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ABSTRACT 
 
Due to their capability for expressing semantics and relationships 
among data objects, semi-structured documents have become a 
common way of representing domain knowledge. Comparing 
structures among semi-structured data objects often reveals useful 
information and hence tree and graph mining have become useful 
for applications in areas such as Bioinformatics, Ontology 
mining, Web mining, XML mining, schema matching etc. The 
type of sub-structures to be mined differs according to the needs 
of the applications. An important problem arises in the area of 
ontology matching, namely that of sub-structure matching as well 
as concept matching. This sub-structure matching can often help 
filter out ‘false matches’ in simple concept matching. This 
problem of sub-structure matching creates the need for distance 
constrained subtree matching. Our work is focused on the task of 
mining frequent subtrees from a database of rooted ordered 
labeled subtrees. Previously we have developed an efficient 
algorithm, MB3 [23], for mining frequent embedded subtrees 
from a database of rooted labeled and ordered subtrees. The 
efficiency comes from the utilization of a novel Embedding List 
representation for Tree Model Guided (TMG) candidate 
generation. As an extension the IMB3 [24] algorithm introduces 
the Level of Embedding constraint. In this study we extend our 
past work by developing an algorithm, Razor, for mining 
embedded subtrees where the distance of nodes relative to the 
root of the subtree needs to be considered. This notion of distance 
constrained embedded tree mining will have important 
applications in web information systems and conceptual model 
analysis. Domains representing their knowledge in a tree 
structured form may require this additional distance information 
as it commonly indicates the amount of specific knowledge stored 
about a particular concept within the hierarchy.  The structure 
based approaches for schema matching commonly take the 
distance among the concept nodes within a sub-structure into 
account when evaluating the concept similarity across different 
schemas. We present an encoding strategy to efficiently 
enumerate candidate subtrees taking the distance of nodes relative 

to the root of the subtree into account. This allows us to preserve 
the TMG approach and obtain an efficient algorithm for yet 
another subset of the tree mining problem. The algorithm is 
applied to both synthetic and real-world datasets, and the 
experimental results demonstrate the correctness and effectiveness 
of the proposed technique. 
 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Information filtering; H.3.4 [Information 
Storage and Retrieval]: Systems and Software – Performance 
evaluation (efficiency and effectiveness); I.7.0 [Document and 
Text Processing]: General 

General Terms 
Algorithms, Experimentation 

Keywords 
association mining, frequent subtree mining, mining with 
constraints, embedded subtree, structure matching 

1. INTRODUCTION 
Research in both theory and applications of data mining is 
expanding driven by a need to consider more complex structures, 
relationships and semantics expressed in the data. Association 
rule mining is a popular data mining technique used for 
discovering associations between data objects in a database. The 
majority of research in the area went towards the development of 
algorithms  capable of efficiently extracting association rules 
from a relational database. Due to the increasing use of semi-
structured information representation additional research focus is 
in the development of efficient tree mining algorithms. Tree 
mining has gained a considerable amount of interest in areas such 
as Bioinformatics, XML mining, Web mining, etc. In general, 
most of the formally represented information in these domains is a 
tree structured form and XML is commonly used. Feng et. al. [7] 



have proposed an XML-enabled association rule framework. It 
extends the notion of associated items to XML fragments to 
present associations among trees. Association mining consists of 
frequent pattern discovery and rule construction out of which the 
former is considered to be a more complex task, and is the focus 
of our research in the area of tree mining. The two known types of 
subtrees are induced and embedded. An induced subtree is a 
subtree where the parent-child relationships must be the same to 
those in the original tree. In addition to this, an embedded subtree 
allows a parent in the subtree to be an ancestor in the original tree 
and hence the information about ancestor-descendant 
relationships is kept. Examples of induced and embedded subtrees 
are given in figure 2. Generally the problem of frequent subtree 
mining can be stated as: given a tree database Tdb and minimum 
support threshold (σ), find all subtrees that occur at least σ times 
in Tdb. 

Most of developed algorithms for mining embedded subtrees 
adapt the join approach to generate candidate subtrees. While the 
join approach is efficient for relational data, when applied to tree 
structured data many candidates are generated that do not 
conform to the structural aspects of the tree database at hand. This 
hinders the performance as invalid candidates are generated and 
then pruned after determining that they do not exist in the tree 
database. The problem has motivated us to take a different 
approach to candidate subtree generation which ensures that only 
valid candidates are generated.  We refer to this candidate 
generation strategy as Tree Model Guided (TMG) [22, 23, 24, 
25]. This non-redundant systematic enumeration model ensures 
only valid candidates are generated which conform to the actual 
tree structure of the data. An example of a tree model would be 
the structural aspects of a document in XML schema, and a valid 
candidate would conform to this. In general, the TMG would be 
applicable to any area with structural models with clearly defined 
semantics that have tree like structures. In [23] we have 
introduced a novel and unique Embedding List (EL) 
representation suitable for describing embedded subtrees. The 
integration of the EL representation enabled the TMG candidate 
generation to be done in an efficient manner which was 
demonstrated in our experimental evaluations of the algorithm. 
We also developed a mathematical formula that can be used to 
estimate the worst case complexity of the TMG candidate 
generation. The formula indicates the number of candidate 
subtrees that will be generated at each step and it shows that 
mining embedding relationships can be very costly for complex 
trees. Using the formula one could predict infeasible cases in 
which the number of candidates to be generated is too large. In 
such situations one would be forced to constrain the mining 
process in some way so that at least some patterns could be 
discovered. This motivated us to develop a strategy to tackle the 
complexity of mining embedded subtrees by introducing Level of 
Embedding constraint [24]. Thus, when it is too costly to mine all 
frequent embedded subtrees, one can decrease the level of 
embedding constraint gradually up to 1, from which all the 
obtained frequent subtrees are induced subtrees. 

In this study we extend our past work by developing an algorithm 
for mining embedded subtrees when the distances of the nodes 
relative to the root of the subtree need to be considered. We felt 
that the traditional embedded subtree definition may allow too 
much freedom with respect to the embedding of the subtrees 
extracted. The embedded subtrees extracted using the traditional 

definition are incapable of being further distinguished based upon 
the node distance within that subtree. For certain applications the 
distance between the nodes in a hierarchical structure could be 
considered important and two embedded subtrees with different 
distance relationships among the nodes need to be considered as 
separate entities. The distances of nodes relative to the root (node 
depth) of a particular subtree will need to be stored and used as an 
additional equality criterion for grouping the enumerated 
candidate subtrees. This notion of distance constrained embedded 
tree mining will have important applications in web information 
systems and conceptual model analysis. Knowledge merging is 
another area where the distances between the nodes within an 
embedded subtrees may need to be considered. Inside a concept-
hierarchy the distances between the nodes indicate the amount of 
specific knowledge that is known about a particular concept, or is 
needed for the accurate classification of that concept [21]. The 
structure based approaches for schema matching commonly take 
the distance among the nodes within a sub-structure into account 
when evaluating the concept similarity across different schemas 
[6, 13, 19]. Hence our aim in this paper is to obtain an efficient 
algorithm that will extract all embedded subtrees with the 
additional node distance information.  

In order to maintain the efficient use of EL for TMG candidate 
generation, the major extension requirement is for an appropriate 
candidate encoding scheme to distinguish subtrees based upon 
structure and the node distances within the structure. The 
structural aspects need to be preserved as well as extra distance 
information needs to be stored. We present an encoding strategy 
to efficiently enumerate candidate subtrees taking the distances of 
nodes relative to the root of the subtree into account. This allows 
us to preserve the TMG approach and obtain an efficient 
algorithm, Razor, for yet another subset of the tree mining 
problem. We apply the algorithm to both synthetic and real-world 
datasets, and the experimental results demonstrate the correctness 
and effectiveness of the proposed technique. 

The rest of the paper is organized as follows. A motivating 
example is provided in section 2 together with a quick overview 
of the ontology matching problem. The problem decomposition is 
given in section 3 and the related works are discussed in section 4. 
The Razor algorithm is described in section 5. The experiments 
on real world and synthetic data are presented in section 6, and 
section 7 concludes the paper. 

2. MOTIVATING EXAMPLE 
The purpose of this section is to present an example that 
demonstrates the usefulness of adding the distance constraint to 
embedded subtree mining. As mentioned in the introduction  there 
are a few applications where mining of distance constrained 
embedded subtrees would have important implications. The 
problem considered here is concerned with semantic matching of 
concepts that come from heterogeneous data sources. Semantic 
matching is particularly important in the area of Ontology 
learning and matching. We start this section by giving a brief 
overview of the Ontology matching problem.  
Ontology in AI is defined as a formal, explicit specification of a 
shared conceptualization. Formal corresponds to the fact that the 
ontology should be machine readable, explicit means that the 
concepts and their constraints should be explicitly defined, and 
conceptualization refers to the description of concepts and their 



relationships that occur in a particular domain [11, 8]. The main 
differences among Ontologies occur in: vocabularies, design 
principles, knowledge representation, level of detail and the 
ontology commitment [18, 12]. These differences make the 
ontology matching a challenging task and to manually perform 
the task would be too time consuming and error-prone. Automatic 
detection of semantic matches among ontology concepts has 
therefore become the initial and most challenging stage in most of 
ontology merging and alignment tasks [16, 10]. 
This problem is analogous to schema matching in databases. The 
goal is to find semantically correct matches between the schema 
concepts. The schema matching techniques can be distinguished 
as involving schema, instance, constraint, linguistic, element and 
structure based approaches [13]. When concept naming differs 
among ontologies the syntax based approaches such as linguistic 
matchers have difficulties and a semantic approach is desired.  
Semantic matching takes the schema information as well as the 
positions of nodes in the conceptual models (graph or tree) into 
account. The MOMIS approach [3] is concerned with integration 
and querying of heterogeneous information sources containing 
semistructured and structured data. Semantic matching is 
performed based on the conceptual schemas of the information 
sources. The approach also makes use of a common thesaurus to 
identify semantically related information. The TreeMatch 
algorithm [13] computes the similarity of contexts in which the 
two concepts occur in the two schemas. It utilizes schema 
information and the representative tree structure. Similarity 
flooding algorithm [14] produces a similarity mapping between 
the concepts of two graph structures. A string match operator is 
used to obtain the initial matching nodes which propagate the 
similarity to their adjacent nodes. The Anchor-PROMPT 
algorithm [17] takes as input a set of similar terms (anchors) and 
determines sets of other related terms by analyzing the paths in 
the subgraph limited by the anchor points. It is based on the 
intuition that if two pairs of concepts in the source ontologies are 
similar and there are paths connecting those two concepts, then 
the concepts in those paths are often similar as well. Giunchiglia 
and Shvaiko [9] perform element and structure-level semantic 
matching among the elements of two graphs. Initially, the schema 
information is used to produce semantic relations among all the 
concepts and the graph structure is then traversed to construct the 
propositional formulas among concepts (equality, overlap, 
mismatch, more general/specific). For a more detailed overview 
and comparison of some existing approaches to automatic schema 
matching, please refer to [19].  
 
To illustrate the usefulness of detecting distance-constrained 
embedded subtrees please consider figure 1. The two conceptual 
hierarchies (CH1, CH2) represent a borrowing record from two 
different library based applications. Let us assume that the 
concepts located at the top of the hierarchies are both known to 
correspond to a borrowing record. As discussed in the previous 
paragraph common approach would be to investigate the sub-
structures containing the concepts already found to be similar in 
order to update the similarity of the neighboring concepts. One 
approach would be to detect the longest subtree whose structure 
matches both of the representations and then perform the 
similarity update among concepts within that structure. If 
embedded subtrees are mined the longest matching subtree would 

be of size 11 which corresponds to the whole structure of CH1. 
The CH2 is a more specific model and there are quite a few 
embedded subtrees in CH2 that match the whole structure of 
CH1. However, only one of those embedded subtrees is a true 
match. If similarity update was performed on all these matching 
subtrees there would be lots of incorrect updates and at the end it 
would be ambiguous to determine which were the true matches. 
Hence in this case extracting the largest matching embedded 
subtree could affect the similarity update in an undesirable way 
since updates would not distinguish among the subtrees where the 
distance among the nodes is different. This information is needed 
for a more exact structure matching where the level of granularity 
among concepts is the same in two hierarchies. At this stage, 
where labels are unknown, we consider a subtree an exact match 
of another subtree only if the structure and the distance among the 
nodes is the same in both subtrees. In other words, both sets of 
concept nodes need to be positioned in exactly the same way in 
both subtrees. The embedded subtree definition relaxes this 
constraint and we therefore felt that an additional distance 
constraint among nodes is required to obtain the exact match 
among subtrees. 
Considering the concept hierarchies from figure 1 again, if we 
mine distance-constrained embedded subtrees, the largest 
matching subtree has 7 nodes.  This subtree corresponds to the 
right hand side of the CH1 plus the node in level 1. This subtree is 
the largest exact match between CH1 and CH2, and the similarity 
update among the neighboring nodes in this subtree can be 
performed with high confidence. The unmatched subtrees of the 
structures are known to differ in the amount of specificity and the 
node distance information could prove to be useful for additional 
reasoning over concept similarity. Another option at this stage is 
to start mining the embedded subtrees from the remaining 
unmatched structure. This would relax the distance constraint and 
similar structures which differ in concept granularity could be 
detected. 
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Figure 1. Libraries borrowing record schemas  

In the context of determining the semantic similarity among 
concepts mining distance-constrained embedded subtrees will 
provide a more strict structural matching approach as concept 
nodes must occur at the same positions among extracted subtree 
patterns. It is more strict in the sense that the extracted embedded 
subtrees where one concept is known to be the same, ie 
candidates for comparison, are much higher in number. Each 
concept related embedded subtree is now refined in multiple 
distance constrained embedded subtrees which keep the 
information about the node positions in the original tree. This 
refines the comparison since extra reasoning can take place, 
taking into account the concept node positions among  extracted 
subtrees. It is important to note here that we are not claiming that 
the mining of distance constrained embedded subtrees should 
replace the mining of embedded subtrees for the purpose of 
semantic matching. Embedded subtrees without the distance 
constraint are still important as the amount of concept granularity 
can differ among knowledge representations and we need to relax 
the node distance constraint in order to investigate such 
relationships. Consequently, one could start the structural 
matching process by first mining distance constrained embedded 
subtrees. This would detect initial exact matches where the 
concept granularity is the same among knowledge 
representations. It also indicates the point in the structure 
matching process where differences in the concept granularity 
occur and extra care has to be taken with similarity update. The 
distance constraint could then be relaxed (i.e extract embedded 
subtrees) in order to detect other pairs of concept related subtrees 
which are similar in structurebut the concept granularity differs 
among knowledge representations. This would refine the concept 
matching process and help avoid initial bad matches which could 
affect the rest of the knowledge (ontology) matching process. 
Hence the whole process could be performed in a more controlled 
manner where the node positions in the representative structure 
are taken into account.   

3. PROBLEM DEFINITIONS 
A tree can be denoted as T(r,V,L,E), where (1) r ∈  V is the root 
node; (2) V is the set of vertices or nodes; (3) L is the set of labels 
of vertices, for any vertex v∈V, L(v) is the label of v; and (4) E 

is the set of edges in the tree. Each node v in the tree has only one 
parent, parent(v), which is defined as the predecessor of node v.  
A node v can have one or more children, children(v), which are 
defined as its successors. If p is an ancestor of q and q is a 
descendant of p, then there exists a path from p to q.. A path from 
vertex vi to vj, is defined as a finite sequence of edges that 
connects vi to vj. The length of a path p is the number of edges in 
p. When referring to the distance between the two nodes we 
simply refer to the length of the path connecting those two nodes. 
Height of a node is the distance to its furthest leaf, whereas the 
depth of a node is its distance to the root. The number of children 
of a node is commonly termed as fan-out/degree of the node, 
degree(v). A node without any children is a leaf node; otherwise, 
it is an internal node. If for each internal node, all the children are 
ordered, then the tree is an ordered tree. The rightmost path of T 
is defined as the path connecting the rightmost leaf with the root 
node. The size of a tree is determined by the number of nodes in 
the tree. All trees considered in this paper are rooted ordered 
labeled. 

 
Figure 2. Example of induced subtrees (T1, T2, T4, T6) 

and embedded subtrees (T3, T5) of tree T (note that 
induced subtrees are also embedded) 

Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered induced 
subtree of a tree T (r, V, L, E) iff (1) V’⊆V, (2) E’⊆E, (3) L’⊆L 
and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V and v’ is not the root node, 
and v’ has a parent in T, then parent(v’)=parent(v),  (5) the left-to-
right ordering among the siblings in T’ is preserved. An induced 
subtree T’ of T can be obtained by repeatedly removing leaf 
nodes or the root node if their removal doesn’t create a forest in 
T. 

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an ordered 
embedded subtree of a tree T(r, V, L, E) if and only if it satisfies 
properties 1, 2, 3 and 5 of an induced subtree and it generalizes 
property (4) such that ∀v’∈V’, ∀ v∈V and v’ is not the root 
node, the sets ancestor(v’) and ancestor (v) form a non-empty 
intersection. Examples of induced and embedded subtrees are 
given in Figure 2. 

Level of Embedding (Φ). If T’(r’, V’, L’, E’) is an embedded 
subtree of T, and there is a path between two nodes p and q, the 
level of embedding (Φ) is defined as the length of the shortest 
path between p and q, where p∈V’ and q∈V’, and p and q form 
an ancestor-descendant relationship. In other words, given T 
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andΦ, then any embedded subtree to be generated will have the 
length of the shortest path in T between any two ancestor-
descendant nodes from T’ equal or less than Φ. In this regard, we 
could define induced subtree T as an embedded subtree where the 
maximum level of embedding that can occur in T is equal to 1, 
since the Level of Embedding of two nodes that form a parent-
child relationship equals to 1. 

Distance-Constrained Embedded Subtree. A tree T’(r’, V’, L’, 
E’) is an ordered distance-constrained embedded subtree of a tree 
T(r, V, L, E) if it satisfies all the properties of an embedded 
subtrees (above), and ∀v’∈V’ there is an integer stored 
indicating the level of embedding (Φ) in tree T between v’ and the 
root node of T’.  

Adding distance constraint. In this paper we are concerned with 
mining embedded subtrees where the distance between the nodes 
in the original tree database needs to be considered. The main 
difference is that the distance between the nodes is used as an 
additional equality criterion to group the enumerated candidates. 
To illustrate the difference that this additional distance constraint 
will impose on the task of mining embedded subtrees, consider 
the example tree shown in Figure 3. If the traditional mining 
technique for embedded subtrees is used, a subtree ‘A C’ by 
occurrence match support definition would have support equal to 
8. On the other hand if the distance equality constraint is added 
we would need to distinguish this candidate into three candidates 
depending on the varying distance between the nodes. Hence the 
three ‘A C’ subtree candidates would have varying distances of 1, 
2 and 3 and the support of 2, 4 and 2 respectively.   

 
Figure 3. Example tree with labeled nodes ordered in pre-

order traversal 

For subtrees with more nodes the stored distance for each node 
will correspond to its distance to the root of that particular 
subtree. It can be seen that this additional constraint will add extra 
complexity to the traditional frequent subtree mining problem. 
More candidate subtrees will need to be enumerated and counted 
during the task. 

Transaction based vs occurrence match support. We say that 
an embedded subtree t is supported by transaction k⊆K in 
database of tree Tdb as tp k. If there are L occurrences of t in k, a 
function g(t,k) denotes the number of occurrences of t in 
transaction k. For transaction based support, tp k=1 when there 
exists at least one occurrence of t in k, i.e. g(t,k)≥1. For 
occurrence match support, tp k corresponds to the number of all 

occurrences of t in k, tp k=g(t,k). Suppose that there are N 
transactions k1 to kN of tree in Tdb, the support of embedded 
subtree t in Tdb is defined as: 

∑
=

N

i
ikt

1
p

 
(1)

Transaction based support has been used in a number of works [4, 
27, 30], whereas occurrence match support has been less utilized 
and discussed. Occurrence match support takes repetition of items 
in a transaction into account whilst transaction based support only 
checks for existence of items in a transaction. There has not been 
any general consensus which support definition is used for which 
application. However, it is intuitive to say that whenever 
repetition of items in each transaction is to be accounted and order 
is important, occurrence match support would be more applicable. 
Generally, transaction based support is very applicable for 
relational data. Our focus is on occurrence match support in this 
paper.  

Mining frequent embedded subtrees. Let Tdb be a tree database 
consisting of N transactions of trees, KN. The task of frequent 
embedded subtree mining from Tdb with given minimum support 
(σ), is to find all the candidate embedded subtrees that occur at 
least σ times in Tdb. Based on the downward-closure lemma [2], 
every sub-pattern of a frequent pattern is also frequent. In 
relational data, given a frequent itemset all its subsets are also 
frequent. However, when mining induced and embedded subtrees 
from a rooted ordered labeled database of trees, there can be 
frequent subtrees with one or more of its subsets infrequent. We 
refer to these types of frequent subtrees as pseudo-frequent 
subtrees [23, 24, 25]. Hence, in the case where there exists a 
frequent subtree ‘s’ with one or more of its subtrees infrequent, 
then ‘s’ also needs to be considered infrequent for the 
antimonotone property to hold. Tree structured data has a 
hierarchical structure where 1-to-many relationships can occur, as 
opposed to relational data where only 1-to-1 relationships exist 
between the items in each transaction. This multiplication 
between one node to its many children/ descendants makes the 
antimonotone property not hold for tree structured data. It should 
be noted that if transaction based support is used, pseudo-frequent 
subtrees will not be generated. When the repetition of items is 
reported only once per transaction the 1-to-many relationship 
between a node to its children is treated as set of items like in 
relational database. When using occurrence match support, a full 
(k-1) pruning should be performed at each iteration when 
generating k-subtree from a (k-1)-subtree [23, 25, 30] so that no 
pseudo-frequent subtrees would be generated. 

4. RELATED WORKS 
There are different types of trees and one can distinguish between 
unrooted unordered trees (free trees) [5, 20], rooted unordered 
trees [15], and rooted ordered trees [1, 22, 23, 24] These three 
types have increasing topological structure [4] as one progresses 
from the first to the third. Many algorithms have been developed 
that mine different types of tree patterns. FreeTreeMiner [20] 
extracts free trees in a graph database. PathJoin [28], uFreqt [15], 
and HybridTreeMiner [5] mine induced, unordered trees. In data 
mining community, a string-like representation of a tree structure 
is becoming very popular [1, 4, 30, 27]. Each item in the string 
can be accessed in O(1) time and the representation itself has been 



reported to be space efficient and easy for manipulation [4, 22, 
30]. When using breadth first string-like representation, the scope 
of a node denotes the position of its right-most descendant. This 
string-like representation preserves Thus, the hierarchical 
relationships from the original tree database are semantically 
preserved and the original tree structure can be reconstructed from 
the string-like representation.  The two known enumeration 
strategies are enumeration by extension and join [5]. Recently, 
Zaki [30] adapted the join enumeration strategy for mining 
frequent embedded rooted ordered subtrees, and developed the 
efficient TreeMiner algorithm for discovering frequent embedded 
subtrees in a forest using a data structure called the vertical scope-
list. An idea of utilizing a tree model for efficient enumeration 
appeared in [29]. The approach uses the XML schema to guide 
the candidate generation so that all candidates generated are valid 
because they conform to the schema. We further generalized this 
concept of schema guided into tree model guided candidate 
generation for mining embedded rooted ordered labeled subtrees 
[22, 23]. We refer to such an enumeration method as Tree Model 
Guided (TMG). TMG can be applied to any data with clearly 
defined semantics that have tree like structures. It ensures that 
only valid candidates which conform to the actual tree structure of 
the data are generated. The enumeration strategy used by TMG is 
a specialization of the right most path extension approach [1, 30, 
22, 23]. However it is different from the one that is proposed in 
FREQT [1] because TMG enumerates embedded subtrees and 
FREQT enumerates only induced subtrees. The right most path 
extension method is reported to be complete and all valid 
candidates are enumerated at most once (non-redundant) [1, 22, 
23]. This is in contrast to the incomplete method TreeFinder [26] 
that uses an Inductive Logic Programming approach to mine 
unordered, embedded subtrees. TreeFinder can miss many 
frequent subtrees. The extension approach utilized in the TMG 
generates fewer candidates as opposed to the join approach [30]. 
Independently, XSpanner [27] extends the Pattern-Growth 
concept into tree structured data and its enumeration model also 
generates only valid candidates. XSpanner only reports distinct 
embedded subtrees similar to the recently published TreeMinerD 
[30]. TreeMinerD is different to TreeMiner in the sense that 
TreeMiner reports all embedding subtrees. 

5. RAZOR ALGORITHM 
The Razor algorithm mines frequent embedded subtrees taking 
the distance between the ancestor-descendant nodes in the given 
tree database into account. The necessary amendments for 
incorporating the additional distance constraint occur in the way 
candidate subtrees are enumerated during candidate enumeration 
and (k-1)-subtree generation phase. We have utilized the TMG 
[22, 23, 25] candidate generation approach for an optimal, non-
redundant candidate subtree enumeration. The previously 
introduced embedding list representation [23], is used for an 
efficient implementation of the TMG candidate generation 
approach. Following, is a detailed description of the algorithm 
with the required adjustments. 
Database scanning.  As the first step in the process, a tree 
database, Tdb, is scanned in order to generate a global sequence D 
in memory, which is referred to as a dictionary. The dictionary 
stores each node from the Tdb following the pre-order traversal 
indexing. The node information stored consists of position, label, 
right-most descendant position (scope), depth and parent position 

of that particular node in Tdb. Thus each dictionary item is defined 
as a tuple of position (pos), label (l), scope (s), depth (d), parent 
(p), {pos, l, s, p}. An item at index position i in the dictionary is 
referred to as dictionary[i]. During the construction of the 
dictionary the complete set of frequent 1-subtrees, F1, is 
enumerated. Once the dictionary is constructed, no further 
database scanning is required. 

String encoding (φ). We utilize a slight modification of the pre-
ordering string encoding (φ) [22, 23, 30], in order to store the 
additional distance information for each node of the encoded 
subtree. The encoding of a subtree is obtained by reading the 
nodes in the pre-order traversal and for each node storing the 
distance to the root of the subtree (node depth). The distance to 
the root is worked out from the node depths stored in the 
dictionary, where the root of the subtree is assigned the depth of 0 
and all other nodes are assigned the difference between their 
depth and the original depth of the new subtree root.  Hence the 
additional information corresponds to the depths of nodes within 
the newly encoded subtree. Further modification of the encoding 
consists in storing a number next to each backtrack ‘/’ symbol 
indicating the number of backtracks in the subtree, as opposed to 
storing each of those backtracks as a separate symbol. This 
representation allows for easier string manipulation due to 
uniform block size. Thus, from figure 5, the main difference 
between IMB3 [24] and Razor lies in the GetEncoding 
computation. We denote encoding of a subtree T as φ(T). For 
each node in T (figure 1), its label is shown as a single-quoted 
symbol inside the circle whereas its pre-order position is shown as 
indexes at the left/right side of the circle. From figure 2, 
φ(T1):‘b0 c1 /1 b1 e2 /2’; φ(T3):‘b0 e1 /1 c1 /1’; φ(T6): ‘b0 e1 c1 
/2 c1 /1’, etc. The backtrack symbol could be omitted after the last 
node, i.e. φ(T1):‘b0 c1 /1 b1 e2’. The number next to each node 
label corresponds to the depth of that node.  We refer to a group 
of subtrees with the same encoding L as candidate subtree CL. A 
subtree with k number of nodes is denoted as k-subtree. 
Throughout the paper, the ‘+’ operator is used to conceptualize an 
operation of appending two or more tree encodings. However, this 
operator should be contrasted with the conventional string append 
operator, as in the encoding used the backtrack symbols need to 
be computed accordingly. 

Embedding List (EL) construction. In this section we describe 
the process of constructing the EL which allows for an efficient 
implementation of the TMG candidate enumeration.   For each 
frequent internal node in F1, a list is generated which stores its 
descendant nodes’ hyperlinks [27] in pre-order traversal ordering 
such that the embedding relationships between nodes are 
preserved. The notion of hyperlinks of nodes refers here to the 
positions of nodes in the dictionary. For a given internal node at 
position i, such ordering reflects the enumeration sequence of 
generating 2-subtree candidates rooted at i (figure 4). Hereafter, 
we call this list as embedded list (EL). We use notation i-EL to 
refer to an embedded list of node at position i.; The position of an 
item in EL is referred to as slot. Thus, i-EL[n] refers to the (n-1)th 
item  of in the list at slot n with zero-based indexing.. Whereas |i-
EL| refers to the size of the embedded list rooted of node at 
position i. Figure 4 illustrates an example of the EL representation 
of tree T (figure 2). In fig 4, 0-EL for example refers to the list: 
0:[1,2,3,4,5,6,7,8] and , 0-EL[0] = 1 and; 0-EL[4] = 5; 0-EL[6] = 
7.  



 
Figure 4. The EL representation of T in figure 1 

Figure 4 illustrates an example of the EL representation of subtree 
T (figure 1). For each node in T, its label is shown as a single-
quoted symbol inside the circle whereas its position is shown as 
indexes at the left side of the circle. Also, please note that each 
list stores node positions rather than labels. 

Occurrence Coordinate (OC). A candidate subtree can occur at 
different positions in the database and OC is used to denote the 
node positions of that particular subtree so that it can be 
distinguished from other subtrees having the same encoding. 
When generating k-subtree candidates from (k-1)-subtree, we 
consider only frequent (k-1)-subtrees for extension. Each 
occurrence of k-subtree in Tdb is encoded as occurrence 
coordinate r:[e1,…ek-1]; where r refers to the k-subtree root 
position in the dictionary D and e1,…,ek-1 are refer to the indexes 
of slots in r-EL. Each ei corresponds to node (i+1) in the k-subtree 
and in r; e1 < ek-1. We refer to ek-1 as tail slot. From figure 2 & 4, 
the OC of a 3-subtree (T2) with encoding ‘b0 b1 e2’ is encoded is 
encoded as 0:[6,7]; 4-subtrees T1 with encoding ‘b0 c1 /1 b1 e2’ 
are encoded as 0:[5,6,7], and so on. Each OC of a subtree 
describes an instance of that subtree in Tdb, and hence each 
candidate subtree has at least one OC associated with it. 

 
Figure 5. TMG enumeration: extending (k-1)-subtree tk-1 

where φ(tk-1):‘a b / b c’ occurs at position (0,1,4,5) with node 
at position 6, 7, 8, 9, and 10 

TMG enumeration formulation. TMG is a specialization of 
right most path extension method which has been reported to be 
complete and non-redundant [1, 22, 23]. To enumerate all 
embedded k-subtrees from a (k-1)-subtree, TMG enumeration 
approach extends one node at the time to the right most path of 
(k-1)-subtree. We refer to each node in the right most path as 

extension point (figure 5). One important property of EL is that 
the positions of nodes are stored in pre-order manner. The scope 
of extension of a node denotes the range of nodes that can be 
appended to that node for the formation of new candidate 
subtrees. Hence, given a (k-1)-subtree with known tail slot, the 
subsequent slots in EL will form the scope of extension from i to 
j. All embedded k-subtree are generated by attaching a node at 
position i to j to the (k-1)-subtree. Suppose l(i) denotes a labeling 
function of node with at position dictionary coordinate i. Given 
frequent (k-1)-subtree tk-1 with φ(tk-1):L, the root position r, tail 
position t, encoding L and occurrence coordinate r:[m,…,n], k-
subtrees are generated by extending tk-1 with j∈ r-EL such that t < 
j ≤ |r-EL|-1. Thus its occurrence coordinate becomes r:[m,…,n,j] 
and its encoding becomes L’:L+l(i) where i=r-EL[j] and m<n<j. 
Similarly to the IMB3 algorithm [24], Razor algorithm was 
implemented with the capability to restrict the level of 
embedding. This is achieved by performing a check at each 
extension point, of whether the level of embedding is less or equal 
to the specified Φ. Only when the level of embedding of a node at 
position j to its extension point is less than Φ, the extension is 
performed. From fig 5, suppose that Φ is set to 1, when we extend 
a subtree with OC 0:[0,3,4] with node at position 6, 7, and 9 
(0:[5], 0:[6], 0:[8]), the level of embedding between nodes at 
position 6, 7, and 9 to their extension point equals to 1 (≤ Φ), and 
thus should not be pruned. However when it is extended with 
node at position 8 and 10 (0:[7], 0:[9]) the level of embedding 
between node at position 8 and 10 to their extension points is>2 
(≥ Φ), and thus should be pruned. 

k-1 full pruning. To ensure the absence of pseudo-frequent 
subtrees, full (k-1) pruning must be performed. The rationale of 
this has been discussed in [23, 30]. From this point onward we 
refer to full (k-1) pruning as full pruning. This implies that at 
most (k-1) numbers of (k-1)-subtrees need to be generated from 
the currently expanding k-subtrees. Exception is made whenever 
the Φ constraint is set to 1, i.e. mining induced subtree, we only 
need to generate l numbers of (k-1)-subtrees where l < (k-1) and l 
equal to the number of leaf nodes in k-subtrees. When the 
removal of root node of k-subtree doesn’t generate a forest [22, 
23, 30] then an additional (k-1)-subtree is generated by taking the 
root node off from the expanding k-subtree. The expanding k-
subtree is pruned when at least one (k-1)-subtree is infrequent, 
otherwise it is added to the frequent k-subtree set. This ensures 
that the method generates no pseudo-frequent subtrees. Doing full 
pruning is quite time consuming and expensive. To accelerate full 
pruning, a caching technique is used by checking whether a 
candidate is already in the frequent k-subtree. If a (k-1)-subtree 
candidate is already in the frequent k-subtree set, it is known that 
all its (k-1)-subtrees are frequent, and hence only one comparison 
is made. 



 
Figure 6. Razor algorithm pseudo code 

Vertical Occurrence List (VOL). To determine if a subtree is 
frequent, we count the occurrences of that subtree and check if it 
is greater or equal to the specified minimum support σ. We say 
that a subtree has a frequency n if there are n instances of subtrees 
with same encoding. Each occurrence of a subtree is stored as an 
occurrence coordinate, as previously described. Computing the 
frequency of a subtree can be easily determined from the size of 
the VOL. We use the notation VOL(L) to refer to the vertical 
occurrence list of a subtree with encoding L. Consequently, the 
frequency of a subtree with encoding L is denoted as |VOL(L)|. 
When transaction based support is used the occurrence of each 
subtree is grouped by its transaction id and the support count 
corresponds to the number of unique transactions in the VOL. The 
Razor algorithm as a whole can be described by the pseudo-code 
displayed in Figure 6. 

6. EXPERIMENTAL RESULTS 
In this section we present some of the tests performed on the 
Razor algorithm. Firstly we show the scalability of the approach 
followed by the comparisons with the MB3 [23] and IMB3 [24] 
algorithms on the grounds of the number of frequent subtrees 
generated for varying support and level of embedding thresholds. 
For the problem of mining frequent subtrees most of the time and 
space complexity comes from the candidate enumeration and 
counting phase. The distance-constrained subtrees are much larger 
in number then induced or embedded subtrees and in general an 
algorithm for this task would require more space and run-time. 
This makes our approach incompatible to the current tree mining 

algorithms and to our knowledge there is currently no algorithm 
that mines distance constrained embedded subtrees to allow for a 
compatible comparison. Note that the occurrence match support 
definition is used in all the experiments. The minimum support σ 
is denoted as (sxx), where xx is the minimum frequency.  
Experiments were run on 3Ghz (Intel-CPU), 2Gb RAM, 
Mandrake 10.2 Linux machine and compilation was performed 
using GNU g++ (3.4.3) with the –g and –O3 parameters.  

6.1  Scalability test 
The purpose of this experiment is to test whether the algorithm is 
well scalable with respect to the increasing number of transactions 
present in a database. An artificial database was created, where 
the size of the transactions for each test is varied from 100,000, 
500,000 to 1 million with minimum support 50, 250, and 500 
respectively. The result shows that the time to complete the 
operation scales linearly with the increase in transaction size.  

 
Figure 7. Scalability test - time performance / number of 

transactions 

6.2  Frequent subtrees over different support 
For this experiment we have used a reduction of the CSLogs data 
set previously used by Zaki [30] for testing the TreeMiner 
algorithm using the transactional support definition. If occurrence 
match support definition is used the transaction number would 
need to be reduced [23] so that the tested algorithms could return 
the set of all frequent subtrees. We have randomly reduced the 
number of transactions from 52,291 to 32.421. The comparison of 
the number of frequent subtrees generated among the MB3, IMB3 
and Razor algorithms, for varying support thresholds is presented 
in figure 7.  

 



 
Figure 8. Number of frequent subtrees detected for varying 

support thresholds 
IMB3 and Razor were set with the level of embedding (Φ) 
constraint equal to 5.  Consequently, the number of detected 
frequent subtrees differs slightly between the IMB3 and MB3 
algorithms. In figure 8 we can see that the number of frequent 
subtrees detected by the Razor algorithm increases significantly 
when the support is lowered. This is due to the additional distance 
relationship used to uniquely identify candidate subtrees. As 
shown in section 3 an embedded subtree may be split into 
multiple candidate subtrees when the distance is taken into 
account. As the support is lowered many more subtrees will be 
frequent and hence many more variations of those subtrees with 
respect to the distance among the nodes will also be frequent. 
This is the explanation for such a large jump in the number of 
frequent subtrees detected by the Razor algorithm, when support 
threshold is lowered sufficiently.     

6.3  Varying the level of embedding  
The purpose of this experiment is to compare the number of 
frequent subtrees detected by the algorithms when the level of 
embedding (Φ) is varied. We have artificially created a data set 
that characterizes a deep tree with the maximum depth equal to 
17. It consists of 10,000 transactions with a total of 273,090 
nodes. The support threshold was set to 100. The MB3 algorithm 
does not restrict the level of embedding and hence the number of 
frequent subtrees detected remains the same for all cases. As the 
largest level of embedding of the dataset tree is 17 the MB3 miner 
detects the largest number of frequent subtrees. 
Variation in the number of frequent subtrees detected by the 
Razor and the IMB3 algorithm can be observed in figure 9. At 
Φ:1, same number of subtrees are detected since no extra 
candidates can be derived when mining induced subtrees (i.e. the 
distance between the nodes is always equal to 1). 

 
Figure 9. Varying the level of embedding 

When the Φ threshold is increased Razor algorithm detects more 
frequent subtrees for the reasons explained in the previous 
section. However, when the Φ threshold was increased to 15, 
IMB3 algorithm detected more subtrees as frequent. When such 
high level of embedding is allowed many embedded subtrees 
previously infrequent will become frequent as there is more 
chance for their re-occurrence. On the other hand, the Razor 
algorithm may further distinguish each of those subtrees based 
upon the distance of nodes relative to the root, and the frequency 
of the new candidate subtrees may not reach the support 
threshold. This explains why IMB3 has detects a larger number of 
frequent subtrees at Φ:15, in comparison to the Razor algorithm. 
As expected, it can also be seen that as the Φ threshold is 
increased the number of frequent subtrees detected by IMB3 
algorithm gets closer to the number detected by the MB3 
algorithm where no Φ restriction applies. 

7. CONCLUSIONS & FUTURE WORK 
In this work we have extended the traditional definition of 
embedded subtrees in order to take the distance amongst the 
nodes into account. As the traditional embedding definition 
allows too much freedom with respect to the frequent subtrees 
extracted, we felt that an extra grouping criterion was required. In 
reality the distance between the nodes in a hierarchical structure 
could indicate the amount of specific information stored about 
that concept, which would be considered important especially for 
applications in web information systems and conceptual model 
analysis. We have presented Razor, an algorithm which groups 
candidate subtrees based upon the node labels, node structure, and 
the depth of the nodes within that structure. The correctness and 
implications of the approach were demonstrated with experiments 
using real world and synthetic data. Enforcing the distance 
constraint adds extra complexity to the task as more candidate 
subtrees will need to be enumerated and counted. We have 
presented an encoding strategy to efficiently enumerate candidate 
subtrees with the additional grouping criterion and the efficient 
TMG approach to candidate enumeration was preserved in yet 
another subset of the tree mining problem. 
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