
Flexible Interface Matching for Web-Service Discovery

Yiqiao Wang

University of Alberta

Yiqiao@cs.ualberta.ca

Eleni Stroulia

University of Alberta

Stroulia@cs.ualberta.ca

Abstract

    The web-services stack of standards is designed to
support the reuse and interoperation of software
components on the web. A critical step, to that end, is
service discovery, i.e., the identification of existing web
services that can potentially be used in the context of a
new web application. UDDI, the standard API for
publishing web-services specifications, provides a simple
browsing-by-business-category mechanism for developers
to review and select published services. In our work, we
have developed a flexible service discovery method, for
identifying potentially useful services and assessing their
relevance to the task at hand. Given a textual description
of the desired service, a traditional information-retrieval
method is used to identify the most similar service
description files, and to order them according to their
similarity. Next, given this set of likely candidates and a
(potentially partial) specification of the desired service
behavior, a structure-matching step further refines and
assesses the quality of the candidate service set. In this
paper, we describe and experimentally evaluate our web-
service discovery process.

1. Introduction

    Faced with decreasing time-to-market and increasing
requirement volatility, software-development processes
are increasingly relying on reuse of existing software.
Furthermore, the World Wide Web is increasingly being
adopted as the medium of collaboration with partners and
as a means of delivering information and services to
consumers; thus, web-based applications constitute a
substantial percentage of the currently developed
applications.

    The web-services set of standards is aimed at
facilitating and improving the quality of component-based
applications on the web. It consists of a set of related
specifications, defining how reusable components should
be specified (through the Web-Service Description
Language – WSDL), how they should be advertised so
that they can be discovered and reused (through the
Universal Description, Discovery, and Integration API –
UDDI), and how they should be invoked at run time
(through the Simple Object Access Protocol API –
SOAP).

    A critical step in the process of reusing existing
WSDL-specified components is the discovery of
potentially relevant components. UDDI servers are
essentially catalogs of published WSDL specifications of
reusable components. These catalogs are organized
according to categories of business activities. Service
providers advertise services by adding their WSDL
specifications to the appropriate UDDI directory category
[1]. Through a well-defined API, software developers can
browse the UDDI catalog by category.

    This category-based service-discovery method is
clearly insufficient. It is quite informal and relies, to a
great extent, on the shared common understanding of
publishers and consumers. It is the responsibility of the
provider developer to publish the services in the
appropriate UDDI category. The consumer developer
must, in turn, browse the “right” category to discover the
potentially relevant services. More importantly, these
methods do not provide any support for selecting among
competing alternative services that could potentially be
reused.

    In this paper, we discuss a flexible service discovery
method, for identifying potentially useful services and
estimating their relevance to the task at hand. This
method is based on information retrieval and structure
matching. Given a potentially partial specification of the
desired service, all textual elements of the specification

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



are extracted and are compared against the textual
elements of the available services, to identify the most
similar service description files and to order them
according to their similarity. Next, given this set of likely
candidates, a structure-matching method further refines
the candidate set and assesses its quality.

    The intuition underlying this method is that an
alternative means of querying UDDI servers is “query by
example”, i.e., by providing a (potentially partial)
specification of the desired service. The consumer
developer may define various aspects of the desired
service, such as a description in natural language, the
namespaces of its data types and the input/output
structures of its operations, and the proposed method will
return a set of candidate services with an estimate of their
similarity to the provided example.

    The remainder of the paper is organized as follows:
section 2 discusses related work; section 3 explains in
detail the design and implementation of our approach;
section 4 discusses the results of our experimentation with
the algorithm; section 5 outlines our plans for future work
and concludes.

2. Related Work

    The problem of web-service discovery is an instance of
the more general problem of information retrieval and
component discovery for which signature matching [14,
6] and specification matching [2,13] have been
developed.

    The Polylith system [6] proposed one of the earliest
signature-matching methods for the purpose of interface
adaptation and interoperation. The NIMBLE language in
Polylith enabled programmers to specify coercion rules so
that the parameters of the invoking module could be
matched to the signature of the invoked module,
including reordering, type mapping and parameter
elimination. Zaremski and Wing [2,14] described
signature matching as a means for retrieving functions
and modules from a software library. Exact and relaxed
function matching can be applied repetitively to match
modules. Signature matching is an efficient means for
component retrieval, for several reasons. Function
signatures can be automatically generated from the
function code. Furthermore, signature matching
efficiently prunes down the functions and/or modules that
do not match the query, so that more expensive and
precise techniques can be used on the smaller set of
remaining candidate components. However, signature
matching considers only function types and ignores their

behaviors; and two functions with the same signature can
have completely opposite behaviors.

    Specification matching aims at addressing this problem
by comparing software components based on descriptions
of their behaviors. Zaremski and Wing [13] extended
their signature-matching work with a specification-
matching scheme: two components match if their
signatures and specifications match. Specification
matching considers semantic information (behavior)
about a component. However, there is no guarantee that
specifications provided by the programmers correctly and
completely reflect the component’s behavior. Moreover,
it is hard to motivate programmers to provide a formal
specification for each component they write.

    WSDL, the Web-Services Definition Language, is an
XML-based interface-definition language. It describes
“services” at a high level of abstraction, as a set of
operations implemented by a set of messages involving a
given set of data types [1]. WSDL [1] specifications of
service-providing components are published in UDDI
registries. UDDI [9] is designed as an online marketplace
providing a standardized format for general business
discovery. Developers can browse and query a UDDI
registry using the UDDI API to identify businesses that
offer services in a particular business category and/or
services that are provided by a certain service provider.

    WSDL service specifications do not include semantics.
On the other hand, DAML-S [3] is a formal language that
supports the specification of semantic information in RDF
format. As part of the “semantic web” effort, it is
intended as the means for specifying domain-specific
semantics of ontologies. An extension of DAML-S
supports service specification, including behavioral
specifications of their operations; as a result, it enables
discovery through specification matching, such as the
method proposed in LARKS [7].

    Traditional information retrieval methods include full
text retrieval, signature files, inversion, and vector model
and clustering [4]. Full text retrieval methods search all
documents for the specified string. These methods are
most straightforward and require minimum effort to
maintain, but the response time is bad when files are large
[4]. In signature file approach, each document generates a
bit string as its signature, and searches are done on these
signature files. The advantages are that it is easy to
implement and it is robust. However, its response time is
bad when used on large files [4].     Inversion methods
represent  documents by a list of alphabetically sorted
keywords. Fast retrieval can be achieved using these
methods, but storage overhead and cost of maintaining go
up [4]. Clustering methods use vector model to generate
document clusters and group similar documents together.
Each document is represented as a t-dimensional vector

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



where t is the number of distinct words in the document.
Representing documents and queries as vectors allows for
relevance feedback, and increase effectiveness of the
search [4].

3. The Web-service Discovery Method

    Our service-discovery method is aimed at enabling
service discovery, in a more precise and automatic
manner than browsing, utilizing the information actually
provided by WSDL. To that end, it integrates information
retrieval and structure matching algorithms. The method
assumes as input a (potentially partial) specification of the
desired WSDL specification and a set of WSDL
specifications of available services, such as the services
advertised in UDDI. The vector-space model, an
information retrieval method, is used to identify most
similar service description files, and to order them
according to their similarity. Given this ranked list of
candidate web services, a structure-matching algorithm
further refines and assesses the quality of the candidate
service set.

3.1.  Information Retrieval Using the Vector
Space Model

    In the vector-space model, documents and queries are
represented as T-dimensional vectors, where T is the total
number of distinct words in the document collection after
the preprocessing step. Preprocessing includes
eliminating stop words (very commonly used words) and
conflating related words to a common word stem. Each
term in the vector is assigned a weight that reflects the
importance of a word in the document. This value is
proportional to the frequency a word appears in a
document and inversely proportional to number of
documents that contain this word [10,8]. A common term
importance indicator is tf-idf weighting [8] where the
importance of a word i in document j is:

wij = tfij idfi = tfijlog2 (N/dfi ), where tfij is normalized term
frequency across the document, and idfi is the inverse
document frequency of term i. N is total number of the
documents in the collection, and Log is used to dampen
the effect relative to tf [8].

    The WSDL syntax allows textual descriptions for the
service, its types and its operations, grouped under
<documentation> tags [1]. Thus, given a natural language
description of the desired service, it is possible to employ
the vector-space model to retrieve these published WSDL

services that are most similar to the input description on
the respective vectors. A higher score indicates a closer
similarity between the source and target specifications.

3.2. WSDL Structure Matching

   Because it is based on XML syntax, WSDL
specifications are hierarchical. At the lowest level of the
hierarchy, lie the data types, which themselves are
defined in XML and are hierarchical; one layer above the
messages are defined, whose structures depend on the
defined data types; the next layer specifies the service
operations, which are composed of messages. Finally, the
whole service is defined as the composition of its data
types and operations. Service developers exploit the
hierarchical nature of XML data types to capture the
internal structure of the entities they model; similarly,
they decompose the functionality delivered by the service
in terms of messages and operations. Therefore, the
hypothesis underlying our WSDL structure  matching
algorithm is that, if two services are conceptually similar
they are more likely to also be structurally similar than
otherwise. As a result, we have developed a heuristic,
domain-specific tree-edit distance algorithm to assess the
structural similarity of WSDL specifications. The tree-
edit distance algorithm [5] calculates the similarity of two
tree structures as the minimum number of node
modifications required to match them. [5]  describes such
an algorithm for comparing arbitrary XML documents.
Our algorithm assumes that the two trees being compared
are WSDL specifications and relies on the structure of the
WSDL schema to simplify the tree comparison.

The comparison of two WSDL files is a multi-step
process: it involves the comparison of the operations’ set
offered by the services, which is based on the comparison
of the structures of the operations’ input and output
messages, which, in turn, is based on the comparison of
the data types of the objects communicated by these
messages.

    The overall process starts by comparing the data types
involved in the two WSDL specifications, as described in
Section 3.2.2. The result of this step is a matrix assessing
the matching scores, i.e., the degree of similarity, of all
pair-wise combinations of source and target data types. It
is interesting to note here that the data types of web
services specified in WSDL are XML elements; as such,
they can potentially be highly complex structures.

    The next step in the process is the matching of the
service messages, described in Section 3.2.3. The result of
this step is a matrix assessing the matching scores of all
pair-wise combinations of source and target messages.

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



The degree to which two messages are similar is decided
on the basis of how similar their parameter lists are, in
terms of the data types they contain and their
organization.

    The third step of the process is the matching of the
service operations, described in Section 3.2.4. The result
of this step is a matrix assessing the matching score of all
pair-wise combinations of source and target operations.
The degree to which two operations are similar is decided
on the basis of how similar their input and output
messages are, which has already been assessed in the
previous level.

    Finally, the overall score for how well the two services
match is computed by identifying the pair-wise
correspondence of their operations that maximizes the
sum total of the matching scores of the individual pairs.

    After all target WSDL specifications have been
matched against the source WSDL specification, they are
ordered according to their “overall matching scores”: a
higher score indicates a closer similarity between the
target and source specifications. For each target
specification, the algorithm also returns the mapping of
its data types and operations to the corresponding data
types and operations of the source specification as an
“explanation” of its assigned match score. The details of
the process are described in the rest of this section.

3.2.1 An Example Scenario. Let us now introduce a
specific example of matching two web services. The
source web service contains one operation, getData, takes
a string as input and returns a complex data type named
POType which is a product order. The target web service
contains one operation, getProduct, takes an integer as
input and returns the complex data type MyProduct as
output.

    Figure 1 shows the WSDL specifications of the two
services discussed above. In WSDL, all operations are
grouped under the <portType> tag, with each unique
operation specified under an <operation> tag. In Figure 1,
operations are highlighted in boxes with bold, dashed
lines. Operations’ request and response messages are
specified as input and output messages under <message>
tags (highlighted in boxes with bold, solid lines).
Complex data types are grouped under the <types> tag,
with each data type defined under a <complexType> tag.
Complex data type definitions are highlighted using solid-
line boxes. POType is defined in Figure1a for the source
web service and it consists of an ID(String), a
name(String), and another complex data structure Items,
which contains a product name (String) and quantity
purchased (int). MyProduct, defined in Figure 1b for the
target web service, contains an ID(int), a name(String), a

price(float), and  part (ProductParts), a complex data type
that contains a name(String).

3.2.2 Matching Data Types. The basis of service,
operation and message matching is the matching score of
individual data types. The process of matching data types
is guided by the following properties:

    Property 1.  Preference is given to the matches
between data types with the same grouping organization
(style) of their elements.

    According to the WSDL syntax, the elements of a
complex data type are organized according to the
following “grouping styles”: <all>, <choice>, or
<sequence> [1]. If two data types have the same internal
grouping style, their matching score is increased by a
bonus score. In addition, if both complex types are
<sequence>s, the order of their elements is not mixed
during the match. For the other two grouping styles, i.e.,
<all> and <choice>, the ordering of elements within a
complex data type is not important.

    Property 2.  If two data types have the same name and
they are imported from the same namespace, they are
identical. An exhaustive matching is thus unnecessary.
Instead, the procedure matchIdenticalTypes assesses the
similarity score between two identical data types using
only the structural information of the data types since all
elements of the two data types are identical. This score is
a function of number of elements grouped at each level of
structure times MAXSCORE, the score assigned to
identical or compatible data types.

    Let us now discuss the algorithm matchDataTypes,
shown in Figure 2. This procedure identifies all possible
matches between two lists of data types in accordance
with the properties described above, and returns the data-
type correspondence that maximizes the overall matching
score between these two lists.

    As can been seen in Figure 2, the algorithm takes as
input two lists of data types: sourceList, which contains m
data types, and targetList, which contains n data types.
Using these two lists, it constructs an m⊗n matrix, whose
rows correspond to the source data types and columns
correspond to the target data types (line 1).  Each cell in
the matrix is eventually filled with a value that indicates
the matching score between the two data types
corresponding to the row and the column of the cell.

    For each two compared data types from the source list
and the target list (lines 2 to 5), if they are both primitive
data types, the procedure matchPrimitiveTypes is invoked
to look up a table that contains all primitive data types
and their match scores (Lines 6-7) and the score is stored

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



in the corresponding cell of the matrix. Two primitive
data types can be either compatible (MAXSCORE,
defined as 10, is assigned), semi-compatible
(MAXSCORE/2 is assigned), or incompatible (0 is
assigned). Examples of compatible data types include
identical data types and data types that can be adapted to
each other at little cost such as long and float, etc.
Examples of semi-compatible data types, i.e., types that
can be adapted to each other at some cost such as int and
float, etc. Please note that the idea of matching data types
that are “semi-compatible” to avoid being too strict is
similar to the ideas of “relaxed matching”,
“specialized/generalized matching”, and “subtype
matching” in related signature matching work [14, 6].

int matchDataTypes (sourceList(m), targetList(n)) {
(1) matrix = construct a m⊗n matrix;
//exhaustive matching
(2) for (int i=0; i<m; i++) {
(3)     for (int j=0; j<n; j++) {
(4)          sourceType = sourceList(i)
(5)          targetType = targetList(j)
(6)            if (both sourceType and targetType are
                     primitive)
(7)                matrix[i][j] = matchPrimitiveTypes
                                    (sourceType, targetType);
(8)            if (both sourceType and targetType share
                    the  same name and namespace)
(9)               matrix[i][j] =
       matchIdenticalTypes(sourceType, targetType);
(10)          if (either sourceType or targetType is

       complex) {
(11)             newSourceList =
              getCompositeDataElements(sourceType);
(12)             newTargetList =
              getCompositeDataElements(targetType);
(13)             matrix[i,j] =

matchDataTypes (newBaseList, newTargetList)
      + organizationBonus(sourceType, targetType);
(14)         } } }
(15)       return the matches with the maximum score; }

Figure 2. Matching Two Lists of Data Types

Lines 8 and 9 state that if two complex structures are
identical because they have the same name in the same
namespace, procedure matchIdenticalTypes is called to
assess their match, as described in Property 2.

    If one (or both) of the data types being compared is
(are) complex, then the procedure
getCompositeDataElements collects all elements of the
complex data structure(s) to form new, simpler data-type

list(s) (as shown in lines 10-12) to be further matched
recursively. The matching score of the original data types
compared is the highest matching score of their elements
plus a bonus if the two complex data structures have the
same grouping style as discussed in Property 1 (line 13).
A new matrix is created for each new mapping between
two non-primitive data types. After a matrix is filled, the
algorithm forms all possible matches between the two
lists represented by the matrix and returns the highest
matching score between two lists of data types (Line 15).
are calculated in similar manners.

    Let us now apply the algorithms discussed above to
match the complex data types POType and MyProduct of
the two WSDL specifications shown in Figures 1a and 1b.
Because both data types are complex, we need to
recursively match all the elements of the two complex
structures to decide on their similarity scores instead of
doing a simple table look-up, thus a 3⊗4 matrix is
constructed (Table 1). We use the notation ?�
MatchScore to indicate this process; the question mark
indicates that a match score is currently unknown and it
will eventually be replaced by MatchScore that will be
obtained from further recursive calculations. POType
matches to MyProduct with a score of 45. We will now
explain how this matching process is performed.

Table 1. Matching POType and MyProduct

    MyProduct
POType

Id:
Int

Name:
str

Price:
float

Part:
Product
Parts <all>

Id:str 5 10 5 ?� 10
Name:str 5 10 5 ?� 10
Item <all> ?� 10 ?� 10 ?� 5 ?� 20

(10+bonus)

Table 1 shows how complex data structures POType and
MyProduct are matched. Primitive data types are mapped
by a simple table look up; for simplicity reasons we will
show only how the complex structure Item contained in
POType is mapped to ProductParts contained in
MyProduct (Table 2).

In Table 2, the best match between Item and Part results
by matching Product:String and name:String with a score
of 10. Because both structures have an <all> grouping
style, a bonus of 10 is added to the match score and thus
Item maps to Part with a score of 20. The bottom-right
cell of Table 1, which corresponds to this match, now has
the value of ?� 20. Other cells in Table 1 are filled in the
same manner.

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



<definitions>
<types>
 <schema .... >
 <complexType name="POType">
 <all>
      <element name="id" type="string”/>
      <element name="name" type="string"/>
      <element name="items">
      <complexType>
           <all>
              <element name="item" type="tns:Item"
               minOccurs="0" maxOccurs="unbounded"/>
           </all>
      </complexType>
      </element>
 </all>
 </complexType>

 <complexType name="Item">
 <all>
       <element name="quantity" type="int"/>
       <element name="product" type="string"/>
 </all>
 </complexType>
 </schema>
</types>
       <message name="getDataRequest">
           <part name="id" type="string"/>
       </message>

       <message name="getDataResponse">
           <part name="data" type="POType"/>
       </message>

       <portType name="Data_PortType">
           <operation name="getData">
                 <input message="tns:getDataRequest"/>
                 <output message="getDataResponse"/>
           </operation>
       </portType>

</definitions>
(a) WSDL Specification of Operation getData

<definitions>
<types>
 <schema .... >
 <complexType name="MyProduct">
 <all>
      <element name="id" type= “int”/>
      <element name="name" type="string"/>
      <element name= “price" type="float"/>
      <element name="part" type="productParts"/>
 </all>
 </complexType>

 <complexType name="productParts">
 <all>
      <element name="name" type="string”/>
 </all>
 </complexType>

  </schema>
</types>

  <message name="getProductRequest">
        <part name="id" type="int"/>
  </message>

  <message name="getProductResponse">
         <part name="product" type="MyProduct”/>
   </message>

   <portType name="Product_PortType">
        <operation name="getProduct">
            <input message="getProductRequest"/>
            <output message="getProductResponse"/>
         </operation>
   </portType>

</definitions>
(b) WSDL Specification of Operation getProduct

Figure 1. Two WSDL Specifications

Table 2. Matching Item and Part

                   Part
Item

Name: str

Quantity: int 5
Product: str 10

Table 3. Matching POType and  MyProduct

Matches Elements of
POType

Elements of
MyProduct

Score

Id:str Id:int 5
Name:Str Name:Str 10

Match1
Score: 35

Item ProductParts 20
Id:Str Name:Str 10
Name:Str Id:int 5

Match2
Score: 35

Item ProductParts 20

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



The matching score between POType and MyProduct can
be determined as soon as all the cells in Table 1 are filled.
We form all possible pair-wise combinations of POType
and MyProduct elements. The best match is the
combination with the highest cumulative score. Table 3
lists the two best matches with scores of 35 between
POType and MyProduct. Elements of POType in column
2 are matched to elements of MyProduct in column 3, and
the scores in column 4 are their corresponding match
scores according to Table 1.  Finally because POType and
MyProduct have the same grouping style, a bonus score
of 10 is added; as a result, POType matches to MyProduct
with a match score of  45.

3.2.3 Matching Message Structures. After evaluating
the data-type matching scores, the structures of the
source-service messages against the target-service
messages are matched. Clearly, given a source and a
target message, there are many possible correspondences
between their parameter lists. The objective of this step,
then, is to identify the parameter correspondence that
maximizes the sum of their individual data-type matching
scores. Figure 3 shows the algorithm matchMessages that
takes as input two messages and returns as output their
matching score.

    Let us consider the two services listed in Figure 1
again. Both operations from the source and the target
have two messages, so we first construct a 2⊗2 matrix
(Table 4). Message getDataResponse maps to message
getProductResponse with a score of 45 since POType
maps to MyProduct with a score of 45 and they are the
only data types in the lists. All cell values of the matrix
are calculated in similar manners.

int matchMessages (message1, message2) {
     list1 = list of data types associated to message1;
     list2 = list of data types associated to message2;
     score = matchDataTypes (list1, list2)
     return score;  }

Figure 3. Matching Two Messages

Table 4. Matching Messages of Web Services
getData and getProduct

           GetProduct
GetData

GetProduct
Request

GetProduct
Response

GetDataRequest 5 10
GetDataResponse 10 45

3.2.4 Matching Operations. The process of matching
operations is similar to the process of matching messages.
The matching score between two operations is the sum of
the matching scores of their input and output messages, as
shown in the algorithm matchOperations of Figure 4.

    Since matching between messages has already been
performed in the previous stage, at the operation
matching level we only need a simple matrix look-up.
The internal organization of operations is again respected:
the input messages of the source operation can only be
mapped to the input messages of the target operation. And
if the two input messages of two operations are mapped,
their output messages have to be mapped correspondingly
as well.

int matchOperations (o1, o2) {
   score = lookupMessageMatrix(o1input1, o2input) +
                lookupMessageMatrix(o1output, o2output)
   return score;  }

Figure 4. Matching Two Operations

    Let us continue with our running example. We only
have one operation in both source and target WSDL
specifications. So the matchOperations procedure is
invoked to match the source operation getData with the
target operation getProduct getDataRequest maps to
getProductRequest with a score of 5, and
getDataResponse maps to getProductResponse with a
score of 45 as can be seen from Table 4. Thus the two
operations match with a score of 50.

3.2.5 Matching Web Services. Web services are
specified in term of the operations they define. The
algorithm matchWebServices is used to match all
operations between the source and target WSDL
specifications in a pair-wise fashion to identify the best
source-target operation correspondence (Figure 5).

    An m⊗n matrix is constructed, where m is the number
of the operations specified in the source WSDL, and n is
the number of operations in the target WSDL. The
procedure matchOperations, in Figure 4, is invoked to
calculate the match score between a single pair of
operations. Then the algorithm explores all possible
combinations of pair-wise matched operations and returns
those with the highest match score, calculated as the sum
of all individual pair-wise scores.

    In the case of our example, since the source and target
web services have only one operation each, the service
matching score is the same as the operation matching
score computed in the previous phase, i.e., 50.

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



int matchWebServices(service1, service2) {
   m=number of operations in service1;
   n=number of operations in sevice2;
   operationMatrix = construct m ⊗ n matrix;
   for (int i=0; i<m; i++)
     for (int j=0; j<n; j++)

operationMatrix[i][j]=matchOperations(list1[i],list2[j]);
return the matches with the maximum score; }

Figure 5. Matching Two Web Services

4. Evaluation

    To evaluate our service-discovery method as a whole
and the effectiveness of its constituent elements, we had
to obtain families of related specifications in order to
evaluate the degree to which our algorithm can
distinguish among them. We found such a collection
published by XMethods [12]. In the XMethods collection,
we identified nineteen service descriptions from five
categories: currency rate converter (three services), email
address verifier (three services), stock quote finder (four
services), weather information finder (four services), and
DNA information searcher (five services). All the
experiments below share the same design: each of the
XMethods service was used as the basis for the desired
service; different aspects of this desired service were
matched then against the complete set to identify the best
target service.

    In this section, we report on three sets of experiments:
service discovery with information retrieval only, with
structure matching only, and with the two methods
combined.

4.1.  Experiments Using Information Retrieval

    In the experiments that use only information retrieval
method, we match text descriptions of each service from
each category (requests) against the text descriptions of
all other services from all categories (candidates). Note
that although that “description” is not a mandatory
element of WSDL specifications, in our experience all
XMethods services had it. The similarity score between a
given web service S and service requests from a given
category Q is the average of similarity scores calculated
between S and each request from category Q. Web
services with similarity scores greater than zero are

deemed relevant to service requests and only these
services are ranked and returned to the users.

We evaluate the effectiveness of our retrieval methods by
calculating their precision and recall. “Precision is the
proportion of retrieved documents that are relevant, and
recall is the proportion of relevant documents that are
retrieved” [10]. Precision and recall for each test
collection from each category of service requests are
calculated and are listed in Table 5. The information
retrieval method achieves a precision of 51% at 95%
recall on average on this set of experiments.

Table 5. Vector-Space Model Information
Retrieval on the XMethods Collection

Requests Precision Recall

Currency Rate
Converter

42% 100%

DNA info
Searcher

83% 100%

Email Address
Verifier

30% 100%

Stock Quote
Finder

50% 100%

Weather Info
Finder

50% 75%

4.2. Experiments Using Structure Matching

    Experiments with structure matching only were
conducted in a similar manner: we match structure of
each service from each category (requests) against
structures of all other services from all categories
(candidates). Averages are calculated between service
requests from each category and all candidate service
descriptions. Web services are ranked according to their
similarity scores to the requests, and top 70% of web
services on the lists are considered to be relevant to the
requests and are returned to the users. We assume that if a
web service ranks in the bottom of the list, chances that
this web service is relevant to the request are low.
Precision and recall are calculated for each set of queries
(listed in Table 6), and on average, structure matching
achieves a precision of 20% at 72% recall.  The precision
is rather low in this set of experiments because some
related services have substantially different structures and
some irrelevant services can often have higher matching
scores because they have many spurious substructures
that happen to match the query structure.

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



Table 6. Structure Matching on the XMethods
Collection

Requests Precision Recall

Currency Rate
Converter

14% 67%

DNA info
Searcher

36% 100%

Email Address
Verifier

14% 67%

Stock Quote
Finder

28% 100%

Weather Info
Finder

7% 25%

4.3.  Experiments Using Information Retrieval
and Structure Matching

    Finally, we have conducted a third set of experiments
combining both information retrieval and structure
matching. The information-retrieval step was used first on
all services as described in section 4.1 to obtain a list of
web services that have greater than zero similarities to the
queries. Then, structure matching is applied to the pruned
list of candidates as described in section 4.2. Similarity
score between a web service S and a set of queries from a
category Q is

Simcombined (Q,S) = SimIR (Q,S) * 25 + Simmatcher (Q,S)

where SimIR (S,Q) and Simmatcher (S,Q) are average
similarity scores calculated by the information-retrieval
method and structure-matching method respectively. The
similarity scores calculated by vector space model are
normalized by a ratio of 25. The candidate services are
matched and re-ranked, and top 80% of the services in the
list are considered to be relevant and returned. We choose
to return top 80% of the services (as opposed to 70% that
we used before) because in this second round of pruning,
setting the threshold too high results in a higher risk of
eliminating relevant web services.

Precision and recall for each test collection are calculated
and are listed in Table 7. On average, this retrieval system
that uses both traditional IR techniques and
WSDLMatcher achieves a precision of 61.5% at 90%
recall. Compared to performance of experiments that use
only information retrieval techniques, precision is
increased by 10.5% from 51% and recall dropped by 5%
from 95%. Both precision and recall improved
significantly compared to the results obtained with
structure matching only.

Table 7. Combined Service Discovery Method on
the XMethods Collection

Requests Precision Recall

Currency Rate
Converter

50% 100%

DNA info
Searcher

100% 100%

Email Address
Verifier

37.5% 100%

Stock Quote
Finder

80% 100%

Weather Info
Finder

40% 50%

5. Conclusions and Future Work

    In this paper, we described a web service discovery
application that combines traditional information retrieval
techniques with a structure-matching algorithm
leveraging the structure of the XML-based service
specification in WSDL. Currently developers can only
browse UDDI registries and query the advertised services
by business category. This is a very blunt and imprecise
service-discovery mechanism and relies on the common-
sense understanding of producers and consumers
regarding business types. The semantic web effort, on the
other hand, aims at formalizing the definition of these
business types in order to support full-fledged type
checking through description logic, at the cost of
requiring complete formal specifications of web services
and the underlying ontology of their data types. The
intuition behind our work is that semantic information is
already implicitly captured in the current WSDL
specification in two forms: (a) in the structure of the data
types, and (b) in the natural-language semantics of the
WSDL descriptions and the chosen identifiers. Therefore
structure matching and lexical information retrieval could
be useful in assessing the similarity between a desired and
an available web service.   

    The structure-matching algorithm is inspired by
traditional signature-matching methods for component
retrieval. It is designed to calculate the similarity between
the structure of a desired service and the structures of a
set of advertised services. The algorithm respects the
structural information of data types and is flexible enough
to allow relaxed matching and matching between
parameters that come in different orders in parameter
lists. Combined with traditional information retrieval
techniques, this structure matching method constitutes an

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE



important extension to the UDDI API, because it enables
a substantially more precise service-discovery process.

    We have conducted various experiments to evaluate the
effectiveness of our retrieval system. Our initial results
are encouraging. In the future, we plan to extend this
algorithm to exploit the full WSDL syntax. Currently, we
are not considering some of the syntax WSDL offers such
as minOccurs, maxOccurs that indicate minimum and
maximum occurrences of data types, and some other
attributes of element tags [1]. We also plan to include
WordNet [11], an on-line lexical database for the English
language, to further understand the semantics of web
services described. Finally we are currently working on
an approximate structure matching algorithm to reduce
the computational cost of the process.

6. References:
[1] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana. "Web Service Description Language (WSDL)".
http://www.w3.org/TR/wsdl.

[2] I. Cho, J. McGregor, and L. Krause. "A protocol-based
approach to specifying interoperability between objects". In
Proceedings of TOOLS’26. Santa Barbara, California, August
1998, pp. 84-96. IEEE Press.

[3] The DARPA Agent Markup Language.
http://www.daml.org/

[4] C. Faloutsos. and D.W.Oard., "A survey of Information
Retrieval and Filtering Methods, University of Maryland".
Technical Report CS-TR-3514, August 1995.

[5] M. Garofalakis, and A. Kumar. "Correlating XML Data
Streams Using Tree-Edit Distance Embeddings". In Proceedings
of ACM PODS’2003. San Diego, California, June 2003, pp.
143-154. ACM Press.

[6] J. Purtilo and J. M. Atlee. "Module Reuse by Interface
Adaptation". Software - Practice and Experience, 21(6), June
1991, pp 539-556.

[7] K. Sycara, S. Widoff, M. Klusch and J. Lu. "LARKS:
Dynamic Matchmaking Among Heterogeneous Software Agents
in Cyberspace". Journal of Autonomous Agents and Multi-
Agent Systems, Kluwer Academic.2002, pp. 173-203.

[8] G. Salton, A. Wong and C.S. Yang. "A vector-space model
for information retrieval", In Journal of the American Society
for Information Science, volume 18. November 1975, pp. 13-
620. ACM Press.

[9] UDDI technical paper,
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.p
df

[10]E. Voorhees. "Using WordNet for Text Retrieval", in C.
Fellbaum (ed.), WordNet: An Electronic Lexical Database,
1998, pp.285-303. The MIT Press.

[11]. WordNet.  http://www.cogsci.princeton.edu/~wn/

[12] XMethods. http://www.xmethods.com/

[13] A. M. Zaremski and J. M. Wing. "Specification Matching
of Software Components". ACM Transactions on Software
Engineering and Methodology, 6(4). October 1997, pp. 333-
369. ACM Press.

[14] A. M. Zaremski and J. M. Wing. "Signature Matching: a
Tool for Using Software Libraries". ACM Transactions on
Software Engineering and Methodology, 4(2): April 1995, pp.
146-170. ACM Press.

Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE’03) 

0-7695-1999-7/03 $17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


