
RAZOR: mining distance-constrained embedded subtrees
Henry Tan

Faculty of IT, UTS
City Campus Broadway 1

Broadway, NSW 2000, Australia
+61-2-95144469

henryws@it.uts.edu.au

Fedja Hadzic
Faculty of IT, UTS

City Campus Broadway 1
Broadway, NSW 2000, Australia

+61-2-95144469

fhadzic@it.uts.edu.au

Tharam S. Dillon
Faculty of IT, UTS

City Campus Broadway 1
Broadway, NSW 2000, Australia

+61-2-95141800

tharam@it.uts.edu.au

Elizabeth Chang
School of IT, Curtin University

GPO Box U1987
Perth, WA 6845, Australia

+61-8-92661235

elizabeth.chang@cbs.curtin.edu.au

ABSTRACT

Due to their capability for expressing semantics and relationships
among data objects, semi-structured documents have become a
common way of representing domain knowledge. Comparing
structures among semi-structured data objects often reveals useful
information and hence tree and graph mining have become useful
for applications in areas such as Bioinformatics, Ontology
mining, Web mining, XML mining, schema matching etc. The
type of sub-structures to be mined differs according to the needs
of the applications. An important problem arises in the area of
ontology matching, namely that of sub-structure matching as well
as concept matching. This sub-structure matching can often help
filter out ‘false matches’ in simple concept matching. This
problem of sub-structure matching creates the need for distance
constrained subtree matching. Our work is focused on the task of
mining frequent subtrees from a database of rooted ordered
labeled subtrees. Previously we have developed an efficient
algorithm, MB3 [23], for mining frequent embedded subtrees
from a database of rooted labeled and ordered subtrees. The
efficiency comes from the utilization of a novel Embedding List
representation for Tree Model Guided (TMG) candidate
generation. As an extension the IMB3 [24] algorithm introduces
the Level of Embedding constraint. In this study we extend our
past work by developing an algorithm, Razor, for mining
embedded subtrees where the distance of nodes relative to the
root of the subtree needs to be considered. This notion of distance
constrained embedded tree mining will have important
applications in web information systems and conceptual model
analysis. Domains representing their knowledge in a tree
structured form may require this additional distance information
as it commonly indicates the amount of specific knowledge stored
about a particular concept within the hierarchy. The structure
based approaches for schema matching commonly take the
distance among the concept nodes within a sub-structure into
account when evaluating the concept similarity across different
schemas. We present an encoding strategy to efficiently
enumerate candidate subtrees taking the distance of nodes relative

to the root of the subtree into account. This allows us to preserve
the TMG approach and obtain an efficient algorithm for yet
another subset of the tree mining problem. The algorithm is
applied to both synthetic and real-world datasets, and the
experimental results demonstrate the correctness and effectiveness
of the proposed technique.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information filtering; H.3.4 [Information
Storage and Retrieval]: Systems and Software – Performance
evaluation (efficiency and effectiveness); I.7.0 [Document and
Text Processing]: General

General Terms
Algorithms, Experimentation

Keywords
association mining, frequent subtree mining, mining with
constraints, embedded subtree, structure matching

1. INTRODUCTION
Research in both theory and applications of data mining is
expanding driven by a need to consider more complex structures,
relationships and semantics expressed in the data. Association
rule mining is a popular data mining technique used for
discovering associations between data objects in a database. The
majority of research in the area went towards the development of
algorithms capable of efficiently extracting association rules
from a relational database. Due to the increasing use of semi-
structured information representation additional research focus is
in the development of efficient tree mining algorithms. Tree
mining has gained a considerable amount of interest in areas such
as Bioinformatics, XML mining, Web mining, etc. In general,
most of the formally represented information in these domains is a
tree structured form and XML is commonly used. Feng et. al. [7]

have proposed an XML-enabled association rule framework. It
extends the notion of associated items to XML fragments to
present associations among trees. Association mining consists of
frequent pattern discovery and rule construction out of which the
former is considered to be a more complex task, and is the focus
of our research in the area of tree mining. The two known types of
subtrees are induced and embedded. An induced subtree is a
subtree where the parent-child relationships must be the same to
those in the original tree. In addition to this, an embedded subtree
allows a parent in the subtree to be an ancestor in the original tree
and hence the information about ancestor-descendant
relationships is kept. Examples of induced and embedded subtrees
are given in figure 2. Generally the problem of frequent subtree
mining can be stated as: given a tree database Tdb and minimum
support threshold (σ), find all subtrees that occur at least σ times
in Tdb.

Most of developed algorithms for mining embedded subtrees
adapt the join approach to generate candidate subtrees. While the
join approach is efficient for relational data, when applied to tree
structured data many candidates are generated that do not
conform to the structural aspects of the tree database at hand. This
hinders the performance as invalid candidates are generated and
then pruned after determining that they do not exist in the tree
database. The problem has motivated us to take a different
approach to candidate subtree generation which ensures that only
valid candidates are generated. We refer to this candidate
generation strategy as Tree Model Guided (TMG) [22, 23, 24,
25]. This non-redundant systematic enumeration model ensures
only valid candidates are generated which conform to the actual
tree structure of the data. An example of a tree model would be
the structural aspects of a document in XML schema, and a valid
candidate would conform to this. In general, the TMG would be
applicable to any area with structural models with clearly defined
semantics that have tree like structures. In [23] we have
introduced a novel and unique Embedding List (EL)
representation suitable for describing embedded subtrees. The
integration of the EL representation enabled the TMG candidate
generation to be done in an efficient manner which was
demonstrated in our experimental evaluations of the algorithm.
We also developed a mathematical formula that can be used to
estimate the worst case complexity of the TMG candidate
generation. The formula indicates the number of candidate
subtrees that will be generated at each step and it shows that
mining embedding relationships can be very costly for complex
trees. Using the formula one could predict infeasible cases in
which the number of candidates to be generated is too large. In
such situations one would be forced to constrain the mining
process in some way so that at least some patterns could be
discovered. This motivated us to develop a strategy to tackle the
complexity of mining embedded subtrees by introducing Level of
Embedding constraint [24]. Thus, when it is too costly to mine all
frequent embedded subtrees, one can decrease the level of
embedding constraint gradually up to 1, from which all the
obtained frequent subtrees are induced subtrees.

In this study we extend our past work by developing an algorithm
for mining embedded subtrees when the distances of the nodes
relative to the root of the subtree need to be considered. We felt
that the traditional embedded subtree definition may allow too
much freedom with respect to the embedding of the subtrees
extracted. The embedded subtrees extracted using the traditional

definition are incapable of being further distinguished based upon
the node distance within that subtree. For certain applications the
distance between the nodes in a hierarchical structure could be
considered important and two embedded subtrees with different
distance relationships among the nodes need to be considered as
separate entities. The distances of nodes relative to the root (node
depth) of a particular subtree will need to be stored and used as an
additional equality criterion for grouping the enumerated
candidate subtrees. This notion of distance constrained embedded
tree mining will have important applications in web information
systems and conceptual model analysis. Knowledge merging is
another area where the distances between the nodes within an
embedded subtrees may need to be considered. Inside a concept-
hierarchy the distances between the nodes indicate the amount of
specific knowledge that is known about a particular concept, or is
needed for the accurate classification of that concept [21]. The
structure based approaches for schema matching commonly take
the distance among the nodes within a sub-structure into account
when evaluating the concept similarity across different schemas
[6, 13, 19]. Hence our aim in this paper is to obtain an efficient
algorithm that will extract all embedded subtrees with the
additional node distance information.

In order to maintain the efficient use of EL for TMG candidate
generation, the major extension requirement is for an appropriate
candidate encoding scheme to distinguish subtrees based upon
structure and the node distances within the structure. The
structural aspects need to be preserved as well as extra distance
information needs to be stored. We present an encoding strategy
to efficiently enumerate candidate subtrees taking the distances of
nodes relative to the root of the subtree into account. This allows
us to preserve the TMG approach and obtain an efficient
algorithm, Razor, for yet another subset of the tree mining
problem. We apply the algorithm to both synthetic and real-world
datasets, and the experimental results demonstrate the correctness
and effectiveness of the proposed technique.

The rest of the paper is organized as follows. A motivating
example is provided in section 2 together with a quick overview
of the ontology matching problem. The problem decomposition is
given in section 3 and the related works are discussed in section 4.
The Razor algorithm is described in section 5. The experiments
on real world and synthetic data are presented in section 6, and
section 7 concludes the paper.

2. MOTIVATING EXAMPLE
The purpose of this section is to present an example that
demonstrates the usefulness of adding the distance constraint to
embedded subtree mining. As mentioned in the introduction there
are a few applications where mining of distance constrained
embedded subtrees would have important implications. The
problem considered here is concerned with semantic matching of
concepts that come from heterogeneous data sources. Semantic
matching is particularly important in the area of Ontology
learning and matching. We start this section by giving a brief
overview of the Ontology matching problem.
Ontology in AI is defined as a formal, explicit specification of a
shared conceptualization. Formal corresponds to the fact that the
ontology should be machine readable, explicit means that the
concepts and their constraints should be explicitly defined, and
conceptualization refers to the description of concepts and their

relationships that occur in a particular domain [11, 8]. The main
differences among Ontologies occur in: vocabularies, design
principles, knowledge representation, level of detail and the
ontology commitment [18, 12]. These differences make the
ontology matching a challenging task and to manually perform
the task would be too time consuming and error-prone. Automatic
detection of semantic matches among ontology concepts has
therefore become the initial and most challenging stage in most of
ontology merging and alignment tasks [16, 10].
This problem is analogous to schema matching in databases. The
goal is to find semantically correct matches between the schema
concepts. The schema matching techniques can be distinguished
as involving schema, instance, constraint, linguistic, element and
structure based approaches [13]. When concept naming differs
among ontologies the syntax based approaches such as linguistic
matchers have difficulties and a semantic approach is desired.
Semantic matching takes the schema information as well as the
positions of nodes in the conceptual models (graph or tree) into
account. The MOMIS approach [3] is concerned with integration
and querying of heterogeneous information sources containing
semistructured and structured data. Semantic matching is
performed based on the conceptual schemas of the information
sources. The approach also makes use of a common thesaurus to
identify semantically related information. The TreeMatch
algorithm [13] computes the similarity of contexts in which the
two concepts occur in the two schemas. It utilizes schema
information and the representative tree structure. Similarity
flooding algorithm [14] produces a similarity mapping between
the concepts of two graph structures. A string match operator is
used to obtain the initial matching nodes which propagate the
similarity to their adjacent nodes. The Anchor-PROMPT
algorithm [17] takes as input a set of similar terms (anchors) and
determines sets of other related terms by analyzing the paths in
the subgraph limited by the anchor points. It is based on the
intuition that if two pairs of concepts in the source ontologies are
similar and there are paths connecting those two concepts, then
the concepts in those paths are often similar as well. Giunchiglia
and Shvaiko [9] perform element and structure-level semantic
matching among the elements of two graphs. Initially, the schema
information is used to produce semantic relations among all the
concepts and the graph structure is then traversed to construct the
propositional formulas among concepts (equality, overlap,
mismatch, more general/specific). For a more detailed overview
and comparison of some existing approaches to automatic schema
matching, please refer to [19].

To illustrate the usefulness of detecting distance-constrained
embedded subtrees please consider figure 1. The two conceptual
hierarchies (CH1, CH2) represent a borrowing record from two
different library based applications. Let us assume that the
concepts located at the top of the hierarchies are both known to
correspond to a borrowing record. As discussed in the previous
paragraph common approach would be to investigate the sub-
structures containing the concepts already found to be similar in
order to update the similarity of the neighboring concepts. One
approach would be to detect the longest subtree whose structure
matches both of the representations and then perform the
similarity update among concepts within that structure. If
embedded subtrees are mined the longest matching subtree would

be of size 11 which corresponds to the whole structure of CH1.
The CH2 is a more specific model and there are quite a few
embedded subtrees in CH2 that match the whole structure of
CH1. However, only one of those embedded subtrees is a true
match. If similarity update was performed on all these matching
subtrees there would be lots of incorrect updates and at the end it
would be ambiguous to determine which were the true matches.
Hence in this case extracting the largest matching embedded
subtree could affect the similarity update in an undesirable way
since updates would not distinguish among the subtrees where the
distance among the nodes is different. This information is needed
for a more exact structure matching where the level of granularity
among concepts is the same in two hierarchies. At this stage,
where labels are unknown, we consider a subtree an exact match
of another subtree only if the structure and the distance among the
nodes is the same in both subtrees. In other words, both sets of
concept nodes need to be positioned in exactly the same way in
both subtrees. The embedded subtree definition relaxes this
constraint and we therefore felt that an additional distance
constraint among nodes is required to obtain the exact match
among subtrees.
Considering the concept hierarchies from figure 1 again, if we
mine distance-constrained embedded subtrees, the largest
matching subtree has 7 nodes. This subtree corresponds to the
right hand side of the CH1 plus the node in level 1. This subtree is
the largest exact match between CH1 and CH2, and the similarity
update among the neighboring nodes in this subtree can be
performed with high confidence. The unmatched subtrees of the
structures are known to differ in the amount of specificity and the
node distance information could prove to be useful for additional
reasoning over concept similarity. Another option at this stage is
to start mining the embedded subtrees from the remaining
unmatched structure. This would relax the distance constraint and
similar structures which differ in concept granularity could be
detected.

return date

book

Loan

title

Name

BC

CH1

Street

Postcode#

Ph#:

City
Call number

Figure 1. Libraries borrowing record schemas

In the context of determining the semantic similarity among
concepts mining distance-constrained embedded subtrees will
provide a more strict structural matching approach as concept
nodes must occur at the same positions among extracted subtree
patterns. It is more strict in the sense that the extracted embedded
subtrees where one concept is known to be the same, ie
candidates for comparison, are much higher in number. Each
concept related embedded subtree is now refined in multiple
distance constrained embedded subtrees which keep the
information about the node positions in the original tree. This
refines the comparison since extra reasoning can take place,
taking into account the concept node positions among extracted
subtrees. It is important to note here that we are not claiming that
the mining of distance constrained embedded subtrees should
replace the mining of embedded subtrees for the purpose of
semantic matching. Embedded subtrees without the distance
constraint are still important as the amount of concept granularity
can differ among knowledge representations and we need to relax
the node distance constraint in order to investigate such
relationships. Consequently, one could start the structural
matching process by first mining distance constrained embedded
subtrees. This would detect initial exact matches where the
concept granularity is the same among knowledge
representations. It also indicates the point in the structure
matching process where differences in the concept granularity
occur and extra care has to be taken with similarity update. The
distance constraint could then be relaxed (i.e extract embedded
subtrees) in order to detect other pairs of concept related subtrees
which are similar in structurebut the concept granularity differs
among knowledge representations. This would refine the concept
matching process and help avoid initial bad matches which could
affect the rest of the knowledge (ontology) matching process.
Hence the whole process could be performed in a more controlled
manner where the node positions in the representative structure
are taken into account.

3. PROBLEM DEFINITIONS
A tree can be denoted as T(r,V,L,E), where (1) r ∈ V is the root
node; (2) V is the set of vertices or nodes; (3) L is the set of labels
of vertices, for any vertex v∈V, L(v) is the label of v; and (4) E

is the set of edges in the tree. Each node v in the tree has only one
parent, parent(v), which is defined as the predecessor of node v.
A node v can have one or more children, children(v), which are
defined as its successors. If p is an ancestor of q and q is a
descendant of p, then there exists a path from p to q.. A path from
vertex vi to vj, is defined as a finite sequence of edges that
connects vi to vj. The length of a path p is the number of edges in
p. When referring to the distance between the two nodes we
simply refer to the length of the path connecting those two nodes.
Height of a node is the distance to its furthest leaf, whereas the
depth of a node is its distance to the root. The number of children
of a node is commonly termed as fan-out/degree of the node,
degree(v). A node without any children is a leaf node; otherwise,
it is an internal node. If for each internal node, all the children are
ordered, then the tree is an ordered tree. The rightmost path of T
is defined as the path connecting the rightmost leaf with the root
node. The size of a tree is determined by the number of nodes in
the tree. All trees considered in this paper are rooted ordered
labeled.

Figure 2. Example of induced subtrees (T1, T2, T4, T6)

and embedded subtrees (T3, T5) of tree T (note that
induced subtrees are also embedded)

Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered induced
subtree of a tree T (r, V, L, E) iff (1) V’⊆V, (2) E’⊆E, (3) L’⊆L
and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V and v’ is not the root node,
and v’ has a parent in T, then parent(v’)=parent(v), (5) the left-to-
right ordering among the siblings in T’ is preserved. An induced
subtree T’ of T can be obtained by repeatedly removing leaf
nodes or the root node if their removal doesn’t create a forest in
T.

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an ordered
embedded subtree of a tree T(r, V, L, E) if and only if it satisfies
properties 1, 2, 3 and 5 of an induced subtree and it generalizes
property (4) such that ∀v’∈V’, ∀ v∈V and v’ is not the root
node, the sets ancestor(v’) and ancestor (v) form a non-empty
intersection. Examples of induced and embedded subtrees are
given in Figure 2.

Level of Embedding (Φ). If T’(r’, V’, L’, E’) is an embedded
subtree of T, and there is a path between two nodes p and q, the
level of embedding (Φ) is defined as the length of the shortest
path between p and q, where p∈V’ and q∈V’, and p and q form
an ancestor-descendant relationship. In other words, given T

City

Due date

item

Loan

name

call#

borrower

barcode
 Address

CH2

Street

Contact details

Ph# (home)
Ph#(mob)

Residential Postal

Street

City

Postcode Postcode

andΦ, then any embedded subtree to be generated will have the
length of the shortest path in T between any two ancestor-
descendant nodes from T’ equal or less than Φ. In this regard, we
could define induced subtree T as an embedded subtree where the
maximum level of embedding that can occur in T is equal to 1,
since the Level of Embedding of two nodes that form a parent-
child relationship equals to 1.

Distance-Constrained Embedded Subtree. A tree T’(r’, V’, L’,
E’) is an ordered distance-constrained embedded subtree of a tree
T(r, V, L, E) if it satisfies all the properties of an embedded
subtrees (above), and ∀v’∈V’ there is an integer stored
indicating the level of embedding (Φ) in tree T between v’ and the
root node of T’.

Adding distance constraint. In this paper we are concerned with
mining embedded subtrees where the distance between the nodes
in the original tree database needs to be considered. The main
difference is that the distance between the nodes is used as an
additional equality criterion to group the enumerated candidates.
To illustrate the difference that this additional distance constraint
will impose on the task of mining embedded subtrees, consider
the example tree shown in Figure 3. If the traditional mining
technique for embedded subtrees is used, a subtree ‘A C’ by
occurrence match support definition would have support equal to
8. On the other hand if the distance equality constraint is added
we would need to distinguish this candidate into three candidates
depending on the varying distance between the nodes. Hence the
three ‘A C’ subtree candidates would have varying distances of 1,
2 and 3 and the support of 2, 4 and 2 respectively.

Figure 3. Example tree with labeled nodes ordered in pre-

order traversal

For subtrees with more nodes the stored distance for each node
will correspond to its distance to the root of that particular
subtree. It can be seen that this additional constraint will add extra
complexity to the traditional frequent subtree mining problem.
More candidate subtrees will need to be enumerated and counted
during the task.

Transaction based vs occurrence match support. We say that
an embedded subtree t is supported by transaction k⊆K in
database of tree Tdb as tp k. If there are L occurrences of t in k, a
function g(t,k) denotes the number of occurrences of t in
transaction k. For transaction based support, tp k=1 when there
exists at least one occurrence of t in k, i.e. g(t,k)≥1. For
occurrence match support, tp k corresponds to the number of all

occurrences of t in k, tp k=g(t,k). Suppose that there are N
transactions k1 to kN of tree in Tdb, the support of embedded
subtree t in Tdb is defined as:

∑
=

N

i
ikt

1
p

(1)

Transaction based support has been used in a number of works [4,
27, 30], whereas occurrence match support has been less utilized
and discussed. Occurrence match support takes repetition of items
in a transaction into account whilst transaction based support only
checks for existence of items in a transaction. There has not been
any general consensus which support definition is used for which
application. However, it is intuitive to say that whenever
repetition of items in each transaction is to be accounted and order
is important, occurrence match support would be more applicable.
Generally, transaction based support is very applicable for
relational data. Our focus is on occurrence match support in this
paper.

Mining frequent embedded subtrees. Let Tdb be a tree database
consisting of N transactions of trees, KN. The task of frequent
embedded subtree mining from Tdb with given minimum support
(σ), is to find all the candidate embedded subtrees that occur at
least σ times in Tdb. Based on the downward-closure lemma [2],
every sub-pattern of a frequent pattern is also frequent. In
relational data, given a frequent itemset all its subsets are also
frequent. However, when mining induced and embedded subtrees
from a rooted ordered labeled database of trees, there can be
frequent subtrees with one or more of its subsets infrequent. We
refer to these types of frequent subtrees as pseudo-frequent
subtrees [23, 24, 25]. Hence, in the case where there exists a
frequent subtree ‘s’ with one or more of its subtrees infrequent,
then ‘s’ also needs to be considered infrequent for the
antimonotone property to hold. Tree structured data has a
hierarchical structure where 1-to-many relationships can occur, as
opposed to relational data where only 1-to-1 relationships exist
between the items in each transaction. This multiplication
between one node to its many children/ descendants makes the
antimonotone property not hold for tree structured data. It should
be noted that if transaction based support is used, pseudo-frequent
subtrees will not be generated. When the repetition of items is
reported only once per transaction the 1-to-many relationship
between a node to its children is treated as set of items like in
relational database. When using occurrence match support, a full
(k-1) pruning should be performed at each iteration when
generating k-subtree from a (k-1)-subtree [23, 25, 30] so that no
pseudo-frequent subtrees would be generated.

4. RELATED WORKS
There are different types of trees and one can distinguish between
unrooted unordered trees (free trees) [5, 20], rooted unordered
trees [15], and rooted ordered trees [1, 22, 23, 24] These three
types have increasing topological structure [4] as one progresses
from the first to the third. Many algorithms have been developed
that mine different types of tree patterns. FreeTreeMiner [20]
extracts free trees in a graph database. PathJoin [28], uFreqt [15],
and HybridTreeMiner [5] mine induced, unordered trees. In data
mining community, a string-like representation of a tree structure
is becoming very popular [1, 4, 30, 27]. Each item in the string
can be accessed in O(1) time and the representation itself has been

reported to be space efficient and easy for manipulation [4, 22,
30]. When using breadth first string-like representation, the scope
of a node denotes the position of its right-most descendant. This
string-like representation preserves Thus, the hierarchical
relationships from the original tree database are semantically
preserved and the original tree structure can be reconstructed from
the string-like representation. The two known enumeration
strategies are enumeration by extension and join [5]. Recently,
Zaki [30] adapted the join enumeration strategy for mining
frequent embedded rooted ordered subtrees, and developed the
efficient TreeMiner algorithm for discovering frequent embedded
subtrees in a forest using a data structure called the vertical scope-
list. An idea of utilizing a tree model for efficient enumeration
appeared in [29]. The approach uses the XML schema to guide
the candidate generation so that all candidates generated are valid
because they conform to the schema. We further generalized this
concept of schema guided into tree model guided candidate
generation for mining embedded rooted ordered labeled subtrees
[22, 23]. We refer to such an enumeration method as Tree Model
Guided (TMG). TMG can be applied to any data with clearly
defined semantics that have tree like structures. It ensures that
only valid candidates which conform to the actual tree structure of
the data are generated. The enumeration strategy used by TMG is
a specialization of the right most path extension approach [1, 30,
22, 23]. However it is different from the one that is proposed in
FREQT [1] because TMG enumerates embedded subtrees and
FREQT enumerates only induced subtrees. The right most path
extension method is reported to be complete and all valid
candidates are enumerated at most once (non-redundant) [1, 22,
23]. This is in contrast to the incomplete method TreeFinder [26]
that uses an Inductive Logic Programming approach to mine
unordered, embedded subtrees. TreeFinder can miss many
frequent subtrees. The extension approach utilized in the TMG
generates fewer candidates as opposed to the join approach [30].
Independently, XSpanner [27] extends the Pattern-Growth
concept into tree structured data and its enumeration model also
generates only valid candidates. XSpanner only reports distinct
embedded subtrees similar to the recently published TreeMinerD
[30]. TreeMinerD is different to TreeMiner in the sense that
TreeMiner reports all embedding subtrees.

5. RAZOR ALGORITHM
The Razor algorithm mines frequent embedded subtrees taking
the distance between the ancestor-descendant nodes in the given
tree database into account. The necessary amendments for
incorporating the additional distance constraint occur in the way
candidate subtrees are enumerated during candidate enumeration
and (k-1)-subtree generation phase. We have utilized the TMG
[22, 23, 25] candidate generation approach for an optimal, non-
redundant candidate subtree enumeration. The previously
introduced embedding list representation [23], is used for an
efficient implementation of the TMG candidate generation
approach. Following, is a detailed description of the algorithm
with the required adjustments.
Database scanning. As the first step in the process, a tree
database, Tdb, is scanned in order to generate a global sequence D
in memory, which is referred to as a dictionary. The dictionary
stores each node from the Tdb following the pre-order traversal
indexing. The node information stored consists of position, label,
right-most descendant position (scope), depth and parent position

of that particular node in Tdb. Thus each dictionary item is defined
as a tuple of position (pos), label (l), scope (s), depth (d), parent
(p), {pos, l, s, p}. An item at index position i in the dictionary is
referred to as dictionary[i]. During the construction of the
dictionary the complete set of frequent 1-subtrees, F1, is
enumerated. Once the dictionary is constructed, no further
database scanning is required.

String encoding (φ). We utilize a slight modification of the pre-
ordering string encoding (φ) [22, 23, 30], in order to store the
additional distance information for each node of the encoded
subtree. The encoding of a subtree is obtained by reading the
nodes in the pre-order traversal and for each node storing the
distance to the root of the subtree (node depth). The distance to
the root is worked out from the node depths stored in the
dictionary, where the root of the subtree is assigned the depth of 0
and all other nodes are assigned the difference between their
depth and the original depth of the new subtree root. Hence the
additional information corresponds to the depths of nodes within
the newly encoded subtree. Further modification of the encoding
consists in storing a number next to each backtrack ‘/’ symbol
indicating the number of backtracks in the subtree, as opposed to
storing each of those backtracks as a separate symbol. This
representation allows for easier string manipulation due to
uniform block size. Thus, from figure 5, the main difference
between IMB3 [24] and Razor lies in the GetEncoding
computation. We denote encoding of a subtree T as φ(T). For
each node in T (figure 1), its label is shown as a single-quoted
symbol inside the circle whereas its pre-order position is shown as
indexes at the left/right side of the circle. From figure 2,
φ(T1):‘b0 c1 /1 b1 e2 /2’; φ(T3):‘b0 e1 /1 c1 /1’; φ(T6): ‘b0 e1 c1
/2 c1 /1’, etc. The backtrack symbol could be omitted after the last
node, i.e. φ(T1):‘b0 c1 /1 b1 e2’. The number next to each node
label corresponds to the depth of that node. We refer to a group
of subtrees with the same encoding L as candidate subtree CL. A
subtree with k number of nodes is denoted as k-subtree.
Throughout the paper, the ‘+’ operator is used to conceptualize an
operation of appending two or more tree encodings. However, this
operator should be contrasted with the conventional string append
operator, as in the encoding used the backtrack symbols need to
be computed accordingly.

Embedding List (EL) construction. In this section we describe
the process of constructing the EL which allows for an efficient
implementation of the TMG candidate enumeration. For each
frequent internal node in F1, a list is generated which stores its
descendant nodes’ hyperlinks [27] in pre-order traversal ordering
such that the embedding relationships between nodes are
preserved. The notion of hyperlinks of nodes refers here to the
positions of nodes in the dictionary. For a given internal node at
position i, such ordering reflects the enumeration sequence of
generating 2-subtree candidates rooted at i (figure 4). Hereafter,
we call this list as embedded list (EL). We use notation i-EL to
refer to an embedded list of node at position i.; The position of an
item in EL is referred to as slot. Thus, i-EL[n] refers to the (n-1)th
item of in the list at slot n with zero-based indexing.. Whereas |i-
EL| refers to the size of the embedded list rooted of node at
position i. Figure 4 illustrates an example of the EL representation
of tree T (figure 2). In fig 4, 0-EL for example refers to the list:
0:[1,2,3,4,5,6,7,8] and , 0-EL[0] = 1 and; 0-EL[4] = 5; 0-EL[6] =
7.

Figure 4. The EL representation of T in figure 1

Figure 4 illustrates an example of the EL representation of subtree
T (figure 1). For each node in T, its label is shown as a single-
quoted symbol inside the circle whereas its position is shown as
indexes at the left side of the circle. Also, please note that each
list stores node positions rather than labels.

Occurrence Coordinate (OC). A candidate subtree can occur at
different positions in the database and OC is used to denote the
node positions of that particular subtree so that it can be
distinguished from other subtrees having the same encoding.
When generating k-subtree candidates from (k-1)-subtree, we
consider only frequent (k-1)-subtrees for extension. Each
occurrence of k-subtree in Tdb is encoded as occurrence
coordinate r:[e1,…ek-1]; where r refers to the k-subtree root
position in the dictionary D and e1,…,ek-1 are refer to the indexes
of slots in r-EL. Each ei corresponds to node (i+1) in the k-subtree
and in r; e1 < ek-1. We refer to ek-1 as tail slot. From figure 2 & 4,
the OC of a 3-subtree (T2) with encoding ‘b0 b1 e2’ is encoded is
encoded as 0:[6,7]; 4-subtrees T1 with encoding ‘b0 c1 /1 b1 e2’
are encoded as 0:[5,6,7], and so on. Each OC of a subtree
describes an instance of that subtree in Tdb, and hence each
candidate subtree has at least one OC associated with it.

Figure 5. TMG enumeration: extending (k-1)-subtree tk-1

where φ(tk-1):‘a b / b c’ occurs at position (0,1,4,5) with node
at position 6, 7, 8, 9, and 10

TMG enumeration formulation. TMG is a specialization of
right most path extension method which has been reported to be
complete and non-redundant [1, 22, 23]. To enumerate all
embedded k-subtrees from a (k-1)-subtree, TMG enumeration
approach extends one node at the time to the right most path of
(k-1)-subtree. We refer to each node in the right most path as

extension point (figure 5). One important property of EL is that
the positions of nodes are stored in pre-order manner. The scope
of extension of a node denotes the range of nodes that can be
appended to that node for the formation of new candidate
subtrees. Hence, given a (k-1)-subtree with known tail slot, the
subsequent slots in EL will form the scope of extension from i to
j. All embedded k-subtree are generated by attaching a node at
position i to j to the (k-1)-subtree. Suppose l(i) denotes a labeling
function of node with at position dictionary coordinate i. Given
frequent (k-1)-subtree tk-1 with φ(tk-1):L, the root position r, tail
position t, encoding L and occurrence coordinate r:[m,…,n], k-
subtrees are generated by extending tk-1 with j∈ r-EL such that t <
j ≤ |r-EL|-1. Thus its occurrence coordinate becomes r:[m,…,n,j]
and its encoding becomes L’:L+l(i) where i=r-EL[j] and m<n<j.
Similarly to the IMB3 algorithm [24], Razor algorithm was
implemented with the capability to restrict the level of
embedding. This is achieved by performing a check at each
extension point, of whether the level of embedding is less or equal
to the specified Φ. Only when the level of embedding of a node at
position j to its extension point is less than Φ, the extension is
performed. From fig 5, suppose that Φ is set to 1, when we extend
a subtree with OC 0:[0,3,4] with node at position 6, 7, and 9
(0:[5], 0:[6], 0:[8]), the level of embedding between nodes at
position 6, 7, and 9 to their extension point equals to 1 (≤ Φ), and
thus should not be pruned. However when it is extended with
node at position 8 and 10 (0:[7], 0:[9]) the level of embedding
between node at position 8 and 10 to their extension points is>2
(≥ Φ), and thus should be pruned.

k-1 full pruning. To ensure the absence of pseudo-frequent
subtrees, full (k-1) pruning must be performed. The rationale of
this has been discussed in [23, 30]. From this point onward we
refer to full (k-1) pruning as full pruning. This implies that at
most (k-1) numbers of (k-1)-subtrees need to be generated from
the currently expanding k-subtrees. Exception is made whenever
the Φ constraint is set to 1, i.e. mining induced subtree, we only
need to generate l numbers of (k-1)-subtrees where l < (k-1) and l
equal to the number of leaf nodes in k-subtrees. When the
removal of root node of k-subtree doesn’t generate a forest [22,
23, 30] then an additional (k-1)-subtree is generated by taking the
root node off from the expanding k-subtree. The expanding k-
subtree is pruned when at least one (k-1)-subtree is infrequent,
otherwise it is added to the frequent k-subtree set. This ensures
that the method generates no pseudo-frequent subtrees. Doing full
pruning is quite time consuming and expensive. To accelerate full
pruning, a caching technique is used by checking whether a
candidate is already in the frequent k-subtree. If a (k-1)-subtree
candidate is already in the frequent k-subtree set, it is known that
all its (k-1)-subtrees are frequent, and hence only one comparison
is made.

Figure 6. Razor algorithm pseudo code

Vertical Occurrence List (VOL). To determine if a subtree is
frequent, we count the occurrences of that subtree and check if it
is greater or equal to the specified minimum support σ. We say
that a subtree has a frequency n if there are n instances of subtrees
with same encoding. Each occurrence of a subtree is stored as an
occurrence coordinate, as previously described. Computing the
frequency of a subtree can be easily determined from the size of
the VOL. We use the notation VOL(L) to refer to the vertical
occurrence list of a subtree with encoding L. Consequently, the
frequency of a subtree with encoding L is denoted as |VOL(L)|.
When transaction based support is used the occurrence of each
subtree is grouped by its transaction id and the support count
corresponds to the number of unique transactions in the VOL. The
Razor algorithm as a whole can be described by the pseudo-code
displayed in Figure 6.

6. EXPERIMENTAL RESULTS
In this section we present some of the tests performed on the
Razor algorithm. Firstly we show the scalability of the approach
followed by the comparisons with the MB3 [23] and IMB3 [24]
algorithms on the grounds of the number of frequent subtrees
generated for varying support and level of embedding thresholds.
For the problem of mining frequent subtrees most of the time and
space complexity comes from the candidate enumeration and
counting phase. The distance-constrained subtrees are much larger
in number then induced or embedded subtrees and in general an
algorithm for this task would require more space and run-time.
This makes our approach incompatible to the current tree mining

algorithms and to our knowledge there is currently no algorithm
that mines distance constrained embedded subtrees to allow for a
compatible comparison. Note that the occurrence match support
definition is used in all the experiments. The minimum support σ
is denoted as (sxx), where xx is the minimum frequency.
Experiments were run on 3Ghz (Intel-CPU), 2Gb RAM,
Mandrake 10.2 Linux machine and compilation was performed
using GNU g++ (3.4.3) with the –g and –O3 parameters.

6.1 Scalability test
The purpose of this experiment is to test whether the algorithm is
well scalable with respect to the increasing number of transactions
present in a database. An artificial database was created, where
the size of the transactions for each test is varied from 100,000,
500,000 to 1 million with minimum support 50, 250, and 500
respectively. The result shows that the time to complete the
operation scales linearly with the increase in transaction size.

Figure 7. Scalability test - time performance / number of

transactions

6.2 Frequent subtrees over different support
For this experiment we have used a reduction of the CSLogs data
set previously used by Zaki [30] for testing the TreeMiner
algorithm using the transactional support definition. If occurrence
match support definition is used the transaction number would
need to be reduced [23] so that the tested algorithms could return
the set of all frequent subtrees. We have randomly reduced the
number of transactions from 52,291 to 32.421. The comparison of
the number of frequent subtrees generated among the MB3, IMB3
and Razor algorithms, for varying support thresholds is presented
in figure 7.

Figure 8. Number of frequent subtrees detected for varying

support thresholds
IMB3 and Razor were set with the level of embedding (Φ)
constraint equal to 5. Consequently, the number of detected
frequent subtrees differs slightly between the IMB3 and MB3
algorithms. In figure 8 we can see that the number of frequent
subtrees detected by the Razor algorithm increases significantly
when the support is lowered. This is due to the additional distance
relationship used to uniquely identify candidate subtrees. As
shown in section 3 an embedded subtree may be split into
multiple candidate subtrees when the distance is taken into
account. As the support is lowered many more subtrees will be
frequent and hence many more variations of those subtrees with
respect to the distance among the nodes will also be frequent.
This is the explanation for such a large jump in the number of
frequent subtrees detected by the Razor algorithm, when support
threshold is lowered sufficiently.

6.3 Varying the level of embedding
The purpose of this experiment is to compare the number of
frequent subtrees detected by the algorithms when the level of
embedding (Φ) is varied. We have artificially created a data set
that characterizes a deep tree with the maximum depth equal to
17. It consists of 10,000 transactions with a total of 273,090
nodes. The support threshold was set to 100. The MB3 algorithm
does not restrict the level of embedding and hence the number of
frequent subtrees detected remains the same for all cases. As the
largest level of embedding of the dataset tree is 17 the MB3 miner
detects the largest number of frequent subtrees.
Variation in the number of frequent subtrees detected by the
Razor and the IMB3 algorithm can be observed in figure 9. At
Φ:1, same number of subtrees are detected since no extra
candidates can be derived when mining induced subtrees (i.e. the
distance between the nodes is always equal to 1).

Figure 9. Varying the level of embedding

When the Φ threshold is increased Razor algorithm detects more
frequent subtrees for the reasons explained in the previous
section. However, when the Φ threshold was increased to 15,
IMB3 algorithm detected more subtrees as frequent. When such
high level of embedding is allowed many embedded subtrees
previously infrequent will become frequent as there is more
chance for their re-occurrence. On the other hand, the Razor
algorithm may further distinguish each of those subtrees based
upon the distance of nodes relative to the root, and the frequency
of the new candidate subtrees may not reach the support
threshold. This explains why IMB3 has detects a larger number of
frequent subtrees at Φ:15, in comparison to the Razor algorithm.
As expected, it can also be seen that as the Φ threshold is
increased the number of frequent subtrees detected by IMB3
algorithm gets closer to the number detected by the MB3
algorithm where no Φ restriction applies.

7. CONCLUSIONS & FUTURE WORK
In this work we have extended the traditional definition of
embedded subtrees in order to take the distance amongst the
nodes into account. As the traditional embedding definition
allows too much freedom with respect to the frequent subtrees
extracted, we felt that an extra grouping criterion was required. In
reality the distance between the nodes in a hierarchical structure
could indicate the amount of specific information stored about
that concept, which would be considered important especially for
applications in web information systems and conceptual model
analysis. We have presented Razor, an algorithm which groups
candidate subtrees based upon the node labels, node structure, and
the depth of the nodes within that structure. The correctness and
implications of the approach were demonstrated with experiments
using real world and synthetic data. Enforcing the distance
constraint adds extra complexity to the task as more candidate
subtrees will need to be enumerated and counted. We have
presented an encoding strategy to efficiently enumerate candidate
subtrees with the additional grouping criterion and the efficient
TMG approach to candidate enumeration was preserved in yet
another subset of the tree mining problem.

8. REFERENCES
[1] Abe, K., Kawasoe, S., Asai, T., Arimura, H., and Arikawa,

S. Optimized substructure discovery for semistructured data.
In Proc. of the 6th European Conference on Principles of
Data Mining and Knowledge Discovery, Helsinki, Finland,
2002, 1–14.

[2] Agrawal, R. and Srikant, R. Fast Algorithm for Mining
Association Rules. In Proc. of the 20th VLDB’94, 1994,
487–499.

[3] Bergamaschi, S., Castano, S. and Vincini, M. Semantic
Integration of Semistructured and Structured Data Sources.
SIGMOD Record 28(1), 1999, 54-59.

[4] Chi, Y., Nijssen, S., Muntz, R.R., Kok. J.N. Frequent
Subtree Mining: An Overview. Fundamenta Informaticae,
Special Issue on Graph and Tree Mining, 2005.

[5] Chi, Y., Yang, Y., Muntz, R.R. HybridTreeMiner: An
efficient algorihtm for mining frequent rooted trees and free
trees using canonical forms. In Proc. of the 16th
International Conference on Scientific and Statistical
Database Management, Santorini Island, Greece, 2004.

[6] Do, H.-H. and Rahm, E. COMA – A System for Flexible
Combination of Schema Matching Approaches. In Proc. of
the VLDB’02, 2002, 610-621.

[7] Feng, L., Dillon, T.S., Weigand, H., and Chang, E. An
XML-Enabled Association Rule Framework. In Proc. of
DEXA’03, 2003, 88-97.

[8] Fensel, D. Ontologies: a silver bullet for knowledge
management and electronic commerce. Springer, Berlin,
2004.

[9] Giunchiglia, F. and Shvaiko, P. Semantic matching.
Ontologies and Distributed Systems workshop, IJCAI (2003).

[10] Gómez-Pérez, A., Fernández-López, M. and Corcho, O.
Ontological engineering: with examples from the areas of
knowledge management, e-commerce and the semantic Web.
Springer-Verlag, London, 2003.

[11] Gruber, T.R., Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. International
Journal of Human and Computer Studies, 43(5/6), 1995,
907-928.

[12] Guarino, N. Semantic Matching: Formal Ontological
Distinctions for Information Organization, Extraction, and
Integration. In M. T. Pazienza (ed.) Information Extraction:
A Multidisciplinary Approach to an Emerging Information
Technology. Springer Verlag, 1997, 139-170.

[13] Madhavan, J., Bernstein, P.A. and Rahm. E. Generic Schema
Matching with Cupid. In Proceedings of the International
Conference on very Large Data Bases (VDLB), 2001, 49 –
58, Rome, Italy.

[14] S. Melnik, H. Molina-Garcia, and E. Rahm. Similarity
flooding: a versatile graph matching algorithm. In Proc. of
ICDE-02, 2002.

[15] Nijssen, S., Kok, J.N. Efficient discovery of frequent
unordered trees. In Proc. of the 1st International Workshop
Mining Graphs, Trees, and Sequences (MGTS-2003),
Dubrovnik, Croatia, 2003.

[16] Noy, N.F. and Musen, M. An Algorithm for Merging and
Aligning Ontologies: Automation and Tool Support. In
Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI99), Workshop on Ontology
Management, Orlando, FL, 1999.

[17] Noy, N. F. and Musen, M. A. Anchor-PROMPT: Using non-
local context for semantic matching. In Workshop on
Ontologies and Information Sharing at the Seventeenth
International Joint Conference on Artificial Intelligence
(IJCAI-2001). Seattle, WA.

[18] Pinto, S.H. Some issues on Ontology Integration. In
Proceedings of the IJCA-99 workshop on Ontologies and
Problem-Solving Methods (KRR5), Eds. Benjamins, V.R.,
Chandrasekaran, B., Gomez-Perez, A., Guarino, N. and
Uschold, M., Stockholm, 1999.

[19] Rahm, E. and Bernstein, P. A survey of approaches to
automatic schema matching. VLDB Journal,10, 4, 2001, 334-
350.

[20] Ruckert, U. and Kramer, S. Frequent free tree discovery in
graph data. In Proc. of the 2004 ACM symposium on Applied
computing, Nicosia, Cyprus, 2004, 564 – 570.

[21] Sestito, S. and Dillon, T.S. Automated Knowledge
Acquisition. Prentice Hall of Australia, Sydney, 1994.

[22] Tan, H., Dillon, T.S., Feng, L., Chang, E. and Hadzic, F. X3
Miner: mining patterns from XML Database. In Proc. of
Data Mining '05, Skiathos, Greece, 2005.

[23] Tan, H., Dillon, T.S., Hadzic, F., Chang, E., and Feng, L.
MB3 Miner: mining eMBedded sub-TREEs using Tree
Model Guided candidate generation. In Proc. of the 1st
International Workshop on Mining Complex Data, held in
conjunction with ICDM’05, Houston, Texas, USA, 2005.

[24] Tan, H., Dillon, T.S., Hadzic, F., Feng, L., and Chang, E.
IMB3 Miner: Mining Induced/Embedded Subtrees by
Constraining the Level of Embedding, In Proc. of
PAKDD'06, Singapore, 2006.

[25] Tan, H., Dillon, T.S., Hadzic, F., Feng, L., and Chang, E.
Tree Model Guided Candidate Generation for Mining
Frequent Subtrees from XML. Submitted to Transactions on
Knowledge Discovery from Data (TKDD), January, 2006.

[26] Termier, A., Rousset, M-C., and Sebag, M. Treefinder: A
First Step Towards XML Data Mining. In Proc. of IEEE
ICDM’02, 2002.

[27] Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., and Shi,
B. Efficient Pattern-Growth Methods for Frequent Tree
Pattern Mining. In Proc. of PAKDD’04, 2004.

[28] Xiao, Y., Yao, J.-F., Li, Z., Dunham, M.H. Efficient data
mining for maximal frequent subtrees. In Proc. of the 3rd
IEEE International Conference on Data Mining (ICDM
2003), Melbourne, Florida, USA, 2003, 379-386.

[29] Yang, L.H., Lee, M.L., and Hsu, W. Efficient Mining of
XML Query Patterns for Caching. In Proc. of the 29th
VLDB, 2003.

[30] Zaki, M.J. Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications. In IEEE Transaction on
Knowledge and Data Engineering, 17, 8, 2005, 1021-1035.

