
On Integrating Catalogs

Rakesh Agrawal Ramakrishnan Srikant

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120, USA

ABSTRACT
We address the problem of integrating documents from different
sources into a master catalog. This problem is pervasive in web
marketplaces and portals. Current technology for automating this
process consists of building a classifier that uses the categorization
of documents in the master catalog to construct a model for pre-
dicting the category of unknown documents. Our key insight is
that many of the data sources have their own categorization, and
classification accuracy can be improved by factoring in the implicit
information in these source categorizations. We show how a Naive
Bayes classification can be enhanced to incorporate the similarity
information present in source catalogs. Our analysis and empirical
evaluation show substantial improvement in the accuracy of cata-
log integration.

Keywords: Classification, Categorization, Data Mining, Catalog
Integration, Web Portals, Web Marketplaces

1. INTRODUCTION
Imagine you are a marketplace for electronic components. Your

catalog features nearly ten million parts categorized into 5000 cat-
egories. Noticing your success, a major distributor wants to join
your marketplace. This distributor’s catalog contains nearly a mil-
lion parts categorized into 2000 categories. Your problem is how to
quickly integrate this distributor’s catalog into your catalog.

This problem is pervasive on the web, given many websites are
aggregators of information from various sources. B2C shops like
Amazon need to integrate catalogs from multiple vendors. B2B
portals, Chipcenter and Questlink, each with a large catalog of their
own, recently merged to form eChips. Information portals like Ya-
hoo! and Google categorize documents into categories. One can
easily conceive a web service that combines the two portals. Many
corporate portals are now merging intra-company and external in-
formation into a uniform categorization.

This paper presents a new technique to help automate the task
of catalog integration. Let us call your marketplace MrCurrent and

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

the distributor who wants to join you MrNew. A straightforward
approach to attacking the catalog integration problem would be to
formulate it as a classification problem [13]. Take the MrCurrent
catalog, treat each category in the catalog as a class, and the infor-
mation about the products belonging to each category as training
examples for the corresponding class. We thus have a well-posed
classification problem and a training set and we can build a pre-
dictive model for classifying MrNew’s products into MrCurrent’s
categories.

Notice, however, in this straightforward approach, we completely
ignored MrNew’s categorization. On the other hand, MrNew’s cat-
egorization contains valuable implicit information about product
similarity. Suppose the classifier’s prediction is such that 98% of
the products belonging to some category in MrNew’s catalog fall in
one category in MrCurrent’s catalog and 2% in a different category.
Those 2% predictions are quite possibly errors, but it will also be
a mistake to take a winner-takes-all attitude and assume that those
2% are necessarily errors.

Our key contribution is how to incorporate the implicit informa-
tion contained in MrNew’s catalog into the classification process.
We show that this additional information can substantially boost
classification accuracy.

1.1 Problem Statement
We now formally define the catalog integration problem we are

solving.
A document d is an object consisting of i) a set of words, and/or

ii) a set of attribute value pairs. By including attribute value pairs,
we are able to cover both text documents as well as product de-
scriptions.

A catalog is a partitioning of a set of documents into a set of
categories1. We are given two catalogs:

� A master catalogMwith a set of categoriesC1; C2; : : : ; Cn

and a set of documents in each category.

� A source catalogN with a set of categories S1; S2; : : : ; Sm
and another set of documents.

We need to find the category inM for each document in N .
1Catalogs are often organized as hierarchies. We assume that any
documents assigned to an interior node really belong to a concep-
tual leaf node that is a child of that interior node. Since we now
have documents only at leaf nodes, we can flatten the hierarchy to
a single level and treat it as a set of categories. Note that a doc-
ument can still belong to multiple leaf nodes, but documents are
only in leaf nodes and not interior nodes.

603

We optionally identify documents in N that do not fit well in
M and give the user the option of adding these as new categories
inM.

1.2 Limitations
An assumption underlying our model is that the categorizations

used by catalogsM and N are homogenous and have significant
overlap. It is possible that the categorizations used by M and
N may be completely orthogonal to each other. For instance, con-
sider a corpus of documents describing businesses. The categoriza-
tion inM is by business type, whereas the categorization in N is
by geographical location. In such cases, the implicit information in
N will not help us better categorize the documents intoM.

Vocabulary changes are a problem for classification in general.
For instance, it was observed in [9] that patents about similar in-
ventions can contain very different terminology. If the vocabulary
inN is quite different fromM, the classification accuracy will cer-
tainly be affected. However, this problem is orthogonal to the idea
of using the similarity information in N .

Our model flattens the catalog hierarchy and treats it as a set of
categories. Past studies [6] [3] have shown that exploiting the hier-
archical structure can lead to better classification results than using
the flattened structure. Our enhancementsfor using the information
inN can be easily incorporated in a Naive Bayes hierarchical clas-
sifier, such as one used in [3]. Incorporation of these enhancements
into other classification schemes, such as the SVM classifier used
in [6], requires further work.

Another issue related to hierarchies is that the hierarchy in M
may be more detailed thanN or vice-versa. IfM is more detailed
than N , our technique can still be helpful. For example, if N has
a category “Cars”, whileM has “Sports Cars” and “Sedans”, our
technique will not help distinguish between “Sports Cars” and
“Sedans”. However, it will help distinguish between these two cat-
egories and say “Trucks”. On the other hand, ifN is more detailed
than M, the detailed categories in N can be first merged into a
super category and our technique can then be applied. (While our
technique would be effective even if applied without merging the
detailed categories, we show in Section 5.2 that having more docu-
ments in the categories in N leads to better results.)

1.3 Related Work
Inducing classification model for a set of categories given ex-

amples of objects for each category is a much studied topic in the
statistics, machine learning, and data mining literature. See, for
instance, [13] for a comprehensive review of various classification
techniques. Naive-Bayes classifiers [7] are competitive with other
techniques in accuracy [3] [10] [8] [15] [12]. They are also fast:
building the model requires only a single pass over the documents
and they quickly classify new documents. Our proposed solution is
also Bayesian.

The observation that the classification techniques can be used
to assign documents to a hierarchy has been previously made in
connection with folder systems. Proposals on the development of
classification models for the purpose of routing e-mail include [1]
[4] [16] [18]. Other systems provide agents that assist e-mail users
by predicting an action the user is likely to take [11] [14]. SONIA
[17] uses agglomerative text clustering to organize the results of
queries to networked information sources, and Naive Bayes clas-

sification to organize new documents within an existing catego-
rization scheme. Text classification has also been applied in other
domains, e.g. [5] showed how well SEC (Security Exchange Com-
mission) filings can be classified into SIC categories. None of these
systems address the task of merging hierarchies.

The Athena system [1] includes the facility of reorganizing a
folder hierarchy into a new hierarchy. The user provides examples
of documents for every node of the new hierarchy, which is used as
the training set for learning the classification model for new hierar-
chy. The documents from old hierarchy are then routed to the new
hierarchy using this model. But no information from the old hierar-
chy is used in either building the model or routing the documents.

1.4 Paper Organization
The rest of the paper is organized as follows. In Section 2, we

review Naive Bayes classification and give the basic algorithm that
applies this technique in a straightforward manner to merge docu-
ments from a source catalog into an existing catalog. In Section 3,
we present our enhanced algorithm that uses the implicit informa-
tion in the source catalog to improve the accuracy of catalog inte-
gration. We present an analysis in Section 4 that shows why using
implicit information is a win. We present an empirical evaluation
in Section 5 that gives improvements in accuracy realized in our
experiments. We conclude with a summary in Section 6.

2. STRAIGHTFORWARD APPROACH TO
CATALOG INTEGRATION

We start with a quick review of Naive Bayes classification and
then give the basic algorithm that applies this technique for merging
catalogs in a straightforward manner.

2.1 Naive Bayes Classification
The Naive Bayes classifier estimates the posterior probability of

category Ci given a document d via Bayes’ rule [13]:

Pr(Ci jd) =
Pr(Ci) Pr(d jCi)

Pr(d)
(1)

We can ignore Pr(d) since it is the same for all categories and we
need only the relative probability of the categories to determine d’s
category assignment. Pr(Ci) is estimated by

Pr(Ci) =
Number of documents in category Ci

Total number of documents in the dataset
(2)

which is easy to compute.
We treat Pr(d jCi) as an input in our enhanced algorithm. We

review here how to computePr(d jCi) only for the case of text, and
refer readers to [13] for extensions to the case when the document
also contains a set of attribute-value pairs.2

To estimate the first term on the right hand side of Eq. 3, assume
that the words in d are independent of each other. We get

Pr(d jCi) =

"Y
t2d

Pr(t jCi)

#
(3)

2The essential idea is that if the document consists of both text and
attributes, we can assume independence between the text and the
attributes to computePr(d jCi) = Pr(dtext jCi)�Pr(dattr jCi),
where dtext is the text for the document description, and dattr the
set of attributes for the document.

604

1. For each category Ci inM, compute Pr(Ci) and
Pr(t jCi). (Eqs. 2 and 4, respectively).

2. For each category S inN :
For each document d in S:

(a) Compute Pr(Ci jd) for each category Ci inM
using the statistics computed in Step 1
(Eqs. 1 and 3).

(b) Assign d to the category with the highest
value for Pr(Ci jd).

Figure 1: Basic Algorithm

where t represents the words (tokens). To estimate Pr(t jCi), we
compute the frequency of occurrence of every word appearing in
any of the textual descriptions of the set of documents in cate-
gory Ci. Let n(Ci; t) be the number of occurrences of word t

in documents in category Ci (counting multiple occurrences), and
n(Ci) =

P
t n(Ci; t) the total number of words in documents in

category Ci . Then the maximum likelihood estimate for Pr(t jCi)
is simply n(Ci; t)=n(Ci). However, using this estimate would give
a probability of zero for any word that does not occur in any of the
documents in the category, and thus result in Pr(d jCi) being zero
for any document d that contained a word not present in category
Ci . Following [1], we address this problem by using Lidstone’s
law of succession to smooth the maximum likelihood estimate. For
� � 0, we estimate Pr(t jCi) to be

Pr(t jCi) =
n(Ci; t) + �

n(Ci) + �jV j
(4)

where jV j is the size of the vocabulary (i.e., the number of dis-
tinct words in the textual descriptions in all of the documents). The
above estimate is a linear interpolation of the maximum likelihood
estimate n(Ci; t)=n(Ci) and the uniform prior 1=jV j. The opti-
mal value of � is computed by using a randomly selected subset of
documents inM as a validation set, i.e., we build the classification
model using the rest ofM, and compute the accuracy of the model
for different values of � on the validation set.

2.2 Basic Algorithm
Figure 1 presents the basic method that uses the standard Naive

Bayes technique. We first build a classification model using the set
of documents already inM. This classification model is then used
to place documents from N intoM.

Note that depending on policy parameters:

� A document d may be assigned to more than one category
(say Ci and Cj) if Pr(Cijd) and Pr(Cj jd) both have high
values.

� If for some document d, the value of Pr(Cijd) is low for all
the categories, d may be kept aside for manual classification,
possibly into a new category ofM.

� If for some category S in N , a large fraction of the docu-
ments satisfy the previous condition, S may be flagged as a
candidate for becoming a new category ofM.

Our main focus in this paper is on boosting the classification accu-
racy by incorporating the implicit information present in N . For

ease of exposition, therefore, we assume in the remainder of the
paper that each document in N is assigned to exactly one category
inM.

3. ENHANCED ALGORITHM
Our proposed method uses the similarity information implicit in

the categorization of documents in N to build more accurate clas-
sification models. The intuition is that if two documents belong to
the same category inN , they are more likely to belong to the same
category inM.

Let S denote a category in N . We can extend Bayes rule from
Eq. 1 to incorporate the implicit information in S. We will use the
standard notation Pr(x;y) to refer to Pr(x and y). We also use
Pr(S) to refer to Pr(d 2 S), and Pr(Ci) to refer to Pr(d 2 Ci).
The posterior probability of category Ci inM given a document d
belonging to category S inN is computed as:

Pr(Ci jd; S)

=
Pr(Ci; d; S)

Pr(d; S)

=
Pr(Ci)Pr(S; d jCi)

Pr(d; S)

=
Pr(Ci)Pr(S jCi)Pr(d jCi)

Pr(S; d)

assuming d, S are independent given C i

=
Pr(S) Pr(Ci jS) Pr(d jCi)

Pr(S; d)

since Pr(Ci jS) Pr(S) = Pr(S jCi)Pr(Ci)

=
Pr(Ci jS) Pr(d jCi)

Pr(d jS)
(5)

Eq. 5 is similar to Eq. 1, except that we have Pr(Ci jS) instead of
Pr(Ci). (We also have Pr(d jS) instead of Pr(d) in the denomina-
tor, but since this term is the same for all classes, it does not affect
relative probabilities.)

To estimate Pr(Ci jS), we first classify the documents using the
basic algorithm, then use the categories of the documents in S to
compute the estimate. A simple estimate could be:

Pr(Ci jS) =
Number of documents in S predicted to be in Ci

Total number of documents in S

However, while this equation is identical in form to the estimate for
Pr(Ci) (Eq. 2), that equation was based on real frequencies, while
this equation is based on estimated frequencies. The accuracy of
the estimate depends on the accuracy of the classifier.

As an illustration, consider a scenario where we know that the
source catalog categories are identical to the master catalog cate-
gories. With a perfect classifier, the above estimate will be 1 for the
true category and 0 for all other categories. With a classifier that
is 90% accurate, the estimate will be .9 for the true category, and
perhaps .1/k for k other categories assuming the errors are evenly
split among them. In this case, we would like Pr(Ci jS) to be 1
for the category with the most number of documents, and 0 for the
other categories, i.e., use the majority rule. More generally, we can
use an index w � 0 that reflects the similarity between the cate-
gorization of the two catalogs to decide the amount of weight to
give to the implicit information. We would also like to smooth our

605

1. For each category Ci inM, compute Pr(Ci) and
Pr(t jCi) (Eqs. 2 and 4, respectively).

2. For each category S inN :
(a) For each document d in S:

(i) Compute Pr(Ci jd) for each category Ci inM
using the basic algorithm (Figure 1).

(ii) Tentatively assign d to the category with the
highest value for Pr(Ci jd).

(b) Use the results of Step 2(a)(ii) and Eq. 6 to
compute Pr(Ci jS).

(c) Re-classify each document in S using Pr(Ci jS) instead
of Pr(Ci) in the classification model C (Eq. 5).

Figure 2: Enhanced Algorithm

estimate using the statistics for Pr(Ci) fromM, and have the prop-
erty that for w = 0, our enhanced classifier defaults to the standard
classifier. A formula that satisfies these goals is:

Pr(Ci jS) =

jCij � (Number of docs in S predicted to be in Ci)
wPn

j=1(jCjj � (Number of docs in S predicted to be in Cj)w)

(6)

where jCij is the number of documents in category Ci inM. For
w = 0, Pr(Ci jS) = jCij�Bi=

P
j
(jCj j�Bj), whereBi is 1 if at

least one of the documents in S was predicted to be in category C i,
and 0 otherwise. Notice that even though the absolute probabilities
are different, the relative probabilities among the set of classes that
the standard classifier predicted for any of the documents in S is
the same. Hence the prediction of the enhanced classifier will be
the same as the prediction of the standard classifier when w = 0.

Figure 2 describes the enhanced algorithm, for a given weight w.

3.1 Determining Weight
Before describing the method for selecting weight w, we first

motivate the need for selecting a good value for w.

Example Consider a master catalog M in which there are sepa-
rate categories for “Digital Cameras” and “Computer Peripherals”.
When we integrate products from the source catalogN , let the ba-
sic algorithm come up with the following probabilities for the five
products in one of the categories inN .

Peripherals Camera
P1 .1 .9
P2 .2 .8
P3 .2 .8
P4 .2 .8
P5 .9 .1

Based on these probabilities, four out of the five products belong to
Camera and one to Peripherals. In the master catalog, let there be
10 products each of these two categories, and none in any other cat-
egory (to simplify the example). With a weight of 1, Pr(Camera jS)
= 4*10/(4*10+1*10) = 0.8 and Pr(Peripherals jS) = 1*10/(4*10
+1*10) = 0.2. After incorporating these probabilities (and normal-
izing), the enhanced algorithm would assign:

Peripherals Camera
P1 .03 .97
P2 .06 .94
P3 .06 .94
P4 .06 .94
P5 .69 .31

With a weight of 2, Pr(Camera jS) = 16*10/(16*10+1*10) = 0.94
and Pr(Peripherals jS) = 1*10/(16*10+1*10) = 0.06. This would
result in:

Peripherals Camera
P1 .01 .99
P2 .02 .98
P3 .02 .98
P4 .02 .98
P5 .36 .64

Thus the classification of P5 does not change with a weight of 1,
but switches to the majority category with a weight of 2.

3.1.1 Method
To determine a good value for the weight, we need a tune set

of documents in N for which we know the correct categorization
with respect toM. If there are some common documents between
M andN , we can use these common documents as the tune set. If
there are no common documents between the two catalogs, the cre-
ation of the tune set requires user interaction. We select a random
subset of the documents in N , and present these to the user to get
their categorization inM.

We first make one pass through step 2(a) in Figure 2 for all the
documents in N , allowing us to compute Pr(Ci jS) for a given
weight w. Next, for each document in the tune set, for a set of
values for w, we go through steps 2(b) and 2(c) in Figure 2 and
determine the values of w for which the document is correctly clas-
sified. We typically use an exponentially increasing series for the
set of possible values of w, e.g. (0, 1, 3, 10, 30, 100, 300, 1000).
We then select the weight that gives the highest accuracy on the
documents in the tune set. If a set of weights give the same accu-
racy, we break the tie by choosing the smallest weight, and thus not
overweight the similarity implied by the hierarchyN .

We can reduce the number of documents the user has to inspect
by making two passes. After selecting a random subset of docu-
ments in N , we make a first pass through Step 2 for those docu-
ments, and discard those which have the same categorization for
all the weights. Since the categorization does not change, knowing
the true category for these documents will not help us choose the
weight. We then present the remaining documents to the user, and
choose the weight that gives the highest accuracy on these docu-
ments. We empirically found in Section 5.2 that by following this
strategy, feedback from the user on just 5 to 10 documents was
sufficient to get a near-optimal value for the weight.

Depending on the cost of getting a tune set and the size of the
catalog, we either choose a global weight for the entire catalog, or
tune weights differently for different sections of the catalog.

4. ANALYSIS
We first study the behavior of the enhanced algorithm with re-

spect to weight w. We then show that with a good choice for the
value of w, the enhanced algorithm will do no worse, and can do
substantially better than the basic algorithm.

606

Predicted Category
Cx1 Cx2 Cx3 Cx4 Cx5

Cx1 X (=
Cx2 X (=

True Cx3 � X (=
Category Cx4 � X (

Cx5 � X

Figure 3: Movement of Documents

4.1 Effect of Weight on Accuracy
Consider the documents belonging to a category S in N . Our

first theorem shows that as we increase the weight w, the predicted
category of a document in S will either stay the same or switch
from a less frequent category to a more frequent category, where
frequency of a category is the number of documents in S predicted
to be in that category. Denote

fx := Number of documents from S predicted to be in Cx

THEOREM 1. For any pair of weights w1; w2 � 0, let w1 >

w2, let Cx1 be the predicted category of document d at weight w 1,
and Cx2 the predicted category at weight w2. Then fx1 � fx2 .

Proof: See Appendix A. 2
LetCx1 ; Cx2 ; : : : ; Cxn represent the categories ordered by their

frequency in the predicted categories of the documents in S, i.e.,
fx1 � fx2 � : : : � fxn , Figure 3 shows the movement of doc-
uments with increasing weight. We can split the documents into
three classes:

1. Benefit: Those to the right of the X’s that can move to the
X’s.

2. At Risk: Those currently in the X’s that might move to the
left of the X’s.

3. Lost Cause: Those to the left of the X’s.

As we increase w, documents will move from the first class to the
second, and from the second to the third. If more documents move
from 1 to 2 than move from 2 to 3, accuracy will increase. On the
other hand, if more documents move from 2 to 3 than move from
1 to 2, accuracy will drop.

4.2 Superiority of the Enhanced Algorithm

THEOREM 2. For each document d, there either exists a single
interval (w1; w2); 0 � w1 � w2 in which the document will be
correctly classified, or the document will never be correctly classi-
fied.

Proof: See Appendix A. 2

LEMMA 1. Given a set of documents, there exists a set of inter-
vals (w1l; w1g); (w2l; w2g); : : : ; (wnl; wng) for the weight such
that the number of correctly classified documents is highest in these
intervals.

THEOREM 3. The highest possible accuracy achievable with
the enhanced algorithm is no worse than what can be achieved
with the basic algorithm.

Proof: Basic algorithm is the special case of the enhanced algo-
rithm for weight 0. 2

The catch is that the optimum value of the weight for which the
enhanced algorithm achieves highest accuracy is data dependent.
The method using a tune set described in the previous section at-
tempts to select a good value for the weight, but there is no guar-
antee of success. Our experimental results in the next section show
that we were able to get substantial accuracy improvements using
this method.

5. EXPERIMENTAL RESULTS
We present experimental results using two types of datasets:

Synthetic Catalogs Start with a real-world catalog and consider it
to be the master catalogM. Derive source catalogsN fromM us-
ing various distributions. Consider a specific category Cm inM.
Some of the documents from Cm are assigned to the corresponding
category in N , while some are spread over other categories. Use a
distribution to determine how many documents are distributed over
how many categories. For example, a simple 80-20 distribution
will send 80% of the documents to the corresponding category and
20% to some other category. Different distributions result in differ-
ent degrees of overlap betweenM andN . We use a variety ranging
from a “perfect” match between the two catalogs, to a “Gaussian”
distribution where there is only a moderate amount of similarity.
We generate synthetic catalogs from three master catalogs: a col-
lection of news articles from Reuters, the Pangea electronics part
descriptions dataset, and a slice of the Google hierarchy.

Now consider a specific document d from Cm in M that the
synthetic data generation assigns to the category Sn in N . While
integrating N intoM, if d is assigned a category other than Cm ,
we count it as a classification error; otherwise the assignment is
correct.

Real Catalogs Start with two real-world catalogs that have some
common documents. Treat the first catalog minus the common doc-
uments as the master catalogM. Remove from the second catalog
all documents except the common ones. Treat the remaining docu-
ments in the second catalog as the source catalogN . We thus know
for each document in N the correct classification inM. The goal
for the catalog integration algorithm now is to successfully predict
for each document in N its correct category in M. We do these
experiments using Google and Yahoo! categories.

Experiments Our goal is to understand the following performance
characteristics:

� Accuracy advantage of the enhancedalgorithm over the basic
algorithm.

� The effect of weight on the accuracy of the enhanced algo-
rithm.

� The size of tune set needed for the enhanced algorithm.

� The effect of the number of documents per category in the
source catalog on the classification accuracy.

We use the classification accuracy as the metric for measuring
the success of our approach. Accuracy is defined as

Number of documents in N that are correctly classified
Total number of documents inN

607

Dataset Categories Docs
Reuters 82 11,367
Pangea 1148 37,012
Google.Outdoors 38 7,431

Figure 4: Dataset Characteristics: Reuters, Pangea &
Google.Outdoors

Name Distribution
Perfect 100
90-10 90, 10
80-20 80, 20
GaussianA 68.2, 27.2, 4.3, 0.3
GaussianB 38.3, 29.9, 18.4, 8.8, 3.4, 0.9, 0.3

Figure 5: Target Distributions for Synthetic Catalogs

In the rest of this section, we describe in detail the datasets and
the experimental results. Section 5.1 discusses the synthetic datasets
and Section 5.2 the results with these datasets. Section 5.3 dis-
cusses the real datasets, and Section 5.4 reports results with these
datasets.

5.1 Synthetic Catalogs

Master Catalogs We used the following master catalogs for gen-
erating synthetic catalogs:

� Reuters: This is a collection of news articles, and a popular
benchmark in the information retrieval community. We used
the version of Distribution 1.0 of Reuters-21578 in which
each document is assigned a single category (available from
http://www.research.att.com/ lewis).

� Pangea: This is a dataset of electronic component descrip-
tions used in building the experimental B2B Pangea portal at
IBM Almaden.

� Google.Outdoors: This is the set of web pages in the “Recre-
ation/Outdoors” category in Google (available from http://
directory.google.com/Top/Recreation/Outdoors/). For each
category in “Outdoors”, we got the links both on the cate-
gory page, and from each of the subcategories, and merged
the set of links.

Figure 4 shows the number of categories and total number of
documents for these catalogs.

Target Distributions for Synthetic Catalogs
Our synthetic catalogs have as many categories as the master cat-

alog. We spread documents from a certain category in the master
catalog to multiple categories in the synthetic catalog. Figure 5
shows the various target distributions we used for spreading docu-
ments. For the Perfect distribution, each category in the synthetic
catalog will have documents from a single category in the master
catalog. On the other hand, for GaussianB distribution, documents
from a category in the master catalog will be spread over 7 cate-
gories in the synthetic catalog, and each category in the synthetic
catalog will include documents from 7 categories in the master cat-
alog. The intent was to evaluate the performance of our approach
to catalog merging over a wide range of similarity characteristics
between the categorizations of the two catalogs.

// n: number of categories inM
// f1; f2; : : : ; fm: cumulative frequency distribution
// f0 := 0 (to simplify the description)
for i := 1 to n begin

foreach document d in Ci begin
Let r := uniformly distributed random number in [0, 1).
Find p such that fp � r < fp+1.
j := (i+ p) modulo n;
Assign d to category Sj .

end
end

Figure 6: Generating Synthetic Catalog

Figure 6 gives the details of the algorithm for generating N .
Figure 7 shows the actual distributions for the synthetic catalogs.
These are slightly different from the target distributions because of
the skew in category sizes of the master catalogs.

5.2 Experiments with Synthetic Catalogs

5.2.1 Effect of Weight on Accuracy
Figure 8 shows that the enhanced algorithm can substantially

outperform the basic algorithm. The graphs show the accuracy for
each of the source catalogs as we change the weight; the “Base”
line is the accuracy of the basic algorithm. The accuracy numbers
were computed using 10-fold cross-validation, i.e., we randomly
partition the data into 10 sets, and for each set, train on the re-
maining 9 sets, and test on this set [2]. With a “Perfect” second
catalog, the absolute increase in accuracy (at the best weight) is
12% for Reuters, 20% for Pangea and 29% for Google; the number
of errors drops by 85% for Reuters, 73% for Pangea, and 65% for
Google. With a distribution like GaussianA that results in consid-
erable mismatch between the source and master catalogs, we still
get an absolute increase of 5% for Reuters, 12% for Pangea and
15% for Google; the number of errors drops by 39% for Reuters,
43% for Pangea and 33% for Google. Notice that for distributions
(for generating source catalogs) that are not a good match to the
main catalog, very high weights can cause the enhanced algorithm
to under-perform the basic classifier. Of course, once we use a tune
set, we will avoid those weights.

In general, the optimal value of weight increases with increas-
ing similarity between the two hierarchies. The other factor is the
size of the documents in the dataset: as documents become longer,
the differences betweenPr(d jCi) for different categories becomes
larger and hence a higher weight is needed to influence the results.
The documents from the Google dataset are significantly longer
than those from Reuters or Pangea; hence for the same distribution
of the synthetic hierarchy, the optimal weight is higher for Google.

5.2.2 Tune Set Size
To select the tune set, we first make one pass with the base clas-

sifier to get the prediction for each document, enabling us to com-
pute Pr(Ci jS).3 We then select a random document, and check

3We reuse the computation, so this does not increase execution
time.

608

Distribution Reuters Pangea Google
Perfect 100 100 100
90-10 91.2, 8.8 90.6, 9.4 91.1, 8.9
80-20 82.0, 18.0 80.9, 19.1 82.6, 17.4
GaussianA 70.8, 25.5, 3.5, 0.2 69.2, 27.1, 3.5, 0.1 68.5, 28.0, 3.4, 0.1
GaussianB 51.2, 27.5, 11.8, 6.5, 2.1, 0.9 45.2, 28.4, 15.8, 8.1, 2.2, 0.3 42.2, 28.8, 18.9, 7.2, 2.5, 0.3

Figure 7: Actual Distributions: Reuters, Pangea & Google.Outdoors

(a) Reuters

82

84

86

88

90

92

94

96

98

100

1 10 100 200

A
cc

ur
ac

y

Weight

Perfect
90-10
80-20

GaussA
GaussB

Base

(b) Pangea

65

70

75

80

85

90

95

100

1 10 100 200

A
cc

ur
ac

y

Weight

Perfect
90-10
80-20

GaussA
GaussB

Base

(c) Google.Outdoors

50

55

60

65

70

75

80

85

90

95

100

1 10 100 1000

A
cc

ur
ac

y

Weight

Perfect
90-10
80-20

GaussA
GaussB

Base

(a) Reuters

82

84

86

88

90

92

94

96

98

100

0 5 10 20 35 50

A
cc

ur
ac

y

Tune Set Size

Perfect
90-10
80-20

GaussA
GaussB

Base

(b) Pangea

65

70

75

80

85

90

95

100

0 5 10 20 35 50

A
cc

ur
ac

y

Tune Set Size

Perfect
90-10
80-20

GaussA
GaussB

Base

(c) Google.Outdoors

50

55

60

65

70

75

80

85

90

95

100

0 5 10 20 35 50

A
cc

ur
ac

y

Tune Set Size

Perfect
90-10
80-20

GaussA
GaussB

Base

Figure 8: Accuracy vs. Weight Figure 9: Accuracy vs. Tune Set Size

609

whether the enhanced classifier classifies it differently based on the
weight. If so, we add it to the tune set; else we pick another docu-
ment.

Figure 9 shows that very small tune sets are sufficient to choose
the right weight. With just 5 carefully chosen examples, we are
able to do almost as well as with 10 to 50 examples: there are only
slight improvements beyond 10 examples. The reason why so few
examples are sufficient is that changes in weights only change the
classification of a small fraction (typically around 10%) of the total
documents to be classified. By choosing only such documents to
present for tuning, we get the same effect as we would by present-
ing 10 times as many random documents.

5.2.3 Catalog Size
Figure 10 shows the effect on accuracy as we increase the num-

ber of documents in the second catalog. The x-axis shows the
weighted median category size, i.e., if the category size is 10 doc-
uments, half the documents are in categories (in the second cata-
log) with 10 or fewer documents, and half the documents are in
categories with 10 more documents.4 We used a modified version
of 5-fold cross-validation: the training set was always 80% of the
data, but the test set ranged from 20% of the data to samples of
that 20%. The weight was determined using a tune set of 10 docu-
ments.5 With small category sizes, our estimates of Pr(Ci jS) are
likely to be off by quite a bit from the true value; hence it is not
surprising that the accuracy increases with the category size. How-
ever, note that for Pangea and Google, we still get a substantial part
of the accuracy boost even with median category sizes of just over
5 documents.

5.3 Real Catalogs
To evaluate our approach using real catalogs for N , we wrapped

the Google and Yahoo! websites, extracted over 100,000 links from
5 different sections of their categorizations, and retrieved the corre-
sponding web pages.6 Incidently, we found less than 10% overlap
between the links in Google and Yahoo!. Figure 11(a) shows the
number of categories, number of links obtained from the website,
and number of documents (after dropping the common documents
and those documents our crawler could not get). When computing
the set of common links, we ignored links that had multiple cate-
gories. Figure 11(b) shows similar numbers for the set of common
documents. We include both the weighted median and the average
documents per category, since the median can sometimes be much
higher. This figure also shows the distributions of the categories.
For instance, a single category in Google.Autos had, on average,
78% of documents from a single category in Yahoo.Autos, 9% from
a second category in Yahoo.Autos, 5% from a third category, and
so on. These distributions look similar to the Gaussian distributions
we used in the synthetic catalogs, except that the tails are longer.

4The median was averaged over the different test sets; hence it is
not an integer.
5The tune set of 10 documents was selected from the entire 20% in
order not to affect the results.
6From Google (http://directory.google.com), we got Recrea-
tion/Autos, Arts/Movies, Recreation/Outdoors, Arts/Photography
and Computers/Software. From Yahoo! (http://dir.yahoo.com),
we got the corresponding categories: Recreation/Automotive,
Entertainment/Movies and Film, Recreation/Outdoors, Arts/Vis-
ual Arts/Photography, and Computers and Internet/Software.

(a) Reuters

82

84

86

88

90

92

94

96

98

100

10 100 600

A
cc

ur
ac

y

Median Category Size

Perfect
90-10
80-20

GaussA
GaussB

Base

(b) Pangea

65

70

75

80

85

90

95

100

5 10 50

A
cc

ur
ac

y

Median Category Size

Perfect
90-10
80-20

GaussA
GaussB

Base

(c) Google.Outdoors

50

55

60

65

70

75

80

85

90

95

100

5 10 100

A
cc

ur
ac

y

Median Category Size

Perfect
90-10
80-20

GaussA
GaussB

Base

Figure 10: Accuracy vs. Median Size of Categories in Synthetic
Catalog

610

(a) All Documents (b) Common Documents
Docs/Category

Dataset Categories Links Docs Categories Docs Average Median Distribution
Google.Autos 26 8095 7351 23 223 9.7 52 78, 9, 5, 4, 3, 1, .4
Yahoo.Autos 59 7202 6021 36 223 6.2 49 76, 13, 5, 2, 1, .9, .9, .4, .2, .2
Google.Movies 40 7285 6483 32 130 4.1 8 69, 15, 6, 3, 3, 1, 1, .7, .7, .7
Yahoo.Movies 45 8531 7433 38 130 3.4 7 64, 20, 8, 4, 2, 1, .6, .2
Google.Outdoors 38 7707 7260 30 135 4.5 6 76, 16, 6, 1
Yahoo.Outdoors 68 8756 8162 37 135 3.6 7 80, 11, 3, 2, 1, .7, .7, .5, .2, .2
Google.Photography 26 3661 3233 22 148 6.7 15 67, 18, 6, 4, 2, 2, 2, .5
Yahoo.Photography 35 3575 3014 26 148 5.7 11 59, 17, 9, 5, 3, 2, 2, .9, .4, .4
Google.Software 77 20471 18864 55 189 3.4 8 69, 15, 7, 4, 3, .9, .3, .3, .3, .3
Yahoo.Software 46 12222 10673 37 189 5.1 7 50, 14, 8, 6, 4, 3, 2, 1, .9, .9

Figure 11: Dataset Characteristics: Google & Yahoo! Slices (October 2000)

(a) Yahoo! to Google (Train: Google, Test: Yahoo!)
Accuracy Improvement

Dataset Basic Enhanced Absolute Relative
Autos 60.5 76.2 15.7 40%

Movies 27.1 42.6 15.5 21%
Outdoors 65.2 77.8 12.6 36%

Photography 50.7 62.8 12.1 25%
Software 47.6 62.4 14.8 28%
Average 50.2 64.4 14.1 30%

(b) Google to Yahoo! (Train: Yahoo!, Test: Google)
Accuracy Improvement

Dataset Basic Enhanced Absolute Relative
Autos 50.2 73.1 22.9 46%

Movies 28.5 46.2 17.7 25%
Outdoors 55.9 65.4 9.5 22%

Photography 45.4 51.3 5.9 11%
Software 43.0 58.6 15.6 27%
Average 44.6 58.9 14.3 26%

Figure 12: Google & Yahoo!: Classification Accuracy

5.4 Experiments with Real Catalogs
Figure 12 shows the performance of the algorithm on the 10

datasets given in Figure 11. We tested the accuracy of the classi-
fiers when merging the Yahoo! categorization into the correspond-
ing Google categorization and vice versa. The enhanced algorithm
did very well even though the two catalogs were quite different:
30% fewer errors on average (14.1% difference in absolute accu-
racy) when classifying Yahoo! into Google, and 26% fewer errors
on average (14.3% difference in absolute accuracy) when classify-
ing Google into Yahoo!.

6. CONCLUSIONS
We presented a technique for integrating documents from a source

catalog into a master catalog that takes advantage of the implicit in-
formation present in the source catalog: that documents in the same
category in the source catalog are similar. Our technique enhances
the standard Naive Bayes classification by incorporating this infor-
mation when classifying source documents. We showed through
analysis that the highest accuracy achievable with our enhanced
technique can be no worse than what can be achieved with the stan-
dard Naive Bayes classification.

Our experiments using synthetic as well as real data indicate that
the proposed technique can result in large accuracy improvements.
Using a tune set for selecting the weight to give the implicit in-
formation allows our enhanced algorithm to do substantially better,
and never do significantly worse. Our experiments also showed
that the size of the tune set can be very small and hence not place a
significant burden on the user of the system.

7. REFERENCES
[1] R. Agrawal, R. Bayardo, and R. Srikant. Athena:

Mining-based Interactive Management of Text Databases. In
Proc. of the Seventh Int’l Conference on Extending Database
Technology (EDBT), Konstanz, Germany, March 2000.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Belmont,
1984.

[3] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Using
Taxonomy, Discriminants, and Signatures for Navigating in
Text Databases. In Proc. of the 23rd Int’l Conf. on Very
Large Databases, pages 446–455, 1997.

[4] W. Cohen. Learning Rules that Classify E-Mail. In Proc. of
the 1996 AAAI Spring Symposium on Machine Learning in
Information Access, 1996.

[5] R. Dolin, J. Pierre, M. Butler, and R. Avedon. Practical
evaluation of IR within automated classification systems. In
Proc. of the 8th Int’l Conf. on Information and Knowledge
Management (CIKM), Kansas City, Nov. 1999.

[6] S. T. Dumais and H. Chen. Hierarchical classification of web
content. In Proc. of the 23rd Int’l ACM Conf. on Research
and Development in Information Retrieval (SIGIR), pages
256–263, Athens, Greece, August 2000.

[7] I. Good. The Estimation of Probabilities: An Essay on
Modern Bayesian Methods. M.I.T. Press, 1965.

[8] K. Lang. News Weeder: Learning to Filter Net-News. In
Proc. of the 12th Int’l Conf. on Machine Learning, pages
331–339, 1995.

[9] L. S. Larkey. A patent search and classification system. In
The Fourth ACM Conference on Digital Libraries, pages
79–87, Berkeley, CA, August 99.

[10] D. Lewis and M. Ringuette. A comparison of two learning
algorithms for text categorization. In In Third Annual
Symposium on Document Analysis and Information
Retrieval, pages 81–92, 1994.

[11] P. Maes. Agents that Reduce Work and Information
Overload. Communications of the ACM, 37(7):31–40, 1994.

611

[12] A. McCallum and K. Nigam. A Comparison of Event
Models for Naive Bayes Text Classification. In AAAI-98
Workshop on “Learning for Text Categorization”, 1998.

[13] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[14] T. Payne and P. Edwards. Interface Agents that Learn: An

Investigation of Learning Issues in a Mail Agent Interface.
Applied Artificial Intelligence, 11:1–32, 1997.

[15] M. Pazzani and D. Billsus. Learning and Revising User
Profiles: The identification of interesting web sites. Machine
Learning, 27:313–331, 1997.

[16] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A
Bayesian Approach to Filtering Junk E-mail. In Proc. of the
AAAI’98 Workshop on Learning for Text Categorization,
Madison, Wisconsin, 1998.

[17] M. Sahami, S. Yusufali, and M. Baldonado. Sonia: A service
for organizing networked information autonomously. In
Proc. of the Third ACM Conference on Digital Libraries,
pages 200–209, 1998.

[18] R. Segal and J. Kephart. MailCat: An Intelligent Assistant
for Organizing E-Mail. In Proc. of the Third Int’l Conf. on
Autonomous Agents, 1999.

APPENDIX

A. PROOFS
Consider the documents belonging to a category S in N . Let

fi := Number of documents from S predicted to be in Ci

For a document d, let

bi := jCij � Pr(d jCi)

From Eqs. 5 and 6, for a weight w

Pr(Ci jd; S) = Kbif
w
i

where K is the same for all the documents in S (K is the product
of the denominators in the two equations). We use the notation
Prw(Ci jd; S) to denotePr(Ci jd; S) for a weight w.

THEOREM 1. For any positive pair of weightsw1; w2, let w1 >

w2, let Cx1 be the predicted category of document d at weight w 1,
and Cx2 the predicted category at weight w2. Then fx1 � fx2 .

Proof: Since Cx1 is the classification at weight w1,
Prw1

(Cx1 jd; S) � Prw1
(Cx2 jd; S). Expanding, we get

Kbx1fx1
w1 � Kbx2fx2

w1

(bx1=bx2)(fx1=fx2)
w1 � 1 (7)

Similarly, since Prw2
(Cx1 jd; S) � Prw2

(Cx2 j d; S), we get

Kbx1fx1
w2 � Kbx2fx2

w2

(bx1=bx2)(fx1=fx2)
w2 � 1 (8)

Combining equations 7 and 8, we get

(bx1=bx2)(fx1=fx2)
w1 � (bx1=bx2)(fx1=fx2)

w2

(fx1=fx2)
(w1�w2) � 1

fx1=fx2 � 1 (since w1 �w2 > 0)

fx1 � fx2

2

LEMMA 2. For any category Cp , if there exists some Cj such
that fj > fp and bj � bp , or fj = fp and bj > bp , then Cp will
never be the classification of document d.

Proof: Let there be some Cj such that fj > fp and bj � bp .
Then bjf

w
j > bpf

w
p for any positive w, and Prw(Cj jd; S) >

Prw(Cp jd; S) for any positivew, andCj will always be preferred
to Cp . A similar argument holds for the other case. 2

LEMMA 3. Let Cp; Cq be two categories such that fp > fq
and bp < bq . Then there exists some weight wt > 0 such that for
all w > wt, Prw(Cpjd; S) > Prw(Cq jd; S), and for all w < wt,
Prw(Cp jd; S) < Prw(Cq jd; S).

Proof: Let wt = log(bq=bp)= log(fp=fq). Since fp > fq and
bq > bp, wt > 0. Now, for any w > wt:

w > log(bq=bp)= log(fp=fq)

w log(fp=fq) > log(bq=bp)

(fp=fq)
w > (bq=bp)

Kbpf
w
p > Kbqf

w
q

Similarly for any w < wt:

w < log(bq=bp)= log(fp=fq)

Kbpf
w
p < Kbqf

w
q

2

THEOREM 2. For each document d, there either exists a single
interval (w1; w2), 0 � w1 � w2 in which the document will be
correctly classified, or the document will never be correctly classi-
fied.

Proof: Let Cp be the correct classification for document d. We
split all other categories into five groups:

� Galways = fCj j fj > fp and bj � bp; or fj = fp and bj >
bpg. From Lemma 2, if Galways is non-empty, the document
will never be correctly classified.

� Gnever = fCj j fj < fp and bj < bpg. Cp will always be
preferred to any Cj 2 Gnever .

� Gequal = fCj j fj = fp and bj = bpg. We assume that
if two classes have the same probability, the document is as-
signed to both classes, and thus ignore this case.

� Ghigh = fCj j fj > fp and bj < bpg. From Lemma 3,
there exists some weight whigh such that for all w < whigh,
Prw(Cp jd; S) > max(fPrw(Cj jd; S) jCj 2 Ghighg),

� Glow = fCj j fj < fp and bj > bpg. From Lemma 3,
there exists some weight wlow such that for all w > wlow ,
Prw(Cp jd; S) > max(fPrw(Cj jd; S) jCj 2 Glowg).

Hence if Galways is non-empty, or if whigh < wlow , Cp will never
the the classification for the document. Otherwise, the document
will be correctly classified in the interval (wlow; whigh). 2

612

