
PIDGIN: Ontology Alignment using Web Text as Interlingua

ABSTRACT
The problem of aligning ontologies and database schemas
across different knowledge bases and databases is fundamen-
tal to knowledge management problems, including the prob-
lem of integrating the disparate knowledge sources that form
the semantic web’s Linked Data [5].

We present a novel approach to this ontology alignment
problem that employs a very large natural language text
corpus as an interlingua to relate different knowledge bases
(KBs). The result is a scalable and robust method (PID-
GIN) that aligns relations and categories across different
KBs by analyzing both (1) shared relation instances across
these KBs, and (2) the verb phrases in the text instantia-
tions of these relation instances. Experiments with PIDGIN
demonstrate its superior performance when aligning ontolo-
gies across large existing KBs including NELL, Yago and
Freebase. Furthermore, we show that in addition to align-
ing ontologies, PIDGIN can automatically learn from text,
the verb phrases to identify relations, and can also type the
arguments of relations of different KBs. When this paper is
published, we will make PIDGIN’s source code and datasets
publicly available.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; I.2.6 [Artificial Intelligence]:
Learning; I.2.7 [Artificial Intelligence]: Natural Language
Processing

General Terms
Algorithms, Experimentation

Keywords
Ontology Alignment, Knowledge Bases, Graph-based Self-
Supervised Learning, Label Propagation, Natural Language
Processing.

1. INTRODUCTION
Over the last few years, several large, publicly available

Knowledge Bases (KBs) have been constructed, such as DB-
Pedia [3], Freebase [6], NELL [8], and Yago [18]. These
KBs consist of both an ontology that defines a set of cat-
egories (e.g., Athlete, Sports) and relations (e.g., player-
PlaysSport(Athlete, Sport)), and the data entries which in-
stantiate these categories (e.g., Tiger Woods is an Athlete)

and relations (e.g., playerPlaysSport(Tiger Woods, Golf)).
The growth of the Semantic Web [4] has contributed sig-
nificantly to the construction and availability of such KBs.
However, these KBs are often independently developed, us-
ing different terminologies, coverage, and ontological struc-
ture of categories and relations. Therefore, the need for
automatic alignment of categories and relations across these
and many other heterogeneous KBs is now greater than ever,
and this remains one of the core unresolved challenges of the
Linked Data movement [5].

Research within the Ontology Matching community has
addressed different aspects of this Ontology Alignment prob-
lem, with recently proposed PARIS [17] being the current
state-of-the-art in this large body of work (see [16] for a
recent survey). PARIS is a probabilistic ontology matcher
which uses the overlap of instances between two relations (or
categories) from a pair of KBs as one of the primary cues
to determine whether an equivalence or subsumption rela-
tionship exists between those two relations (or categories).
PARIS, and the instance overlap principle which it shares
with most previous ontology alignment systems, has been
found to be very effective in discovering alignments when
applied to KBs such as DBPedia [3], Yago [18], and IMDB1.

Despite this recent progress, the current state-of-the-art
remains insufficient to align ontologies across many practi-
cal KB’s and databases, especially when they share few or
no data entries in common. To overcome this shortcoming,
we introduce a new approach that is capable of matching
the categories and relations across multiple KB’s even in
the extreme case where they share no data entries in com-
mon. The key idea is to introduce side information in the
form of a very large text corpus (in our case, 500 million
dependency-parsed web pages). Our approach, called PID-
GIN, effectively grounds each KB relation instance (e.g.,
playerPlaysSport(Rodriguez, baseball)) by its mentions in this
text, then represents the relation in terms of the verbs that
connect its arguments (e.g., the relation playerPlaysSport(x,y)
might frequently be expressed in text by verbs such as “x
plays y” or “x mastered y”). The distribution of verbs as-
sociated with instances of any given relation forms a KB-
independent representation of that relation’s semantics, which
can then be aligned with relations from other KBs. In
essence, the verb distributions associated with relations pro-
vide an interlingua that forms the basis for aligning ontolo-
gies across arbitrary KBs, even when their actual data en-
tries fail to overlap. PIDGIN integrates this text information
with information about overlapping relation instances across

1http://www.imdb.com/

Knowledge Base 1 (KB1):

(Rihanna, bornIn, St. Michael)

(Bill Clinton, bornIn, Hope)

Knowledge Base 2 (KB2):

(Reagan, personBornInCity, Tampico)

(Obama, personBornInCity, Honolulu)

Interlingua (Subject-Verb-Object):

(Bill Clinton, was born in, Hope)

(Barack Obama, was born in, Honolulu)

· · ·

(a) (b)

Figure 1: (a) Inputs to PIDGIN include KB1 and KB2, each consisting of two relation instances (e.g., (Bill Clinton, bornIn,
Hope)). Another input is a set of Subject-Verb-Object (SVO) triples (the interlingua) extracted from a natural language text
corpus. (b) Graph constructed from the input (see Section 4.1). PIDGIN performs inference over this graph to determine
that KB1:bornIn is equivalent to KB2:personBornInCity (see Section 4.2). Note since there is no overlap between relation
instances from these two KBs, algorithms based on instance overlap will be unable to align these two ontologies. PIDGIN
overcomes this limitation through use of the SVO-based interlingua and inference over the graph.

the two KB’s using a graph-based self-supervised learning
strategy, to determine their final ontology alignment.

Below we describe the approach in detail, and present
experimental results showing that PIDGIN outperforms a
current state-of-the-art ontology alignment method (PARIS)
across multiple datasets. Furthermore, we demonstrate that
an additional advantage of using web text as an interlingua,
PIDGIN is also able to extract verb phrases to represent
relations. In particular, we make the following contributions:

• We present PIDGIN, a novel, scalable, and flexible
graph-based ontology aligner. PIDGIN uses natural
language text as an interlingua to align the ontologies
of different KBs. To the best of our knowledge, this
is the first approach to aligning ontologies that makes
use of unlabeled web-scale text corpora.

• PIDGIN is self-supervised, and does not require human
labeled data. PIDGIN can be easily parallelized and
implemented in MapReduce, making it suitable even
for aligning ontologies from very large KBs.

• Through extensive experimentation on real-world datasets,
we demonstrate effectiveness of PIDGIN, and find that
PIDGIN significantly outperforms a state-of-the-art on-
tology alignment system (PARIS).

• In addition to aligning ontologies, PIDGIN learns verb
phrases to identify relations and can type the argu-
ments of relations of different KBs.

• We plan to make PIDGIN’s source code and the corpus
statistics dataset publicly available.

2. MOTIVATING EXAMPLE
We first illustrate the core ideas behind PIDGIN through

a motivating example. Let us consider the alignment prob-
lem involving two KBs as shown in Figure 1. In this case,
KB1 contains the relation (bornIn) with two instances, while

KB2 contains the relation personBornInCity with two other
instances. In this case, we would like to discover the align-
ment KB1:bornIn ≡ KB2:personBornInCity despite the fact
that the relation names are different, and their instances do
not overlap. Note that previous ontology alignment algo-
rithms (such as PARIS [18]) will not be able to discover the
desired alignment.

Need for Interlingua: In order to overcome such over-
lap sparsity, PIDGIN analyzes a large natural language text
corpus to determine the expression pattern of instances from
different relations. For example, in the text corpus, PID-
GIN finds that instances of the KB1:bornIn relation is of-
ten expressed using the verb phrase ”was born in”, e.g.,
(Bill Clinton, bornIn, Hope) is expressed using this verb
phrase in the sentence ”Former President Bill Clinton was
born in Hope, AK”. PIDGIN also finds that KB2 relation
instance (Barack Obama, personBornInCity, Honolulu) is
expressed using the same verb phrase in sentences such as
”President Barack Obama was born in Honolulu, HI”. So,
even though there is no direct overlap of instances between
the relations KB1:bornIn and KB2:personBornInCity, PID-
GIN might be able to discover the equivalence KB1:bornIn
≡ KB2:personBornInCity by exploiting overlapping expres-
sion patterns (i.e., verbs) of these two relations in natural
language text, the interlingua.

3. PROBLEM DEFINITION
In this section, we outline the terminology used and present

the problem definition. We define a Knowledge Base (KB)
K to be a 6-tuple (C,OC , IC , R,OR, IR), where C is the set
of categories (e.g., athlete, sports), OC is the category on-
tology, which specifies the subset/superset hierarchical re-
lations among categories (e.g., that athlete is a subset of
person), IC is the set of entity-category pairs (e.g., (Tiger
Woods, athlete)) for categories in C, R is the set of rela-
tions (e.g., athletePlaysSport(athlete, sports)), OR is the re-
lation ontology, which specifies the hierarchy of relations
(e.g., ceoOf(person,company) is a special case of the relation

worksFor(person, company)), and IR is the set of entity-
relation-entity triples for relations in R (e.g., (Tiger Woods,
athletePlaysSport, Golf)). We allowOC andOR to be empty,
i.e., the KB may have a flat category and relation structure.
Each instance of a relation r ∈ R is a 3-tuple (e1, r, e2) ∈ IR,
where (e1, c1) ∈ IC and (e2, c2) ∈ IC for some c1, c2 ∈ C.
Note that each entity can be referred to by one or more
Noun Phrases (NP). For example, the entity Tiger Woods,
can be instantiated in text using either the NP Tiger Woods
or the NP Eldrick Tont Woods. Let N(e) be the set of NPs
corresponding to entity e.

Let D be the Subject-Verb-Object (SVO) based interlin-
gua consisting of tuples of the form (np1, v, np2, w), where
np1 and np2 are noun phrases (NP) corresponding to sub-
ject and object, respectively, v is a verb, and w ∈ R+

2 is the
normalized count of this tuple in a large text corpus.

Given two sets of relations R1 and R2, we define the align-
ment between them to be the setA(R1, R2) = {(r1, a, r2, w) |
r1 ∈ R1, a ∈ {≡,⊆}, r2 ∈ R2, w ∈ R}, where ≡ signifies re-
lation equivalence, ⊆ less general, and R is the set of real
numbers. In other words, (r1,⊆, r2, w) signifies that relation
r1 ∈ R1 is less general than relation r2 ∈ R2, with w ∈ R
representing the confidence in this alignment. Similarly for
the equivalence alignment (≡). We similarly define the cat-
egory alignments A(C1, C2) = {(c1, a, c2, w) | c1 ∈ C1, a ∈
{≡,⊆}, c2 ∈ C2, w ∈ R}.

Problem Definition: Given two knowledge bases (KBs)
K1(C1, OC1 , IC1 , R1, OR1 , IR1) andK2(C2, OC2 , IC2 , R2, OR2 ,
IR2), and a syntactically-parsed text corpusD, we would like
to discover the category and relation alignments, A(C1, C2)
and A(R1, R2) respectively.

4. PIDGIN
PIDGIN is able to exploit large web text as interlingua

by posing the ontology alignment problem as a classifica-
tion problem over an appropriately constructed graph. The
system consists of two stages:

1. Graph Construction: Given two KBs and a Subject-
Verb-Object (SVO) based interlingua, PIDGIN first
represents this data as a graph. An example graph
constructed from the the input in Figure 1(a) is shown
in Figure 1(b). See Section 4.1 for details.

2. Alignment as Classification over Graph: Once
the graph is constructed in Stage 1, PIDGIN poses on-
tology alignment as node classification over this graph.
For the graph in Figure 1(b), PIDGIN first associates
two labels with the node KB1:bornIn, one for equiv-
alence and the other for subsumption, both specific
to this node. Starting with this initial seed informa-
tion and graph structure, PIDGIN will use the graph-
based semi-supervised learning (SSL) described in [19]
to classify the rest of the nodes in the graph, includ-
ing the node corresponding to the relation in KB2.
Based on the assignment of scores of these labels on
the KB2 relation node, PIDGIN will determine the
alignments between ontologies from these two KBs.
PIDGIN starts out by attempting to align relations
from the two KBs, and produces category alignment
as an important by product.. Please see Section 4.2
for details.

2R+ is the set of positive reals.

For ease of explanation and readability, we present all ex-
amples and descriptions involving two ontologies. However,
please note that PIDGIN is capable of handling multiple
ontologies simultaneously.

We now turn to describing PIDGIN’s two stages in detail.

4.1 Stage 1: Graph Construction
Given KB1(C1, OC1 , IC1 , R1, OR1 , IR1), KB2(C2, OC2 , IC2 ,

R2, OR2 , IR2), and a SVO-based interlingua D3, PIDGIN
first constructs a graph G = (V,E,W), where V is the set
of vertices, E is the set of edges, and Wi,j representing the
weight of the edge (i, j) ∈ E. We describe the construction
of this graph below.

We first initialize V = φ, E = φ, and W is an all zero
matrix, with edge weight 0 indicating absence of the edge.
All edges in G are undirected and untyped.

• Relation-Entity Pair edge: For each (e1, r, e2) ∈
IRk ∀k ∈ {1, 2}, add vertices a = KBk:r and b =
KBk:<e1,e2> to V , add the edge (a, b) to E, and set
Wa,b = Wb,a = 1.0. In Figure 1(b), (KB1:bornIn,
KB1:<Bill Clinton, Hope>) is an example of such an
edge.

• Entity Pair-NP Pair edge: For each k ∈ {1, 2}, we
define,

Qk = {SO :<np1, np2> | np1 ∈ N(e1),

np2 ∈ N(e2),KBk:<e1, e2> ∈ V }

where N(e) returns the set of NPs corresponding to en-
tity e (see Section 3). Now, for each b = KBk:<e1, e2>
∈ V ∀k ∈ {1, 2} we define,

Qb = {SO :<np1, np2> | np1 ∈ N(e1), np2 ∈ N(e2) ∧
(SO :<np1, np2> ∈ Q1 ∩Q2 ∨ ∃ v s.t. (np1, v, np2) ∈ D)}

In other words, Qb is the cross product of NPs used
to express the two entities in b, with the requirement
that the NP pair is either present in D, or they also
correspond to some entity pair from the other KB. We
set V = V ∪ Qb, and add the edges {(b, q) | q ∈ Qb}
to E, with edge weight set to 1.0. In Figure 1(b),
(KB1:<Bill Clinton, Hope>, SO:<”Bill Clinton”, ”Hope”>)
is an example of such an edge.

• NP Pair-Verb edge: Let Q be the union of all Qb

sets defined above. In other words, Q is the set of
all NP pair nodes in graph G, with each node named
SO:<np1, np2> for some NPs np1 and np2. We define
T = {v | SO:<np1, np2> ∈ Q, (np1, v, np2, w) ∈ D}.
We now set V = V ∪ T , and E = E ∪ {(q, v) | q ∈
Q, v ∈ T} with the edge weight set to w. In Fig-
ure 1(b), (SO:<”Bill Clinton”, ”Hope”>, ”was born in”)
is an example of such an edge.

At the end of this stage, we end up with a graph G =
(V,E,W) as shown in Figure 1(b) when given Figure 1(a)
as input to PIDGIN.

3For the experiments in this paper, we collected about 600
million SVO triples from the entire ClueWeb [7] corpus of
about 230 billion tokens. To the best of our knowledge, this
is the largest such resource used for this line of study.

4.2 Stage 2: Alignment as Classification over
Graph

At this point, we have a graphG = (V,E,W) with n = |V |
and m = |E|. PIDGIN poses the ontology alignment prob-
lem as one of classification of nodes in G. It starts out by
attempting to align relations from the two KBs, and pro-
duces category alignment as a by-product. So, we shall first
look at how PIDGIN solves the relation alignment problem.

For each relation r1 ∈ R1, PIDGIN generates two labels
and injects them as seed labels into nodes of the graph G as
follows:

• lr1 : This label is node-specific, and is injected only on
the node named KB1:r1 which corresponds to relation
r1 in V, i.e., this is self injection. This label will be
used to establish equivalence with other relations in
KB2.

• l~r1 : This label is injected as seed to the set of nodes
{KB1:s ∈ V | s ∈ childrenOf(O1, r1)}. In other words,
l~r1 is injected into nodes corresponding to children of
relation r1 as determined by ontology O1. However, if
no such child exists, then this label is effectively dis-
carded. This label will be used to identify subsump-
tion relations in KB2 which are subsumed by, i.e., less
general than, r1.

Let L1 be the union of these labels, with |L1| ≤ 2 × |R1|.
Starting with this seed information, PIDGIN now applies
Modified Adsorption (MAD) [19], a graph-based self-supervised
learning (SSL) algorithm, to classify the rest of the nodes in
the graph taking transitivity in account. Since nodes corre-
sponding to R1 were injected, let Ŷ1 ∈ Rn×|L1| be the esti-

mated label score matrix generated by MAD, where Ŷ1(r, l)
is the score of label l ∈ L1 on node r ∈ V . In the current
setting, MAD will solve the following optimization problem
to estimate Ŷ1:

arg min
Ŷ1

∑
l∈L′

1

[
µ1

∑
v∈V

Sv (Y1(v, l)− Ŷ1(v, l))2+

µ2

∑
u,v∈V

Mu,v(Ŷ1(u, l)− Ŷ1(v, l))2+

µ3

∑
v∈V

(Ŷ1(v, l)− F (v, l))2
]

where µ1, µ2, and µ3 are hyperparameters; L
′
1 = L1 ∪ {⊥}

with ⊥ as the none-of-the-above label; S is a seed node se-
lection vector with Sv = 1 if v ∈ R1 and 0 otherwise; Y1(v, l)
is the score of seed label l on node v (if any); M is a mod-
ified version of edge weight matrix W ; and F is a regular-
ization matrix. In the MAD objective above, the first and
third terms encourage the algorithm to match seed scores (if
any) and regularization targets in a soft way, respectively,
while the second term encourage smooth label score vari-
ation over graph. This is essentially soft enforcement of
transitivity, making MAD a suitable inference scheme for
PIDGIN. MAD’s objective is convex which it solves exactly
by iteratively updating scores of labels on the nodes. This
takes the form of propagating labels over the graph. These
updates can be easily implemented in MapReduce, thereby
making MAD, and hence PIDGIN, suitable for large ontol-

ogy alignment problems4. We refer the reader to [19] for
further details on MAD.

After estimating Ŷ1 as described above, PIDGIN repeats
the same process, but in the reverse direction, i.e., it now
injects the nodes corresponding to r ∈ R2 with label set L2

and propagates those labels to rest of the nodes using MAD.
As before, we end up with an estimated label score matrix
Ŷ2 ∈ Rn×|L2|.

The final set of relation alignments, A(R1, R2), discovered
by PIDGIN can be divided into the following two subsets:

A(R1, R2) = A≡(R1, R2, Ŷ1, Ŷ2) ∪A⊆(R1, R2, Ŷ1, Ŷ2)

4.2.1 Equivalence Alignment
The equivalence alignments between relation sets R1 and

R2 are estimated as follows:

A≡(R1, R2, Ŷ1, Ŷ2) = {(r1,≡, r2, Ŷ1(r2, lr1)× Ŷ2(r1, lr2)) |
r1 ∈ R1, r2 ∈ R2, lr1 ∈ L1, lr2 ∈ L2}

where Ŷ1 and Ŷ2 are the label score matrices estimated by
MAD as described in previous section. In other words, to
establish the equivalence r1 ≡ r2, we want to make sure that
relation node r2 is assigned the label lr1 specific to relation
r1 with a high score by MAD, and vice versa. We define fi-
nal equivalence alignment score as Ŷ≡(r1, r2) = Ŷ1(r2, lr1)×
Ŷ2(r1, lr2).

4.2.2 Subsumption Alignment
Subsumption alignments between relation sets R1 and R2

are estimated as follows:

A⊆(R1, R2, Ŷ1, Ŷ2) = {(r2,⊆, r1, Ŷ1(r2, l~r1) |
r1 ∈ R1, r2 ∈ R2, l~r1 ∈ L1}

In other words, PIDGIN infers alignment r2,⊆, r1 if the sub-
sumption label l~r1 specific to node r1 ∈ R1 is assigned by
MAD with higher score than the label lr1 to node corre-
sponding to relation r2 ∈ R2. We shall call this score for
r2,⊆, r1 by Ŷ⊆(r1, r2) = Ŷ1(r2, l~r1).

4.2.3 Concept Alignment
From Section 4.2.1, we have Ŷ≡(r1, r2) as the relation

equivalence score estimated by PIDGIN for relations r1 ∈ R1

and r2 ∈ R2. PIDGIN uses this estimate to establish cate-
gory equivalence alignments as follows. Given a relation r,
let Dom(r) and Ran(r) be its domain and range categories,
i.e., categories of the two entities connected by this relation.
We define,

HDom
≡ (c1, c2) =

∑
r1∈R1,c1=Dom(r1),
r2∈R2,c2=Dom(r2)

Ŷ≡(r1, r2)

HRan
≡ (c1, c2) =

∑
r1∈R1,c1=Ran(r1),
r2∈R2,c2=Ran(r2)

Ŷ≡(r1, r2)

We define the final category equivalence alignments as,

A(C1, C2) = {(c1,≡, c2, HDom
≡ (c1, c2) +HRan

≡ (c1, c2)) |
c1 ∈ C1, c2 ∈ C2}

4For the experiments in this paper, we use the
MAD implementation provided by the Junto toolkit
(https://code.google.com/p/junto/), which also includes
Hadoop-based implementations of MAD.

KB Relations Relation Instances
Freebase 79 7,450,452
NELL 499 3,235,218
Yago2 23 1,770,163
KBP 17 1,727

Table 1: Statistics of KBs used in experiments. We use
NELL as a common target to align other KBs to, and con-
sider only those relations in other KBs that have alignments
to NELL relations (as decided by human annotators).

5. EXPERIMENTS

5.1 Experimental Setup
We conduct our experiments on several large scale open-

domain publicly available real-world KBs, namely NELL [8]
(a large scale KB extracted automatically from web text),
Yago2 [11] (a large scale KB extracted automatically from
semi-structured text of Wikipedia infoboxes), Freebase [6] (a
large scale KB created collaboratively and manually by hu-
mans), and KB Population (KBP) dataset (a smaller scale,
manually constructed dataset used in the 2012 Text Analysis
Conference for entity-linking, slot-filling and KB population
tasks5). Table 1 shows the statistics of the KBs used in our
experiments.

In each experiment, we are given two KBs to align: KB1

and KB2 with sets of relations R1 and R2. For equivalence
alignments, PIDGIN returns for each relation r1 ∈ R1,
a list of r2 ∈ R2 ranked by Ŷ≡(r1, r2) (see Section 4.2.1).
For each r1, we compare our ranked list of r2 with that
of PARIS. We infer PARIS equivalence alignments from
its output subsumption alignments P12 and P21, i.e., P12 =
{(r1,⊆, r2, scorep12)} and P21 = {(r2,⊆, r1, scorep21)} where
scorep12 is PARIS confidence measure that r1 ⊆ r2 and
scorep21 is PARIS confidence measure that r2 ⊆ r1. We com-
pute PARIS equivalence alignments P = {(r1,≡, r2, scorep12∗
scorep21)}, i.e., we define equivalence (≡) relation between
r1 and r2 if both r1 ⊆ r2 and r2 ⊆ r1. We also compare
against a baseline that computes the equivalence of r1 and
r2 using Jaccard similarity measures based on the number of
overlap instances that r1 and r2 have, i.e., Jaccard(r1, r2) =
|Ir1∩Ir2 |
|Ir1∪Ir2 |

, where Ir is the set of instances of relation r. We

call this overlap-based alignment JACCARD (inst).
For subsumption alignments, PIDGIN returns for each

relation r1 ∈ R1, a list of r2 ∈ R2 ranked by Ŷ⊆(r1, r2) (see
Section 4.2.1).

The list of the systems evaluated include:

• JACCARD (inst): baseline alignment that uses Jac-
card Similarity measures based on instance overlap

• JACCARD (inst + NPs + verb): baseline align-
ment that uses Jaccard Similarity measures based on
instance, NP pair and verb overlap

• PARIS: a recently proposed state-of-the-art ontology
alignment system [17]

• PIDGIN: our approach run on a graph that includes
relation, instance, NP pair and verb nodes. Also called
PIDGIN (inst + NPs + verb) or PIDGIN (bi-
nary)

5http://www.nist.gov/tac/2012/KBP/index.html

• PIDGIN (inst): our approach run on a graph that
only includes relation and instance nodes

• PIDGIN (inst +NPs): our approach run on a graph
that only includes relation, instance, and NP pair nodes

• PIDGIN (binary): our approach run on a graph
constructed from SVO dataset and two KBs

• PIDGIN (multiple): our approach run on a graph
constructed from SVO dataset and more than two KBs

In the experiments, we want to answer the following:

• Whether PIDGIN improves precision, recall and F1-
score of relation and category alignments. We evaluate
PIDGIN, PARIS, JACCARD (inst) for relation
alignments and PIDGIN and PARIS, for category
alignments (Section 5.3)

• Whether adding more resources from text and more
KBs as background knowledge in the graph improves
alignment accuracy. We evaluate PIDGIN (inst),
PIDGIN (inst +NPs), PIDGIN (inst + NPs +
verb) that have different sets of resources included
in the graph. We also evaluate PIDGIN (binary)
against PIDGIN (multiple) that have additional KB(s)
added to its graph (Section 5.4)

• Whether using Label Propagation for alignment is use-
ful. We evaluate the overlap-based approach JAC-
CARD (inst + NPs + verb) against our label prop-
agation approach PIDGIN (inst + NPs + verb)
where both systems use the same sets of resources (Sec-
tion 5.5)

• Whether PIDGIN is tolerant to noise. We evaluate
PIDGIN and PARIS for tolerance to different frac-
tions of noisy facts in the KB (Section 5.6)

• What are the useful by-products of PIDGIN? We eval-
uate and analyze various by-products of PIDGIN (Sec-
tion 5.7)

5.2 Performance Measures
When KB1 and KB2 are aligned, for each relation r1 ∈ R1,

a list of relations r2 ∈ R2 that align to r1 is returned, ranked
by some scores. We treat this ranked list as a returned
“document” for r1. The document is considered relevant at
top-k, if any of the relations r2 in its top-k matches the gold
standard rgold2 for r1. The gold standard rgold2 for r1, rgold2 ⊆
R2, is a set of relations that are deemed equivalent to (or
subsume) r1 by human annotators for the task of equivalence
(or subsumption) alignment between R1 and R2. In the case

that |rgold2 | > 1, we consider a document relevant if it returns
at least one of the relations in this set. We measure precision
of a system as the number of relevant documents returned
by the system, divided by the total number of documents
returned by the system. We measure recall of a system as
the number of relevant documents returned by the system
over the number of relations r1 for which there is a gold
standard alignment i.e., |rgold2 | > 0. The F1 -score measures
the harmonic mean of the precision and recall. We report
these precision, recall, and F1-scores at various values of k.
Precision of a 100% at k = 1 means that for every relation
r1 ∈ R1, its gold standard mapping can be found at the top

KB Pair System Prec Recall F1

Freebase & NELL
JACCARD (inst) 0.61 0.51 0.56

PARIS 0.47 0.09 0.15
PIDGIN 0.65 0.61 0.63

Yago2 & NELL
JACCARD (inst) 0.56 0.43 0.49

PARIS 0.67 0.09 0.15
PIDGIN 0.52 0.52 0.52

KBP & NELL
JACCARD (inst) 0.0 0.0 0.0

PARIS 0.0 0.0 0.0
PIDGIN 0.07 0.06 0.06

Table 2: Precision, Recall and F1 scores @k=1 of Relation
equivalence alignments comparing overlap based approach
such as JACCARD and PARIS with PIDGIN. For each KB
pair, best performance is marked in bold (See Section 5.3.1
for details)

KB Pair System Prec Recall F1

Freebase & NELL
PARIS 0.36 0.08 0.13

PIDGIN 0.8 0.77 0.79

Yago2 & NELL
PARIS 0.33 0.06 0.09

PIDGIN 0.65 0.61 0.63

KBP & NELL
PARIS 1.0 0.13 0.24

PIDGIN 0.8 0.8 0.8

Table 3: Precision, Recall and F1 scores @k=1 of relation
subsumption alignments comparing PARIS with PIDGIN.
For each KB pair, best performance is marked in bold. (See
Section 5.3.2 for details)

of the list of alignments for r1. Precision of 100% at k = 5
means that for every relation r1, its gold standard mapping
can be found somewhere within the top 5 relations in the
output list of alignments for r1.

5.3 Relation and Category Alignment
We find alignments between Freebase and NELL, Yago2

and NELL, and KBP and NELL. We evaluate precision,
recall and F1 scores of resulting alignments against the gold
standard alignments produced by human annotators.

5.3.1 Relation Equivalence Alignment
In this set of experiments, we compare the performance of

PIDGIN, PARIS, and JACCARD (inst) for relation equiva-
lence alignment. We report precision, recall and F1-scores at
k = 1 of the equivalence alignments returned. We observe in
Table 2 that PIDGIN always has much higher recall (with-
out sacrificing precision) than PARIS or JACCARD (inst).
In two of the three experiments, precision of PIDGIN is also
highest. We conjecture that recall improves due to the im-
proved coverage of the alignments by the use of interlingua
and transitivity of inference in PIDGIN. For example, the re-
lation /medicine/medical treatment/side effects in Freebase
has no instance overlap with any relation in NELL; thus
PARIS and JACCARD (inst) are not able to find align-
ments for this relation. However, its instances co-occur with
some similar verbs in the SVO such as “may promote”, “can
cause”, “exacerbate” as instances of the relation drughasside-
effect in NELL. Thus PIDGIN is able to map this Freebase
relation to the appropriate NELL relation. Another example
is the reified relation /sports/league/arena stadium in Free-
base that has no instance overlap with relations in NELL.
However, its instances are represented by some similar NP

System F1 @k=1 F1 @k=3 F1 @k=5
PARIS 0.0 0.47 0.68

PIDGIN 0.53 0.68 0.79

Table 4: F1 scores @k = 1, 3 and 5 of Category Equivalence
Alignments between Yago2 and NELL, comparing PARIS
and PIDGIN. For each k, best performance is marked in
bold. (See Section 5.3.3 for details)

pairs as instances of the relation leaguestadiums in NELL.
Thus PIDGIN is able to find a mapping of this relation.

The effect of over-reliance on instance overlap to predict
alignments is worse when the KB is small. In the KBP
dataset, PARIS only returns equivalence alignments for 2
out of the 17 relations in KBP. No correct alignments are
returned by either PARIS or JACCARD at k = 1. We also
observe that precision, recall and F1-scores are highest when
aligning Freebase and NELL. This maybe because Freebase
has the largest number of facts and is probably the cleanest
KB (since it is created manually). The scores are the lowest
when aligning KBP and NELL, probably because the KBP
is very small and have sparse edges to both NELL and the
SVO. In future, for such small and domain-specific KB, we
can expand our interlingua to include more targeted natural
language text, for example by using web search to find more
documents that mention entities in the KB.

5.3.2 Relation Subsumption Alignment
In these experiments, we compare the performance of PID-

GIN and PARIS for relation subsumption alignment. We
report precision, recall and F1-scores at k = 1 of the sub-
sumption alignments returned. 6 We observe in Table 3
that, similar to the equivalence alignment results, PIDGIN
always has much higher recall (without sacrificing precision)
than PARIS. In two of the three experiments, precision of
PIDGIN is highest. We conjecture that the improved recall
(and subsequently F1) is due to the use of interlingua and
transitivity of inference in PIDGIN.

5.3.3 Category Equivalence Alignment
In this experiment, we compare the performance of PID-

GIN and PARIS for inferring category equivalence alignment
between Yago2 and NELL that have both domain and range
information of their relations. PARIS infers category align-
ment from its instance alignment [17]. We report the F1-
scores @k=1, 3, and 5 of the returned alignments against
the gold standard alignments. We observe that PIDGIN
category alignments have highest F1-scores at different val-
ues of k (Table 4). Some examples of PIDGIN alignments
include Yago2 category wordnet actor 109765278 aligned to
NELL category actor, Yago2 category yagoURL aligned to
NELL category website, and Yago2 category yagoLegalActor
aligned to NELL category agent.

5.4 Effect of Interlingua Size
In these experiments, we evaluate whether adding more

resources extracted from text to the graph improves align-
ment performance. We construct three graphs: the first
contains only relation and instance nodes (PIDGIN (inst)).

6In this evaluation, we do not count alignment to NELL’s
generic relation relatedto as correct, since this relation triv-
ially subsumes all others.

Figure 2: F1 scores @k = 1 and 5 of relation equivalence
alignments comparing the performance of PIDGIN when
only two KBs are used in the graph (binary, grey) compared
to the setting when multiple KBs are used in the graph
(multiple, black). (See Section 5.4 for details)

The second has added NP pair nodes representing instances
(PIDGIN (inst + NPs)), while the third contains relation,
instance, NP pair, and verb nodes (PIDGIN (inst + NPs +
verbs)). We report F1-scores obtained by PIDGIN on these
three graphs. We observe in Figure 3 that adding more re-
sources to the graph improves performance. Using all the
resources available seems to result in the best performance
than using relations and instances alone.

Previous works have suggested that adding more ontolo-
gies as background knowledge improves the resulting align-
ments [1], the results of our experiments here seem to con-
firm this. We construct a graph containing the SVO data
and the relations and instances from more than two KBs.
We propagate relation labels as before to align Freebase and
NELL (with added Yago2 in the graph), to align Yago2 and
NELL (with added Freebase in the graph), and to align KBP
and NELL (with added Freebase and Yago2 in the graph).
The transitivity of inference in our approach allows two re-
lations with no instance overlap to be aligned through an
interlingua, which can take the form free text or structured
ones. In this case, the additional KBs are another interlin-
gua. We observe in Figure 2 that adding data from more
KBs (PIDGIN (multiple)) results in a comparable or im-
proved performance of alignment compared to using data
from only two KBs (PIDGIN (binary)). When the KB is
small (e.g., KBP), adding more data to the graph approxi-
mately doubles the F1-scores. We believe this is due to the
increased connectivity of the graph (more paths for prop-
agating NELL labels to corresponding KBP labels). This
increased connectivity combined with transitivity of infer-
ence improves performance. Adding more KBs to the al-
ready large graph (Freebase and NELL or Yago2 and NELL)
does not seem to improve performance. This begs the ques-
tion that we can explore in future of how much background
knowledge is necessary to improve alignment performance.

5.5 Effect of Transitivity of Inference
In these experiments, we evaluate whether the transitivity

of inference and joint inference in label propagation (PID-

Figure 3: F1 scores @k = 1 and 5 of relation equivalence
alignments when varying amount of interlingua text is used:
PIDGIN using just relation instances (black), PIDGIN us-
ing both instances and NPs (light grey) and PIDGIN using
instances, NPs and verbs (grey). (See Section 5.4 for details)

GIN) improve alignment performance when compared to the
overlap-based approach (JACCARD). We observe in Figure
4 that using PIDGIN improves performance (F1-scores) at
various values of k compared to the overlap-based approach
even when the same set of resources are being used in both.
We also experiment with using cosine based similarity on the
same set of resources to compute alignment. We observe but
do not report here that cosine-based approach gives compa-
rable or worse performance than using Jaccard similarity.

We also notice in separate experiments that in some cases,
adding NP pairs and verbs to the overlap-based approach de-
creases performance when compared to using instance over-
lap alone. This maybe due to the amount of noise that
is inherent in the natural language corpus from which the
SVO dataset is obtained. However, we have observed pre-
viously in Section 5.4 that adding these resources does not
hurt PIDGIN performance. The joint inference framework
of PIDGIN that jointly optimizes similarities coming from
instances, NP pairs and verbs, may be what makes it more
tolerant to noise in the interlingua than a simple overlap-
based similarity.

5.6 Effect of Noise
In these experiments, we compare the performance of PID-

GIN and PARIS when different amounts of noise are added
to the KB. We randomly pick some instances in a KB and
randomly switch them to other relations in the same KB
- adding noise to the KB. Note that the original KB may
already contain noise due to noisy extractions or wrongly
added facts, for example. We observe in Figure 5 that the
performance (F1-scores at k = 5) of PIDGIN decreases only
gradually with the amount of noise added, while the perfor-
mance of PARIS decreases rapidly and in some cases drops
to zero, which means no correct alignments are returned by
PARIS. Surprisingly, adding 20% of noise to KBP improves
performance. Due to the randomness with which we intro-
duce noise, some relations in KBP that are noisy actually
become cleaner when the random process coincidentally re-
moves these instances and assigns them to other relations.

Figure 4: F1 scores @k = 1 and 5 of relation equivalence
alignments comparing overlap-based approach (black) and
PIDGIN (grey) both using the same set of resources. This
demonstrates the benefit of transitivity of inference which is
exploited by PIDGIN. (See Section 5.5 for details)

5.7 Practical By-Products by PIDGIN
In this section we consider capabilities of PIDGIN to per-

form tasks beyond aligning relations across ontologies. We
begin by exploring whether relations in one KB can be as-
signed argument types based on categories in the other KB.

5.7.1 Argument Typing of Relations with NELL Cat-
egories

For each Freebase, Yago2 and KBP relation, we convert
the ranked list of NELL relations aligned to it into a ranked
list of the corresponding NELL 〈domain,range〉 pairs, sum-
ming up the scores of similar 〈domain,range〉 pairs in the
list. For each Freebase, Yago2 and KBP relation, we then
have a ranked list of NELL 〈domain,range〉 as candidate
argument types for the relation. For example, KBP re-
lation per:city of birth has NELL 〈person,city〉 type. We
evaluate F1-scores of these ranked candidate types against
the gold standard argument types. We observe in Figure 6
that PIDGIN types have higher F1-scores than PARIS for
typing relations in different KBs. Some examples of typ-
ing produced by PIDGIN include Yago2 isPoliticianOf as-
signed NELL 〈person, geoPoliticalLocation〉 type, and Free-
base /business/industry/name (i.e., the type of industry a
company operates in) being assigned NELL category pair 〈
company, economicsector〉.

5.7.2 Learning Verbs for Relations
As a by product of label propagation on the graph, each

verb and NP-pair node in the graph will be assigned scores
for each relation label. Exploiting these scores, we can esti-
mate the probability that a verb v represents a relation r as

P (v|r) ≈ Ŷ (v,r)∑
v′ Ŷ (v′,r)

, where Ŷ (v, r) (from Section 4.2) is the

score of label r assigned to verb node v. Since a verb may
represent different relations depending on the NP-pair with
which it co-occurs e.g., the verb enter has different meaning
when it appears with an NP-pair 〈Paul, room〉 from when it
appears with an NP-pair 〈John, American Idol〉; when esti-
mating P (v|r) we also take into account the scores of r on

Figure 5: F1 scores @k = 5 of relation equivalence align-
ments when varying amount of noise is introduced into the
KB, comparing performance of PARIS (light grey) and PID-
GIN (grey). PARIS performance drops drastically to zero as
more noise is added, while PIDGIN is more robust to noise.
(See Section 5.6 for details)

the NP-pair nodes 〈NP1, NP2〉 with which verb v co-occurs.

Similar as before, P (v|r) ≈ Ŷ (v,r)∑
v′ Ŷ (v

′
,r)

. But now we mea-

sure Ŷ (v, r) =
∑

Tv
Ŷ (Tv, r), where Tv is a SVO triple 〈np1,

v, np2〉, and where Ŷ (Tv, r) = Ŷ (〈np1, np2〉, r)∗ Ŷ (v, r). We
multiply this estimate with the tf-idf score of the verb, which
is proportional to the number of times a verb appears for a
relation, but is offset by the total number of times the verb
appears with all the relations. This helps to reduce the ef-
fect of common verbs such as is, become that represent many
relations.

Using this scoring, for each relation we can return a ranked
list of verbs that represent the relation. Some of the verbs
returned are shown in Table 5. As we can see in Table 5, the
system is able to distinguish verbs representing the relation
/medicine/medical treatment/side effects: “exacerbate”,“can
cause” from the verbs representing the antonym relation
drugPossiblyTreatsPhysiologicalCondition: “relieve”,“can help
alleviate”even when the two relations have the same domain
(drug) and range (physiological condition). The system is
also able to recognize the directionality of the relation. For
example, for the relation acquired, which represents the in-
verse of the relation acquired (as in company X acquiring
company Y); the system is able to return the correct verbs:
bought and purchase, which are the inverse forms of the

verbs bought and purchase (as in is bought by and is pur-
chased by). Of practical importance is the fact that PIDGIN
can learn verbs representing relations in Freebase and Yago2
whose facts are created manually or extracted via carefully
constructed regular-expression matching. We can now use
these verbs to automate an extraction process for the on-
tologies used by Freebase and Yago2.

5.7.3 Learning New Relation Instances
Here we examine the accuracy of automatically extract-

ing new relation instances from text based on assignment
of relation labels on NP pair nodes. We can estimate the
probability that an NP-pair 〈np1, np2〉 belongs to a relation

Figure 6: F1 scores @k = 1, 3 and 5 when typing relations in
Freebase, Yago2, and KBP with NELL categories, compar-
ing performance of PARIS (light grey) and PIDGIN (grey).
(See Section 5.7.1 for details)

r, by estimating P (〈np1, np2〉|r) ≈ Ŷ (〈np1,np2〉,r)∑
〈np′1,np′2〉 Ŷ (〈np′1,np′2〉,r)

.

For each relation we can then return a ranked list of NP-
pairs that can belong to the relation, some of which may
not already be in the KB and can be proposed as new in-
stances for the relation. We return the top 100 NP-pairs
for each relation, pick those that are not already in the KB
and evaluate the average precision. Consistent with our re-
sults so far, precision of proposed new instances improves
with the size of the KB. New instances proposed for Free-
base have the highest average precision of 73.9% while new
instances proposed for NELL, a smaller KB, have an average
precision of 65.5%. Correct new instances discovered include
〈ratatouille, brad bird〉 for Freebase /film/directed by, and
〈wwl, cbs〉 for NELL televisionStationAffiliatedWith. In the
future, we want to use verb patterns that PIDGIN learns for
relations in Section 5.7.2 to extract new NP pairs belonging
to the relations from any free text.

6. RELATED WORK
Ontology Alignment has received considerable attention

in prior research, please see [16] for a recent survey. PARIS
[17] is a recently proposed state-of-the-art ontology align-
ment system that is most related to PIDGIN. PARIS primar-
ily relies on instance overlap-based cues to align instances,
categories, and relations from two KBs. This can be prob-
lematic in many cases of practical interest where there is
sparsity in instance overlap, and noise in the data. PIDGIN
overcomes these limitations using of natural language text
as interlingua and graph-based self-supervised learning. In
extensive comparisons, we find that PIDGIN significantly
outperforms PARIS on the ontology alignment task.

Other prior work on ontology alignment have primarily
relied on lexical and structural matching of the elements
(i.e., categories or relations) in the ontology only [16], with
the exception of a few that also consider instance similarities
[17, 12]. And in most cases, category alignment has been the
sole focus. PIDGIN exploits instance similarities, and aligns
both categories and relations.

Low alignment recall (≈ 30%) in real-world datasets has

Knowledge Relation Learned Verbs
Base

Freebase

/sports/sports team/
arena stadium

played at, played in,
defeated at, will host
at, beaten at

/medicine/medical
treatment/side effects

may promote, can
cause, may produce, is
worsen, exacerbate

NELL

drugPossiblyTreats
PhysiologicalCondition

treat, relieve, reduce,
help with, can help al-
leviate

politicianHoldsOffice serves as, run for, be-
came, was elected

Yago2

actedIn played in, starred in,
starred, played, por-
trayed in

isMarriedTo married, met, date,
wed, divorce

Table 5: Examples of relation-verb pairs automatically
learned by PIDGIN. Although we use verb stems in exper-
iments, for better readability, we present the original non-
stemmed forms of the same verbs above. (See Section 5.7.2
for details)

been a common problem in most previous ontology align-
ment systems [10]. One way to improve recall is through
iterative matching to increase completeness of alignments
[2, 10, 12], which is similar in spirit to PIDGIN’s use of la-
bel propagation for alignment inference. Background knowl-
edge has been found to be useful in improving recall [16].
Most systems that use background knowledge share a com-
mon theme: to expand elements’ features before lexical sim-
ilarity computation. WordNet or WordNet-like data is a
popular choice for background knowledge, with exceptions
such as [9] that use documents related to instances to cre-
ate lexical resource for the elements and use cosine similar-
ity measures on the lexicons. Other works use background
knowledge to construct additional paths to align elements.
These works however, require background knowledge to be
provided in the form of formal ontology [2, 15], which is not
always available. An exception is [13] which uses unstruc-
tured documents and co-occurrence of category instances in
documents to align categories. However, they only align
categories. Co-occurrences of relation instances (i.e., a pairs
of concept-pairs) in documents is significantly sparser com-
pared to co-occurrence of concept pairs (as used in previous
work). This sparsity can lead to low recall of their relation
alignment. PIDGIN overcomes these limitations by exploit-
ing a large coverage, schema-free natural language text cor-
pus as interlingua. However, PIDGIN is flexible enough to
incorporate other (and multiple) types of background knowl-
edge (e.g., formal ontology) whenever available.

Although increasing the amount of background knowledge
has been shown to improve alignment further [1], combin-
ing these pieces of information in prior work requires careful
consideration due to the different structures of the back-
ground knowledge [2]. PIDGIN’s graph construction pro-
vides a flexible way of integrating several background knowl-
edge easily without restrictive constraints. Furthermore, in-
tegration of alignments obtained from multiple background
knowledge sources has been rather ad-hoc in prior work [16].

In contrast, PIDGIN integrates heterogeneous evidence in
the graph automatically and in a principled manner via its
joint inference and optimization process.

Most previous systems employing iterative matching have
relied on hand-written rules, with the exception of S-match
[10]. However, S-match uses ontology-level information only,
without considering instances. In PIDGIN, iterative match-
ing is automatically obtained via the transitivity of inference
in label propagation (MAD). Another system that uses label
propagation for ontology alignment is [20]. However, they
do not incorporate any interlingua in their approach.

One approach that may strike resemblance to PIDGIN
is Similarity Flooding [14], but there are critical differences.
Firstly, it is not clear how natural language-based interlingua
which do not have any well-defined schema can be incorpo-
rated into Similarity Flooding. PIDGIN is flexible enough
to incorporate such side information, and improve resulting
ontology alignment. Secondly, Similarity Flooding requires
both ontologies to have similar edge types, while PIDGIN
doesn’t impose any such strong requirement. Thirdly, Simi-
larity Flooding is also sensitive to noise in the ontology since
the cross join of elements amplifies a noisy element in one
ontology to elements in other ontologies. PIDGIN is more
robust to noise as it doesn’t multiply the effect of a noisy
alignment, and instead integrates it with other competing
alignments to produce a final alignment.

7. CONCLUSION
In this paper we introduce PIDGIN, a novel, flexible, and

scalable approach to automatic alignment of real-world KB
ontologies, demonstrating its superior performance at align-
ing large real-world KB ontologies including those of NELL,
Yago and Freebase. The key idea in PIDGIN is to align KB
ontologies by integrating two types of information: relation
instances that are shared by the two KBs, and mentions of
the KB relation instances across a large text corpus.

PIDGIN uses a natural language web text corpus of 500
million dependency-parsed documents as interlingua and a
graph-based self-supervised learning to infer alignments. To
the best of our knowledge, this is the first successful demon-
stration of using such a large text resource for ontology align-
ment. PIDGIN is self-supervised, and does not require hu-
man labeled data. Moreover, PIDGIN can be implemented
in MapReduce, making it suitable for aligning ontologies
from large KBs.

We have provided extensive experimental results on mul-
tiple real world datasets, demonstrating that PIDGIN sig-
nificantly outperforms PARIS, the current state-of-the-art
approach to ontology alignment. We observe in particular
that PIDGIN is typically able to improve recall over that of
PARIS, without degradation in precision. This is presum-
ably due to PIDGIN’s ability to use text-based interlingua
to establish alignments when there are few or no relation
instances shared by the two KBs. Additionally, PIDGIN
automatically learns which verbs are associated with which
ontology relations. These verbs can be used in the future
to extract new instances to populate the KB or identify re-
lations between entities in documents. PIDGIN can also
assign relations in one KB with argument types of another
KB. This can help type relations that do not yet have argu-
ment types, like that of KBP. Argument typing can improve
the accuracy of extraction of new relation instances by con-
straining the instances to have the correct types, e.g., KBP

per:city of birth instance must have its first argument being
of type person and second argument being of type city.

In the future, we plan to extend PIDGIN’s capabilities
to provide explanations for its inferred alignments. We also
plan to experiment with aligning ontologies from more than
two KBs simultaneously. Upon publication, we will make
PIDGIN’s source code and datasets publicly available.

8. REFERENCES
[1] Z. Aleksovski, M. Klein, W. Ten Kate, and

F. Van Harmelen. Matching unstructured vocabularies
using a background ontology. In Managing Knowledge
in a World of Networks. 2006.

[2] Z. Aleksovski, W. ten Kate, and F. van Harmelen.
Exploiting the structure of background knowledge
used in ontology matching. 2006.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. In The semantic web. 2007.

[4] T. Berners-Lee, J. Hendler, O. Lassila, et al. The
semantic web. Scientific american, 284(5), 2001.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked
data-the story so far. IJSWIS, 5(3), 2009.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD, 2008.

[7] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09
data set. boston.lti.cs.cmu.edu, 2009.

[8] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr, and T. M. Mitchell. Toward an
architecture for never-ending language learning. In
AAAI, 2010.

[9] D. Fossati, G. Ghidoni, B. Di Eugenio, I. Cruz,
H. Xiao, and R. Subba. The problem of ontology
alignment on the web: a first report. In Proceedings of
the 2nd International Workshop on Web as Corpus,
pages 51–58. Association for Computational
Linguistics, 2006.

[10] F. Giunchiglia, P. Shvaiko, and M. Yatskevich.
Discovering missing background knowledge in ontology
matching. Frontiers in AI and Applicaitons, 141, 2006.

[11] J. Hoffart, F. Suchanek, K. Berberich,
E. Lewis-Kelham, G. De Melo, and G. Weikum.
Yago2: exploring and querying world knowledge in
time, space, context, and many languages. In WWW,
2011.

[12] Y. Jean-Mary and M. Kabuka. Asmov: Ontology
alignment with semantic validation. In Joint
SWDB-ODBIS Workshop, 2007.

[13] C. Kingkaew. Using unstructured documents as
background knowledge for ontology matching. 2012.

[14] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE, 2002.

[15] M. Sabou, M. d’Aquin, and E. Motta. Using the
semantic web as background knowledge for ontology
mapping. Ontology Matching, 2006.

[16] P. Shvaiko and J. Euzenat. Ontology matching: state
of the art and future challenges. TKDE, 2012.

[17] F. M. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of relations, instances, and
schema. PVLDB, 5(3), 2011.

[18] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In WWW, 2007.

[19] P. P. Talukdar and K. Crammer. New regularized
algorithms for transductive learning. ECML, 2009.

[20] P. P. Talukdar, Z. G. Ives, and F. Pereira.
Automatically incorporating new sources in keyword
search-based data integration. In SIGMOD, 2010.

