
Learning Expressive Linkage Rules using Genetic
Programming

Robert Isele
Webbased Systems Group

Freie Universität Berlin
Garystr. 21, 14195 Berlin, Germany

mail@robertisele.com

Christian Bizer
Webbased Systems Group

Freie Universität Berlin
Garystr. 21, 14195 Berlin, Germany

chris@bizer.de

ABSTRACT

A central problem in data integration and data cleansing is
to �nd entities in di�erent data sources that describe the
same real-world object. Many existing methods for identi-
fying such entities rely on explicit linkage rules which spec-
ify the conditions that entities must ful�ll in order to be
considered to describe the same real-world object. In this
paper, we present the GenLink algorithm for learning ex-
pressive linkage rules from a set of existing reference links
using genetic programming. The algorithm is capable of
generating linkage rules which select discriminative proper-
ties for comparison, apply chains of data transformations
to normalize property values, choose appropriate distance
measures and thresholds and combine the results of multi-
ple comparisons using non-linear aggregation functions. Our
experiments show that the GenLink algorithm outperforms
the state-of-the-art genetic programming approach to learn-
ing linkage rules recently presented by Carvalho et. al. and
is capable of learning linkage rules which achieve a similar
accuracy as human written rules for the same problem.

1. INTRODUCTION
As companies move to integrating data from even larger

sets of internal and external data sources and as more and
more structured data is becoming available on the public
Web, the problem of �nding entities in di�erent data sources
that describe the same real-world object is moving into the
focus within even more application scenarios.

This problem has been studied extensively in the database
community and is known as entity matching, record linkage,
coreference resolution and deduplication [12, 16, 31].

Many existing methods identify matching entities using
rule-based approaches [22]. Within these methods, linkage
rules [31] specify the conditions that two entities must ful�ll
in order to be be considered to describe the same real-world
object. Linkage rules typically compare di�erent proper-
ties of the entities using a set of distance measures. The
resulting similarity scores may be combined using di�erent

aggregation functions. If the data sources use di�erent prop-
erty value representation formats, property values may be
normalized by applying transformations prior to the com-
parison. Writing good linkage rules by hand is a non-trivial
problem as the rule author needs to have detailed knowl-
edge about the source data set and the target data set in or-
der to choose appropriate properties, data transformations,
distance measures together with good thresholds as well as
aggregation functions.

In this paper, we present GenLink, a supervised learning
algorithm which employs genetic programming in order to
learn linkage rules from a set of existing reference links. Gen-
Link is capable of matching entities between heterogeneous
data sets which adhere to di�erent schemata. By employ-
ing an expressive linkage rule representation the algorithm
learns rules which:

� Select discriminative properties for comparison.

� Apply chains of data transformations to normalize
property values prior to comparison.

� Apply multiple distance measures combined with ap-
propriate distance thresholds.

� Aggregate the result of multiple comparisons using lin-
ear as well as non-linear aggregation functions.

Following genetic programming, the GenLink algorithm
starts with an initial population of candidate solutions which
is iteratively evolved by applying a set of genetic operators.
The basic idea of GenLink is to evolve the population by
using a set of specialized crossover operators. Each of these
operators only operates on one aspect of the linkage rule
e.g. one crossover operator builds chains of transformations
while another operator recombines di�erent comparisons.

Contributions. In this paper, we make the following
contributions: (1) We introduce a linkage rule representa-
tion which combines di�erent distance measures non-linearly
and may include chains of data transformations to normal-
ize values prior to comparison. Our linkage rule repre-
sentation is more expressive than previous work and sub-
sumes threshold-based boolean classi�ers and linear classi-
�ers. Linkage Rules are represented as an operator tree and
can be understood and further improved by humans. (2) We
propose the GenLink genetic programming algorithm which
uses specialized crossover operators to evolve linkage rules
covering the full expressivity of the introduced representa-
tion. (3) We show that GenLink outperforms the state-of-
the-art genetic programming approach for entity matching
recently presented by Carvalho et. al. [10] and is capable

1638

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

of learning linkage rules which achieve a similar accuracy
as human written rules for the same problem. (4) We have
implemented GenLink as part of the Silk Link Discovery
Framework [20]. Silk discovers matching entities within data
sets that are represented as RDF. The main application area
of the framework is to �nd matching entities within data sets
that are accessible on the Web according to the Linked Data
principles [4]. The Silk Link Discovery Framework1 is avail-
able for download under the terms of the Apache License
and all experiments that are presented in this paper can
thus be repeated by the interested reader.

This paper builds on our previous work published as [19]
and extends it with a formalization of the linkage rule repre-
sentation, a more detailed description of the operators and
a more extensive evaluation.

Paper Organization. The rest of the paper is orga-
nized as follows: Section 2 formalizes the entity matching
problem. Based on that, Section 3 introduces our linkage
rule representation. Section 4 discusses related work. Sec-
tion 5 describes the GenLink algorithm in detail. Section 6
presents the results of the experimental evaluation.

2. PROBLEM DEFINITION
We consider the problem of matching entities between two

data sources A and B. Each entity e 2 A [B can be de-
scribed with a set of properties e:p1; e:p2; : : : e:pn. For in-
stance, an entity denoting a person may be described by the
properties name, birthday and address. The objective is to
determine which entities in A and B identify the same real
world object.

The general problem of entity matching can be formalized
as follows [15]:

Definition 1 (Entity Matching). Given two data
sources A and B, �nd the subset of all pairs of entities for
which a relation �R holds:

M = f(a; b); a �R b; a 2 A; b 2 Bg

Similarly, we de�ne the set of all pairs for which �R does
not hold:

U = (A � B) n M

The purpose of relation �R is to relate all entities which
represent the same real world object.

In some cases a subset of M and U is already known
prior to matching. Such reference links can, for instance,
originate from previous data integration e�orts. Alterna-
tively, they can be created by domain experts who simply
need to con�rm or reject the equivalence of entity pairs from
the data sets. Creating reference links is much easier than
to write linkage rules as it requires no previous knowledge
about similarity computation techniques or the speci�c link-
age rule format used by the system. In [21], we present an
active learning method to minimize the number of entity
pairs which need to be con�rmed or rejected.

Definition 2 (Reference Links). A set of positive
reference links R+ � M contains pairs of entities for which
relation �R is known to hold (i.e. which identify the same
real world object). Analogously, a set of negative reference
links R� � U contains pairs of entities for which relation

1http://www4.wiwiss.fu-berlin.de/bizer/silk/

�R is known to not hold (i.e. which identify di�erent real
world objects).

Reference links can serve two purposes: Firstly, they can
be used to evaluate the quality of a linkage rule. But more
importantly, they can also be used to infer a linkage rule
which speci�es the conditions which must hold true for a
pair of entities to be part of M :

Definition 3 (Linkage Rule). A linkage rule l as-
signs a similarity value to each pair of entities:

l : A � B ! [0; 1]

The set of matching entities is given by all pairs for which
the similarity according to the linkage rule exceeds a thresh-
old of 0:5:

Ml = f(a; b); l(a; b) � 0:5; a 2 A; b 2 Bg

In this paper, we consider the problem of learning a link-
age rule from a set of reference links:

Definition 4 (Linkage Rule Learner). The pur-
pose of a learning algorithm for linkage rules is to learn a
linkage rule from a set of reference links:

m : 2(A�B) � 2(A�B) ! (A � B ! [0; 1])

The �rst argument denotes a set of positive reference links,
while the second argument denotes a set of negative refer-
ence links. The result of the learning algorithm is a linkage
rule which should cover as many reference links as possible
while generalizing to unknown pairs.

3. LINKAGE RULE REPRESENTATION
In this section we introduce an expressive linkage rule rep-

resentation. We represent a linkage rule as a tree which is
built from four basic operators:

Property Operator: Retrieves all values of a speci�c
property p of each entity, such as its label property.

Transformation Operator: Transforms the values of a
set of property or transformation operators ~v according
to a speci�c data transformation function f t. Exam-
ples of common transformation functions include case
normalization, tokenization and concatenation of val-
ues from multiple operators. Multiple transformation
operators can be nested in order to apply a sequence
of transformations.

Comparison Operator: Evaluates the similarity between
two entities based on the values of two property or
transformation operators va and vb by applying a dis-
tance measure fd and a threshold �. Examples of com-
mon distance measures include Levenshtein, Jaccard,
or geographic distance.

Aggregation Operator: Due to the fact that, in most
cases, the similarity of two entities cannot be deter-
mined by evaluating a single comparison, an aggre-
gation operator combines the similarity scores from
multiple comparison or aggregation operators ~s into
a single score according to a speci�c aggregation func-
tion fa. Examples of common aggregation functions
include the weighted average or yielding the minimum
score of all operators.

1639

Figure 1: Structure of a linkage rule

The linkage rule tree is strongly typed [26] i.e. only spe-
ci�c combinations of the four basic operators are allowed.
Figure 1 speci�es the valid structure of a linkage rule.

Discussion. Our representation of a linkage rule di�ers
from other representations in record linkage in a number of
ways: First of all, each comparison operator accepts two
value operators allowing the matching of data sets that are
represented using di�erent schemata.

Matching between di�erent schemata is also enabled by
the introduction of transformation operators. For exam-
ple, a data source which uses the FOAF vocabulary [5]
may represent person names using the foaf:firstName and
foaf:lastName properties while a data source using the DB-
pedia ontology may represent the same names using just the
dbpedia:name property. In order to compare entities ex-
pressed in di�erent schemata or data formats, their values
have to be normalized prior to comparing them for similar-
ity. In this example we could achieve this in two ways: We
could concatenate foaf:firstName and foaf:lastName into
a single name before comparing them to dbpedia:name by
using a character-based distance measure such as the Lev-
enshtein distance. Alternatively, we could split the values
of dbpedia:name using a tokenizer and compare them to
the values of foaf:firstName and foaf:lastName by using
a token-based distance measure such as the Jaccard coe�-
cient.

Another motivation for transformation operators is the
matching of noisy data sets. A common example is data
sources which contain values using an inconsistent letter
case (e.g. \iPod" vs. \IPOD"). A way to address case in-
consistency is to normalize all values to lower case prior to
comparing them.

Finally, we allow aggregation operators to be nested which
enables us to represent non-linear classi�ers beyond pure
boolean classi�ers. The subsequent related work section will
discuss how our representation can be reduced to existing
approaches.

It is outside of the scope of this paper to present methods
to execute linkage rules which are based on the proposed
representation. A method to e�ciently execute such linkage
rules can be found in [19].

Example. Figure 2 shows a simple example of a linkage
rule for interlinking cities. In this example, the linkage rule
compares the labels as well as the coordinates of the enti-
ties. The labels are normalized by converting them to lower
case prior to comparing them with the Levenshtein distance
while allowing for a maximum distance of 1. The similarity
score of the labels is then aggregated with the geographic
similarity score into a single score by using the minimum

Figure 2: Example linkage rule

aggregation i.e. both values must exceed the threshold of
0:5 in order to generate a link.

Semantics. We now de�ne the semantics of the individ-
ual operators: We distinguish between 2 types of operators:
value operators and similarity operators. While value oper-
ators provide a function which yields a discriminative value
for a single entity, similarity operators provide a function
which determines how similar two given entities are.

Given two data sources A and B, a value operator yields
a function which returns a discriminative value for a given
entity e by which it can be compared to other entities. Thus,
it returns a value from the set:2

V := [A [B ! �]

Where � denotes a (possibly empty) set of values.
We now introduce two value operators: property operators

and transformation operators:

Definition 5 (Property Op.). A property operator
retrieves all values of a speci�c property of an entity:

v
p : P ! V

p 7! (e 7! e:p)

where p denotes the property to be retrieved by the operator.

Definition 6 (Transformation Op.). A transfor-
mation operator transforms the input values according to a
speci�c data transformation function:

v
t : (V� � F t) ! V

(~v; f
t) 7! (e 7! f

t(v1(e); v2(e); : : : ; vn(e)))

~v is a vector of operators: v1; v2; : : : ; vn. The transformation
function f t may be any function which transforms the value
sets provided by the operators into a single value set:

f
t : �n ! �

Although in general we do not impose any restriction on
the concrete transformation functions which can be used,
Table 1 lists the functions which we employed in our ex-
periments. An example of a transformation operator which
concatenates the �rst and the last name of entities about
persons is:

v
t((vp(�rstName); v

p(lastName)); concatenate)

Note that transformations also may be nested.

2[X ! Y] denotes Y X i.e. the space of all functions X ! Y

1640

Transformations
lowerCase Converts all values to lower case
tokenize Splits all values into tokens
stripUriPre�x Strips the URI pre�xes (e.g. http://

dbpedia.org/resource/)
concatenate Concatenates the values from two

value operators

Table 1: Transformations used in all experiments

Distance Measures
levenshtein Levenshtein distance
jaccard Jaccard distance coe�cient
numeric The numeric di�erence
geographic The geographical distance in meters
date Distance between two dates in days

Table 2: Distance functions used in all experiments

A similarity operator returns a function which assigns a
value from the interval [0,1] to each pair of entities:

S := [A � B ! [0; 1]]

We consider two types of similarity operators: comparison
operators which compare the result of two value operators
and aggregation operators which aggregate multiple similar-
ity operators.

Definition 7 (Comparison Op.). Given two value
operators va and vb, a comparison operator is de�ned as:

s
c : (V � V � Fd � R) ! S

(va; vb; f
d
; �) 7!

(ea; eb) 7!

(

1 � d
�

if d � �

0 if d > �

!

with d := f
d(va(ea); vb(eb))

fd de�nes the distance measure which is used to compare the
values of both value operators:

f
d : � � � ! R

Table 2 lists the distance functions which we employed
in our experiments. An example of a comparison operator
which compares the name of the entities in the �rst data set
with the lower cased labels of the entities in the second data
set using the Levenshtein distance is:

s
c(vp(name); v

t((vp(label)); lowerCase); levenshtein; 1)

Definition 8 (Aggregation Op.). Given a set of
similarity operators s an aggregation operator is de�ned as:

s
a : (S� � N

� � Fa) ! S

(~s; ~w; f
a) 7! ((ea; eb) 7! f

a(se; w))

with se := (s1(ea; eb); s2(ea; eb); : : : ; sn(ea; eb))

~w denotes the weights which are used by the aggregation
function fa to combine the values:

f
a : Rn � N

n ! R

The �rst argument contains the similarity scores returned by
the operators of this aggregation while the second argument
contains a weight for each of the operators.

Aggregations
max f t(s; w) := max(s)
min f t(s; w) := min(s)

wmean f t(s; w) :=
P

n

i=1
wisiP

n

i=1
wi

Table 3: Aggregation functions used in all experi-

ments

Table 3 lists the aggregation functions which we employed
in our experiments. Note that aggregations can be nested
i.e. non-linear hierarchies can also be expressed.

4. RELATED WORK
Many approaches suitable for learning binary classi�ers

have been adapted for learning linkage rules [22]. This sec-
tion introduces the most popular approaches and discusses
how they compare to our approach.

Naive Bayes. Based on the original Fellegi-Sunter sta-
tistical model [15] of record linkage, methods from Bayesian
statistics such as Naive Bayes classi�ers have been used to
learn linkage rules [32]. Compared to our approach, Naive
Bayes is not capable of expressing data transformations. It
has been shown to perform worse than other approaches for
entity matching such as support vector machines and deci-
sion trees [27].

Linear Classi�ers. Arasu et. al. [1] categorize widely
used approaches for representing linkage rules as threshold-
based boolean classi�ers and linear classi�ers. Using the
introduced representation, we de�ne linear classi�ers as:

Definition 9 (Linear Classifier). Given a vector of
comparison operators ~s and a vector of weights ~w, a linear
classi�er is de�ned as:

s
a(~s; ~w; wmean) = (ea; eb) 7!

Pn

i=1 wisi(ea; eb)
Pn

i=1 wi

Our representation subsumes linear classi�ers and extends
them in 3 ways:

1. It includes data transformations.

2. It generalizes the aggregation function i.e. allows func-
tions other than wmean.

3. It allows aggregations to be nested.

The most popular method to model linear classi�ers are
support vector machines (SVM) [7]. A SVM is a binary
linear classi�er which maps the input variables into a high-
dimensional space where the two classes are separated by
a hyperplane via a kernel function [3]. One popular appli-
cation of SVMs to entity matching is MARLIN (Multiply
Adaptive Record Linkage with INduction) [2], which uses
SVMs to learn linear classi�ers. While SVMs can be ex-
tended to model non-linear classi�ers, they are not suitable
to learn data transformations.

Threshold-based Boolean Classi�ers. We �rst de-
�ne threshold-based boolean classi�ers:

Definition 10 (Threshold-based Boolean Cl.).
Given a vector of comparison operators ~s, where each
comparison operator compares a pair of properties us-
ing a speci�c distance measure fd and a threshold �, a
threshold-based boolean classi�ers is de�ned as:

s
a(~s; min) = (ea; eb) 7! minfsi(ea; eb) : 1 < i � ng

1641

Note that using the minimum function is equivalent to the
conjunction of all comparisons.

Our representation subsumes threshold-based boolean
classi�ers and extends them in 2 ways:

1. It includes data transformations.

2. It generalizes the aggregation function i.e. allows func-
tions other than min and max.

In literature, threshold-based boolean classi�ers are usu-
ally represented with decision trees. A major advantage of
decision trees is that they provide explanations for each clas-
si�cation and thus can be understood and improved manu-
ally. Active Atlas [28, 29] learns mapping rules consisting
of a combination of prede�ned transformations and similar-
ity measures. TAILOR [11] is another tool which employs
decision trees to learn linkage rules.

Genetic Programming. Genetic programming (GP)
is an extension of the genetic algorithm [17] which has been
�rst proposed, in tree-based form, by Cramer [8]. As genetic
programming represents candidate solutions as trees, linkage
rules can be directly represented.

Genetic programming algorithms usually start with a ran-
dom population and evolve the population using three com-
mon genetic operations [24]:

Reproduction copies an individual without modi�cation.

Crossover recombines two individuals.

Mutation applies a random modi�cation to an individual.

These operations are applied to individuals in the population
which have been selected based on a �tness measure which
determines how close a speci�c individual is to the desired
solution. The evolution of the population stops as soon as
either the con�gured maximum number of iterations or the
maximum F-measure is reached.

To the best of our knowledge, genetic programming for
learning linkage rules has only been applied by Carvalho et.
al. so far [9, 6, 10]. Their approach uses genetic program-
ming to learn how to combine a set of presupplied pairs of
the form <attribute, similarity function> (e.g. <name,
Jaro>) into a linkage rule. These pairs can be combined by
the genetic programming method to a linkage rule tree by
using mathematical functions (e.g. +, -, *, /, exp) and con-
stants. Carvalho et. al. show that their method produces
better results as the state-of-the-art SVM based approach by
MARLIN [10]. Their approach is very expressive although
it cannot express data transformations. On the downside,
using mathematical functions to combine the similarity mea-
sures does not �t any commonly used linkage rule model [14]
and leads to complex and di�cult to understand linkage
rules.

5. APPROACH
This section describes the GenLink approach in detail.

The pseudocode of GenLink is given in Algorithm 1.
The algorithm starts by generating an initial population

of candidate linkage rules according to the method described
in Section 5.1.

After the initial population has been generated it is it-
eratively evolved. In each iteration, a new population is
generated by creating new linkage rules from the existing
population until the population size is reached.

Algorithm 1 Pseudocode of the GenLink algorithm. The
speci�c parameter values used in our experiments are listed
in Section 6.1.

P generate initial population
while(maximum iterations nor full F�measure reached) f

P 0 ;
while(jP 0j < populationsize) f

r1; r2 select two linkage rules from P
op select random crossover operator
p random number from interval [0,1]
if (p < mutationprobability) f

rr generate random linkage rule
P 0 P 0 [op(r1, rr)
g else f

P 0 P 0 [op(r1, r2)
g
g
P P 0

g
return best linkage rule from P

A new linkage rule is generated according to the following
steps: First, two linkage rules are selected from the popu-
lation according to the selection method described in Sec-
tion 5.2. In addition, a random crossover operator is se-
lected from the set of available operators. The basic idea
of our approach is to provide a speci�c crossover operator
for each aspect of the linkage rule. For instance, the thresh-
old crossover operator only modi�es the threshold of the
speci�c comparison while the transformation crossover op-
erator combines the transformations of both linkage rules.
The set of provided crossover operators is described in Sec-
tion 5.3. The selected operator is used to either mutate one
of the selected linkage rules or to combine both linkage rules
into a new linkage rule.

The algorithm stops when either a prede�ned number of
iterations is reached or when one linkage rule in the popu-
lation reaches the full F-measure. The best linkage rule in
the �nal population is returned by the algorithm.

5.1 Generating the Initial Population
In genetic programming the initial population is usually

generated randomly. Previous work has shown that starting
with a fully random population works well on some record
linkage data sets [6]. Two circumstances increase the search
space (i.e. the set of all possible linkage rules) consider-
ably: Firstly, data sets with a high number of properties.
Secondly, if data sets which are represented using di�erent
schemata are to be matched the search space includes all
possible property pairs from the source and target data set.
In order to reduce the size of the search space, we employ a
simple algorithm which preselects property pairs which hold
similar values: Before the population is generated, we build
a list of property pairs which hold similar values as described
below. Based on that, random linkage rules are built by se-
lecting property pairs from the list and building a tree by
combining random data transformations, comparisons and
aggregations.

Finding Compatible Properties. The purpose of this
step is to generate a list of pairs of properties which hold sim-
ilar values. For each possible property pair, the values of the
entities referenced by a positive reference link are analyzed.
This is done by tokenizing and lowercasing the values and

1642

generating a new property pair of the form (p1; p2; measure)
if there is a distance measure in a provided list of func-
tions according to which 2 tokens are similar given a certain
threshold �d. In our experiments, we only used the leven-
sthein distance with a threshold of 1. The pseudocode is
given in Algorithm 2.

Algorithm 2 Find compatible properties given a set of ref-
erence links R+ and a distance threshold �

pairs ;

for all (ea; eb) 2 R+ f
for all properties ea:pi and eb:pj f

for all distance functions fd f
va tokenize(lowerCase(ea:pi))
vb tokenize(lowerCase(eb:pj))

if (fd(va; vb) < �d) add (pi; pj; fd) to pairs
ggg
return pairs

Figure 3 illustrates a simple example with two entities. In
this example, the following two property pairs are generated:
(label; label; levensthein) and (point; coord; geographic).

Figure 3: Finding compatible properties

Generating a Random Linkage Rule. A random link-
age rule is generated according to the following rules: First
of all, a linkage rule is built consisting of a random aggre-
gation and up to two comparisons. For each comparison a
random pair from the pre-generated list of compatible prop-
erties is selected. In addition, with a possibility of 50%, a
random transformation is appended to each property.

Note that although the initial linkage rule trees are very
small, this does not limit the algorithm from growing bigger
trees by using the genetic operators.

5.2 Selection
Starting with the initial population, the genetic algorithm

breeds a new population by evolving selected linkage rules
using the genetic operations. The linkage rules are selected
from the population based on two functions: The �tness
function and the selection method.

The purpose of the �tness function is to assign a value to
each linkage rule which indicates how close the given linkage
rule is to the desired solution. A disadvantage of using the
F-measure as �tness function is that it may yield skewed
results if the number of positive and negative reference links
is unbalanced as it only takes the true negative rate into
account. We use Matthews correlation coe�cient (MCC)
as �tness measure. Matthews correlation coe�cient [25] is
de�ned as the degree of the correlation between the actual
and predicted classes:

MCC =
ntp � ntn � nfp � nfn

p

(ntp + nfp)(ntp + nfn)(ntn + nfp)(ntn + nfn)

ntp, ntn, nfp and nfn denote the number of true positives,
true negatives, false positives and false negatives which are

computed based on the provided reference links (ignoring
the remaining part of the data set). In order to prevent
linkage rules from growing inde�nitely, we penalize linkage
rules based on their number of operators: fitness = mcc �
0:05 � operatorcount.

Based on the �tness of each linkage rule, the selection

method selects the linkage rules to be evolved. As selection
method we chose tournament selection as it has been shown
to produce strong results in a variety of GP systems [23] and
is easy to parallelize.

5.3 Crossover Operators
Instead of using subtree crossover, which is commonly

used in genetic programming, we use a set of speci�c
crossover operators which are tailored to the structure of a
linkage rule. For each crossover operation, an operator from
this set is selected randomly and applied to two selected
linkage rules. We reduce mutation to a crossover operation
with a randomly generated new linkage rule. This is known
as headless chicken crossover. If the root node is selected
as the crossover point in the �rst linkage rule this results in
the complete replacement of the given linkage rule with a
randomly generated linkage rule.

Each operator learns one aspect of the linkage rule. The
contribution of the proposed operators to the learning per-
formance over subtree crossover is evaluated experimentally
in Section 6.3.

For evolving linkage rules, we propose the following oper-
ators:

Function Crossover. This crossover operator is used to
�nd the best distance, transformation or aggregation func-
tion. Function crossover selects one operator at random in
each linkage rule and interchanges the functions. For ex-
ample, it may select a comparison with the Levenshtein dis-
tance function in the �rst linkage rule and a comparison with
the Jaccard distance function in the second linkage rule and
then interchanges these two functions. The pseudocode for
function crossover is given in Algorithm 3.

Algorithm 3 Function Crossover

def cross (r1: Rule, r2: Rule) = f
nodeT ype select random type from fTransformation,

,! Comparison, Aggregationg
cmp1 random node of nodeT ype from r1
cmp2 random node of nodeT ype from r2

return r1 with cmp1:fd cmp2:fd

g

Operators Crossover. As a linkage rule usually needs
to combine multiple comparisons, this operator combines
aggregations from both linkage rules. For this, it selects two
aggregations, one from each linkage rule and combines theirs
comparisons. The comparisons are combined by selecting
all comparisons from both aggregations and removing each
comparison with a probability of 50%. For example, it may
select an aggregation of a label comparison and a date com-
parison in the �rst linkage rule and an aggregation of a label
comparison and a comparison of the geographic coordinates
in the second linkage rule. In this case the operator replaces
the selected aggregations with a new aggregation which con-
tains all 4 comparisons and then removes each comparison

1643

with a probability of 50%. Note that the comparisons are
exchanged including the complete subtree i.e. the distance
functions as well as existing transformations are retained.
The pseudocode is given in Algorithm 4. Figure 4 illustrates

Algorithm 4 Operators Crossover

def cross (r1: Rule, r2: Rule) = f
agg1 random aggregation from r1
agg2 random aggregation from r2

ops ;
for all operators o in agg1 and agg2 f

p random number from interval [0,1]
if (p > 0.5)
add o to ops

g

return r1 with agg1:operators ops
g

a simple operators crossover on two linkage rules.

Figure 4: Operators Crossover

Aggregation Crossover. While for some data sets it is
su�cient to use pure linear or boolean classi�ers, for other
data sets the accuracy can be improved by allowing non-
linear aggregations (see Section 6.3). In order to learn ag-
gregation hierarchies, the aggregation crossover operator se-
lects a random aggregation or comparison operator in the
�rst linkage rule and replaces it with a random aggrega-
tion or comparison operator from the second linkage rule.
This way, the operator builds a hierarchy as it may select
operators from di�erent levels in the tree. For example, it
may select a comparison in the �rst linkage rule and replace
it with a aggregation of multiple comparisons from the sec-
ond linkage rule. Note that Aggregation Crossover is similar
to subtree crossover but only operates on aggregation and
comparison nodes. The pseudocode is given in Algorithm 5.
Figure 5 illustrates a simple aggregation crossover on two

Algorithm 5 Aggregation Crossover

def cross (r1: Rule, r2: Rule) = f
o1 random aggregation or comparison from r1
o2 random aggregation or comparison from r2

return r1 with o1 replaced by o2
g

linkage rules.

Transformation Crossover. This operator is used to
recombine the transformations of two linkage rules. By com-
bining the transformation operators of both linkage rules,

Figure 5: Aggregation Crossover

it can build up chains of transformations. In both link-
age rules, transformation crossover randomly selects an up-
per and a lower transformation operator. The next step is
to recombine the paths between the upper and the lower
transformation by executing a two point crossover. Finally,
duplicated transformations are removed. The pseudocode is
given in Algorithm 6. Figure 6 illustrates a transformation

Algorithm 6 Transformation Crossover

def cross (r1: Rule, r2: Rule) = f
t1upper; t1lower random transformations from r1
t2upper; t2lower random transformations from r2

return r1 with:
t1upper replaced by t2upper

t2lower:~v replaced by t1lower:~v
g

crossover. In this example, the tokenize operator was se-

Figure 6: Transformation Crossover

lected as both upper and lower transformation in the �rst
linkage rule. In the second linkage rule, the tokenize opera-
tor was selected as upper transformation while the stem op-
erator was selected as lower transformation. The tokenize

operator in the �rst linkage rule is then replaced by the path
between the upper and the lower transformation in the sec-
ond linkage rule.

Threshold Crossover. This crossover operator com-
bines the distance thresholds of both linkage rules. For this,
one comparison operator is selected at random in each link-
age rule. The new threshold is then set to the average of
both comparisons. The pseudocode is given in Algorithm 7.

Weight Crossover. This crossover operator combines
the weights of both linkage rules analogous to the threshold

1644

Algorithm 7 Threshold Crossover

def cross (r1: Rule, r2: Rule) = f
agg1 random comparison from r1
agg2 random comparison from r2

return r1 with (agg1:� 0:5 � (agg1:� + agg2:�))
g

Parameter Value
Population size 500
Maximum iterations 50
Selection method Tournament selection
Tournament size 5
Probability of Crossover 75%
Probability of Mutation 25%
Stop Condition F-measure = 1.0

Table 4: Parameters

crossover. For this, it selects a comparison or aggregation
operator in each linkage rule and updates the weight in the
�rst operator to the average of both.

6. EVALUATION
In this section we evaluate our approach experimentally:

Section 6.1 describes the experimental setup. The overall
learning results for several real world data sets are presented
in Section 6.2. Finally, Section 6.3 evaluates the contribu-
tion of speci�c parts of our algorithm to the accuracy of the
learned linkage rules.

6.1 Experimental Setup
The GenLink algorithm has been implemented in the Silk

Link Discovery Framework which can be downloaded from
the project homepage3. The Silk Link Discovery Frame-
work supports users in discovering relationships between
data items within di�erent Linked Data sources. All exper-
iments have been executed using Version 2.5.3 of the Silk
Link Discovery Framework.

Because genetic algorithms are non-deterministic and may
yield di�erent results in each run, all experiments have been
run 10 times. For each run the reference links have been
randomly split into 2 folds for cross-validation. The results
of all runs have been averaged and the standard deviation
has been computed. For each experiment, we provide the
evaluation results with respect to the training set as well as
the validation set. All experiments have been run on a 3GHz
Intel(R) Core i7 CPU with 4 cores while the Java heap space
has been restricted to 1GB.

Parameters. Table 4 lists the parameters which have
been used in all experiments. As it is the purpose of the
developed method to work on arbitrary data sets without
the need to tailor its parameters to the speci�c data sets
that should be matched, the same parameters have been
used for all experiments.

Data sets. For evaluation, we used six data sets from
three areas: (1) We evaluate the learning performance on
two well-known record linkage data sets and compare the
performance with an existing state-of-the-art genetic pro-
gramming approach. (2) We evaluate our approach with

3http://www4.wiwiss.fu-berlin.de/bizer/silk/

Entities Reference Links
jAj jBj jR+j jR�j

Cora 1879 1617 1617
Restaurant 864 112 112
SiderDrugbank 924 4772 859 859
NYT 5620 1819 1920 1920
LinkedMDB 199 174 100 100
DBpediaDrugbank 4854 4772 1403 1403

Table 5: The number of entities in each data set as

well as the number of reference links.

Properties Coverage
jA:P j jB:P j CA CB

Cora 4 0.8
Restaurant 5 1.0
SiderDrugbank 8 79 1.0 0.5
NYT 38 110 0.3 0.2
LinkedMDB 100 46 0.4 0.4
DBpediaDrugbank 110 79 0.3 0.5

Table 6: The total number of properties in each data

set as well as the percentage of properties which are

actually set on an entity.

two data sets from the Ontology Alignment Evaluation Ini-
tiative4 and compare our results to the participating sys-
tems. (3) We compare the learned linkage rules with linkage
rules created by a human expert for two data sets.

The �rst two data sets are frequently-used record link-
age data sets while the following 4 sets are RDF data sets.
While the record linkage data sets are already adhering to a
consistent schema, the RDF data sets are split into a source
and a target data set which adhere to di�erent schemata.

Table 5 lists the used data sets together with the number
of entities as well as the number of reference links in each
data set. As only positive reference links have been provided
by the data set providers, we generated the negative refer-
ence links. For two positive links (a; b) 2 R+ and (c; d) 2 R+

we generated two negative links (a; d) 2 R� and (c; b) 2 R�.
For the Cora and Restaurant data set this is sound as the
provided positive links are complete. Since the remaining
data sources are split into source and target data sets, gen-
erating negative reference links is possible as entities in the
source and target data sets are internally unique.

Table 6 shows the number of properties in the source and
target data sets and their coverage i.e. the percentage of
properties which are actually set on an entity on average.
The following section will provide more detailed information
for each data set.

6.2 Overall Results
In this section we compare the overall performance of Gen-

Link on all 6 data sets.

Frequently Used Record Linkage Datasets

A number of data sets have been used frequently to eval-
uate the performance of di�erent record linkage approaches.
Following this practice, we compared the overall learning
performance of our approach with the approach proposed
by Carvalho et. al. [10]. In their experiments, Carvalho et.
al. report to produce better results than the state-of-the-art
SVM based approach by MARLIN. The related work section

4http://oaei.ontologymatching.org

1645

provides more details about how their approach compares to
ours technically.

We chose 2 data sets which are also used by Carvalho
et. al.: the Cora data set and Restaurant data set. The
Cora data set contains citations to research papers from the
Cora Computer Science research paper search engine. For
each citations it contains the title, the author, the venue
as well as the date of publication. The Restaurant data
set contains a set of records from the Fodor's and Zagat's
restaurant guides. For each restaurant it contains the name,
address, phone number as well as the type of restaurant. For
both data sets, we used the XML version5 which is provided
by Draisbach et. al.

Table 7 summarizes the cross validation results for the
Cora data set. On average, our approach achieved an F-

Iter. Time in s (�) Train. F1 (�) Val. F1 (�)
0 5.5 (0.7) 0.880 (0.030) 0.877 (0.031)
10 28.6 (2.7) 0.949 (0.018) 0.945 (0.021)
20 60.1 (4.1) 0.965 (0.005) 0.962 (0.005)
30 93.6 (6.1) 0.968 (0.003) 0.965 (0.004)
40 129.4 (9.7) 0.968 (0.002) 0.965 (0.004)
50 185.8 (26.7) 0.969 (0.003) 0.966 (0.004)
Ref. - 0.900 (0.010) 0.910 (0.010)

Table 7: Results for the Cora data set. The last
row contains the best results of Carvalho et. al. for
comparison.

measure of 96.9% against the training set and 96.6% against
the validation set and needed about 3 minutes to perform
all 50 iterations on the test machine. The learned linkage
rules compared by title, author and venue. Figure 7 shows
an example of a learned linkage rule which reached the top
F-measure. For the same data set, Carvalho et. al. report

Figure 7: Cora: Learned linkage rule

an F-measure of 90.0% against the training set and 91.0%
against the validation set [10]. We suspected the main rea-
son for the better performance of our method on this data set
to be found in the inclusion of data transformations in our
learning approach. To con�rm this claim we re-executed our
method with one limitation: No data transformations were
5http://www.hpi.uni-potsdam.de/naumann/projekte/
dude_duplicate_detection.html

allowed to be used in a linkage rule. With this limitation,
the performance of our methods declined to an F-measure
of 91.2% against the training set and 90.5% against the vali-
dation set approximately matching the numbers of Carvalho
et. al.. Figure 8 shows a learned linkage rule without trans-
formations.

Figure 8: Cora: Learned linkage rule without trans-
formations

Table 8 summarizes the cross validation results for the
Restaurant data set. On average, our approach achieved

Iter. Time in s (�) Train. F1 (�) Val. F1 (�)
0 0.4 (0.1) 0.953 (0.038) 0.951 (0.039)
10 2.0 (0.9) 0.996 (0.004) 0.992 (0.006)
20 3.1 (1.9) 0.996 (0.004) 0.993 (0.006)
30 4.1 (3.0) 0.996 (0.004) 0.993 (0.006)
40 5.2 (4.0) 0.996 (0.004) 0.993 (0.006)
50 6.3 (5.3) 0.996 (0.004) 0.993 (0.006)
Ref. - 1.000 (0.000) 0.980 (0.010)

Table 8: Results for the Restaurant data set. The
last row contains the best results of Carvalho et. al.
for comparison.

an F-measure of 99.6% against the training set and 99.3%
against the validation set. For the same data set, Carvalho
et. al. report an F-measure of 100.0% against the training
set, but only 98.0% against the validation set [10].

Ontology Alignment Evaluation Initiative
The Ontology Alignment Evaluation Initiative (OAEI) is

an international initiative aimed at organizing the evalua-
tion of di�erent ontology matching systems. In addition to
schema matching, OAEI also includes an instance matching
track since 2009 which regularly evaluates the ability to iden-
tify similar entities among di�erent Linked Data sources.

The SiderDrugBank data set was selected from the
OAEI 2010 data interlinking track 6 . We chose this data set
amongst the other drug related data sets because it was the
one for which the participating systems ObjectCoref [18] and
RiMOM [30] performed the worst. This data set contains
drugs from Sider, a data set of marketed drugs and their
side e�ects, and DrugBank, containing drugs approved by
the US Federal Drugs Agency. Positive reference links are
provided by the OAEI.
6http://oaei.ontologymatching.org/2010/im/index.
html

1646

