
Generic Schema Matching, Ten Years Later
Philip A. Bernstein
Microsoft Corporation

philbe@microsoft.com

Jayant Madhavan
Google Inc.

jayant@google.com

Erhard Rahm
University of Leipzig

rahm@informatik.uni-leipzig.de

ABSTRACT
In a paper published in the 2001 VLDB Conference, we proposed
treating generic schema matching as an independent problem. We
developed a taxonomy of existing techniques, a new schema
matching algorithm, and an approach to comparative evaluation.
Since then, the field has grown into a major research topic. We
briefly summarize the new techniques that have been developed
and applications of the techniques in the commercial world. We
conclude by discussing future trends and recommendations for
further work.

1. INTRODUCTION
Schema matching is the problem of generating correspondences
between elements of two schemas. A schema is a formal structure
that represents an engineered artifact, such as a SQL schema,
XML schema, entity-relationship diagram, ontology description,
interface definition, or form definition. A correspondence is a
relationship between one or more elements of one schema and one
or more elements of the other. For example, the correspondences
in Figure 1 identify columns that represent the same concepts in
the two relational schemas. Often, the relationship is one-to-one,
but sometimes it is not, such as Author corresponding to Last-
Name and FirstName in Figure 1. We say that a correspondence
has semantics if it constrains the instances of the related schema
elements. The common default semantics for one-to-one corres-
pondences is that the instances of two related elements are equal.

There are many applications that require schema matching. In the
database field, it is usually the first step in generating a program
or view definition that maps instances of one schema into
instances of another. For example, it arises in object-to-relational
mappings, data warehouse loading, data exchange, and mediated
schemas for data integration. In knowledge-based applications,
such as life sciences applications and the semantic web, it arises in
the alignment of ontologies. For example, it may be used to align
gene ontologies or anatomical structures. In health care, it may
arise in the alignment of patient records and other medical reports.
In web applications, it may be used to align product catalogs. In e-
commerce, it may be used to align message formats representing
business documents, such as orders and invoices.

This paper recaps the contributions of our VLDB 2001 paper
about schema matching [45], summarizes developments since
then, and suggests problems that would benefit from further work.

Figure 1: Schema matching is the problem of generating cor-
respondences that identify related elements in two schemas.

2. CONTRIBUTIONS IN VLDB 2001 [45]
Twelve years ago, when we embarked on work in this area, we
noticed that schema matching techniques were developed as part
of a variety of applications. The techniques were often similar,
even when the applications were not. We concluded that the field
might move faster and the results might be more reusable if
schema matching were studied as a separate topic, independently
of the applications that use it. This recommendation was the first
contribution of [45].

We then surveyed the literature to identify these common
techniques. This resulted in a taxonomy of schema matching
techniques, which was the second contribution of [45]. We
extended this taxonomy into a survey paper, published later that
year in [63]. The taxonomy has often been used as a standard for
categorizing subsequent schema matching techniques.

Our third contribution was a new schema matching algorithm,
called Cupid, which combined a number of techniques: linguistic
matching, structure-based matching, constraint-based matching,
and context-based matching. Most of the later approaches to
schema matching have used this hybrid matcher approach, which
leverages different criteria to arrive at suggested correspondences.

We concluded with an experimental comparison of Cupid with
two other algorithms that were reported in the literature, namely
MOMIS [6] and DIKE [58]. This was the first such comparison
we know of. Such experimental comparisons have become a
feature of most of the later work on schema matching.

In summary, our 2001 paper posed schema matching as a problem
that could be studied in isolation. It gave a baseline of known
techniques. And given the inherently heuristic nature of solutions,
it suggested an approach to evaluate those solutions based on
experiments. As the references in [45] attest, we were by no
means the first to work on schema matching. However, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

ISBN char(15) primary key

Title varchar(100)

Author varchar(50)

MarkedPrice float

ID char(15) primary key

AuthorID integer
 references AuthorInfo

BookTitle varchar(150)

ListPrice float

DiscountPrice float

AuthorID integer primary key

LastName varchar(25)

FirstName varchar(25)

Books

BookInfo

AuthorInfo

Dotted lines indicate

correspondences

695

defined a framework for research on this topic that enabled many
others to follow.

3. SCHEMA MATCHING TECHNIQUES
There are now two books on schema matching [5][26] and two
surveys [63][68], so there is little point in our repeating such a
survey. However, to give the reader a feel for the scope of the
schema matching field, we list many of the known techniques
here. We start with techniques that were known in 2001 and that
we discussed in [45]:

 Linguistic matching – based on an element’s name or
description, using stemming, tokenization, string and
substrings matching, and information retrieval techniques.

 Using auxiliary information – based on thesauri, acronyms,
dictionaries, and mismatch lists.

 Instance-based matching – schema elements are regarded as
similar if their instances are similar, based on statistics,
metadata, or trained classifiers.

 Structure-based matching – schema elements are similar if
they appear in similarly-structured groups, have similar rela-
tionships, or have (paths of) relationships to similar elements.

 Constraint-based matching – based on data types, value
ranges, uniqueness, nullability, and foreign keys.

 Rule-based matching – based on matching rules that are
expressed in first-order logic.

 Hybrid-matching – as explained in the previous section.

Since 2001, many other techniques have been developed. These
include algorithms that use new types of information. For
example:

 Graph matching – based on comparing the relationships
between elements in the schema graphs by, for example,
either fixed-point computations on a similarity propagation
graph [53], or probabilistic constraint satisfaction algorithms
[22].

 Usage-based matching – based on analyzing database query
logs for hints about how users relate schemas, e.g., by
equating elements in join clauses [25]. Taxonomy paths can
be matched by finding web pages that represent the paths and
then analyzing keyword-query logs to determine if the pages
are accessed via similar query distributions [55].

 Document content similarity – where instances of a schema
element are grouped into a document that is then matched
with other such documents based on the information retrieval
measure TF-IDF (term frequency times inverse document
frequency) [44][49].

 Document link similarity – where concepts in two ontologies
are regarded as similar if the entities referring to those
concepts are similar [42].

Strategies have been proposed to flexibly combine multiple
matching algorithms and to scale gracefully to compare large
schemas. For example:

 Workflow-like strategies to independently or sequentially
execute matchers and to combine their results [12][19][67].

 Self-tuning match workflows – where for a given match task
or domain of match tasks, a tuner selects the match
components to be combined and/or assigns values to the

various parameters that affect how component match results
are combined [24][43][44].

 Early search space pruning – where a fast matcher is used to
eliminate unlikely matches from consideration so that a
manageably-small number of elements can be matched using
more expensive and accurate techniques [23][57].

 Partition-based matching – where to reduce the space of
possible matches, the input schemas are partitioned followed
by partition-wise matching [20][39][73].

 Parallel matching – where different steps of the matching
algorithm are run in parallel or different partitions of the
schemas are matched in parallel [34].

 Optimizations for large schemas such as using string
matching optimizations [40], pre-collecting predecessors and
children of each element to avoid repeated traversal [2], and
using space-efficient similarity matrices [12].

Approaches have been proposed where multiple schemas in a
domain are collectively matched. For example:

 Reuse-based matching – where matches between schema
fragments are harvested from validated mappings and used as
auxiliary information to help future match tasks in the same
domain [20][46][65].

 Holistic matching – where a single mediated schema is
constructed for a domain by aligning elements of a large
corpus of schemas, such as web forms covering a particular
domain. Similar element names appearing in the same
schema are regarded as mismatches [37][38][66][69].

Strategies have been proposed to incorporate user interaction and
feedback in the matching process. For example:

 GUI support to interactively inspect and correct computed
correspondences [3][11][16][31].

 Incremental matching – where given a user-selected element
of one schema, the matcher calculates the best match or
matches (top-k) in the other schema [11].

 Top-k matching – where instead of computing a complete
mapping between two schemas, the matcher computes the
top-k matches of each element of one schema to elements of
the other schema [11][32].

 Collaborative, wiki-like user involvement to provide,
improve, and reuse mappings [50][72].

Finally, algorithms have been proposed that extend the semantics
of matches beyond that of simple correspondences. For example:

 Semantic tagging – where correspondences are tagged with
semantic relationships, such as equality, containment,
disjointness, and unknown. [33][35] [48].

 Conditional tagging – where correspondences are refined to
be valid only for certain values of another element. For
example, if productType = “book” then Invoice.Code =
ISBN [14][33].

4. SCHEMA MATCHING TOOLS
Most of the listed techniques have been implemented in a large
number of tools for schema and ontology matching [26][62].
Figure 2 shows a comparative overview of selected tools: Cupid
[45], COMA++ [3][19][20], ASMOV [40], Falcon-AO [39],
RiMON [44], AgreementMaker [16], OII Harmony [67]. Most

696

recent prototypes support match workflows and the combined use
of different linguistic, structural and instance-based matchers.
External dictionaries such as synonym lists or thesauri are
commonly used to improve linguistic matching. GUI support is
often provided, albeit still with limitations [31]. A few systems are
able to match both schemas and ontologies [3][16][67]. As
indicated in Figure 2, advanced techniques such as schema
partitioning, parallel matching, mapping reuse and self-tuning
capabilities (e.g., a dynamic selection of matchers for a given
match task) are still only supported to a limited extent in current
match prototypes.

Match tools have been intensively evaluated but typically under
different conditions and for smaller match problems [4][18]. For
ontology matching, the Ontology Alignment Evaluation Initiative
(OAEI) organizes yearly contests that include some larger
problems, e.g., to match web directories or medical ontologies
(http://oaei.ontologymatching.org). The systems participating in
the OAEI contest have significantly improved over the years but
still struggle with larger problems [27]. For schema matching and
mapping, a comparable benchmark effort is still missing.

Semi-automatic schema matching is also increasingly supported
in commercial middleware tools, in particular for XML schemas
or relational database schemas. Systems such as Altova
MapForce, IBM Infosphere, Microsoft BizTalk Server and SAP
Netweaver provide a GUI-based editor for manual mapping
specification with some support for automatic determination of
match candidates, e.g., based on approximate name matching.
However, most of the more recently proposed match techniques
have not yet been incorporated in commercial mapping solutions.

5. USING MATCH RESULTS AS-IS
Even the best schema matching algorithms make many mistakes,
especially fully-automatic algorithms where there is no human
designer in the loop. Despite these errors, some applications can
use schema matching results as-is. This is especially the case
when a best-effort matching is satisfactory or when the matches
contribute only implicitly to the results of some end-user task. For
example, consider the following two scenarios for automatically
filling out HTML forms.

First, most of today’s browsers offer automatic form-filling, e.g.,
personal data such as name and address prior to a purchase. This
can be modeled as a task where the schema of the underlying

web-form is being matched to a model of user data that is stored
in the browser. The user expects the browser to make a best-effort
attempt at filling in personal details, which the user confirms
before submitting the form for processing.

Figure 3 Mappings between domain models and form inputs

can be used to automatically fill out HTML forms.

Second, schema mappings have been proposed as a means of
accessing the content that lies behind HTML forms [47][61]. A
deep-web crawler can work as follows: When the crawler
encounters an HTML form, it can identify the domain that the
form belongs to, and then match the inputs of the form to
elements in the previously-computed mediated schema for that
domain (see Figure 3). It can then generate form submissions by
constructing URLs using sample values for the inputs (based on
known values for the elements in the mediated schema). The
resulting pages are added to the index of the search engine. The
matching results in this case are intermediate results of a multi-
step process. End-users are unlikely to know or care about the
quality of the match result, except insofar as it affects how the
crawler exploits the underlying website.

6. APPLYING MATCH TO
 MODEL MANAGEMENT
For most of the applications summarized in Section 1, schema
matching is just one step in a multi-step process. That multi-step
process involves other operators that manipulate schemas and
mappings, such as schema merging and mapping composition.
This recognition was actually the starting point for our research
into schema matching. In [8] and [9], we proposed a set of such
operators under the name “model management”. We then
embarked on a systematic study of these operators. Since nothing

Figure 2 Comparison of selected match tools (based on [62]).

697

much can be done until the first mapping is created, it was logical
that we started our investigation of operators with schema
matching. In fact, our first algorithmic result about one of the
operators was our paper “Generic Schema Matching” [45]. Since
then, there has been a lot of progress on other operators in
addition to match, which is summarized in [10].

Most data integration and data transformation applications, such
as those in Section 1, need to construct executable mappings—
ones that represent transformations of instances. Since match
algorithms produce correspondences, not semantic relationships,
the natural next step is to enrich those correspondences with
semantics [54]. Often this is a two-step process (Section 3.1 of
[10]). The first step is to generate semantics in the form of
constraints that relate parts of the instances of one schema to parts
of the instances of another schema. Such constraints may not be
functions, in which case they are not executable. In this case, a
second step is needed to translate the semantic relationships into
functions [51] via the operator TransGen.

Depending on the application, the resulting mapping may need to
undergo further manipulation. Suppose we match schemas S and
T and then generate a semantic mapping between them. We might
want to merge S and T into a single schema that covers both of
them, for example, to represent a mediated schema. This can be
done by the merge operator, which takes as input two schemas
and a mapping between them and returns a merged schema with
mappings between the merged schema and the two input schemas
[15][59][60][64].

Suppose we are using the mapping between S and T as a data
transformation that translates data from S’s format into T’s
format. If one of the schemas T in a mapping is modified,
generating T, then we need to update the mapping between S and
T to one between S and T. We can do this by composing the map-
pings S-T and T- T [30][36], yielding a mapping T-T between S
and T [7][28][71].

Other model management operators are Diff (which finds the
difference between mappings) and Extract (the complement of
Diff) [52], and Invert, which reverses the direction of a uni-
directional mapping [28][29].

For most practical applications, all of the model management
operators manipulate mappings that have semantics—except for
the match operator which has a special role. First the match
operator computes correspondences and then, building on these
correspondences, the other operators develop and manipulate
mappings that have semantics.

7. FUTURE TRENDS
Since 2001, there has been a growing realization that matching is
not a one-of task. For example, in data integration, as new data
sources become available, they are mapped to a single mediated
schema. In e-commerce, message formats of new business
partners have to be mapped to message formats that interface to
existing business processes. It is natural to expect that with each
subsequent task to match within a given domain or to a given
schema, the effort required to construct the mapping should
decrease, while the quality of the mapping should increase.

For a given vertical domain, such as product catalogs or patient
records, there are many possible schemas. These schemas exhibit
common patterns, which can be used to improve the results of a
schema matching algorithm. Most of the early approaches to
schema matching encoded this domain knowledge as constraints

or heuristics that were baked into the algorithm. The encoded
constraints were developed by a designer with intimate knowledge
of the domain.

A more flexible approach was introduced in [21]. It showed that
new mappings to a mediated schema can be learned from known
mappings to that schema. Machine-learning algorithms were used
to train models for elements in the mediated schema using known
mappings. The models were then applied to the elements in new
schemas to map them to the same mediated schema. The approach
was extended in [17] to learn complex expressions in addition to
just correspondences. It was further extended in [46] to show that
models can be trained from known mappings in a domain and
applied to match two completely new schemas in the same
domain.

Much of the value of mappings is in the semantic expressions that
are developed from the initial correspondences. It is therefore
important to reuse those expressions, not simply generate
correspondences based on learned models. An early approach in
[19] proposed reusing a validated mapping fragment F by
matching the source and target of the schemas to be matched with
the source and target of F. This introduces several related
problems. First, there is the question of how to partition a schema
into fragments, whose validated mappings can be reused. Second,
a repository is needed to store and provide access to validated
mappings [1]. Third, there is the combinatorial problem of finding
possible matches of each mapping in the library to the many
positions where it might fit in the source and target of the schemas
to be matched. One attempt is discussed in [20]. More work along
these lines is needed.

Despite this progress in mapping reuse, little of the technology
has made it into commercial offerings.

The availability of large numbers of schemas on the web makes
the holistic matching approach quite appealing. Collective schema
matching was proposed in [37] and applied in [38] to match the
inputs in HTML forms. Many schemas (i.e., forms) that are
known to be in a given domain are collectively analyzed to infer a
single mediated schema for that domain. Then a generative model
is learned for the domain based on the assumption that each
distinct schema is simply a different representation of a subset of
a single underlying domain schema. Subsequent work has
extended this clustering approach to accommodate more complex
mappings between HTML forms [70]. These approaches have
thus far been restricted to form matching where the schemas are
small, with just a few, well-understood underlying concepts in the
domain.

In most schema matching scenarios, there is a human in the loop.
Therefore, it is important to have excellent graphical support for
viewing mappings [31]. For example, since large schemas cannot
be viewed on a single screen, it is beneficial to partition them into
fragments that can be matched independently, to the extent
possible. Matching tools also need to offer better support for the
mapping process. For example, users need help in remembering
which schema elements they have examined during the match
process and what was learned by that examination, such as
promising and specious candidates.

We see an increasing convergence of schema matching and entity
resolution approaches, i.e., matching at the metadata level and
matching at the instance level. Most recent schema and ontology
matching prototypes include instance-based matchers [61] that
derive the similarity of schema elements from the similarity or

698

overlap of element instances. Entity resolution, i.e., the
identification of semantically corresponding entities or instances,
can benefit from the semantic categorization of entities within
ontologies and the provision of ontology mappings. For example,
the organization of products or product offers within product
catalogs helps to restrict product matching between different
sources to corresponding or closely related product categories,
based on a pre-determined ontology mapping between the product
catalogs. Link discovery to interconnect sources in the so-called
web of linked data [13][56] is an area where such semantic entity
resolution approaches are needed and applicable due to the broad
availability of ontologies.

8. CONCLUSION
In this paper, we briefly summarized generic schema matching
developments since we published our 2001 paper that introduced
the subject [45]. We listed published techniques, how published
techniques are used, and future trends.

There seem always to be new sources of information available to
new schema matching techniques and clever ways of combining
existing techniques. In this sense, the problem of schema
matching is inherently open-ended. Thus, the schema matching
field is still a vibrant one, with many opportunities for researchers
and tool developers to move it forward.

9. ACKNOWLEDGMENTS
We thank the many researchers who have collaborated with us
over the years, helping us learn many of the lessons summarized
in this paper. They include Eddie Churchill, Hong-Hai Do, AnHai
Doan, Alon Halevy, Sabine Massmann, Sergey Melnik, Michalis
Petropoulos, and Christoph Quix.

10. REFERENCES
[1] Alexe, B. M. Gubanov, M. A. Hernandez, H. Ho, J.-W.

Huang, Y. Katsis, L. Popa, B. Saha, and I. Stanoi.
Simplifying Information Integration: Object-Based Flow-
of-Mappings Framework for Integration. Proc. BIRTE,
108–121. Springer, 2009.

[2] Algergawy, A., E. Schallehn, and G. Saake: Improving
XML schema matching performance using Prüfer
sequences. Data Knowl. Eng. 68(8), 728-747, 2009.

[3] Aumueller, D., H.H. Do, S. Massmann, and E. Rahm:
Schema and ontology matching with COMA++. Proc.
SIGMOD, demo paper, 906-908, 2005.

[4] Bellahsene, Z., A. Bonifati, F. Duchateau, and Y.
Velegrakis: On Evaluating Schema Matching and
Mapping. In: Z. Bellahsene, A. Bonifati, E.Rahm (eds),
Schema Matching and Mapping, Springer, 2011.

[5] Bellahsene, Z., A. Bonifati, and E. Rahm (editors), Schema
Matching and Mapping, Springer, 2011.

[6] Bergamaschi, S., S. Castano, and M. Vincini: Semantic
Integration of Semistructured and Structured Data Sources.
SIGMOD Record 28(1), 54-59, 1999.

[7] Bernstein, P.A., T. J. Green, S. Melnik, and A. Nash:
Implementing mapping composition. VLDB J. 17(2), 333-
353, 2008.

[8] Bernstein, P.A., L.M. Haas, M. Jarke, E. Rahm, and G.
Wiederhold: Panel: Is Generic Metadata Management
Feasible? Proc. VLDB, 660-662, 2000.

[9] Bernstein, P.A., A.Y. Halevy, and R. Pottinger: A Vision
of Management of Complex Models. SIGMOD Record
29(4), 55-63, 2000.

[10] Bernstein, P.A. and S. Melnik: Model Management 2.0:
Manipulating Richer Mappings. Proc. SIGMOD, 1-12
2007.

[11] Bernstein, P.A., S. Melnik, and J.E. Churchill: Incremental
schema matching. Proc. VLDB, demo paper, 1167-1170,
2006.

[12] Bernstein, P.A., S. Melnik, M. Petropoulos, and C. Quix:
Industrial-Strength Schema Matching. ACM SIGMOD
Record 33(4), 38-43, 2004.

[13] Bizer, C., T. Heath, and T. Berners-Lee: Linked Data - The
Story So Far. Int. J. Semantic Web Inf. Syst. 5(3), 1-22,
2009.

[14] Bohannon, P. E. Elnahrawy, W. Fan, and M. Flaster:
Putting context into schema matching. Proc. VLDB, 307-
318, 2006.

[15] Chiticariu, L., P. G. Kolaitis, and L. Popa: Interactive
generation of integrated schemas. Proc. SIGMOD, 833-
846, 2008.

[16] Cruz, I.F., F.P. Antonelli, and C. Stroe: AgreementMaker:
Efficient Matching for Large Real-World Schemas and
Ontologies. PVLDB 2(2), demo paper, 1586-1589, 2009.

[17] Dhamankar, R., Y. Lee, A-H. Doan, A.Y. Halevy, and P.
Domingos: iMAP: Discovering Complex Mappings
between Database Schemas. Proc. SIGMOD, 383-394,
2004.

[18] Do, H.H., S. Melnik, and E. Rahm: Comparison of Schema
Matching Evaluations. In: Web, Web-Services, and
Database Systems, Springer LNCS 2593, 221-237, 2003.

[19] Do, H.H. and E. Rahm: COMA – A System for Flexible
Combination of Schema Matching Approaches. Proc.
VLDB, 610-621, 2002.

[20] Do, H.H. and E. Rahm: Matching large schemas:
Approaches and evaluation. Inf. Syst. 32(6), 857-885,
2007.

[21] Doan, A-H., P. Domingos, and A.Y. Halevy: Reconciling
the Schemas of Disparate Data Sources: A Machine-
Learning Approach. Proc. SIGMOD, 509-520, 2001.

[22] Doan, A-H., J. Madhavan, P. Domingos, and A. Y. Halevy:
Learning to Map between Ontologies on the Semantic
Web. Proc. WWW, 662-673, 2002.

[23] Ehrig M., and S. Staab: Quick ontology matching. Proc.
Int. Conf. Semantic Web (ICSW), Springer LNCS 3298,
683-697, 2004.

[24] Ehrig M., S. Staab, and Y. Sure: Bootstrapping Ontology
Alignment Methods with APFEL. Proc. Int. Conf.
Semantic Web (ICSW), Springer LNCS 3729, 186-200,
2005.

[25] Elmeleegy, H., M. Ouzzani, and A.K. Elmagarmid: Usage-
Based Schema Matching. Proc. ICDE, 20-29, 2008

[26] Euzenat, J. and P. Shvaiko, Ontology Matching, Springer,
2007.

699

[27] Euzenat, J., A. Ferrara, C. Meilicke, J. Pane, F. Scharffe, P.
Shvaiko, H. Stuckenschmidt, O. Šváb-Zamazal, V. Svátek
and C. Trojahn dos Santos: Final Results of the Ontology
Alignment Evaluation Initiative 2010. Proc. 5th ISWC
workshop on Ontology Matching, 2010.

[28] Fagin, R.: Inverting schema mappings. ACM Trans.
Database Syst. 32(4), Article 25, 2007.

[29] Fagin, R., P.G. Kolaitis, L. Popa, and W.-C. Tan: Quasi-
inverses of schema mappings. ACM Trans. Database Syst.
33(2), Article 11, 2008.

[30] Fagin, R., P.G. Kolaitis, L. Popa, and W.-C. Tan: Schema
Mapping Evolution Through Composition and Inversion.
In: Z. Bellahsene, A. Bonifati, E. Rahm (eds), Schema
Matching and Mapping, Springer, 191-222, 2011.

[31] Falconer, S.M. and N.F. Noy: Interactive Techniques to
Support Ontology Matching. In: Z. Bellahsene, A.
Bonifati, E. Rahm (eds), Schema Matching and Mapping,
Springer, 29-52, 2011.

[32] Gal, A.: Managing uncertainty in schema matching with
top-k schema mappings. J. Data Semantics 6, 90-114,
2006.

[33] Gal, A.: Enhancing the capabilities of attribute
correspondences. In: Z. Bellahsene, A. Bonifati, E. Rahm
(eds), Schema Matching and Mapping, Springer, 53-74,
2011.

[34] Gross, A., M. Hartung, T. Kirsten, and E. Rahm: On
Matching Large Life Science Ontologies in Parallel. Proc.
7th Int. Conf. Data Integration in the Life Sciences (DILS),
Springer LNCS 6254, 35-49, 2010.

[35] Giunchiglia F., P. Shvaiko, and M. Yatskevich: Semantic
schema matching. Proc. OTM Conf. (CoopIS), 347-365,
2005.

[36] Hartung, M., J. Terwilliger, and E. Rahm: Recent advances
in schema and ontology evolution. In: Z. Bellahsene, A.
Bonifati, E. Rahm (eds), Schema Matching and Mapping,
Springer, 149-190, 2011.

[37] He, B. and K. C.-C. Chang: Statistical Schema Matching
across Web Query Interfaces. Proc. SIGMOD, 217-228,
2003.

[38] He, H., W. Meng, C.T. Yu, and Z. Wu: Automatic
integration of Web search interfaces with WISE-Integrator.
VLDB J. 13(3), 256-273, 2004.

[39] Hu, W., Y. Qu, and G. Cheng: Matching large ontologies:
A divide-and-conquer-approach. Data Knowl. Eng. 67(1),
140-160, 2008.

[40] Jean-Mary, Y.R., E.P. Shironoshita, and M.R. Kabuka:
Ontology matching with semantic verification, J. Web
Semantics 7(3):235–251, 2009.

[41] Koudas, N., A. Marathe, and D. Srivastava: Flexible
String Matching Against Large Databases in Practice. Proc.
VLDB, 1078-1086, 2004.

[42] Lambrix, P., H. Tan, and W. Xu: Literature-based
Alignment of Ontologies. Proc. ICSW Ontology Matching
(OM) workshop, 2008.

[43] Lee, Y., M. Sayyadian, A. Doan, and A. Rosenthal:
eTuner: tuning schema matching software using synthetic
scenarios. VLDB Journal 16(1), 97-122, 2007.

[44] Li, J., J.Tang, Y. Li, and Q. Luo. RiMOM: A Dynamic
Multistrategy Ontology Alignment Framework. IEEE
Trans. Knowl. Data Eng. 21(8), 1218-1232, 2009.

[45] Madhavan, J., P. A. Bernstein, and E. Rahm: Generic
Schema Matching with Cupid. Proc. VLDB, 49-58, 2001.

[46] Madhavan, J., P.A. Bernstein, A. Doan, and A.Y. Halevy:
Corpus-based Schema Matching. Proc. ICDE, 57-68, 2005.

[47] Madhavan, J., D. Ko, L. Kot, V. Ganapathy, A.
Rasmussen, and A. Y. Halevy: Google’s Deep Web crawl.
PVLDB 1(2), 1241-1252, 2008.

[48] Magnani, M., N. Rizopoulos, P. McBrien, and D. Montesi:
Schema integration based on uncertain semantic mappings.
Proc. ER, Springer LNCS 3716, 31-45, 2005.

[49] Massmann, S. and E. Rahm: Evaluating Instance-based
Matching of Web Directories. Proc. WebDB, 2008.

[50] McCann, R., W. Shen, and A. Doan: Matching schemas in
online communities: A web 2.0 approach. Proc. ICDE,
110-119, 2008.

[51] Melnik, S., A. Adya, and P.A. Bernstein: Compiling
Mappings to Bridge Applications and Databases. ACM
Trans. Database Syst. 33(4), Article 22, 2008.

[52] Melnik, S., P.A. Bernstein, A.Y. Halevy, and E. Rahm:
Supporting Executable Mappings in Model Management.
Proc. SIGMOD, 167-178, 2005.

[53] Melnik, S., H. Garcia-Molina, and E. Rahm: Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching. Proc. ICDE, 117-128,
2002.

[54] Miller, R.J., L.M. Haas, and M.A. Hernández: Schema
Mapping as Query Discovery. Proc. VLDB, 77-88, 2000.

[55] Nandi, A. and P.A. Bernstein: HAMSTER: Using Search
Clicklogs for Schema and Taxonomy Matching. PVLDB
2(1), 181-192, 2009.

[56] Parundekar, R., C.A. Knoblock, and J.L. Ambite: Linking
and Building Ontologies of Linked Data. Proc. Int.
Semantic Web Conference, Springer LNCS 6496, 598-614,
2010.

[57] Peukert, E., H. Berthold, and E. Rahm: Rewrite
Techniques for Performance Optimization of Schema
Matching Processes. Proc. EDBT, 433-464, 2010.

[58] Palopoli, L., G. Terracina, and D. Ursino: The System
DIKE: Towards the Semi-Automatic Synthesis of
Cooperative Information Systems and Data Warehouses.
Proc. ADBIS-DASFAA, 108-117, 2000.

[59] Pottinger, R.: Mapping-Based Merging of Schemas. In: Z.
Bellahsene, A. Bonifati, E. Rahm (eds), Schema Matching
and Mapping, Springer, 223-252, 2011.

[60] Pottinger, R. and P.A. Bernstein: Merging Models Based
on Given Correspondences. Proc. VLDB, 826-837, 2003.

[61] Raghavan, S. and H. Garcia-Molina: Crawling the Hidden
Web. Proc. VLDB, 129-138, 2001.

700

[62] Rahm, E.: Towards Large-Scale Schema and Ontology
Matching. In: Z. Bellahsene, A. Bonifati, E. Rahm (eds),
Schema Matching and Mapping, 3-28, Springer, 2011.

[63] Rahm, E. and P.A. Bernstein: A Survey of Approaches to
Automatic Schema Matching. VLDB J. 10(4), 334-350,
2001.

[64] Raunich, S. and E. Rahm: ATOM: Automatic Target-
driven Ontology Merging. Proc. ICDE, demo paper, 276-
279, 2011,

[65] Saha, B., I. Stanoi, and K.L. Clarkson. Schema covering: a
step towards enabling reuse in information integration.
Proc. ICDE, 285-296, 2010.

[66] Saleem, K., Z. Bellahsene, and E. Hunt: PORSCHE:
Performance Oriented SCHEma mediation. Inf. Syst. 33(7-
8),637-657, 2008.

[67] Seligman, L., P. Mork, A.Y. Halevy, K. Smith, M,J. Carey,
K. Chen, C. Wolf, J. Madhavan, A. Kannan, and D.
Burdick: OpenII: An Open Source Information Integration
Toolkit, Proc. SIGMOD, 1057-1060, 2010.

[68] Shvaiko, P. and J. Euzenat: A Survey of Schema-based
Matching Approaches. Journal on data Semantics, IV, 146-
171, 2005.

[69] Su, W., J. Wang, and F.H. Lochovsky: Holistic Schema
Matching for Web Query Interfaces. Proc. EDBT, 77-94,
2006.

[70] Wu, W., C.T. Yu, A.-H. Doan, and W. Meng: An
Interactive Clustering-based Approach to Integrating
Source Query interfaces on the Deep Web. Proc.
SIGMOD, 95-106, 2004.

[71] Yu, C. and L. Popa: Semantic Adaptation of Schema
Mappings when Schemas Evolve. Proc. VLDB, 1006-
1017, 2005.

[72] Zhdanova, V. and P. Shvaiko: Community-Driven
Ontology Matching. Proc. ESWC, 34-49, 2006.

[73] Zhong, Q., H. Li, J. Li, G. Xie, J. Tang, L. Zhou, and Y.
Pan: A Gauss Function Based Approach for Unbalanced
Ontology Matching. Proc. SIGMOD, 669-680, 2009.

701

