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Abstract. Business process models are increasingly used by companies,
often yielding repositories of several thousand models. These models are
of great value for business analysis such as service identification or process
standardization. A problem is though that many of these analyses require
the pairwise comparison of process models, which is hardly feasible to do
manually given an extensive number of models. While the computation of
similarity between a pair of process models has been intensively studied in
recent years, there is a notable gap on automatically matching activities
of two process models. In this paper, we develop an approach based
on semantic techniques and probabilistic optimization. We evaluate our
approach using a sample of admission processes from different universities.

1 Introduction

Business process models are increasingly used by companies for documentation
purposes. A process documentation initiative stores an extensive amount of
process models in a centralized process repository. This amount can easily rise to
several thousand models in large enterprises. Due to the size of such companies,
process modeling is often conducted by decentralized teams. A consistent and
systematic documentation of processes is often achieved by defining guidelines.
However, typically none of the team members has detailed insight into the entire
set of process models stored in the repository.

The availability of a detailed documentation of a company’s business processes
bears a lot of potential for business analysis, such as process standardization,
compatibility analysis, or business service identification. Process model matching,
realized by tools called matchers, is a prerequisite for such analyses. It defines
which activities in one process model correspond to which activities in another
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model. Such matches are required, for example, to determine which activities
can be merged when deriving standard processes from a collection of processes.
It is also needed to judge behavior compatibility or equivalence, and to query a
collection of business process models for a certain process or process fragment. The
importance of such questions is reflected by recent contributions on computing
similarity of pairs of process models, e.g. [1,2,3,4,5,6].

In this paper, we address process model matching with semantic matching
techniques and probabilistic optimization. The approach comprises two steps.
First, match hypotheses are generated based on automatically annotated activity
labels. We rely on a semantic interpretation of activity labels, whereas existing
work [7,8] (despite a notable exception [9]) is limited to syntactical similarity
assessment. Second, match constraints are derived based on behavioral relations
of process models. Those constraints are used for guiding the matching with a
probabilistic model, whereas existing work directly leverages the model structure
or execution semantics [7,8]. The evaluation of our approach with admission
processes from nine different universities shows that the novel conceptual basis
for process model matching indeed improves performance. In particular, we are
able to show that match results are more stable over different levels of process
model heterogeneity. Besides the definition of the matcher, our contribution is a
comparative analysis of the strengths and weaknesses of classical matchers and
semantic matching with probabilistic optimization. As such, we provide valuable
insights for advancing the field of process model matching.

Against this background, the paper is structured as follows. Section 2 illus-
trates the problem of matching process models. Section 3 presents a matcher that
incorporates the generation of semantic match hypotheses based on automatically
annotated activities and a probabilistic approach towards match optimization
using behavioral constraints. Section 4 challenges our approach using a process
model collection from practice. Section 5 reflects our contribution in the light of
related work. Finally, Section 6 summarizes the findings.

2 Problem Illustration

This section illustrates the problem of matching process models. We present basic
terminology and discuss the state of the art in finding matches.

Given two process models with sets of activities A1 and A2, matches between
their activities are captured by a relation match : P(A1)×P(A2). An element
(A1, A2) ∈ match defines that the set of activities A1 matches the set of activities
A2, i.e., they represent the same behavior in the organization. If |A1| = 1 and
|A2| = 1, we call the match an elementary match or 1:1 match. Otherwise, we
speak of a complex match or 1:n match. For convenience, we introduce a relation
map : A1 × A2, which defines the relations between individual activities as
induced by match, map = {(a1, a2)|(A1, A2) ∈ match, a1 ∈ A1, a2 ∈ A2}.

Figure 1 shows admission processes from two different universities. We high-
lighted matches by gray boxes around the activities, e.g., activity Check formal
requirements of University A corresponds to activity Check documents of Univer-
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Fig. 1. Example of a business process models with matches.

sity B. Although the processes have the same goal, the organizational behavior
is modeled differently. Different labels are used (e.g., Accept application versus
Send letter of acceptance) and there are differences in the level of detail (e.g.,
Evaluate of University B is described in more detail for University A). Also the
behavior represented by the processes differs. For example, at University B the
Evaluate activity is mandatory, whereas at University A the matching activities
can be skipped. Before these behavioral differences can be analyzed, however,
matches between the activities have to be determined. The goal of matchers,
such as the ones described in [8,7], is to detect such matches automatically.

A matching approach of particular interest is the ICoP framework [8]. It defines
a generic architecture for assembling matchers along with reusable matching
components. As such, it integrates several of the proposed matchers, e.g., the
graph-based matcher presented in [7]. Following the ICoP architecture, the
procedure for automatically detecting matches involves four kinds of matching
components: searchers find potential matches between activities, boosters improve
the quality of potential matches by combining them, selectors construct the actual
mapping from potential matches, and evaluators evaluate the quality of an actual
mapping with the purpose of finding the best mapping.

Matching components implemented for the ICoP framework leverage syn-
tactic measures, such as string edit distance or vector-space scoring, to find
match candidates. Selection and evaluation is guided by the structure of process
models, e.g., utilizing the graph edit distance. An evaluation of the existing
ICoP components showed that much improvement is still possible with respect
to automatically detecting matches. Given the focus on syntactic measures of the
existing components, approaches that relate activities based on the semantics of
their labels can particularly be expected to improve matching performance.



3 Matching based on Semantics and Constraints

This section introduces our approach for matching process models. It consists of
four phases. First, we annotate the activities of the considered models with their
semantic components such as action and business object. Afterwards, we use these
annotations for generating match hypotheses for activity pairs. Then, we compute
behavioural constraints in order to properly incorporate control flow aspects into
the matching process. Finally, we involve these aspects in determining the most
likely match constellation using a Markov logic network.

3.1 Activity Label Annotation

Semantic matching requires the precise recognition of semantic components of an
activity label. Every activity label can be decomposed into three components [10]:
an action, a business object on which the action is performed, and an optional
fragment providing further details. For example, the activity label Forward
Request to Insurance Department contains the action forward, the business object
request and the additional fragment to Insurance Department. The challenge here
is to identify these different components for activities of different label styles.
Verb-object style labels start with an imperative verb followed by business object
and additional fragment, e.g. Calculate Costs for Production. In action-noun
labels the action is formulated as a noun, e.g. Order Shipment to Customer.

The last example points to potential problems with ambiguity when a term
can be used both as a noun (the order) and a verb (to order). Therefore, we use
the two-phase approach of [11] for deriving annotations. In the style recognition
phase, the label style is determined. Contextual information is utilized to classify
ambiguous cases. The derivation phase yields the action, the business object,
and optional fragments. This step builds on the capability of the lexical database
WordNet [12] to derive a verb like register from the nominalized action registration.

3.2 Generation of Semantic Match Hypotheses

The generation of semantic match hypotheses builds on the annotation of activities.
It yields a similarity score for each activity pair of the two input models.

The general idea for this phase is to calculate the score based on the semantic
similarity between the actions, the business objects and the additional fragments
of the considered activity pair. In this context, the term semantic similarity
refers to the closeness of two concepts in the taxonomy WordNet [12]. Different
proposals exist for calculating the similarity between two concepts based on
taxonomies [13,14,15]. Here, we utilize the similarity measure introduced by Lin,
as it has been shown to correlate well with human judgments [16]. Forcalculating
this semantic similarity between two labels l1, l2, we introduce three functions:
a component similarity function simc, a coverage function cov, and a label
similarity function siml, combining the latter two to a final result.



The function simc calculates the semantic similarity between two label com-
ponents lc1 and lc2 . In general, the result of the Lin measurement is returned. If
not both labels include the component, the value is set to zero.

simc(l1, l2) =

{
0 if l1c = ∅ ∨ l2c = ∅
Lin(l1c , l2c) if l1c 6= ∅ ∧ l2c 6= ∅

(1)

The coverage function cov is used to determine the number of components in
a label l. Assuming a label at least refers to an action, the result of cov ranges
from 1 to 3. Note that the index a in the definition denotes the action, bo the
business object and add the additional information fragment.

cov(l) =

1 if la 6= ∅ ∧ lbo = ∅ ∧ ladd = ∅
2 if la 6= ∅ ∧ (lbo 6= ∅ Y ladd 6= ∅)
3 if la 6= ∅ ∧ lbo 6= ∅ ∧ ladd 6= ∅

(2)

In order to combine the individual similarity results, we introduce the function
siml. This function calculates the arithmetic mean of the similarity values for
action, business object and the additional information. This is accomplished by
dividing the sum of sima, simbo and simadd by the maximum coverage among
l1 and l2. As a result, we obtain the overall matching weight for two given labels.

siml(l1, l2) =
sima(l1, l2) + simbo(l1, l2) + simadd(l1, l2)

arg max
l ∈ {l1,l2}

cov(l)
(3)

By calculating siml for every activity pair which can be combined from the
considered process models, we obtain a set of match hypotheses. This set of
hypotheses constitutes the first input for our probabilistic matching model.

3.3 Constraints Generation

Constraint satisfaction, also called second line matching [17], is often applied in
schema and ontology matching as a means to guide the selection of matches. Here,
constraints may relate to the general structure of matches (e.g., only 1:1 matches
shall be considered), particular attribute pairs (e.g., a pair forms a matches or
shall never be part of any match), or dependencies between different matches. We
aim at matching such dependencies which are related to the execution semantics
of process models. The intuition behind is that the order of processing described
by one model is likely to coincide with the order of processing specified in a
second model. Referring to the initial example in Figure 1, we see that in either
model the activities related to check an application (e.g., Check application in
time in the upper model and Check documents in the lower model) are preceding
the activities related to taking a decision (e.g, Reject application and Send letter
of rejection). Also, activities for accepting an application are exclusive to those
of rejection an application in either model.

There are different alternatives to formulate behavioral constraints for a
process model. For the context of matching process models, a fine-grained for-
malization of constraints appears to be appropriate. Although we assume two



models to show a rather consistent order of processing, slight deviations can
always be expected and should have a minor impact on the matching process.
Therefore, we consider a model that captures order constraints for the smallest
possible conceptual entity, i.e., pairs of activities. Further, in many cases, the final
matching will only be partial, meaning that activities of one model are without
counterpart in the other model. This suggests to not rely on direct successorship
of activities but on a notion that is insensitive of partial matchings.

Against this background, we capture behavioral constraints using a binary
relation over activities, called weak order [18]. It holds between two activities
a1 and a2 of a process model, if there exists an execution sequence in which a1
occurs before a2. By referring to the existence of a certain execution sequence,
it allows for capturing the potential order of occurrence for activities. In the
aforementioned example, weak order holds between Check application in time and
Reject application in the upper model, and between Check documents and Send
letter of rejection in the lower model. The exclusiveness of activities representing
acceptance and rejection of an application in either model is implicitly covered:
the respective activities are not related by weak order in either direction. The
strict order is also implied if weak order is only defined in one direction.

Weak order of activities can be derived from the state space of a process
model. For certain classes of models, however, the relation can also be derived
directly from the structure. For models that incorporate only basic control flow
routing, such as XOR and AND routing constructs, and that show soundness, i.e.,
the absence of behavioral anomalies such as deadlocks, the weak order relation is
determined in low polynomial time to the size of the model [18].

3.4 Probabilistic Match Optimization

An instance of the process matching problem consists of the two processes, the
match hypotheses with a-priori confidence values, and the behavioral relations
holding between the activities. Statistical relational languages such as Markov
logic [19] are a natural choice when uncertainty meets relational data. We will
demonstrate that Markov logic is an appropriate choice for a process matching
framework as it is adaptable to different matching situations and allows fast
prototyping of matching formulations.

Markov Logic Networks Markov logic [19] is a first-order template language
for log-linear models with binary variables. Log-linear models are parameteriza-
tions of undirected graphical models (Markov networks) which play an important
role in the areas of reasoning under uncertainty [20] and statistical relational
learning [21]. Log-linear models are also known as maximum-entropy models
in the natural language processing community [22]. The features of a log-linear
model can be complex allowing the user to incorporate prior knowledge about
the importance of features of the data for classification. Moreover, within the
framework of log-linear models users can specify constraints on the resulting
classification. In the context of process matching, these constraints will allow us
to punish inconsistent sets of matches, also referred to as alignments.



A Markov network M is an undirected graph whose nodes represent a set of
random variables X = {X1, ..., Xn} and whose edges model direct probabilistic
interactions between adjacent nodes. More formally, a distribution P is a log-linear
model over a Markov network M if it is associated with:

◦ a set of features {f1(D1), ..., fk(Dk)}, where each Di is a clique in M and
each fi is a function from Di to R,

◦ a set of real-valued weights w1, ..., wk, such that

P (X = x) =
1

Z
exp

(
k∑

i=1

wifi(Di)

)
,

where Z is a normalization constant [20].
A Markov logic network is a set of pairs (Fi, wi) where each Fi is a first-order

formula and each wi a real-valued weight associated with Fi. With a finite set
of constants C it defines a log-linear model over possible worlds {x} where
each variable Xj corresponds to a ground atom and feature fi is the number
of true groundings (instantiations) of Fi with respect to C in possible world x.
Possible worlds are truth assignments to all ground atoms with respect to the
set of constants C. We explicitly distinguish between weighted formulas and
deterministic formulas, that is, formulas that always have to hold.

There are two common types of probabilistic inference tasks for a Markov
logic network: Maximum a-posteriori (MAP) inference and marginal probability
inference. The latter computes the posterior probability distribution over a subset
of the variables given an instantiation of a set of evidence variables. MAP inference,
on the other hand, is concerned with finding an assignment to the variables with
maximal probability. Assume we are given a set X′ ⊆ X of instantiated variables
and let Y = X \X′. Then, a most probable state of the ground Markov logic
network is given by

argmax
y

k∑
i=1

wifi(Di).

Similar to previous work on matching ontologies with Markov logic[23,24], we
can specify a set of hard and soft constraints that improve the overall matching
results. Finding the most likely alignment then translates to computing the
maximum a-posteriori state of the ground Markov logic network.

Markov Logic Formulation of Process Matching Let A1 and A2 be the
activities of two process models to be mapped, we describe each process model
in terms of weak order relations wo1 : A1 ×A1 and wo2 : A2 ×A2. Furthermore,
the mapping hypotheses are represented by a mapping relation map : A1 ×A2.
In the Markov logic formulation, the relations wo1 and wo2 are modeled using
observable predicates, that is, predicates whose ground state is known a-priori
whereas the relation map is modeled using a hidden predicate. Hence, when an
optimal alignment between activities in the two models is computed, we model
the weak-order relations as observed predicates and the map relation as a hidden



predicate. For convenience, we also define the strict order and the exclusiveness
relation between activities of a process model as follows:

soi(ai, bi)⇔ woi(ai, bi) ∧ ¬woi(bi, ai)

exi(ai, bi)⇔ ¬woi(ai, bi) ∧ ¬woi(bi, ai)

Using these relations, we can simply represent the constraints as a set of first-
order formulas and add those to the Markov logic formulation. The knowledge
base consists of the output of the base matcher encoded in terms of weighted
atoms of the map relation acting as evidence plus two sets of atoms of the order
relations mentioned above as static knowledge. The final result of the matching
process is now computed by adding additional constraints and computing the a
posteriori probability of the map atoms. We experimented with different types of
constraints that have proven useful in the area of ontology matching and which
we adapted to the case of process matching.

Cardinality It has been shown that restricting alignments to one-to-one matches
typically leads to better results in ontology matching. In particular, because gold
standard alignments in this area tend to be one-to-one. While this is clearly not
the case for process matching, as processes are often described at different levels of
granularity, the cardinality of the mapping relation is still an important constraint
to avoid a too strong bias towards an alignment with too many erroneous matches.
Therefore, we stick to a cardinality constraint encoded using the formula with
n = 1:

|{activitiy(a)|∃b : map(a, b)}| < n

Stability Stability is a constraint expressing that the structural properties
of the matched objects should be as identical as possible [25]. In particular,
stability means that semantic relations that hold between two elements in one
representation should also hold between the two elements in the representation
they are mapped to. For process matching, we can define this notion of stability
for the three order relations mentioned above, namely the weak order, strict
order, and exclusiveness relation, by using the following implicitly universally
quantified formulas where ai, bi, i ∈ {1, 2}, are activities in process model i.

woi(ai, bi)∧¬woj(aj , bj)⇒ ¬(map(a1, a2)∧map(b1, b2)) with i, j ∈ {1, 2}, i 6= j

soi(ai, bi) ∧ ¬soj(aj , bj)⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 6= j

exi(ai, bi) ∧ ¬exj(aj , bj)⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 6= j

Note that these constraints do not need to be hard. Indeed, our empirical results
have shown that in the process matching setting, constraints should be soft,
making alignments that violate them possible but less likely.



Coherence A weaker class of constraints are those that encourage logical co-
herence of the integrated model. More specifically, such constraints exclude
conflicting combinations of semantic relations in the integrated model. In the case
of process matching, coherence criteria can be formulated using order relations.
The basic idea is that activities that are exclusive in one of the models should
not be in a weak order or a strict order relation in the other model.

soi(ai, bi) ∧ exj(aj , bj)⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 6= j

Another form of incoherence results when the strict order relations of aligned
activities in the two models are inverted leading to a conceptual conflict in the
merged process model. The constraint making alignments that cause this kind of
incoherence less likely is sometimes referred to as ’criss-cross mappings’ in the
ontology matching setting and can be formalized as follows.

soi(ai, bi) ∧ soj(bj , aj)⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 6= j

Note that coherence is a weaker than stability, not enforcing a semantic relation
to hold, but only excludes incompatible relations between mapped elements.

4 Evaluation

In this section we present an evaluation of the defined concepts. More specifically,
Section 4.1 describes the sample of admission process models from different
German universities that we use to that end. Section 4.2 summarizes the re-
sults for applying probabilistic match optimization using Markov logic networks.
Section 4.3 compares the results of our optimized semantic matching approach
with syntactic matching in ICoP. Furthermore, we discuss the results of the two
approaches in terms of their strengths and weaknesses.

4.1 Study Admission Processes of Nine German Universities

Up until now, there is no commonly accepted sample available for testing process
model matching algorithms for process. Therefore, we created such a sample
based on modeling projects of graduate students from Humboldt-Universität zu
Berlin, Germany. These students participated in a research seminar on process
modeling in three different semesters. The task of this seminar was to document
the study admission process of a Germany university, and to compare the process
with those of other student groups. This exercise yielded nine admission process
models from different universities, which were created by different modelers using
different terminology and capturing activities at different levels of granularity.
All processes were modeled in BPMN, while the formal analysis was conducted
on a corresponding Petri net representation. The minimum number of activities
in a process model is 10 ranging up to 44. On average, a process model has 21
activities in this sample.



The combination of those nine processes results in 9 ∗ 8/2 = 36 model pairs.
In order to build our test sample, we involved three researchers in building
the gold standard of the pairwise activity mappings. Matches were identified
by two researchers independently, and the third researcher resolved those cases
where different matches were proposed. We used the process models and the gold
standard as input of two matching tools. We used the existing ICoP prototype for
generating 1:1 matches, for short ICoP. For the approach presented in this paper,
we implemented a separate prototype that incorporated different components
for annotation [11], for constraint generation [18], TheBeast6 for Markov logic
networks [26], and the mixed integer programming solver Gurobi7 to solve integer
linear programs derived from the Markov logic networks. For short, we refer to this
second prototype as Markov. Both of these matching prototypes were utilized to
automatically generate matches between activities for each pair of process models.
Those matches were compared with the matches defined in the gold standard.
Using the gold standard, we can classify each proposed activity match as either
true-positive (TP), true-negative (TN), false-positive (FP) or false-negative (FN).
These sets provide the basis for calculating the precision (TP/(TP+FP)) and
recall (TP/(TP+FN)) metrics. We will also report the F1 measure, which is the
harmonic mean of precision and recall (2∗precision∗recall/(precision+recall)).

4.2 Evaluation of Match Optimization

In this section, we investigate in how far the matching result benefits from the
stability and coherence constraints as incorporated in the Markov prototype. To
this end, we conducted experiments with different combinations of soft constraints
each with a weight of 0.1. All experiments were conducted on a PC with AMD
Athlon Dual Core Processor 5400B with 2.6GHz and 1GB RAM. Our conjecture
was that by the help of the constraints and the Markov logic network optimization
we would improve precision without compromising recall too much. If so, the
corresponding F1 value should increase. Our base case is a configuration without
any constraints, which yielded 0.079 precision, 0.572 recall, and an F1 of 0.136.

Table 1 summarizes the findings. The initial introduction of a 1:1 match
cardinality constraint improves the results towards an F1 score of 0.27, with
precision and recall at roughly 0.28. We use this configuration to introduce the
three types of stability constraints. It can be seen that both types of order
constraints improve the match results, the F1 score rises to 0.315 and 0.316,
respectively. Strict order coherence yields a comparable result. Exclusiveness-
related stability and coherence prove to be less effective. The F1 score is lower
due to a loss in recall.

These results suggest that order relations appear to be helpful in finding
correct and ruling out incorrect matches. In comparison to the base case, the
results improve from 0.136 to 0.315 for weak order stability in terms of the F1

score. Compared to the case with only cardinality constraints (F1 = 0.27), weak

6 http://code.google.com/p/thebeast/
7 http://www.gurobi.com/



Table 1. Precision, Recall, F1 and processing time for different constraint types

configuration precision stddev. recall stddev. F1 stddev. avg. time [s]

no constraints 0.079 0.033 0.572 0.205 0.136 0.052 1.1

cardinality 1:1 0.278 0.172 0.280 0.228 0.270 0.193 1.3

1-1 cardinality with

weak order stability 0.421 0.217 0.263 0.170 0.315 0.182 109.2

strict order stability 0.354 0.216 0.304 0.236 0.316 0.216 41.5

exclusiveness stability 0.280 0.174 0.234 0.174 0.247 0.170 50.3

so-exclusiveness coherence 0.306 0.179 0.252 0.178 0.268 0.171 45.3

so-so coherence 0.342 0.195 0.317 0.226 0.318 0.197 16.7

Table 2. Precision, Recall, F1 and processing time for Markov and ICoP

prototype precision stddev. recall stddev. F1 stddev.

Markov (weak order stability) 0.421 0.217 0.263 0.170 0.315 0.182

ICoP 0.506 0.309 0.255 0.282 0.294 0.253

order stability yields a considerably better precision at the expense of a small loss
in recall. This points to the potential of order constraints to inform automatic
process matching.

4.3 Semantic versus Syntactic Matching

After having demonstrated the benefits of constraint optimization in the Markov
prototype, this section aims to investigate in how far its usage of semantic match
hypotheses advances beyond the syntactic match strategies of ICoP. We approach
this question by considering the average precision, recall and F1 measure for the
admission process sample along with their standard deviation.

Table 2 provides the figures for comparing the Markov prototype and the
existing ICoP prototype. It can be seen that ICoP achieves a better precision,
but a weaker recall. However, the Markov prototype yields a better F1 measure of
0.315 in comparison to 0.294. It is interesting to note that the Markov prototype
achieves these results with a much lower standard deviation. The difference in
standard deviation ranges from 0.071 up to 0.112. We might see in this difference
an indication that the Markov prototype is more robust and less sensitive to
specific characteristics of the process pair to be matched.

In order to understand which characteristics might favour one or the other
approach, we plotted the F1 measure for both as shown in Figure 2. For 20 of the
36 pairs Markov yielded better results, while ICoP was better in 16 cases. There
are a few pairs with substantial difference: In three cases ICoP is better with
a difference of more than 0.20, namely 0.234, 0.404, and 0.439. For four pairs,
Markov is better with a difference of 0.290, 0.300, 0.345 and 0.346. We aim to
illustrate the three classes of comparable results, better ICoP, and better Markov
results by the help of three characteristic process model pairs.
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Fig. 2. F1 measure of Markov and ICoP for the 36 match pairs, ordered by
Markov result.

Comparable Results: If comparable results are observed for both approaches,
the resulting F1 values remain in the lower range. The pair FU Berlin and
TU Munich is one such example where Markov yields 0.20 and ICoP 0.25.
The FU Berlin process has 21 activities and is described on a more fine-
granular level than the TU Munich process with its 11 activities. There
are seven 1:1 matches between these models and three 1:n matches. Eight
activities of FU Berlin have no counterpart in the TU Munich process, and
one Munich activity has no match. Both approaches suffer from the fact that
both processes contain several activities that mention the same verb: the FU
Berlin process has two activities with to add (Add Certificate of Bachelor
Degree and Add Certificate of German language), four activities involving
to check and three send activities; the TU Munich process has four send
activities. ICoP provides one false-positive and eleven false-negatives; Markov
has five false-positive and eleven false-negatives.

Better ICoP: ICoP yielded significantly better results for the match pair
Cologne-Frankfurt (F1 of 0.76 in comparison to 0.33 by Markov). The Cologne
process has 10 activities, Frankfurt 12. There are six 1:1 matches and no 1:n
matches. Four and six activities on each side, respectively, have no match
partner. Five of these matches are syntactically equivalent, another being a
substring of its match (Acceptance and Send letter of Acceptance). While the
good performance of ICoP is no surprise, it is interesting that the semantic
approach in Markov shows weak results. There are four false positive, which
are semantically very close, but no match for this model pair (e.g. Take
Aptitude Test and Take Oral Exam). As a consequence, the probabilistic
optimizer penalizes some syntactically equal and correct matches. Markov



Table 3. Explorative results on relative strengths of Markov and ICoP

Match Pair FU Berlin Cologne Hohenheim
TU Munich Frankfurt Erlangen

Better Approach Comparable ICoP Markov

Activities 21 10 25
11 12 30

1:1 Match 7 6 6

1:n Match 3 0 4

No Match 9 10 28

ICoP False-Positives 1 1 3
Markov False-Positive 5 4 3

ICoP False-Negatives 11 1 17
Markov False-Negatives 11 4 10

ICoP F1 0.25 0.77 0.17
Markov F1 0.20 0.33 0.52

could be improved by generating 100% confidence match hypotheses for
syntactically identical activities. It is interesting to note that also the second
case of superior performance of ICoP can be traced back to a great share of
syntactically identical matches.

Better Markov: The processes for Hohenheim and Erlangen are much better
matched by Markov than by ICoP. The two process models of this match pair
have 25 and 30 activities, respectively. There are six 1:1 matches, four 1:n
matches, and 28 activities without a match in the other model. While ICoP
yields a low F1 of 0.17, Markov achieves a respectable 0.52. ICoP only finds
three correct matches, all being syntactically closely related (e.g. Checking
if complete and Check Application Complete). It is interesting to find that
Markov substantially benefits both from semantic match pairs and constraint
optimization. Among others, the correct match publishing the letters and
send acceptance is added by the help of the weak order stability and its
semantic similarity. The weak order rule also helps to eliminate eight false
matches including Receiving the written applications and receive rejection.

Table 3 summarizes the exploratory results on relative strengths of Markov and
ICoP. The following three conclusions can be drawn from this evaluation, also from
further investigation of the data. First, both approaches benefit from an increase
in the number of 1:1 matches. The number of 1:1 matches is strongly correlated
with the F1 of both approaches for our sample with 0.646 and 0.637, respectively.
Second, ICoP suffers from an increase in the number of not matched activities.
We find a correlation of -0.143. Interestingly, there is no such correlation for
Markov. Examples like the Hohenheim-Erlangen case suggest that the optimizer
works well in filtering out unjustified match hypotheses based on weak order.
Third, both approaches suffer from an increase in the number of 1:n matches.
Interestingly, the decrease is much stronger for ICoP with a correlation of -0.461.
For Markov, this correlation is only -0.166. Markov seems to benefit from semantic
similarity in hypothesis generation, which turns out to be a remedy to some



extent for representation on different levels of granularity. While these advantages
of semantic matching appear to be stronger for larger models, there is the need
to account for trivial matches that are syntactically the same. Markov has lost
some share of its performance by not directly accepting such trivial matches.
Nevertheless, it will be rather straight-forward to incorporate such strategies.

5 Related Work

The work presented in this paper mainly relates to two categories of related
research, process model similarity and semantic matching.

Process model similarity techniques can be used to determine how similar two
business process models are, usually measured on a scale from 0 to 1. There exists
a variety of techniques that exploit textual information and the process model
structure [2,1] or execution semantics [3,6]. An overview of these techniques
is given in [1]. The relevance of process model similarity to process matching
is twofold. First, often similarity techniques start by determining similarity of
individual activities, which is clearly also of interest when determining matches.
Second, similarity techniques often produce a mapping between activities as a
byproduct of computing the similarity. The most important difference between
similarity and matching is that, when computing the similarity between process
models, a matching of lower quality is required than when the matching itself is
the goal. Consequently, the similarity techniques are less advanced when it comes
to determining matches. They mostly rely on simple (and fast) label comparison
rather than semantic techniques to determine similarity of activities and neglect
complex matches. There is one notable exception [9] that leverages synonyms
from WordNet [12]. Our fine grained interpretation of activity labels, however,
goes beyond the approach presented in [9].

Semantic matching has received considerable attention for schema and on-
tology matching, see [27,28,29]. In essence, semantic matching refers to the
identification of relations (equivalence, more or less general, disjoint) between
concepts, i.e., interpretations of schema or ontology entities [30]. Most promi-
nently, the S-Match system [31] realized semantic matching by first interpreting
labels and entities, which yields a set of concepts, before establishing relations
between them. This approach heavily relies on external knowledge bases, such as
WordNet [12]. Those are used to interpret single labels and derive concepts, but
also to determine the semantic relations between them. Our approach for process
model matching takes up these ideas: we interpret activity labels by extracting
actions and business objects, i.e., concepts, to generate match hypothesis.

6 Conclusion

In this paper we presented a novel approach for automatic process model match-
ing in two steps. First, we generate match hypotheses based on automatically
annotated activity labels and leveraging a semantic interpretation of activity la-
bels. Second, we make use of match constraints derived from behavioral relations



of process models. These constraints are utilized for guiding the matching with a
probabilistic model. The evaluation of our approach with admission processes
from nine different universities shows that this novel conceptual basis indeed
improves performance. We demonstrated that match results are more stable
over different levels of process model heterogeneity. Moreover, our comparative
analysis revealed strengths and weaknesses of classical matchers and semantic
matching with probabilistic optimization.

This research provides valuable insights for advancing the field of process
model matching. In future work we plan to improve our approach based on
the identified weaknesses. This involves on the one hand a smooth integration
of syntactical and semantic match hypotheses. On the other hand, we aim to
experiment with further process-related constraints. For instance, we plan to
work with hierarchical 1:n matches, which are non-overlapping. Finally, there is
the potential to improve matching results based on domain ontologies or domain
corpora. They might help to increase the accuracy of the calculated hypotheses.
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