
Authorization and User Failure Resiliency for

WS-BPEL business processes

Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

1 Cerias and Computer Science Department, Purdue University,
{paci,bertino}@cs.purdue.edu

2 Department of Computer Science, University of Bologna,
ferrini@csr.unibo.it

3 School of Computer Science and Technology (SCST), Shandong University,
sun yuqing@sdu.edu.cn

Abstract. We investigate the problem of WS-BPEL processes resiliency

in RBAC-WS-BPEL, an authorization model for WS-BPEL that sup-
ports the specification of authorizations for the execution of WS-BPEL
process activities by roles and users and authorization constraints, such
as separation and binding of duty. The goal of resiliency is to guaran-
tee that even if some users becomes unavailable during the execution
of a WS-BPEL process, the remaining users can still complete the exe-
cution of the process. We extend RBAC-WS-BPEL with a new type of
constraints called resiliency constraints and the notion of user failure re-

siliency for WS-BPEL processes and propose an algorithm to determine
if a WS-BPEL process is user failure resilient.

1 Introduction

Several XML-based languages have been proposed for specifying and orchestrat-
ing business processes, resulting in the WS-BPEL standard language. WS-BPEL
has been developed to specify automated business processes that orchestrate
activities of multiple Web services. There are, however, cases in which people
must be considered as additional participants to the execution of a process.
Therefore, it is important to extend WS-BPEL to include the specification of
activities that must be fully or partially performed by humans. The inclusion of
humans, in turn, requires an access control model to support the specification
and enforcement of authorizations to users for the execution of human activi-
ties while enforcing constraints, such as separation of duty, on the execution of
those activities. One such model is RBAC-WS-BPEL, a role based access control
model for WS-BPEL, that supports the specification of authorization informa-
tion stating which role or user is allowed to execute which human activities in a
process [6]. The authorization information comprises a role hierarchy reflecting
the organizational structure, a permission-role assignment relation, and a set
of permissions which represent the ability to execute activities. Authorization
constraints place restrictions on the roles and users that can perform the ac-
tivities in the business process. RBAC-WS-BPEL includes also a mechanism to

2 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

<receive>
submit

<receive>
submit

<invoke>
review1

<invoke>
review1

parallel

<invoke>
review2

<invoke>
review2

<invoke>
approve

<invoke>
approve

<invoke>
assignfunds

<invoke>
assignfunds

<reply>
submit
<reply>
submit

Funds
Assignment

Service

Approval
Service

Review
Service

Submission
Service

NotApproved Approved

Fig. 1. Project Submission process specification

determine if user requests to perform an activity in a WS-BPEL process can be
granted or not; requests are granted if the execution of a WS-BPEL process will
complete without violation to the authorization constraints.

In many situations, it is however necessary to make sure that a process can
complete even if certain users become unavailable to execute critical activities
in the process. The set of available users may change during the execution of
a WS-BPEL process for a large variety of reasons. Therefore, resiliency to user
unavailability is an important requirement for WS-BPEL processes.

In this paper, we investigate the problem of resiliency for WS-BPEL pro-
cesses. The goal of resiliency is to guarantee that even if some users become
unavailable, the remaining users can still complete the activities according to
the stated authorization constraints. To address such goal, we extend RBAC-
WS-BPEL with a new type of constraints, referred to as resiliency constraints,
that specify the minimum number of users that must be associated with the exe-
cution of the activities in order to give some assurance that even if some users are
not available, the WS-BPEL process can terminate. We also define an algorithm
that generates assignments (if such assignments exist) of users to activities that
satisfy both the authorization constraints and the resiliency constraints.

The remainder of the paper is organized as follows. Section 2 introduces a
running example. Section 3 presents the main components of RBAC-WS-BPEL
authorization model. Section 4 investigates the problem of resiliency for WS-
BPEL processes. Section 4 describes the approach to check if a WS-BPEL process
is user failure resilient and presents some complexity results. Sections 6 and
7 discuss the system architecture and report experimental results respectively.
Section 8 outlines related work. Section 9 concludes the paper and outlines future
research directions.

Authorization and User Failure Resiliency for WS-BPEL business processes 3

Fig. 2. RBAC-WS-BPEL main components

2 Running Example

In this section we show an example of WS-BPEL process that implements the
submission of a research project in an academic institution (see Figure 1). The
process orchestrates the following operations:

– the submit operation, by the Submission service, to submit a project pro-
posal and check if the proposal satisfies various regulations;

– the review operation, by the Review service, that allows one to review the
project proposal;

– the approve operation, by the Approval service, that allows a faculty mem-
ber to check the reviews and decide if the project must be supported or
not;

– the assign funds operation, by the Fund Assignment service, that allows
one to revise the funds available and to determine the amount of funds that
can be assigned to the project.

The project submission process is organized as follows. First, a faculty member
or a phd student submits a project proposal to the academic institution by invok-
ing operation submit (the <receive> submit activity). Then, the two review

operations (<invoke> review activity) are executed in parallel. After the review
process is completed, the approve operation is executed (<invoke> approve

activity): if the project is approved, the operation assign funds (<invoke>
assign funds activity) is performed and a notification is sent back to the project
investigator (<reply> submit activity).

3 RBAC-WS-BPEL Authorization Model

RBAC-WS-BPEL applies to WS-BPEL business processes deployed in a sin-
gle organization composed of different organizational units. RBAC-WS-BPEL

4 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

inherits all the components of traditional RBAC models: users, roles, permis-
sions, role hierarchies, user-role assignment and role-permission assignment re-
lations. Moreover, RBAC-WS-BPEL supports the specification of authorization
constraints such as separation of duty and binding of duty that restrict the set of
users that can perform a given activity (see Figure 2). In particular, RBAC-WS-
BPEL associates with a WS-BPEL business process a set of roles R. Each role is
associated with a set of conditions on users’ properties that users must satisfy in
order to be assigned to that role. Examples of such properties are “social security
number”, “birth-date” and “employment”. Users’ properties, that are referred
to as identity attributes, are conveyed in digital credential issued by trusted third
parties called Certification Authorities. Therefore, the assignment of a user to
a role is executed by evaluating the user’s attributes against the conditions as-
sociated with the role. If the user attributes satisfy such conditions, the user is
assigned to the role. In RBAC-WS-BPEL, permissions represent the ability to

Roles Users

Dean {John }

Full professor {Mary, Jane}

Associate {Chris, Irini }
professor

Assistant {Anna, Dan }
professor

Post Doctorate {Ellen, Doug}

PhD Student {Ashish, Melanie,
Kara}

Business Office {Tammy }
Manager

Business Office { Robynne, Leslie}
Clerk

(a) Roles

(b) The role hierarchy

Fig. 3. RBAC-WS-BPEL role hierarchy and role-permission assignment relation for
the project submission process

execute an activity of a WS-BPEL business process and are specified as tuples
of the form (Ai, Action) where Ai identifies an activity and Action identifies the
execution of the activity. Permissions are assigned to roles that are structured in
a role hierarchy that defines a permission inheritance relation among the roles.
RBAC-WS-BPEL supports separation of duty and binding of duty constraints
and any authorization constraint that can be expressed as a binary relation on
the set of users or roles. An authorization constraint is represented by a tuple
< D, (A1, A2), ρ >, where D is the user or role who has executed activity A1,
called the antecedent activity, A2 is the consequent activity to which the con-

Authorization and User Failure Resiliency for WS-BPEL business processes 5

Roles Permission

Post Doctorate, (<receive> submit, execute)
PhD Student

Assistant professor, (<invoke> review1, execute)
Associate professor

Assistant professor, (<invoke> review2, execute)
Associate professor

Full professor (<invoke> approve, execute)

Business Office Manager (<invoke> assign funds, execute)

Business Office Clerk (<reply> submit, execute)

(a) Role-permission assignment relation

Authorization Constraint

C1 <U, (<invoke> assign funds, <reply> submit), = >

C2 <U, (<invoke> review1, <invoke> review2), 6= >

C3 <U, (<receive> submit, <invoke> review1), 6= >

C4 <U, (<receive> submit, <invoke> review2), 6= >

C5 <U, (<receive> submit,<invoke> approve,) 6= >

C6 <U, (<invoke> review1, <invoke> approve), 6= >

C7 <U, (<invoke> review2, <invoke> approve), 6= >

(b) Authorization constraints

Fig. 4. RBAC-WS-BPEL role-permission assignment relation and authorization con-
straints for the project submission process

straints is applied and ρ is a relation on U , the set of users, or on R, the set of
roles. A constraint < D, (A1, A2), ρ > is satisfied if, whenever x ∈ D performs
A1 and y performs A2, then (x, y) ∈ ρ. Authorization information is encoded in
RBAC-XACML [3] while authorization constraints are represented in BPCL, a
special purpose XML language for specifying authorization constraints [6]. Fi-
nally, RBAC-WS-BPEL supports an algorithm to evaluate at runtime whether
a request to execute an activity by a user can be granted or not on the basis
of the authorizations the user has and on the basis of authorization constraints
defined for the activity.

Example 1. Figures 3 and 4 show the RBAC-WS-BPEL components defined for
our running example. Figure 3 (b) shows the role hierarchy that specifies the
different positions in an academic institution. Figure 3 (a) lists for each role
the users explicitly assigned to each role. 1 Figure 4 (a) illustrates a typical role-
permission assignment relation. For example, activity <invoke> review1 can be
performed both by an Assistant professor and by an Associate professor.
Figure 4 (b) reports the authorization constraints defined for the project sub-
mission process. C1 is a binding of duty constraint, requiring that the same user

1 A user is explicitly assigned to a role if the user’s attributes satisfy the conditions
associated with the role. A user is implicitly assigned to the roles that are dominated
in the role hierarchy by the role to which the user is explicitly assigned.

6 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

that assigns the funds to the project must notify if the project proposal has been
approved or not. C2, C3, C4, C5 and C6 are separation of duty constraints. For
example, C2 states that the users who perform <invoke> review1 and <invoke>

review2 must be different.

4 Process User Failure Resiliency

In this section we introduce the key notions of our resiliency model.

Definition 1 (Resiliency constraint). Let U be the set of users and let BP

a WS-BPEL process. A resiliency constraint is a tuple <Ai, ni>, where Ai ∈
BP and, ni ∈ N, ni denotes the minimum number of users that must have the
authorization 2 to perform Ai.

We now introduce the notion of user failure resiliency for a WS-BPEL busi-
ness process.

Definition 2 (User Failure Resiliency). Let U be the set of users, BP be
a WS-BPEL business process, UAi

be the set of users authorized to perform
activity Ai ∈ BP , and <Ai, ni> be a resiliency constraint for activity Ai. We
say that BP is user failure resilient if for each Ai ∈ BP such that a resiliency
constraint <Ai, ni> exists, then |UAi

| ≥ ni. Moreover, the maximum resiliency
of a WS-BPEL business BP , denoted as MaxRes, is defined as the maximum
over the set {ni | ∃ <Ai, ni> such that Ai ∈ BP }.

If a WS-BPEL process is user failure resilient, there is a sufficient number
of authorized users to perform the process so that authorization constraints are
satisfied and the process terminates even if some users become unavailable.

A relevant concept to determine whether a WS-BPEL process is user failure
resistant is the concept of configurations.

Definition 3 (Configuration). Let U be the set of users, BP be a WS-BPEL
business process and UAi

be the set of users authorized to perform activity Ai ∈
BP . Let C be the set {<A, u> | A ∈ BP ∧ u ∈ UA }. We say that c, c ⊆ C,
is a configuration for BP if ∀ Ai ∈ BP , ∃ one and only one tuple <A, u> ∈ c

such that A = Ai.

The above definition states basically that a configuration must specify a user
assignment for each activity in the process.

To determine if a WS-BPEL process is user failure resilient a possible ap-
proach is to compute the set S of all possible configurations and then evaluate
if the resiliency constraints are satisfied. All such configurations would be then

2 To determine if a WS-BPEL business process is user failure resilient, we assume
that a user has the authorization to execute an activity Ai if he/she is assigned to
a role which has the permission to perform Ai. The authorization to execute the
activity Ai is effectively granted to the user only at runtime when he/she claims the
execution of Ai.

Authorization and User Failure Resiliency for WS-BPEL business processes 7

stored to decide which user has to substitute another user if the latter becomes
unavailable at run-time. However, rather than computing and storing all the
possible configurations, it is sufficient to compute only a subset Sc of S that
satisfies the following property:
for each activity Ai ∈ BP such that a resiliency constraint <Ai, ni> exists, |⋃

c∈Sc
{<Ai, u> | <Ai, u> ∈ c} | = ni.

A resiliency constraint <Ai, ni> for an activity Ai is satisfied if it is possible to
find at least ni users authorized to perform Ai and therefore ni configurations.
It is trivial to prove that if Sc exists, the cardinality of Sc is equal to MaxRes.

In the next section we evaluate the complexity of computing the configura-
tions in Sc.

4.1 Computational complexity of Checking User Failure Resiliency

The complexity of checking whether a WS-BPEL process is user failure resilient
is given by the following lemmas.

Lemma 1. Checking whether a WS-BPEL process is user failure resistant, which
is called the user failure resiliency checking problem (RCP for short), is NP-
Complete in RBAC-WS-BPEL.

Lemma 2. RCP is P in RBAC-WS-BPEL if only binding of duty constraints
are specified on the process activities.

Lemma 3. RCP is NP-Complete in RBAC-WS-BPEL if only separation of
duty constraints are specified on the process activities.

See [7] for the proofs.

5 Constraints evaluation and Planning

As we proved in the previous section, the complexity of computing the config-
urations to check whether a WS-BPEL process is user failure resilient is NP-
Complete. In fact, in the worst case, the complexity is O(|U ||A| ∗ MaxRes),
where |U | is the number of potential users and |A| is the number of activities in
the process, because to compute a configuration, all the possible assignments of
users to activities are tried for all the activities in the process and this step is
iterated a number of times equal to MaxRes.

To reduce the complexity of computing configurations, we thus introduce two
heuristics that reduce the number of assignments of users to activities. First, for
all the activities that are linked by a binding of duty constraint, the set of users
that are authorized to perform these activities is set to the intersection of the
sets of users who are authorized to perform each single activity. For example, if
the binding of duty constraints < U ,(A1, A2),= > and < U ,(A1, A3),= > are
specified for activities A1, A2 and A3, the sets of users UA1

, UA2
and UA3

that
are authorized to perform A1, A2 and A3 are equal to the intersection VA1

∩

8 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

Algorithm 1: Process User Failure resiliency satisfaction
Require: AC set of authorization constraints,

RC set of resiliency constraints,
Activities set of activities ordered according the business process specification

Ensure: BP is user failure resistant
1: MaxRes = Max(RC)
2: for Ai ∈ Activities do

3: VAi
= getAuthorizedUsers(Ai)

4: if |VAi
| < RCAi

then

5: exit

6: else

7: V . add(VAi
)

8: end if

9: end for

10: LinkedActivities = getSubActivities(Activities)
11: satisfiable = true

12: while (Num < MaxRes AND satisfiable) do

13: for LinkedActivitiesi ∈ LinkedActivities do

14: Current Activity = LinkedActivitiesi.head()
15: SubConfigi = build config(Current Activity, V , AC, RC, Conf Set,

SubConfigi, LinkedActivitiesi)
16: SubConfig.add(SubConfigi)
17: end for

18: Current Config = merge(SubConfig)
19: if Current Config.size() == Activities.size() then

20: satisfiable = true

21: Conf Set.add(Current Config)
22: Num = Num+1
23: else

24: satisfiable = false

25: end if

26: end while

27: if | Conf Set | < MaxRes then

28: for Ai ∈ Activities do

29: if | Conf Set | < RCAi
then

30: Missing Users = RCAi - | Conf Set |
31: Roles=ua-update(Missing Users)
32: end if

33: end for

34: end if

VA2
∩ VA3

. VA1
, VA2

and VA3
are, respectively, the set of users that are autho-

rized to execute A1, A2 and A3 because they are assigned to a role that has the
permission to execute A1, A2 and A3. The adoption of this heuristic increases
the success rate of assignment of users to activities and therefore minimizes the
number of user assignments.
The second heuristic groups the activities that are linked by authorization con-
straints. For example, activities A4 and A5 are in the same subset of activities

Authorization and User Failure Resiliency for WS-BPEL business processes 9

if there is a separation of duty constraint < U ,(A4, A5),6= > between A4 and
A5. For each subset of activities, a partial configuration is computed and then
a complete configuration for the process is generated by merging the partial
configurations. This optimization reduces the number of user assignments to
activities because, when the assignment of a user to an activity fails, the re-
assignment of a user is performed only for the antecedent activities that are
in the same subset of the activity for which the assignment fails and not for
all the other antecedent activities. The computation of the set of users autho-
rized to perform the activities linked by a binding of duty constraint and of the
subsets of activities has complexity |AC|2, where |AC| is the number of autho-
rization constraints. The computation of the sub-configurations for each subset
of activities has complexity O(|Usubset |

|Asubset|), where |Usubset| and |Asubset|
are respectively the number of candidate users and the number of activities
in each subset while the complexity of combining the sub-configurations to-
gether to obtain a configuration for the whole business process is |A|. Therefore,
by adopting these heuristics, the complexity of calculating the configurations
necessary to assure that a WS-BPEL process is user failure resilient becomes
O(|AC|2 + MaxRes ∗ {|Usubset|

|Asubset| + |A|}).
Algorithm 1 adopts the heuristics we have described to compute a number of
users-to-activities assignment configurations equal to MaxRes. First of all the
algorithm, computes MaxRes (line 1). Then, for each activity Ai, the pro-
cedure getAuthorizedUsers returns the set of users VAi

that are authorized
to perform activity Ai because they are assigned to a role that has the per-
mission to execute Ai (lines 2-3). If the cardinality of VAi

is lower than the
resiliency value specified for Ai, the algorithm terminates, otherwise VAi

is
added to V , that is a vector containing for each activity Ai the set VAi

(line
7). Then, the procedure getSubSetActivities calculates the subsets of activ-
ities SubSetActivities on the basis of the authorization constraints that are
applied to them. Each SubSetActivities is saved in the LinkedActivities set
(line 10). Then, the algorithm iterates till a number of user configurations equal
to MaxRes is not found (line 12) or it is not possible to find such a number of
configurations because all the possible combinations of users-to-activities assign-
ment have been tried. The configurations are computed by the recursive proce-
dure build config. build config is executed for each subset LinkedActivitiesi

and returns a partial configuration SubConfigi. Once a partial configuration
SubConfigi is computed for each subset LinkedActivitiesi, the procedure merge
combines all SubConfigi in one configuration Current Config that is added to
the configurations set Config Set. If Algorithm 1 is not able to compute a num-
ber of configurations equal to MaxRes, it determines the activities for which
the resiliency constraint is not satisfied. These activities are the activities whose
resiliency value is lower than the number of configurations in Config Set. For
each of these activities, Algorithm 1 calculates the number of additional po-
tential users should be associated with the execution of the activities. Then,
ua-update checks the logs associated with the activities and returns the roles

10 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

for which the user failure assignment has more frequently failed. The additional
potential users needed must be added to these roles.

Example 2. Assume that for the activities <invoke> review1, <invoke> review2

and <invoke> approve the following resiliency constraints are specified: (<invoke>
review1, 3), (<invoke> review2, 3) and (<invoke> approve, 2). Since MaxRes

is equal to three, to prove that the project submission process is user failure
resilient, we need to find three different users-to-activities assignment configura-
tions. An example of such configurations is:

1. (<receive> submit, Irini), (<invoke> review1, Mary),(<invoke> review2,
Anna), (<invoke> approve, Jane), (<invoke> assign funds, John), (<reply>
submit, John)

2. (<receive> submit, Kara), (<invoke> review1, Chris), (<invoke> review2,
Mary), (<invoke> approve, John), (<invoke> assign funds, Tammy),
(<reply> submit, Tammy)

3. (<receive> submit, Irini), (<invoke> review1, Jane), (<invoke> review2,
John), (<invoke> approve, Mary), (<invoke> assign funds, Tammy),
(<reply> submit, Tammy).

Therefore, the project submission process is user failure resilient. Consider a
different scenario, in which the resiliency constraints (<invoke> review1, 4),
(<invoke> review2, 4) and (<invoke> approve, 3) are applied to activities
<invoke> review1, <invoke> review2 and <invoke> approve. Now, we have
to find four configurations to prove that the process is resilient since MaxRes

is equal to four. In this case, the following configurations are generated:

1. (<receive> submit, Jane), (<invoke> review1, Dan), (<invoke> review2,
Chris), (<invoke> approve, Mary), (<invoke> assign funds, Tammy),
(<reply> submit, Tammy)

2. (<receive> submit, Anna), (<invoke> review1, Irini), (<invoke> review2,
John), (<invoke> approve, Jane), (<invoke> assign funds, John), (<reply>
submit, John)

3. (<receive> submit, Kara), (<invoke> review1, Jane), (<invoke> review2,
Mary), (<invoke> approve, John), (<invoke> assign funds, null), (<reply>
submit, null)

4. <receive> submit, Ashish), (<invoke> review1, Chris), (<invoke> review2,
Anna), (<invoke> approve, null), (<invoke> assign funds, null), (<reply>
submit, null).

It’s easy to see that the process is not user failure resilient because the first
two configurations are complete but for the other ones the assignment of a user
to activities <invoke> approve, <invoke> assign funds and <reply> submit

fails.

6 System architecture

The main components of the RBAC-WS-BPEL architecture (see Figure 5) are
the WS-BPEL engine, the XACML Policy Store, BPCL Constraints Store repos-

Authorization and User Failure Resiliency for WS-BPEL business processes 11

Fig. 5. RBAC-WS-BPEL architecture

itories, the History Store and the RBAC-WS-BPEL Enforcement Service. The
WS-BPEL engine is responsible for scheduling and synchronizing the various
activities within the business process according to the specified activity depen-
dencies, and for invoking Web services operations associated with activities. The
XACML Policy Store records the RBAC-WS-BPEL authorization schema asso-
ciated with the business process, whereas the BPCL Constraints Store records
the authorization constraints. The History Store records the users who have per-
formed an activity and whether the execution of the activity has been successful
or not. The RBAC-WS-BPEL Enforcement Service supports the WS-BPEL pro-
cess administrators both at deployment time and at runtime. When the process
is deployed, the RBAC-WS-BPEL Enforcement Service checks if the process is
user failure resilient and, hence, if there is a number of users sufficient to start the
execution of the process, while during the execution of the process the RBAC-
WS-BPEL Enforcement Service checks whether the execution of an activity by
a user violates authorization constraints. The RBAC-WS-BPEL Enforcement
Service offers three WSDL interfaces. The first interface provides the operations
for starting and completing the execution of a WS-BPEL activity that must be
performed by a user. The second interface allows users to visualize the activities
they can claim, and to claim and execute them [6]. The third interface provides
functions for determining if a WS-BPEL process is user failure resilient.

In what follows, we focus on the description of the third interface, because
it is the most relevant for the discussion in the paper.

Such interface provides a single operation, called planning, that implements
Algorithm 1. The planning operation notifies the WS-BPEL process adminis-
trator if the process is user failure resilient and, if this is not the case, displays
the activities for which the resiliency constraints are not satisfied and the roles
authorized to perform the activities that should be populated with additional
users. The WS-BPEL process administrator can decide to proceed with the ex-

12 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

Test Case Business Num of Num of MaxRes Num of

Process BoD SoD Users

1 21 activities 4 4 6 50..140

2 21 activities 4 4 [3,9] 50

3 21 activities [0,5] 4 6 50

4 21 activities 0 [3,6] 6 50
Table 1. Test cases parameters

ecution of the process or to halt the execution and modify the set of potential
users associated with the execution of the process. To enable the execution of
the planning operation, the WS-BPEL process designer has to include in the
<partnerLinks> list, the RBAC-WS-BPEL Enforcement Service. Moreover, the
WS-BPEL specification must be such that the start activity of the process is
a <receive> activity that executes the planning operation. The <receive>

planning activity is followed by an <if> activity that performs the subsequent
activities that implement the business process only if the execution of planning
is successful. The planning operation retrieves from the XACML Policy Store
the hierarchy of roles and the list of users assigned to the roles and selects from
the BPCL Constraints Store the set of authorization and resiliency constraints
that are necessary for executing Algorithm 1. All configurations computed by
the planning operation are stored in an additional repository, referred to as
Planning Store, while the logs of unsuccessful assignments of users to activities
are recorded in the History Store.

7 Experimental evaluation

We have carried out several experiments to evaluate the impact of the heuristics
for reducing the cost of the configuration computation and to prove the effec-
tiveness of our approach. To execute the tests we have implemented Algorithm 1
and, in addition, an algorithm, referred to as NoNOptimized, which computes a
number of configurations equal to MaxRes as Algorithms 1 but without adopt-
ing the heuristics to reduce the complexity. We have also generated a WS-BPEL
process composed by 21 activities, a set of 50 potential users, a role hierarchy of
7 roles, 4 separation of duty and 4 binding of duty constraints. Such process has
a MaxRes value equal to 6. We have considered four test cases that are sum-
marized in Table 1. In particular, we have measured in CPU time (milliseconds)
the execution time of Algorithm 1 and of the NoNOptimized algorithm in the
following cases:

1. we varied the number of potential user from 50 to 140 and we kept the
number of separation of duty and binding of duty constraints equal to 4,
and the value of MaxRes equal to 6.

Authorization and User Failure Resiliency for WS-BPEL business processes 13

(a) First Test Case (b) Second Test Case

(c) Third Test Case (d) Fourth Test Case

Fig. 6. Experimental results

2. we varied the value of MaxRes from 3 to 6 and we kept the number of
separation of duty and binding of duty constraints equal to 4 and the number
of potential users equal to 50.

3. we varied the number of binding of duty constraints defined for the process
from 0 to 5 and we set the number of separation of duty constraints to 4,
the value of MaxRes to 6 and the number of potential users to 50.

4. we varied the number of separation of duty constraints defined for the process
from 3 to 6 and we set the number of binding of duty constraints to 4,
MaxRes value to 6 and the number of of potential users to 50.

The experiments have been run on a PC with operating system WINDOWS XP
SP2, a 2Gz T7200 processor and 2GB RAM. Moreover, for each test case we
have executed twenty trials, and the average over all the trial execution times
has been computed. Figures 6 (a) and (b) report the execution times measured
for test cases 1 and 2. The execution times of Algorithm 1 are almost constant
for increasing values of the number of potential users and MaxRes value, while
the execution time of the NoNOptimized algorithm increases. The reason is
that in Algorithm 1 the first heuristic reduces the number of unsuccessful users
assignments. Moreover, the second heuristic reduces the number of activities for
which we try to reassign a user in case of failure. Instead, for the NoNOptimized

14 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

algorithm, the time increases because in case of user assignment failure for an
activity Ai, a reassignment of a user is tried for all the antecedent activities
Ai−1, Ai−2 . . . rather than only for the antecedent activities that are linked to
Ai by an authorization constraint. The experimental results reported in Figure 6
(c) show the advantage of adopting the first heuristic about the activities that
are linked by a binding of duty constraint. When the number of binding of
duty constraints is equal to 0, the execution times of Algorithm 1 and of the
NoNOptimized algorithm are the same; while when the number of binding of
duty constraints increases, the execution times of the NoNOptimized algorithm
become greater than Algorithm 1. When increasing the number of binding of
duty constraints, the user assignment success rate for Algorithm 1 increases and,
as a consequence, the number of user assignments is minimized. This is the reason
why Algorithm 1’s execution time is almost constant, while the execution time of
the NoNOptimized algorithm increases. Finally, Figure 6 (d) shows the impact
of generating the subsets of activities. The increase of the number of separation of
duty constraints restricts the number of users authorized to perform the activities
and, as a consequence, the probability that a user assignment fails is very high.
Therefore also the number of reassignments of users to activities is high. The
execution time of Algorithm 1 is lower than the time of the NoNOptimized

algorithm because the number of activities for which the user reassignments is
performed is minimized; the user reassignment is tried only for the antecedent
activities in the same subset of the activity for which the user assignment fails.
Note that the execution time of Algorithm 1, regardless of the test cases we
have performed, is under 100 ms. Such results show that our approach to check
whether a WS-BPEL process is user failure resilient is applicable to real case
scenarios.

8 Related Work

With the widespread adoption of Web services composition to implement com-
plex business processes and of WS-BPEL as the standard language to specify
business processes based on Web services, the problem of how to associate au-
thorized users with the activities of a WS-BPEL process is gaining attention.
Koshutanski et al. [5] propose an authorization model for business processes
based on Web services. Both the model of Koshutanski et al. and RBAC-WS-
BPEL assume an RBAC model and support authorizations constraints on the
set of users and roles. They also consider the problem of taking authorization
decision on the execution of business process’s activities. The main difference
with RBAC-WS-BPEL is in the approach to take authorization decision. In the
model by Koshutanski et al., an authorization decision is taken by orchestrating
the authorization processes of each Web service, the activities of which are or-
chestrated in the business process, while in RBAC-WS-BPEL an authorization
decision is taken independently for each activity in the process.

Xiangpeng et al. [8] propose an RBAC access control model for WS-BPEL
business process. Roles correspond to <partnerRole> elements in the WS-BPEL

Authorization and User Failure Resiliency for WS-BPEL business processes 15

specification and are organized in a hierarchy. Permissions correspond to the
execution of the basic activities in the process specification. In addition, separa-
tion of duty constraints can be specified. A main difference with respect to our
approach is that RBAC-WS-BPEL’s BCPL constraints language supports the
specification of a broader range of authorizations constraints than the model by
Xiangpeng et al.

BPEL4People [1] is a recent proposal to handle person-to-person WS-BPEL
business process. With respect to RBAC-WS-BPEL, in BPEL4People users that
have to perform the activities of a WS-BPEL business process are directly spec-
ified in the process by user identifier(s) or by groups of people’s names. No
assumption is made on how the assignment is done or on how it is possible to
enforce constraints like separation of duties.

The workflow authorization model proposed by Wang et al. [9] is probably
the one that is most closely related to RBAC-WS-BPEL. Wang et al. propose the
role-and-relation-based access control (R2BAC) model for workflow systems. In
R2BAC, in addition to a users role memberships, the users relationships with
other users help determine whether the user is allowed to perform a certain step
in a workflow. Wang et al. investigate the workflow satisfiability problem, which
asks whether a set of users can complete a workflow. They also investigate the
resiliency problem in workflow systems, which asks whether a workflow can be
completed even if a number of users may be absent. The notion of resiliency
supported by RBAC-WB-BPEL is slightly different from the one proposed by
Wang et al. They propose a notion of resiliency parametrized in the number
of absent users. A workflow is resilient, if it is satisfiable in any configuration
where any set of users of cardinality equal to the parameter is not available.
Instead, in RBAC-WS-BPEL, a WS-BPEL process is resilient if it is possible
to find a number of configurations that satisfy both resiliency constraints and
authorization constraints.

9 Conclusions

In this paper, we have investigated the resiliency problem for WS-BPEL business
processes. Resiliency in the context of business process means that even if some
users become unavailable, the remaining users can still complete the execution
of the process according to the stated authorizations and authorization con-
straints. To address such problem, we have extended RBAC-WS-BPEL, which
is an authorization model for WS-BPEL business processes, with the notions
of resiliency constraints for activities and user failure resiliency for a business
process. We have proposed an algorithm that allows to statically determine if a
WS-BPEL is user failure resilient. The algorithm verifies there is a number of
users-to-activities assignment configurations equal to MaxRes. These configu-
rations are computed by assuming that users are assigned to the execution of an
activity because they cover a role that is granted the execution of the activity.
The authorization to execute an activity is effectively granted to users only at
runtime when they claim the execution of the activity. Though, the complex-

16 Federica Paci 1, Rodolfo Ferrini 2, Yuqing Sun3, and Elisa Bertino 1

ity of computing such configurations is NP-complete in the most general case,
the proposed algorithm adopts some heuristics that reduce the computational
complexity. The experimental results, we have performed, have shown that the
algorithm is efficient in most practical cases.

We are planning to extend this work in several directions. We are currently in-
vestigating how the RBAC-WS-BPEL Enforcement Service can be implemented
on top of ODE BPEL engine[4]. We also want to extend RBAC-WS-BPEL
to support authorizations for cross-organizations business processes. Currently,
RBAC-WS-BPEL is applied to inter-organization business processes. As we have
been told by the main companies providing solutions for WS-BPEL processes,
WS-BPEL is mainly used to specify inter-organization business processes rather
than cross-organizations business processes. We are also planning to extend
RBAC-WS-BPEL with more sophisticated authorization constraints.

References

1. Agrawal, A. et al.: WS-BPEL Extension for Peo-
ple (BPEL4People), Version 1.0, . Online at:
http://www.adobe.com/devnet/livecycle/pdfs/bpel4people spec.pdf,(2007).

2. Alves. A. et al.: Web Services Business Process Execution Language,
Version 2.0, OASIS Standard, April 2007. Online at: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

3. Anderson, A.: Core and Hierarchical Role Based Access Control (RBAC) Pro-
file of XACML, Version 2.0, OASIS Standard, 2005. Online at: http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-rbac-profile1-spec-os.pdf.

4. Apache ODE BPEL engine. http://ode.apache.org/bpel-extensions.html
5. Kostutanski, H., Massacci, F.: An Access Control Framework for Business Processes

for Web Services. In Proceedings of ACM Workshop on XML Security, George
W. Johnson Center at George Mason University, Fairfax, Va, USA, October 2003,
15−24.

6. Paci, F., Bertino, E, Crampton, J.: An Access Control Framework for WS-BPEL,
International Journal of Web service Research, 5 (3), pp. 20−43 (2008).

7. Paci, F., Ferrini, R., Sun, Y., Bertino, E.: Authorization and User Failure Resiliency
for WS-BPEL business processes, Cerias Technical report(2008).

8. Xiangpeng, Z., Cerone, A., Krishnan, P.: Verifying BPEL Workflows Under Autho-
risation Constraints. In Proceedings of Fourth International Conference on Business
Process Management (BPM 2006), Vienna, Austria, September 2006.

9. Wang Q., Li, N.:Satisfiability and Resiliency in Workflow Systems, in Proceedings
of ESORICS 2007, pp. 90-105.

