. The OCBE
protocols for other predicates can be derived and described
in a similar fashion. The protocols are stated in a slightly
different way than in [6], to better suit the presentation in
this paper.

EQ-OCBE Protocol
Parameter generation
T runs a Pedersen commitment setup protocol to generate
system parameters Param = 〈G, g, h〉. T also outputs the
order of G, p, and P = {EQx0

: x0 ∈ Fp}, where

EQa0
: Fp → {true, false}

is an equality predicate such that EQx0
(x) is true if and only

if x = x0.
Commitment
T first chooses an element x ∈ Fp for Re to commit. T

then randomly chooses r ∈ Fp, and computes the Pedersen

commitment c = gxhr. T sends x, r, c to Re, and sends c to
Se.3

Interaction

• Re makes a data service request to Se.
• Based on this request, Se sends an equality predicate

EQx0
∈ P .

• Upon receiving this predicate, Re sends a Pedersen
commitment c = gxhr to Se.
• Se randomly picks y ∈ F

∗

p, computes σ = (cg−x0)y,
and sends to Re a pair 〈η = hy , C = EH(σ)[M ]〉, where
M is the message containing the requested data.

Open
Upon receiving 〈η, C〉 from Se, Re computes σ′ = ηr, and
decrypts C using H(σ′).

GE-OCBE Protocol
Parameter generation
As in EQ-OCBE, T runs a Pedersen commitment setup pro-
tocol to generate system parameters Param = 〈G, g, h〉, and
outputs the order of G, p. In addition, T chooses another
parameter ℓ, which specifies an upper bound for the length
of attribute values, such that 2ℓ < p/2. T also outputs
V = {0, 1, . . . , 2ℓ − 1} ⊂ Fp, and P = {GEx0

: x0 ∈ V},
where

GEx0
: V → {true, false}

is a predicate such that GEx0
(x) is true if and only if x ≥ x0.

Commitment
This step is the same as EQ-OCBE. T chooses an integer
x ∈ V for Re to commit. T then randomly chooses r ∈ Fp,
and computes the Pedersen commitment c = gxhr. T sends
x, r, c to Re, and sends c to Se.4

Interaction

• Re makes a data service request to Se.
• Based on the request, Se sends to Re a predicate GEx0

∈
P .
• Upon receiving this predicate, Re sends to Se a Peder-

sen commitment c = gxhr.
• Let d = (x − x0) (mod p). Re picks r1, . . . , rℓ−1 ∈

Fp, and sets r0 = r −
ℓ−1∑

i=1

2iri. If GEx0
(x) is true,

let dℓ−1 . . . d1d0 be d’s binary representation, with d0

the lowest bit. Otherwise if GEx0
is false, Re randomly

chooses dℓ−1, . . . , d1 ∈ {0, 1}, and sets d0 = d−
ℓ−1∑

i=1

2idi

(mod p). Re computes ℓ commitments ci = gdihri for
0 ≤ i ≤ ℓ− 1, and sends all of them to Se.

• Se checks that cg−x0 =
ℓ−1∏

i=0

(ci)
2i

. Se randomly chooses

ℓ bit strings k0, . . . , kℓ−1, and sets k = H(k0 ‖ . . . ‖
kℓ−1). Se picks y ∈ F

∗

p, and computes η = hy , C =
Ek[M ], where M is the message containing requested
data. For each 0 ≤ i ≤ ℓ−1 and j = 0, 1, Se computes
σj

i = (cig
−j)y, Cj

i = H(σj
i ) ⊕ ki. Se sends to Re the

tuple

〈η, C0
0 , C1

0 , . . . , C0
ℓ−1, C

1
ℓ−1, C〉.

3In an offline alternative, T can digitally sign c and sends
x, r, c and the signature of c to Re. Then the validity of the
commitment c can be ensured by verifying T’s signature.
In this way, after Se obtains T’s public key for signature
verification, no communication is needed between T and Se.
4Similarly, an offline alternative also works here.
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Open
After Re receives the tuple 〈η, C0

0 , C1
0 , . . . , C0

ℓ−1, C
1
ℓ−1, C〉 from

Se as above, Re computes σ′

i = ηri , and k′

i = H(σ′

i) ⊕ Cdi

i ,
for 0 ≤ i ≤ ℓ−1. Re then computes k′ = H(k′

0 ‖ . . . ‖ k′

ℓ−1),
and decrypts C using key k′.

LE-OCBE, the OCBE protocol for the ≤ predicates, can
be constructed in a similar way as GE-OCBE. Other OCBE
protocols (for 6=, <,> predicates) can be built on EQ-OCBE,
GE-OCBE and LE-OCBE.

All these OCBE protocols guarantee that the receiver Re

can decrypt the message sent by Se if and only if the cor-
responding predicate is evaluated as true at Re’s committed
value, and that Se does not learn anything about this com-
mitted value.

We remark that for certain applications, we can let Se

know whether Re’s committed value satisfies the specified
predicate, by extending the OCBE protocols with one more
step: Re shows to Se the decrypted message. We discuss
this in more details in Section 3.3.4.

2.4 Shamir’s secret sharing scheme
Shamir’s (k, n) threshold scheme [13] is a method that

divides a secret into n shares and allows the secret to be
reconstructed if and only if any k shares are present. Here k
and n are both positive integers and k ≤ n. It is also called
Shamir’s secret sharing scheme.

The scheme works as follows. A trusted party, T, chooses
a finite field Fp of p elements, with p large enough. Let
the secret message S be encoded as an element a0 ∈ Fp.
T randomly chooses k − 1 elements a1, . . . , ak−1 ∈ Fp, and
constructs a degree k−1 polynomial f(x) = a0 +a1x+ . . .+
ak−1x

k−1 ∈ Fp[x]. T chooses n elements α1, α2, . . . , αn ∈
Fp, and creates the secret shares Si as pairs

Si = (αi, f(αi)), 1 ≤ i ≤ n,

where f(αi) is the polynomial evaluation of f at αi. Given
any subset of k such shares, the polynomial f(x), of degree
k− 1, can be efficiently reconstructed via interpolation (see,
e.g., [5], Section 2.2). The secret S, encoded as the constant
coefficient a0, is thus recovered.

Shamir’s (k, n) threshold scheme has many good proper-
ties. Most prominently, it is information theoretically se-
cure, in the sense that the knowledge of less than k shares
gives no information about the secret S better than guess-
ing; and it is minimal, in that the size of each share does
not exceed the size of the secret. Interested readers can refer
to [13] for more details.

3. PROTOCOLS FOR THE RECEIPTS MAN-

AGEMENT
Our approach is based on the notion of transaction receipts

that are issued by service providers to users upon a success-
ful transaction. In the following sections, we first introduce
the notion of transaction receipts, the policy language used
by service providers to specify conditions against transac-
tion receipts, and then the privacy-preserving protocol that
allow a user to prove the possession of transaction receipts
verifying the service provider policies.

3.1 Transaction Receipts
A service provider, upon the completion of a transaction,

usually sends the user a receipt that specify a set of in-

Figure 1: A transaction receipt example

formation about the transaction such as the user identifier,
the identifier of the service provider, the item(s) bought,
the price paid for the item(s), the quantity, the date of the
transaction, and shipment and billing information. We de-
note this type of information as transaction attributes. We
consider only a subset of the possible attributes that can
be associated with a transaction. The subset includes the
user identifier, the service provider identifier, the category
to which the item bought belongs to, the item price and the
date of the transaction because they are the more relevant
attributes to establish trust in the user.

We assume that service providers have a PKI infrastruc-
ture that allows them to issue users signed transaction re-
ceipts. In particular, we assume that each service provider
is associated with a pair of keys (KPriv, KPub) where KPriv

is the private key used to sign the transaction receipts and
KPub is the public key used by other service providers to ver-
ify authenticity and integrity of receipts. In order to support
a privacy-preserving proof of the possession of such receipts,
the transaction receipts released under our protocol include
the transactions’ attributes in clear and their correspond-
ing Pedersen commitment. The Pedersen commitments of a
transaction attributes are used by a user to prove the pos-
session of the receipt of this transaction to other service
providers. To compute the Pedersen commitments of the
transaction attributes, the service provider runs the Ped-
ersen commitment setup protocol described in Section 2.2
to generate the parameters Param = 〈G, g, h〉. Then, the
service provider publishes G, p, g and h and its public key
KPub.

The structure of transaction receipts is defined as follows.

Definition 3.1 (Transaction receipt). Let SP be a
service provider and B be a user with which SP has suc-
cessfully carried out a transaction T r. Let (G, p, g, h,KPub)
be the public parameters of SP. The receipt for transaction
T r carried out by B and SP is a tuple 〈TRAN-ID, ATTR,
COM, SIG〉, where TRAN-ID is the transaction identifier;
ATTR is the set of transaction attributes {BUYER, SELLER,
CATEGORY, PRICE, DATE} where 1) BUYER is the user
identifier, 2) SELLER is the service provider’s identifier, 3)
CATEGORY is the selling category of the item being bought,
4) PRICE is the price of the item and DATE is the date of
the transaction, respectively; COM is the set of the Peder-
sen commitments of the attributes in ATTR. Each element
in COM is a tuple of the form 〈A, COMMIT〉 where A is the
value of an attribute in ATTR and COMMIT is the Peder-
sen commitment gAhr of A and r is a secret known only to
B. SIG is the signature of service provider SP on COM5.

5In what follows, we will use the dot notation to denote the
different components of transaction receipt.
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Example 3.1. Suppose that John Smith has bought for
$ 30 a book from “BookStore.Com” on the 4th of Novem-
ber 2008. A receipt for this transaction, issued according to
our protocol, is 〈 “1234”, (“John Smith”, BookStore.Com”,
“Books”, “$ 30”, “11-04-2008”), (〈BUYER, 45785687994674〉,
〈CATEGORY, 76553940894〉,〈PRICE,2223422262〉, 〈DATE,
58300242341〉), 1375350748530-50356376037〉 (see Figure 1).

3.2 Verification Policy Language
Service providers usually evaluate users based on previ-

ous transaction interactions with service providers. Based
on users’ historical transactions, service providers are able
to determine whether a user can be trusted and whether
he/she can be qualified to gain some benefits such as a dis-
count or rebate. Service providers define policies, referred
to as verification policies, to specify the conditions against
attributes which are recorded in transaction receipts.

Verification policies are formally defined as follows.

Definition 3.2 (Term). A Term is is an expression
of the form Name(attribute list) where: Name is the name
of a service or discount or an item, whereas attribute list is
a possible empty set of attribute names characterizing the
service.

Definition 3.3 (Attribute Condition). An attribute
condition Cond is an expression of the form: “nameA op l”,
where nameA is the name of a transaction attribute A, op
is a comparison operator such as =, <, >, ≤, ≥, 6=, and l
is a value that can be assumed by attribute A.

Example 3.2. Examples of policies conditions are the fol-
lowing:

• SELLER = “BookStore.Com”

• DATE < “11-04-2008”

• PRICE > $ 80

Definition 3.4 (Verification Policy). A verification
policy Pol is an expression of the form“R← Cond1, Cond2,
. . . Condn”, n ≥ 1, where R is a Term and Cond1, Cond2,
. . . Condn are attribute conditions.

Given a transaction receipt T r and a verification policy
Pol : R ← Cond1, Cond2, . . . Condn, n ≥ 1, if for each
Condi ∈ Pol, (ii) ∃ Ā ∈ T r.ATTR such that nameĀ =
Cond.nameA and valueĀ satisfies Cond.(nameA op l), we
say that T r satisfies Pol, denoted as T r ⊲ Pol.

Example 3.3. An example of verification policy is the
following: Pol : Discount(OnItem =“Glamour”, Amount=“$

15”) ← SELLER = “BookStore.Com”, PRICE > “$ 80 ”,
DATE < “11-04-2008”. The policy states that a user is
qualified for a $ 15 discount on an yearly subscription to
Glamour magazine, if the user has spent more than $ 80 at
“BookStore.Com” before “11-04-2008’.

3.3 Protocol to Manage Transaction Receipts
The privacy-preserving protocol proves the possession of

a transaction receipt and is carried out between a user and a
service provider. The protocol consists of four main phases
(see Figure 2): 6

6In what follows we use the term ‘user’; however in practice
the steps are carried out by the client software transparently
to the actual end user.

1. Integrity verification of Receipts Attributes. The
user sends a transaction receipt to a service provider
to satisfy the service provider verification policy. The
service provider verifies the signature on the transac-
tion receipt sent by the user to prove the satisfiability
of service provider’s verification policy.

2. Secret Sharing on the Mobile Phone. The user
reconstructs the secret r that has been used to com-
pute the transaction attribute commitments. Remem-
ber that r has been split for better protection from
unauthorized accesses.

3. Proof of Receipt Ownership. The user proves
he/she is the owner of the transaction receipt by carry-
ing out a zero-knowledge proof of knowledge protocol
with the service provider.

4. Verification of Conditions on Receipts. The ser-
vice provider verifies that the transaction receipt at-
tributes satisfy its verification policy by carrying out
an OCBE protocol with the user.

In the following sections, we describe the details of each
phase of the protocol.

3.3.1 Integrity Verification of Receipts Attributes

This phase starts when a user makes a request to a service
provider and the service provider sends the user the corre-
sponding verification policy R ← Cond1, Cond2, . . . Condn,
n ≥ 1. First the user selects a transaction receipt T r
that satisfies such policy. Then, the user sends the ser-
vice provider T r.COM, T r.SIG, T r.ATTR.SELLER, and
the identifier of the service provider which has issued T r.
The service provider retrieves the public key KPub of the
service provider that has issued T r to be able to verify the
signature T r.SIG.

3.3.2 Secret Sharing on the Mobile Phones

In order for a user to be able to carry out ZKPK and
OCBE protocols with the service provider, the user needs
the random secret r, used to compute the Pedersen commit-
ments of a transaction receipt’s attributes. The security of
the protocols strongly depends on r so it is necessary to pro-
tect it from unauthorized access that can occur on mobile
devices. Mobile device security can be compromised if the
device is lost or stolen, or due to the vulnerabilities of the
communication network and/or the device software. To pre-
vent these security threats, we adopt Shamir’s secret sharing
scheme that allows one to split a secret in n shares and then
to reconstruct it if and only if k shares are present. The
storage of the shares depends on the specific architecture of
the mobile devices. Next we will focus on the Nokia NFC
mobile phones that we have used in our implementation.

In our implementation the shares are stored on different
mobile phone components and (possibly) on external devices
such as a PC or a an external storage unit. We split each ran-
dom secret into four shares s1, s2, s3 and s4. The first share
s1 is stored in the internal memory of the mobile phone. The
second share s2 is further split into two secrets. A user cho-
sen PIN number P and a number P ′ are selected such that
P ⊕ P ′ = s2 • P ′ is stored in the phone external memory.
The third share s3 is stored in the smart card integrated
in the phone. Finally the fourth secret share s4 is stored
in the user’s PC which has to be accessed remotely by the
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Figure 2: Approach schema

phone. We consider four levels of protection for the secret r
that correspond to the number k of shares that are needed
to reconstruct r. The possible levels of protection are low,
medium, medium-high and high. The level of protection low
requires no splitting of the secret r. In this case, r is stored
in the phone smart card. The medium level corresponds to
a value of k equal to 2. In this case the user has to retrieve
two of the four shares s1, s2, s3 and s4 to obtain the secret r.
If the medium-high level is chosen, three shares are needed
while with level of protection high, all the four shares are
needed to reconstruct the secret. The level of protection is
set by the user7 once the issuer of a transaction receipt sends
the user the random secret r along with the transaction re-
ceipt containing the Pedersen commitments computed using
r. Once set, the level of protection cannot be changed by
the user.

When the user has to prove the ownership of the trans-
action receipt sent to the service provider, the r needs to
be reconstructed. In order to do that, a number of shares

7The specification of the security level and the entering of
the PIN are the only steps that need to be carried by the
actual end-user. The security level can however be set as a
default and the end-user does not need to enter it each time
it receives a new receipt.

according to the level of protection set up by the user needs
to be retrieved and then combined to obtain r.

Example 3.4. Suppose that John Smith has to prove the
possession of receipt 〈“1234”, (“John Smith”, BookStore.Com”,
“Books”, “$ 30”, “11-04-2008”), (〈BUYER, 45785687994674〉,
〈CATEGORY, 76553940894〉,〈PRICE,2223422262〉, 〈DATE,
58300242341〉),137535074853050356376037〉 to service provider
“Borders”. In order to accomplish that, John needs to recon-
struct the secret r used to compute the Pedersen commit-
ments contained in the receipt. John sets the security level
for r to high and to retrieve each secret share he has to
perform the following steps:

1. John retrieves s1 from the phone internal memory.

2. To retrieve s2, John inputs the secret PIN number P
using the phone keypad. P ′ is retrieved from the phone
external memory and it is used to compute the second
secret share s2 = P ⊕ P ′.

3. John retrieves the secret s3 from the phone smart card.

4. To retrieve the secret share s4 stored at the user’s PC,
John connects to its PC by using the phone
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Figure 3: Random Secret Reconstruction

By contrast if John sets up a medium security level, he has
to retrieve only two shares to obtain the secret r. For ex-
ample, John can decide to get the shares s1 and s3 from the
phone’s internal memory and the phone smart card respec-
tively without having to insert any PIN number (see Figure
3).

3.3.3 Proof of Receipt Ownership

Once the user has reconstructed the random secret r, the
proof of the ownership of the transaction receipt can be
achieved by engaging a ZPK protocol for the BUYER trans-
action attribute with the service provider. According to the
ZPK protocol, the user randomly picks y, s in {1, .., p}, com-
putes d = gyhs, where g and h are the public parameters of
the service provider. The user then sends d to the service
provider. Once received d, the service provider sends back
a random challenge e ∈ {1, .., p − 1} to the client. Then
the user computes u = y + em and v = s + er where m is
the value of the BUYER transaction attribute and r is the
random secret, and sends u and v to the service provider.
The service provider accepts the aggregated zero knowledge
proof if guhv = dce. Otherwise, the interaction with the
user is dropped.

3.3.4 Verification of Conditions on Receipts

We consider two scenarios that require the verification of
conditions on transaction receipts. In the first scenario, a
service provider provides a general service to all qualified
users, and does not require to know the outcome of the trans-
action. For example, a book store may provide a transfer-
able 10%-off coupon code to any user who presents a receipt
showing a purchase of a product in the “Books” category.
However, the book store does not care whether this coupon
code is successfully received by the user; it only cares that
a coupon code is valid when being used. The book store
simply rejects a receipt if it is shown twice, to prevent a
user from taking advantage of this offer for multiple times.
In such a scenario, the OCBE protocols, (cfr. Section 2.3)
can be used directly. Let the user be the receiver Re, and
the service provider be the sender Se. Re sends a service
request to Se, and Se responds with its verification policy.
Based on the policy, Re selects a receipt T r which satisfies
Se’s policy, and sends T r.COM, T r.SIG, and the value of

SELLER attribute to Se. Se chooses the message M , as de-
scribed in Section 2.3, to be the content of service (e.g.,
a coupon code). Then, it composes the envelope using the
corresponding attribute value in the received receipt for M ,
and sends it to Re. Re can open the envelope if and only if
the involved attribute value on the receipt satisfies the con-
dition specified in the policy, but Se will not know if Re can
open the envelope.

In the second scenario, the service provider needs to know
the result of the condition verification, i.e., it should be in-
formed if the attributes on the user’s receipt satisfies the
specified policy. There are many instances of such a scenario.
For example, the service provider may require its policy be
satisfied by a user’s receipt in order to continue the trans-
actions. In this case, for user privacy protection, the OCBE
protocol for equality predicates, EQ-OCBE, should not be
employed, because the service provider will be able to infer
the attribute value if the verification is successful. However,
other OCBE protocols which are for inequality predicates
can still be used, with one more step appended to the pro-
tocol, described next.

In this additional step, the service provider acts as the
sender Se, and the user acts as the receiver Re. The service
provider chooses the message M to be a random bit string,
which will be used as a secret of Se. The OCBE protocol for
inequality predicates is executed between Se and Re, based
on Se’s policy and the involved attribute value recorded in
Re’s receipt, for this secret M . At the end of the proto-
col, after opening the envelope, Re shows Se the decrypted
message M ′. The attribute on the receipt passes Se’s verifi-
cation if M = M ′, or fails if otherwise. The service provider
continues with the transactions in the former case, or aborts
the transaction in the latter case. Such additional step has
been added to the OCBE protocols, to allow the service
provider to learn the result of the verification, at the user’s
will. Since the random bit string M contains no useful infor-
mation about the service content itself, a qualified user must
choose to show the correctly decrypted secret message M , in
order to continue the transactions with the service provider.
In this sense, the extended OCBE protocols (for inequality
predicates) works as a zero-knowledge proof scheme for our
application.

In both scenarios, if the user’s receipt’s attributes need to
satisfy multiple conditions in the service provider’s policy,
a run of the OCBE protocol must be performed for each
condition. A receipt’s attributes satisfy the conditions in the
policy if and only if the user can open all related envelopes.

4. PROTOCOL ANALYSIS
In this section we analyze the security properties of our

transaction receipts management protocol.
Our protocol is built on provably secure cryptographic

protocols: digital signature scheme, Shamir’s secret sharing
scheme, Pedersen commitment, Schnorr’s zero-knowledge proof
protocol, and OCBE protocols.

After a user sends a service request to a service provider
and receives a policy, he/she selects a transaction receipt T r,
and sends back T r.COM, T r.SIG and T r.ATTR.SELLER,
i.e., the receipt’s parts containing Pedersen commitments,
receipt issuer (seller)’s signature on these commitments and
the identity of the issuer, respectively. On one hand, since
the service provider verifies the issuer’s signature on the Ped-
ersen commitments, it is guaranteed that the Pedersen com-
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Figure 4: System architecture

mitments have not be modified. Thus, the integrity of the
Pedersen commitments is assured. On the other hand, the
service provider does not learn anything about the actual
values of the transaction attributes. This is due to the un-
conditionally hiding property of the Pedersen commitment.

If the user passes the first step above, he/she starts to
reconstruct the secret exponent r, which is used to prove
the ownership of a receipt and the verification of conditions
on receipts, from some of the shares s1, s2, s3 and s4 us-
ing Shamir’s (k, n) threshold scheme. The number of shares
needed for the reconstruction depends on the pre-defined
level of protection. Since the shares are distributed at dif-
ferent locations, and protected by a PIN number, this makes
it hard for a party other than the receipt owner to obtain all
needed shares to recover r. Furthermore, since the Shamir’s
threshold scheme is information theoretically secure, unless
enough shares are collected, any attempt to recover the se-
cret r is not easier than guessing.

Once the secret r is reconstructed, the user carries out a
zero-knowledge proof protocol for the BUYER attribute, in
a manner like Schnorr’s as described in Section 3.3.3, with
the service provider. The user is able to convince the service
provider that he/she knows how to open the commitment,
only if he/she knows the values of both x and r such that the
corresponding commitment is computed as gxhr. It prevents
an entity who steals a valid receipt but does not know how
to open the asked commitment in the receipt from authenti-
cating with the service provider. Due to the zero-knowledge
property of the protocol, the service provider does not learn
the attribute value x for BUYER.

The last step of our protocol is the execution of the OCBE
protocols for the verification of the conditions on the receipt
attribute values. The OCBE protocols guarantee that a user
can correctly retrieve a message, randomly chosen by the ser-
vice provider, if and only if the user knows how to open the
commitments whose committed values satisfy the conditions
(equality or inequality) in the service provider’s policy, while
the service provider learns nothing about the actual values
of the transaction attributes.

Based on the above considerations, our protocol guaran-

tees the integrity and the privacy of the information included
in a transaction receipt and it also protects users against
identity theft.

5. SYSTEM ARCHITECTURE
We have implemented our protocol on Nokia 6131 NFC [3]

mobile phones. NFC enabled devices are gaining popular-
ity because they provide easy-to-use mechanisms for ubiq-
uitous accesses to systems and services. Based on a short-
range wireless connectivity, the communication is activated
by bringing two NFC compatible devices or tags within a
few centimeters from one another.

The system architecture is shown in Figure 4. It consists
of three main components: a service provider application,
an external NFC reader and the Nokia 6131 NFC [3] mobile
phone. The core architectural component is the NFC mobile
phone. It consists of an Antenna, for detecting external tar-
gets such as tags, external readers, or other Nokia 6131 NFC
mobile phones; an NFC modem, for providing the capability
to send and receive commands between antenna, secure ele-
ment and phone firmware including J2ME environment; a
Secure element, for enabling third-party application de-
velopment using tag/card emulation; Phone firmware, for
providing mobile phone functions with NFC features; a SIM

card, for GSM subscription identification and service man-
agement; J2ME environment included in phone firmware, for
enabling third-party application development using Nokia
6131 NFC features; and an External memory.

The Secure element within Nokia 6131 NFC can store
information securely, which can be used for payment and
ticketing applications or for access control and electronic
identifications. Secure element is divided into two sub-
components, Java Card area (also referred to as smart card)
and Mifare 4K area. Mifare 4K area can be considered as
a memory with access control, and typically it is simpler
to implement than a smart card application. Mifare 4K

contains data, whereas smart card application contains an
executable program. Java Card provides high security en-
vironment and executes code, which means it can be used
for more complex applications. Therefore, we store in the
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Java Card some of the shares in which the random secret r
is split because of the high security provided by Java Card.
Secure element is accessible through NFC modem internally
from MIDLets and externally by external readers. MIDLets
are Java applications running in the J2ME environment. In
the next section we describe in details, how we have imple-
ment our protocol to manage receipts by using MIDLets.

The NFC reader enables the communication between the
service provider application and the mobile phone. It trans-
mits and receives messages from the NFC cellular phone.
The service provider application consists of five main mod-
ules: Request Manager, Message Handler, ZKPK, Receipt

Issuance and Verification. The Request Manager module
parses users requests and selects from a local repository the
verification policy that applies to the request. The Message

Handler module provides all functions supporting the com-
munications between the service provider application and
the external NFC reader. The ZKPK module supports the
verification of receipts’ integrity and the ZKPK protocol to
verify the BUYER attribute. The Receipt Issuance mod-
ule provides the functions for creating a transaction receipt,
such as the generation of the Pedersen commitments and
the signature of the commitments. Once created, the trans-
action receipts are stored in a local repository. The Veri-

fication module supports the steps for the verification of
conditions on receipts described in Section 3.3.4.

6. IMPLEMENTATION AND EXPERIMEN-

TAL EVALUATION
To evaluate the performance of our protocol, we have de-

veloped a prototype version of the system. We have imple-
mented a MIDLet that supports the integrity verification of
receipts attributes, the proof of receipt ownership and the
verification of conditions against receipts. The implementa-
tion of the secret sharing phase is under development.

We store users’ transaction receipts in the external phone
memory, whereas the secret r used to compute the secure
commitments included in the receipts is saved in the Java

Card component. The execution of the MIDLet is triggered
when the Mifare 4K captures the verification policy sent by
the service provider’s external NFC reader and the Mifare

4K transfers such policy to the phone main memory. The
MIDLet retrieves from the external memory a transaction
receipt that satisfies the service provider policy and sends
the part of the receipt containing the transaction attributes
commitments, the signature affixed on the commitments,
and the value of SELLER attribute to Mifare 4K so that
can be read by the service provider’s external NFC reader.
If the service provider application successfully verifies the
signature on the receipts commitments, the MidLet retrieves
the secret r from the Java Card, and performs the other
steps of the receipts management protocol.

The MIDLet runs on Java 2 Micro Edition (J2ME). Since
J2ME is aimed at hardware with limited resources, it con-
tains a minimum set of class libraries for specific types of
hardware. In our implementation on conventional non-mobile
platforms, we used the BigInteger and SecureRandom class,
defined in J2SE java.math and java.security packages respec-
tively, to implement secure commitments, but both pack-
ages are not supported in J2ME. Therefore, we have used
the third-party cryptography provider BouncyCastle [2], a
lightweight cryptography APIs for Java and C# that pro-

vide implementation of the BigInteger and SecureRandom
classes. In addition, because of the limited memory size
of mobile phones, we reduced the MIDLet’s code size by us-
ing code obfuscation techniques provided by Sun’s NetBeans
IDE. Code obfuscation allows one to reduce a file size by re-
placing all Java packages and class names with meaningless
characters. For example, a file of a size of 844KB can be
reduced to a size of 17KB.

We have also implemented the service provider component
as a web application using Java and the Apache Tomcat Ap-
plication Server. The current implementation of the Ver-

ification module only supports the EQ-OCBE and GE-
OCBE protocols for the verification of equality conditions
and inequality conditions expressed by using the ≥ compar-
ison operator. We are extending the implementation with
support for other comparison operators.

We have performed several experiments to evaluate the
execution time of the MIDLet and the service provider (SP
for short) application for the proof of the receipt ownership
and the verification of conditions (equality and inequality)
against receipts. We have collected data about the execu-
tion times for verifying the equality conditions on receipts
and the time for verifying the inequality conditions by using
respectively EQ-OCBE and GE-OCBE protocols by vary-
ing the value of parameter ℓ from 5 to 20. ℓ determines the
number of commitments ci = gdihri , 0 ≤ i ≤ ℓ − 1 that
the user has to send to the service provider to prove he/she
satisfies an inequality condition in service provider policy.

The experiment compares the envelope creation time at
the service provider’s side, and the envelope opening time at
the MIDLet’s side, which are the most computationally ex-
pensive part for both protocols. We also record the time re-
quired for generating the additional Pedersen commitments
ci in GE-OCBE at the MIDLet’s side. No additional com-
mitment needs to be generated by the user in EQ-OCBE.
We do not include the communication time and the sym-
metric encryption time in the comparisons, which vary with
different network settings and plaintext lengths, in order to
focus on the main operations of the protocols. We also do
not include the signature verification time in the compari-
son, for the same reason.

In the experiment, we have executed the verification pro-
tocol both at the service provider’s side and at the MIDLet
size, for 10 times, and we have computed the average of the
obtained values.

Verification of Receipt Ownership
MIDLet 0.042
SP’s 0.0311
Application

Table 1: Average time (in seconds) to verify the
ownership of a receipt at MIDLet’s side and at SP’s
side

Table 1 shows the execution times taken by the verification
of receipt ownership phase at MIDLet side and at the SP
application side.
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Commitments Opening Total
Creation Envelope Execution Time

Equality 0 1.126 1.126
Condition
Inequality 5.875 6.088 11.963
Condition (≥)

Table 2: Verification of conditions’ execution time (in seconds) at MIDLet’s side (ℓ = 5)

Envelope Creation
Equality 0.0409
Condition
Inequality 0.165
Condition
(≥)

Table 3: SP’s application’s average execution time
(in seconds) for verifying one condition (ℓ = 5)

Table 2 and Table 3 report the average verification of con-
ditions’ execution time taken, respectively, by the MIDLet
and by the SP application for a value of parameter ℓ equal
to 5. When multiple conditions are to be verified, the execu-
tion time increases accordingly, as the protocol is repeated
for multiple rounds. As expected, the execution time to
verify inequality conditions takes more time than the verifi-
cation of equality conditions. In fact, the GE-OCBE used to
verify inequality condition with comparison predicate ≥, re-
quires the MIDLet and the SP application to perform more
interactions steps. Figure 5 shows the SP application’s ex-
ecution time to create the envelope according to GE-OCBE
protocol while Figure 6 shows the time taken by the MI-
DLet to open the envelope. In both cases, we have varied
the value of ℓ parameter from 5 to 20. The graphs show how
the value of parameter ℓ dramatically impacts on verifica-
tion of conditions’ execution time. With the increasing of
the ℓ parameter values, the execution time linearly increases.
The verification time increases because when ℓ parameter in-
creases, the SP application has to compute an higher number
of σj

i = (cig
−j)y, Cj

i = H(σj
i )⊕ ki to be sent to the MIDLet

running on user’s mobile phone and the MIDLet to decrypt
the envelope has to compute an higher number of σ′

i = ηri ,
and k′

i = H(σ′

i)⊕Cdi

i , for 0 ≤ i ≤ ℓ− 1.
Therefore, in the implementation of our protocol, the pa-

rameter ℓ must be kept as small as possible in order to reduce
the computational cost.

We expect other OCBE protocols for inequality predicates
to give performance results similar to those of GE-OCBE,
because the design and operations are similar.

Figure 5: SP Application’s Envelope Creation Time
varying the value of parameter ℓ

Figure 6: MIDLet’s Envelope Opening Time varying
the value of parameter ℓ
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7. RELATED WORK
In this section, we compare our approach with other ap-

proaches for mobile transactions managements.
With the advent of high-speed data networks and feature-

rich mobile, the concept of mobile wallet [8, 1] has gained
importance. The ESPRIT project CAFE [1] has introduced
the notion of electronic wallet, that is a small portable de-
vice which manages off-line digital payments to be used in
commercial transactions. The electronic wallet transacts via
a short range infrared channel either directly with compliant
cash registers and wallets held by other individuals, or over
the Internet, to merchants’ tills or service points provided
by banks and other organizations. The electronic wallet re-
lies on a blind signature scheme to guarantee privacy and
unlinkability for the electronic payment information while
our approach preserves only the privacy of transactions in-
formation.

Mjolsnes et al. [8] have proposed a version of the elec-
tronic wallet for online payments. The authors exploits a
credential server, denoted as credential keeper that securely
stores the credentials issued to a user by different issuers.
The credentials represents the wallet of the user. The user
to access his/her credentials at the credential keeper and
provide them to a service provider, has to present an access
credential, e.g. a symmetric key, to the keeper server. To in-
crease even more security, the access credential is encrypted
and protected within a mobile device, and it can only be
activated by using a PIN code or some other authentication
method. In our approach we do not need a third component
to guarantee a secure storage and management of the infor-
mation included in a transaction receipt. The receipts can be
securely stored on the phone external memory because the
values of the transaction attributes are not stored in clear
but they are substituted by their Pedersen commitments.

The Secure Electronic Transaction (SET) [11] protocol
was developed to allow credit card holders to make trans-
actions without revealing their credit card numbers to mer-
chants and also to assure authenticity of the parties. SET
deploys dual signature for merchant and payment gateway.
Each party can only read a message designated for itself
since each message is encrypted for a different target. To
enable this feature, card holders and merchants must reg-
ister with a Certificate Authority before they exchanging
a SET message. SET assures both confidentiality and in-
tegrity of the messages among card holders, merchants and
payment gateway whereas our protocol is designed to as-
sure integrity and privacy of transactions information. SET
authenticates the identity of the cardholder and the mer-
chant to each other because both are registered with the
same certificate authority. However, our protocols do not
mandate this requirement. SET is considered to have failed
because of its complexity. It requires cardholders and mer-
chants to register in advance and get X.509 certificates to
make transactions whereas the users need not to have such
PKI certificate in our protocol. In our approach only service
providers need to have a PKI certificate.

More recently, Veijalainen et al. [15], propose an approach
to manage transaction on mobile devices. Their solution is
based on the use of an application running on the phone de-
noted as Mobile Commerce Transaction Manager that pro-
vides the functionalities to start, terminate and resume a
transaction with a service provider. With respect to se-
curity and privacy of transactions information, the Mobile

Commerce Transaction Manager only guarantees confiden-
tiality by encrypting the messages exchanged between the
service provider application and the application running on
the phone. In our approach by using digital signatures, Ped-
ersen commitment, ZKPK techniques and OCBE protocols,
we are able to guarantee both privacy and integrity of trans-
actions information.

Finally, MeT initiative [7] has the goal to develop secure
and easy methods and platforms for conducting e-commerce
transactions on mobile phones. The strategy for MeT is
to base the framework on existing standards such as WAP,
Wireless Transport Layer Security (WTLS), Wireless Iden-
tification Module (WIM), Public Key Infrastructure (PKI)
and Bluetooth. Privacy and security are ensured with digital
signatures and cryptography services for transaction verifi-
cation, confidentiality, authentication, and non-repudiation.

8. CONCLUSIONS
We have proposed a privacy preserving approach to man-

age electronic transaction receipts on mobile devices. We
have focused on such type of device because we believe that
in the near future users will conduct business transactions
and access resources and services mostly using their mobile
phones and PDAs. However, we have also implemented a
web-based version of our receipt management system.

Our approach is based on the notion of transaction receipt,
that records the information characterizing a transaction,
and combines Pedersen commitment, ZKPK techniques and
OCBE protocols. We have implemented our approach on
Nokia 6131 NFC mobile phones and have evaluated its per-
formance of on these devices. The experimental results show
that our protocol is quite efficient in verifying equality con-
ditions on receipts; however we need to improve the perfor-
mance of the inequality conditions’ verification. We believe
that the reasons for the high execution times when verify-
ing inequality conditions are the limited computational ca-
pability of Nokia 6131 NFC mobile phones and the use of
the BouncyCastle API that are not natively supported by
these phones. We plan to test our protocol on the Nokia
6212 NFC mobile phones that support JSR-177 Security
and Trust APIs. These APIs provide security services to
J2ME enabled devices without the need of using Bouncy-
Castle API’s. Since these API’s are natively supported by
these kind of phones, we believe that our protocols should
perform better on such phones. We are currently completing
the implementation of our prototype system by developing a
MIDLet supporting the secret sharing phase of our protocol.
We plan to complete the implementation of service provider
application’s Verification module in order to support the
verification of inequality conditions containing the compar-
ison predicates <, > and 6=.
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