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ABSTRACT 
In a paper published in the 2001 VLDB Conference, we proposed 
treating generic schema matching as an independent problem. We 
developed a taxonomy of existing techniques, a new schema 
matching algorithm, and an approach to comparative evaluation. 
Since then, the field has grown into a major research topic. We 
briefly summarize the new techniques that have been developed 
and applications of the techniques in the commercial world. We 
conclude by discussing future trends and recommendations for 
further work. 

1. INTRODUCTION 
Schema matching is the problem of generating correspondences 
between elements of two schemas. A schema is a formal structure 
that represents an engineered artifact, such as a SQL schema, 
XML schema, entity-relationship diagram, ontology description, 
interface definition, or form definition. A correspondence is a 
relationship between one or more elements of one schema and one 
or more elements of the other. For example, the correspondences 
in Figure 1 identify columns that represent the same concepts in 
the two relational schemas. Often, the relationship is one-to-one, 
but sometimes it is not, such as Author corresponding to Last-
Name and FirstName in Figure 1. We say that a correspondence 
has semantics if it constrains the instances of the related schema 
elements. The common default semantics for one-to-one corres-
pondences is that the instances of two related elements are equal.  

There are many applications that require schema matching. In the 
database field, it is usually the first step in generating a program 
or view definition that maps instances of one schema into 
instances of another. For example, it arises in object-to-relational 
mappings, data warehouse loading, data exchange, and mediated 
schemas for data integration. In knowledge-based applications, 
such as life sciences applications and the semantic web, it arises in 
the alignment of ontologies. For example, it may be used to align 
gene ontologies or anatomical structures. In health care, it may 
arise in the alignment of patient records and other medical reports. 
In web applications, it may be used to align product catalogs. In e-
commerce, it may be used to align message formats representing 
business documents, such as orders and invoices.  

This paper recaps the contributions of our VLDB 2001 paper 
about schema matching [45], summarizes developments since 
then, and suggests problems that would benefit from further work. 

 
Figure 1: Schema matching is the problem of generating cor-
respondences that identify related elements in two schemas. 

2. CONTRIBUTIONS IN VLDB 2001 [45] 
Twelve years ago, when we embarked on work in this area, we 
noticed that schema matching techniques were developed as part 
of a variety of applications. The techniques were often similar, 
even when the applications were not. We concluded that the field 
might move faster and the results might be more reusable if 
schema matching were studied as a separate topic, independently 
of the applications that use it. This recommendation was the first 
contribution of [45]. 

We then surveyed the literature to identify these common 
techniques. This resulted in a taxonomy of schema matching 
techniques, which was the second contribution of [45]. We 
extended this taxonomy into a survey paper, published later that 
year in [63]. The taxonomy has often been used as a standard for 
categorizing subsequent schema matching techniques. 

Our third contribution was a new schema matching algorithm, 
called Cupid, which combined a number of techniques: linguistic 
matching, structure-based matching, constraint-based matching, 
and context-based matching. Most of the later approaches to 
schema matching have used this hybrid matcher approach, which 
leverages different criteria to arrive at suggested correspondences. 

We concluded with an experimental comparison of Cupid with 
two other algorithms that were reported in the literature, namely 
MOMIS [6] and DIKE [58]. This was the first such comparison 
we know of. Such experimental comparisons have become a 
feature of most of the later work on schema matching. 

In summary, our 2001 paper posed schema matching as a problem 
that could be studied in isolation. It gave a baseline of known 
techniques. And given the inherently heuristic nature of solutions, 
it suggested an approach to evaluate those solutions based on 
experiments. As the references in [45] attest, we were by no 
means the first to work on schema matching. However, we 
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defined a framework for research on this topic that enabled many 
others to follow. 

3. SCHEMA MATCHING TECHNIQUES 
There are now two books on schema matching [5][26] and two 
surveys [63][68], so there is little point in our repeating such a 
survey. However, to give the reader a feel for the scope of the 
schema matching field, we list many of the known techniques 
here. We start with techniques that were known in 2001 and that 
we discussed in [45]:  

 Linguistic matching – based on an element’s name or 
description, using stemming, tokenization, string and 
substrings matching, and information retrieval techniques. 

 Using auxiliary information – based on thesauri, acronyms, 
dictionaries, and mismatch lists. 

 Instance-based matching – schema elements are regarded as 
similar if their instances are similar, based on statistics, 
metadata, or trained classifiers. 

 Structure-based matching – schema elements are similar if 
they appear in similarly-structured groups, have similar rela-
tionships, or have (paths of) relationships to similar elements. 

 Constraint-based matching – based on data types, value 
ranges, uniqueness, nullability, and foreign keys. 

 Rule-based matching – based on matching rules that are 
expressed in first-order logic. 

 Hybrid-matching – as explained in the previous section. 

Since 2001, many other techniques have been developed. These 
include algorithms that use new types of information. For 
example: 

 Graph matching – based on comparing the relationships 
between elements in the schema graphs by, for example, 
either fixed-point computations on a similarity propagation 
graph [53], or probabilistic constraint satisfaction algorithms 
[22]. 

 Usage-based matching – based on analyzing database query 
logs for hints about how users relate schemas, e.g., by 
equating elements in join clauses [25]. Taxonomy paths can 
be matched by finding web pages that represent the paths and 
then analyzing keyword-query logs to determine if the pages 
are accessed via similar query distributions [55]. 

 Document content similarity – where instances of a schema 
element are grouped into a document that is then matched 
with other such documents based on the information retrieval 
measure TF-IDF (term frequency times inverse document 
frequency) [44][49].  

 Document link similarity – where concepts in two ontologies 
are regarded as similar if the entities referring to those 
concepts are similar [42].  

Strategies have been proposed to flexibly combine multiple 
matching algorithms and to scale gracefully to compare large 
schemas. For example:  

 Workflow-like strategies to independently or sequentially 
execute matchers and to combine their results [12][19][67]. 

 Self-tuning match workflows – where for a given match task 
or domain of match tasks, a tuner selects the match 
components to be combined and/or assigns values to the 

various parameters that affect how component match results 
are combined [24][43][44]. 

 Early search space pruning – where a fast matcher is used to 
eliminate unlikely matches from consideration so that a 
manageably-small number of elements can be matched using 
more expensive and accurate techniques [23][57]. 

 Partition-based matching – where to reduce the space of 
possible matches, the input schemas are partitioned followed 
by partition-wise matching [20][39][73]. 

 Parallel matching – where different steps of the matching 
algorithm are run in parallel or different partitions of the 
schemas are matched in parallel [34]. 

 Optimizations for large schemas such as using string 
matching optimizations [40], pre-collecting predecessors and 
children of each element to avoid repeated traversal [2], and 
using space-efficient similarity matrices [12]. 

Approaches have been proposed where multiple schemas in a 
domain are collectively matched. For example: 

 Reuse-based matching – where matches between schema 
fragments are harvested from validated mappings and used as 
auxiliary information to help future match tasks in the same 
domain [20][46][65]. 

 Holistic matching – where a single mediated schema is 
constructed for a domain by aligning elements of a large 
corpus of schemas, such as web forms covering a particular 
domain. Similar element names appearing in the same 
schema are regarded as mismatches [37][38][66][69]. 

Strategies have been proposed to incorporate user interaction and 
feedback in the matching process. For example: 

 GUI support to interactively inspect and correct computed 
correspondences [3][11][16][31]. 

 Incremental matching – where given a user-selected element 
of one schema, the matcher calculates the best match or 
matches (top-k) in the other schema [11]. 

 Top-k matching – where instead of computing a complete 
mapping between two schemas, the matcher computes the 
top-k matches of each element of one schema to elements of 
the other schema [11][32]. 

 Collaborative, wiki-like user involvement to provide, 
improve, and reuse mappings [50][72]. 

Finally, algorithms have been proposed that extend the semantics 
of matches beyond that of simple correspondences. For example: 

 Semantic tagging – where correspondences are tagged with 
semantic relationships, such as equality, containment, 
disjointness, and unknown. [33][35] [48]. 

 Conditional tagging – where correspondences are refined to 
be valid only for certain values of another element. For 
example, if productType = “book” then Invoice.Code = 
ISBN [14][33]. 

4. SCHEMA MATCHING TOOLS 
Most of the listed techniques have been implemented in a large 
number of tools for schema and ontology matching [26][62]. 
Figure 2 shows a comparative overview of selected tools: Cupid 
[45], COMA++ [3][19][20], ASMOV [40], Falcon-AO [39], 
RiMON [44], AgreementMaker [16], OII Harmony [67]. Most 
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recent prototypes support match workflows and the combined use 
of different linguistic, structural and instance-based matchers. 
External dictionaries such as synonym lists or thesauri are 
commonly used to improve linguistic matching. GUI support is 
often provided, albeit still with limitations [31]. A few systems are 
able to match both schemas and ontologies [3][16][67].  As 
indicated in Figure 2, advanced techniques such as schema 
partitioning, parallel matching, mapping reuse and self-tuning 
capabilities (e.g., a dynamic selection of matchers for a given 
match task) are still only supported to a limited extent in current 
match prototypes.  

Match tools have been intensively evaluated but typically under 
different conditions and for smaller match problems [4][18]. For 
ontology matching, the Ontology Alignment Evaluation Initiative 
(OAEI) organizes yearly contests that include some larger 
problems, e.g., to match web directories or medical ontologies 
(http://oaei.ontologymatching.org). The systems participating in 
the OAEI contest have significantly improved over the years but 
still struggle with larger problems [27]. For schema matching and 
mapping, a comparable benchmark effort is still missing.  

Semi-automatic schema matching is also increasingly supported 
in commercial middleware tools, in particular for XML schemas 
or relational database schemas. Systems such as Altova 
MapForce, IBM Infosphere, Microsoft BizTalk Server and SAP 
Netweaver provide a GUI-based editor for manual mapping 
specification with some support for automatic determination of 
match candidates, e.g., based on approximate name matching. 
However, most of the more recently proposed match techniques 
have not yet been incorporated in commercial mapping solutions.  

5. USING MATCH RESULTS AS-IS 
Even the best schema matching algorithms make many mistakes, 
especially fully-automatic algorithms where there is no human 
designer in the loop. Despite these errors, some applications can 
use schema matching results as-is. This is especially the case 
when a best-effort matching is satisfactory or when the matches 
contribute only implicitly to the results of some end-user task. For 
example, consider the following two scenarios for automatically 
filling out HTML forms. 

First, most of today’s browsers offer automatic form-filling, e.g., 
personal data such as name and address prior to a purchase. This 
can be modeled as a task where the schema of the underlying 

web-form is being matched to a model of user data that is stored 
in the browser. The user expects the browser to make a best-effort 
attempt at filling in personal details, which the user confirms 
before submitting the form for processing. 

 
Figure 3 Mappings between domain models and form inputs 

can be used to automatically fill out HTML forms. 

Second, schema mappings have been proposed as a means of 
accessing the content that lies behind HTML forms [47][61].  A 
deep-web crawler can work as follows: When the crawler 
encounters an HTML form, it can identify the domain that the 
form belongs to, and then match the inputs of the form to 
elements in the previously-computed mediated schema for that 
domain (see Figure 3). It can then generate form submissions by 
constructing URLs using sample values for the inputs (based on 
known values for the elements in the mediated schema). The 
resulting pages are added to the index of the search engine. The 
matching results in this case are intermediate results of a multi-
step process. End-users are unlikely to know or care about the 
quality of the match result, except insofar as it affects how the 
crawler exploits the underlying website. 

6. APPLYING MATCH TO  
     MODEL MANAGEMENT  
For most of the applications summarized in Section 1, schema 
matching is just one step in a multi-step process. That multi-step 
process involves other operators that manipulate schemas and 
mappings, such as schema merging and mapping composition. 
This recognition was actually the starting point for our research 
into schema matching. In [8] and [9], we proposed a set of such 
operators under the name “model management”. We then 
embarked on a systematic study of these operators. Since nothing 

Figure 2 Comparison of selected match tools (based on [62]). 
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much can be done until the first mapping is created, it was logical 
that we started our investigation of operators with schema 
matching. In fact, our first algorithmic result about one of the 
operators was our paper “Generic Schema Matching” [45]. Since 
then, there has been a lot of progress on other operators in 
addition to match, which is summarized in [10]. 

Most data integration and data transformation applications, such 
as those in Section 1, need to construct executable mappings—
ones that represent transformations of instances. Since match 
algorithms produce correspondences, not semantic relationships, 
the natural next step is to enrich those correspondences with 
semantics [54]. Often this is a two-step process (Section 3.1 of 
[10]). The first step is to generate semantics in the form of 
constraints that relate parts of the instances of one schema to parts 
of the instances of another schema. Such constraints may not be 
functions, in which case they are not executable. In this case, a 
second step is needed to translate the semantic relationships into 
functions [51] via the operator TransGen. 

Depending on the application, the resulting mapping may need to 
undergo further manipulation. Suppose we match schemas S and 
T and then generate a semantic mapping between them. We might 
want to merge S and T into a single schema that covers both of 
them, for example, to represent a mediated schema. This can be 
done by the merge operator, which takes as input two schemas 
and a mapping between them and returns a merged schema with 
mappings between the merged schema and the two input schemas 
[15][59][60][64]. 

Suppose we are using the mapping between S and T as a data 
transformation that translates data from S’s format into T’s 
format. If one of the schemas T in a mapping is modified, 
generating T, then we need to update the mapping between S and 
T to one between S and T. We can do this by composing the map-
pings S-T and T- T [30][36], yielding a mapping T-T between S 
and T [7][28][71].  

Other model management operators are Diff (which finds the 
difference between mappings) and Extract (the complement of 
Diff) [52], and Invert, which reverses the direction of a uni-
directional mapping [28][29].  

For most practical applications, all of the model management 
operators manipulate mappings that have semantics—except for 
the match operator which has a special role.  First the match 
operator computes correspondences and then, building on these 
correspondences, the other operators develop and manipulate 
mappings that have semantics.  

7. FUTURE TRENDS 
Since 2001, there has been a growing realization that matching is 
not a one-of task. For example, in data integration, as new data 
sources become available, they are mapped to a single mediated 
schema. In e-commerce, message formats of new business 
partners have to be mapped to message formats that interface to 
existing business processes. It is natural to expect that with each 
subsequent task to match within a given domain or to a given 
schema, the effort required to construct the mapping should 
decrease, while the quality of the mapping should increase. 

For a given vertical domain, such as product catalogs or patient 
records, there are many possible schemas. These schemas exhibit 
common patterns, which can be used to improve the results of a 
schema matching algorithm. Most of the early approaches to 
schema matching encoded this domain knowledge as constraints 

or heuristics that were baked into the algorithm. The encoded 
constraints were developed by a designer with intimate knowledge 
of the domain. 

A more flexible approach was introduced in [21]. It showed that 
new mappings to a mediated schema can be learned from known 
mappings to that schema. Machine-learning algorithms were used 
to train models for elements in the mediated schema using known 
mappings. The models were then applied to the elements in new 
schemas to map them to the same mediated schema. The approach 
was extended in [17] to learn complex expressions in addition to 
just correspondences. It was further extended in [46] to show that 
models can be trained from known mappings in a domain and 
applied to match two completely new schemas in the same 
domain.  

Much of the value of mappings is in the semantic expressions that 
are developed from the initial correspondences. It is therefore 
important to reuse those expressions, not simply generate 
correspondences based on learned models. An early approach in 
[19] proposed reusing a validated mapping fragment F by 
matching the source and target of the schemas to be matched with 
the source and target of F. This introduces several related 
problems. First, there is the question of how to partition a schema 
into fragments, whose validated mappings can be reused. Second, 
a repository is needed to store and provide access to validated 
mappings [1]. Third, there is the combinatorial problem of finding 
possible matches of each mapping in the library to the many 
positions where it might fit in the source and target of the schemas 
to be matched. One attempt is discussed in [20]. More work along 
these lines is needed. 

Despite this progress in mapping reuse, little of the technology 
has made it into commercial offerings.  

The availability of large numbers of schemas on the web makes 
the holistic matching approach quite appealing. Collective schema 
matching was proposed in [37] and applied in [38] to match the 
inputs in HTML forms. Many schemas (i.e., forms) that are 
known to be in a given domain are collectively analyzed to infer a 
single mediated schema for that domain. Then a generative model 
is learned for the domain based on the assumption that each 
distinct schema is simply a different representation of a subset of 
a single underlying domain schema. Subsequent work has 
extended this clustering approach to accommodate more complex 
mappings between HTML forms [70]. These approaches have 
thus far been restricted to form matching where the schemas are 
small, with just a few, well-understood underlying concepts in the 
domain. 

In most schema matching scenarios, there is a human in the loop. 
Therefore, it is important to have excellent graphical support for 
viewing mappings [31]. For example, since large schemas cannot 
be viewed on a single screen, it is beneficial to partition them into 
fragments that can be matched independently, to the extent 
possible. Matching tools also need to offer better support for the 
mapping process. For example, users need help in remembering 
which schema elements they have examined during the match 
process and what was learned by that examination, such as 
promising and specious candidates. 

We see an increasing convergence of schema matching and entity 
resolution approaches, i.e., matching at the metadata level and 
matching at the instance level. Most recent schema and ontology 
matching prototypes include instance-based matchers [61] that 
derive the similarity of schema elements from the similarity or 
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overlap of element instances. Entity resolution, i.e., the 
identification of semantically corresponding entities or instances, 
can benefit from the semantic categorization of entities within 
ontologies and the provision of ontology mappings. For example, 
the organization of products or product offers within product 
catalogs helps to restrict product matching between different 
sources to corresponding or closely related product categories, 
based on a pre-determined ontology mapping between the product 
catalogs. Link discovery to interconnect sources in the so-called 
web of linked data [13][56] is an area where such semantic entity 
resolution approaches are needed and applicable due to the broad 
availability of ontologies.  

8. CONCLUSION 
In this paper, we briefly summarized generic schema matching 
developments since we published our 2001 paper that introduced 
the subject [45]. We listed published techniques, how published 
techniques are used, and future trends.  

There seem always to be new sources of information available to 
new schema matching techniques and clever ways of combining 
existing techniques. In this sense, the problem of schema 
matching is inherently open-ended. Thus, the schema matching 
field is still a vibrant one, with many opportunities for researchers 
and tool developers to move it forward.  
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