
Ontology mediation, merging and aligning

Jos de Bruijn Marc Ehrig Cristina Feier

Francisco Mart́ın-Recuerda François Scharffe

Moritz Weiten

May 20, 2006

Abstract

Ontology mediation is a broad field of research which is concerned
with determining and overcoming differences between ontologies in order
to allow the reuse of such ontologies, and the data annotated using these
ontologies, throughout different heterogeneous applications.

Ontology mediation can be subdivided into three areas: ontology map-

ping, which is mostly concerned with the representation of correspon-
dences between ontologies; ontology alignment, which is concerned with
the (semi-)automatic discovery of correspondences between ontologies;
and ontology merging, which is concerned with creating a single new on-
tology, based on a number of source ontologies.

This chapter reviews the work which has been done in the three men-
tioned areas and proposes an integrated approach to ontology mediation in
the area of knowledge management. A language is developed for the rep-
resentation of correspondences between ontologies. An algorithm, which
generalizes current state-of-the-art alignment algorithms, is developed for
the (semi-)automated discovery of such mappings. A tool is presented for
browsing and editing ontology mappings. An ontology mapping can be
used for a variety of different tasks, such as transforming data between
different representations and querying different heterogeneous knowledge
bases.

1 Introduction

On the Semantic Web, data is envisioned to be annotated using ontologies. On-
tologies convey background information which enriches the description of the
data and which makes the context of the information more explicit. Because
ontologies are shared specifications, the same ontologies can be used for the
annotation of multiple data sources, not only Web pages, but also collections
of XML documents, relational databases, et cetera. The use of such shared
terminologies enables a certain degree of inter-operation between these data
sources. This, however, does not solve the integration problem completely, be-
cause it cannot be expected that all individuals and organizations on the Seman-
tic Web will ever agree on using one common terminology or ontology (Visser

1



& Cui 1998, Uschold 2000). It can be expected that many different ontologies
will appear and, in order to enable inter-operation, differences between these
ontologies have to be reconciled. The reconciliation of these differences is called
ontology mediation.

Ontology mediation enables reuse of data across applications on the Semantic
Web and, in general, cooperation between different organizations. In the context
of semantic knowledge management, ontology mediation is especially important
to enable sharing of data between heterogeneous knowledge bases and to allow
applications to reuse data from different knowledge bases. Another important
application area for ontology mediation is that of Semantic Web Services. In
general, it cannot be assumed that the requester and the provider of a service
use the same terminology in their communication and thus mediation is required
in order to enable communication between heterogeneous business partners.

We distinguish two principled kinds of ontology mediation: ontology mapping
and ontology merging. With ontology mapping, the correspondences between
two ontologies are stored separately from the ontologies and are thus not part
of the ontologies themselves. The correspondences can be used for, for example,
querying heterogeneous knowledge bases using a common interface or transform-
ing data between different representations. The (semi-)automated discovery of
such correspondences is called ontology alignment.

When performing ontology merging, a new ontology is created which is the
union of the source ontologies. The merged ontology captures all the knowledge
from the original ontologies. The challenge in ontology merging is to ensure
that all correspondences and differences between the ontologies are reflected in
the merged ontology.

Summarizing, ontology mapping is mostly concerned with the representa-
tion of correspondences between ontologies; ontology alignment is concerned
with the discovery of these correspondences; and ontology merging is concerned
with creating the union of ontologies, based on the correspondences between
the ontologies. We provide an overview of the main approaches in ontology
merging, ontology mapping and ontology alignment in Section 2.

After the survey in Section 2 we present a practical approach to ontology
mediation where we describe a language to specify ontology mappings, an align-
ment method for semi-automatically discovering mappings, a graphical tool for
browsing and creating mappings in a user friendly way, in Section 3.

We conclude with a summary in Section 4.

2 Approaches in ontology mediation

In this section we give an overview of some of the major approaches in ontology
mediation, particularly focusing on ontology mapping, alignment and merging.

A major issue of all of these approaches is the location and specification
of the overlap and the mismatches between concepts, relations, and instances

2



Figure 1: Ontology Mapping

in different ontologies. In order to achieve a better understanding of the mis-
matches which all these approaches are trying to overcome, we give an overview
of the mismatches which might occur between different ontologies, based on the
work by Klein (2001), in Section 2.1.

We survey number of representative approaches for ontology mapping, ontol-
ogy alignment, and ontology merging in Sections 2.2, 2.3 and 2.4, respectively.
For more elaborate and detailed surveys we refer the reader to (Shvaiko &
Euzenat 2005, Noy 2004, Doan & Halevy 2005, Kalfoglou & Schorlemmer 2003).

2.1 Ontology mismatches

The two basic types of ontology mismatches are: (1) Conceptualization mis-
matches, which are mismatches of different conceptualizations of the same do-
main and (2) Explication mismatches, which are mismatches in the way a con-
ceptualization is specified.

Conceptualization mismatches fall in two categories. A scope mismatch oc-
curs when two classes have some overlap in their extensions (the set s of in-
stances), but the extensions are not exactly the same (e.g., the concepts Student
and TaxPayer). There is a mismatch in the model coverage and granularity if
there is (a) a difference in the part of the domain that is covered by both ontolo-
gies (e.g., the ontologies of university employees and students) or (b) the level
of detail with which the model is covered (e.g., one ontology might have one
concept Person whereas another ontology distinguishes between YoungPerson,
MiddleAgedPerson and OldPerson).

Explication mismatches fall in three categories. There is (1) a mismatch in
the style of modeling if either (a) the paradigm used to specify a certain concept
(e.g., time) is different (e.g., intervals versus points in time) or (b) the way the
concept is described differs (e.g., using subclasses versus attributes to distinguish
groups of instances). There is a (2) terminological mismatch when two concepts
are equivalent, but they are represented using different names (synonyms) or
when the same name is used for different concepts (homonyms). Finally, an (3)
encoding mismatch occurs when values in different ontologies are encoded in a
different way (e.g., using kilometers versus miles for a distance measure).

2.2 Ontology Mapping

An ontology mapping is a (declarative) specification of the semantic overlap be-
tween two ontologies; it is the output of the mapping process (see Figure 1).

3



The correspondences between different entities of the two ontologies are typi-
cally expressed using some axioms formulated in a specific mapping language.
The three main phases for any mapping process are: (1) mapping discovery,
(2) mapping representation, and (3) mapping exploitation/execution. In this
section we survey a number existing approaches for ontology mapping, with a
focus on the mapping representation aspect.

A common tendency among the ontology mapping approaches is the exis-
tence of an ontology of mappings (e.g., MAFRA (Maedche, Motik, no Silva &
Volz 2002), RDFT (Omelayenko 2002)), which constitutes the vocabulary for
the representation of mappings.

MAFRA (MApping FRAmework for distributed ontologies) (Maedche et al.
2002) supports the interactive, incremental and dynamic ontology mapping pro-
cess, where the final purpose of such a process is to support instance transfor-
mation. It addresses all the phases of the mapping process: lift & normal-
ization (lifting the content of the ontologies to RDF-S and normalization of
their vocabularies by eliminating syntactical and lexical differences), similar-
ity (computation of the similarities between ontology entities as a support for
mapping discovery), semantic bridging (establishing correspondences between
similar entities, in the form of so-called semantic bridges - defining the map-
ping), execution (exploiting the bridges/mapping for instance transformation),
and post-processing (revisiting the mapping specification for improvements).

We will focus in the following on the representation of mappings using se-
mantic bridges in MAFRA. The semantic bridges are captured in the Semantic
Bridging Ontology (SBO). SBO is a taxonomy of generic bridges; instances
of these generic bridges, called concrete bridges, constitute the actual concrete
mappings. We give an overview of the dimensions along which a bridge can be
described in MAFRA, followed by a shallow description of the classes of SBO
which allow one to express such bridges.

A bridge can be described along five dimensions:

• entity dimension: pertains to the entities related by a bridge which may
be concepts (modeling classes of objects in the real world), relations, at-
tributes and extensional patterns (modeling the content of instances).

• cardinality dimension: pertains to the number of ontology entities at both
sides of the semantic bridge (usually 1:n or m:1, m:n is seldom required
and it can be usually decomposed into m:1:n)

• structural dimension: pertains to the way elementary bridges may be
combined into a more complex bridge (relations that may hold between
bridges: specialization, alternatives, composition, abstraction)

• transformation dimension: describes how instances are transformed by
means of an associated transformation function.

4



• constraint dimension: allows one to express conditions upon whose fulfil-
ment the bridge evaluation depends. The transformation rule associated
with the bridge is not executed unless these conditions hold.

The abstract class SemanticBridge describes a generic bridge, upon which
there are no restrictions regarding the entity types that the bridge connects or
the cardinality. For supporting composition, this class has defined a relation
hasBridge. The class SemanticBridgeAlt supports the alternative modeling
primitive by grouping several mutual exclusive semantic bridges. The abstract
class SemanticBridge is further specialized in the SBO according to the en-
tity type, the ontology defining as subclasses of this class: RelationBridge,
ConceptBridge, AttributeBridge. Rule is a class for describing generic rules.
Condition and Transformation are its subclasses which are responsible for
describing the condition necessary for the execution of a bridge, and the trans-
formation function of a bridge, respectively. The Service class maps the bridge
parameters with the transformation procedure arguments and call to procedures.

RDFT (Omelayenko 2002) is a mapping meta-ontology for mapping XML
DTDs to/and RDF schemas specially targeted for business integration tasks.
The business integration task in this context is seen as a service integration task,
where each enterprise is represented as a Web service specified in WSDL. A con-
ceptual model of WSDL was developed based on RDF Schema extended with
the temporal ontology PSL. Service integration is reduced to concept integra-
tion, RDFT mapping specific concepts such as events, messages, vocabularies,
and XML-specific parts of the conceptual model.

The most important class of the meta-ontology is Bridge, which enables
one to specify correspondences between one entity and a set of entities or
vice versa, depending on the type of the bridge: one-to-many or many-to-one.
The relation between the source and target components of a bridge can be an
EquivalentRelation (states the equivalence between the two components) or
a VersionRelation (states that the target set of elements form a later version
of the source set of elements, assuming identical domains for the two). This is
specified via the bridge property Relation. Bridges can be categorized in:

• RDFBridges, which are bridges between RDF Schema entities. These can
be (Class2Class or Property2Property) bridges.

• XMLBridges, which are bridges between XML tags of the source/target
DTD and the target/source RDF Schema entities. These can be
Tag2Class, Tag2Property, Class2Tag, or Property2Tag bridges.

• Event2Event bridges, which are bridges that connect two events per-
taining to different services. They connect instances of the meta-class
mediator:Event.

Collections of bridges which serve a common purpose are grouped in a map.
When defined in a such a way, as a set of bridges, mappings are said to be

5



declarative, while procedural mappings can be defined by means of an XPath
expression transforming instance data.

C-OWL Another perspective on ontology mapping is given by Context OWL
(C-OWL) (Bouquet, Giunchiglia, van Harmelen, Serafini & Stuckenschmidt
2004) which is a language that extends the ontology language OWL (Dean
& Schreiber 2004) both syntactically and semantically in order to allow for the
representation of contextual ontologies. In this vision, the term contextual on-
tology refers to the fact that the contents of the ontology are kept local and
they can be mapped with the contents of other ontologies via explicit mappings
(bridge rules) to allow for a controlled form of global visibility. This is opposed
to the OWL importing mechanism where a set of local models is globalized in
a unique shared model.

Bridge rules allow to connect entities (concepts, roles or individuals) from
different ontologies that subsume one another, are equivalent, are disjoint or
have some overlap. A C-OWL mapping is a set of bridges between two ontolo-
gies. A set of OWL ontologies together with mappings between each of them is
called a context space.

The local models semantics defined for C-OWL, as opposed to the OWL
global semantics, considers that each context uses a local set of models and a
local domain of interpretation. Thus, it is possible to have ontologies with con-
tradicting axioms, or unsatisfiable ontologies without the entire context space
being unsatisfiable.

2.3 Ontology Alignment

Ontology alignment is the process of discovering similarities between two source
ontologies. The result of a matching operation is a specification of similarities
between two ontologies. Ontology alignment is generally described as the ap-
plication of the so-called Match operator (cf. (Rahm & Bernstein 2001)). The
input of the operator is a number of ontology and the output is a specification
of the correspondences between the ontologies.

There are many different algorithms which implement the match operator.
These algorithms can be generally classified along two dimensions. On the one
hand there is the distinction between schema-based and instance-based match-
ing. A schema-based matcher takes different aspects of the concepts and re-
lations in the ontologies and uses some similarity measure to determine cor-
respondence (e.g., (Noy & Musen 2000b)). An instance-based matcher takes
the instances which belong to the concepts in the different ontologies and com-
pares these to discover similarity between the concepts (e.g., (Doan, Madhaven,
Domingos & Halevy 2004)). On the other hand there is the distinction between
element-level and structure-level matching. An element-level matcher compares
properties of the particular concept or relation, such as the name, and uses these
to find similarities (e.g., (Noy & Musen 2000b)). A structure level matcher
compares the structure (e.g., the concept hierarchy) of the ontologies to find
similarities (e.g., (Noy & Musen 2000a, Giunchiglia & Shvaiko 2004)). These

6



matchers can also be combined (e.g., (Ehrig & Staab 2004, Giunchiglia, Shvaiko
& Yatskevich 2004)). For example, Anchor-PROMPT (Noy & Musen 2000a),
a structure-level matcher, takes as input an initial list of similarities between
concepts. The algorithm is then used to find additional similarities, based on
the initial similarities and the structure of the ontologies. For a more detailed
classification of alignment techniques we refer to (Shvaiko & Euzenat 2005). In
the following, we give an overview of those approaches.

Anchor-PROMPT (Noy & Musen 2000a) is an algorithm which aims to
augment the results of matching methods which only analyze local context in
ontology structures, such as PROMPT (Noy & Musen 2000b), by finding addi-
tional possible points of similarity, based on the structure of the ontologies. The
algorithm takes as input two pairs of related terms and analyzes the elements
which are included in the path that connects the elements of the same ontology
with the elements of the equivalent path of the other ontology. So, we have two
paths (one for each ontology) and the terms that comprise these paths. The
algorithm then looks for terms along the paths that might be similar to the
terms of the other path, which belongs to the other ontology, assuming that
the elements of those paths are often similar as well. These new potentially re-
lated terms are marked with a similarity score which can be modified during the
evaluation of other paths in which these terms occur. Terms with high similar
scores will be presented to the user to improve the set of possible suggestions
in, for example, a merging process in PROMPT.

GLUE (Doan et al. 2004, Doan, Domingos & Halevy 2003) is a system which
employs machine learning technologies to semi-automatically create mappings
between heterogeneous ontologies based on instance data, where an ontology is
seen as a taxonomy of concepts. GLUE focuses on finding 1-to-1 mappings be-
tween concepts in taxonomies, although the authors say that extending match-
ing to relations and attributes and involving more complex mappings (such as
1-to-n and n-to-1 mappings) is the subject of ongoing research.

The similarity of two concepts A and B in the two taxonomies O1 and O2 is
based on the sets of instances that overlap between the two concepts. In order
to determine whether an instance of concept B is also an instance of concept
A, first a classifier is built using the instances of concept A as the training set.
This classifier is now used to classify the instances of concept B. The classifier
then decides for each instance of B, whether it is also an instance of A or not.

Based on these classifications, four probabilities are computed, namely,
P (A, B), P (A, B), P (A, B) and P (A, B), where, for example, P (A, B) is the
probability that an instance in the domain belongs to A, but not to B. These
four probabilities can now be used to compute the joint probability distribution
for the concepts A and B, which is a user supplied function with these four
probabilities as parameters.

Semantic Matching (Giunchiglia & Shvaiko 2004) is an approach to match-

7



ing classification hierarchies. The authors implement a Match operator that
takes two graph-like structures (e.g. database schemas or ontologies) as input
and produces a mapping between elements of the two graphs that semantically
correspond to each other.

Giunchiglia & Shvaiko (2004) have argued that almost all earlier approaches
to schema and ontology matching have been syntactic matching approaches, as
opposed to semantic matching. In syntactic matching, the labels and sometimes
the syntactical structure of the graph is matched and typically some similar-
ity coefficient [0, 1] is obtained, which indicates the similarity between the two
nodes. Semantic Matching computes a set-based relation between the nodes,
taking into account the meaning of each node; the semantics of a node is de-
termined by the label of that node and the semantics of all the nodes which
are higher in the hierarchy. The possible relations returned by the Semantic
Matching algorithm are equality (=), overlap (∩), mismatch (⊥), more general
(⊆) or more specific (⊇). The correspondence of the symbols with set theory is
not a coincidence, since each concept in the classification hierarchies represents
a set of documents.

QOM - Quick Ontology Mapping (Ehrig & Staab 2004, Ehrig & Sure 2004)
was designed to provide an efficient matching tool for on-the-fly creation of
mappings between ontologies.

In order to speed up the identification of similarities between two ontologies,
QOM does not compare all entities of the first ontology with all entities of the
second ontology, but uses heuristics (e.g., similar labels) to lower the number
of candidate mappings, i.e., the number of mappings to compare. The actual
similarity computation is done by using a wide range of similarity functions,
such as string similarity.

Several of such similarity measures are computed, which are all input to
the similarity aggregation function, which combines the individual similarity
measures. QOM applies a so-called sigmoid function, which emphasizes high
individual similarities and de-emphasizes low individual similarities. The actual
correspondences between the entities in the ontologies are extracted by applying
a threshold to the aggregated similarity measure. The output of one iteration
can be used as part of the input in a subsequent iteration of QOM in order to re-
fine the result. After a number of iterations, the actual table of correspondences
between the ontologies is obtained.

2.4 Ontology merging

Ontology merging is the creation of one ontology from two or more source on-
tologies. The new ontology will unify and in general replace the original source
ontologies. We distinguish two distinct approaches in ontology merging. In the
first approach the input of the merging process is a collection of ontologies and
the outcome is one new, merged, ontology which captures the original ontologies
(see Figure 2(a)). A prominent example of this approach is PROMPT (Noy &

8



(a) Complete Merge (b) Bridge Ontology

Figure 2: Output of the merging process

Musen 2000b), which is an algorithm and a tool for interactively merging on-
tologies. In the second approach the original ontologies are not replaced, but
rather a ‘view’, called bridge ontology, is created which imports the original
ontologies and specifies the correspondences using bridge axioms. OntoMerge
(Dou, McDermott & Qi 2002) is a prominent example of this approach. On-
toMerge facilitates the creation of a ‘bridge’ ontology which imports the original
ontologies and relates the concepts in these ontologies using a number of bridge
axioms. We describe the PROMPT and OntoMerge approaches in more detail
below.

PROMPT (Noy & Musen 2000b) is an algorithm and an interactive tool for
the merging two ontologies. The central element of PROMPT is the algorithm
which defines a number of steps for the interactive merging process:

1. Identify merge candidates based on class-name similarities. The result is
presented to the user as a list of potential merge operations.

2. The user chooses one of the suggested operations from the list or specifies
a merge operation directly.

3. The system performs the requested action and automatically executes ad-
ditional changes derived from the action.

4. The system creates a new list of suggested actions for the user, based on
the new structure of the ontology, determines conflicts introduced by the
last action, finds possible solutions to these conflicts and displays these to
the user.

PROMPT identifies a number of ontology merging operations (merge classes,
merge slots, merge bindings between a slot and a class, etc) and a number
of possible conflicts introduced by the application of these operations (name
conflicts, dangling references, redundancy in the class hierarchy and slot-value
restrictions that violate class inheritance).

OntoMerge (Dou et al. 2002) is an on-line approach in which source ontolo-
gies are maintained after the merge operation, whereas in PROMPT the merged

9



ontology replaces the source ontologies. The output of the merge operation in
OntoMerge is not a complete merged ontology, as in PROMPT, but a bridge
ontology which imports the source ontologies and which has a number of so-
called Bridging Axioms (see Figure 2(b)), which are translation rules used to
connect the overlapping part of the source ontologies. The two source ontolo-
gies, together with the bridging axioms, are then treated as a single theory by
a theorem prover optimized for three main operations:

1. Dataset translation (cf. instance transformation in (de Bruijn & Polleres
2004)). Dataset translation is the problem of translating a set of data
(instances) from one representation to the other.

2. Ontology extension generation. The problem of ontology extension gener-
ation is the problem of generating an extension (instance data) O2s, given
two related ontologies O1 and O2 and an extension O1s of ontology O1.
The example given by the authors is to generate a WSDL extension based
on an OWL-S description of the corresponding Web Service.

3. Querying different ontologies. Query rewriting is a technique for solving
the problem of querying different ontologies, whereas the authors of (Dou
et al. 2002) merely stipulate the problem.

3 Mapping and Querying disparate knowledge

bases

In the previous section we have seen an overview of a number of representative
approaches for different aspects of ontology mediation in the areas of ontology
mapping, alignment and merging. In this section we focus on an approach
for ontology mapping and ontology alignment to query disparate knowledge
bases in a knowledge management scenario. However, the techniques are largely
applicable to any ontology mapping or alignment scenario.

In the area of knowledge management we assume there are two main tasks to
be performed with ontology mappings: (a) transforming data between different
representations, when transferring data from one knowledge base to another;
and (b) querying of several heterogeneous knowledge bases, which have differ-
ent ontologies. The ontologies in the area of knowledge management are large,
but lightweight, i.e., there is a concept hierarchy with many concepts, but there
are relatively few relations and axioms in the ontology. From this follows that
the mappings between the ontologies will be large as well, and they will gener-
ally be lightweight; the mapping will consist mostly of simple correspondence
between concepts. The mappings between ontologies are not required to be one
hundred percent accurate, because of the nature of the application of knowledge
management: if a search result is inaccurate it is simply discarded.

In order to achieve ontology mapping, one needs to specify the relationship
between the ontologies using some language. A natural candidate to express

10



these relationships would seem to be the ontology language which is used for
the ontologies themselves. We see a number of disadvantages to this approach:

Ontology language There exist several different ontology languages for dif-
ferent purposes (e.g., RDFS (Brickley & Guha 2004), OWL (Dean &
Schreiber 2004), WSML (de Bruijn, Fensel, Keller, Kifer, Lausen, Krum-
menacher, Polleres & Predoiu 2005)) and it is not immediately clear how
to map between ontologies which are specified using different languages.

Independence of mapping Using an existing ontology language would typ-
ically require to import one ontology into the other and specify the re-
lationships between the concepts and relations in the resulting ontology;
this is actually a form of ontology merging. The general disadvantage of
this approach is that the mapping is tightly coupled with the ontologies;
one can essentially not separate the mapping from the ontologies.

Epistemological adequacy The constructs in an ontology language have not
been defined for the purpose of specifying mappings between ontologies.
For example, in order to specify the correspondence between two concepts
Human and Person in two ontologies, one could use some equivalence or
subclass construct in the ontology language, even though the intension of
the concepts in both ontologies is different.

In Section 3.1 we describe a mapping language which is independent from the
specific ontology language but which can be grounded in an ontology language
for some specific tasks. The mapping language itself is based on a set of elemen-
tary mapping patterns which represent the elementary kinds of correspondences
one can specify between two ontologies.

As we have seen in Section 2.3, there exist many different alignment algo-
rithms for the discovery of correspondences between ontologies. In Section 3.2
we present an interactive process for ontology alignment which allows to plug-
in any existing alignment algorithm. The input of this process consists of the
ontologies which are to be mapped and the output is an ontology mapping.

Writing mapping statements directly in the mapping language is a tedious
and error-prone process. The mapping tool OntoMap is a graphical tool for
creating ontology mappings. This tool, described in Section 3.3 can be used to
create a mapping between two ontologies from scratch or it can be used for the
refinement of automatically discovered mappings, described in Section 3.2.

3.1 Mapping language

An important requirement for the mapping language which is presented in this
section is the epistemological adequacy of the constructs in the language. In
other words, the constructs in the language should correspond to the actual
correspondences one needs to express in a natural way. More information about

11



Name: Class by Attribute Mapping
Problem: The extension of a class in one ontology corresponds to the
extension of a class in another ontology, provided that all individuals in the
extension have a particular attribute value.
Solution:

Solution description: A mapping is established between a class/attribute/
attribute value combination in one ontology and a class in another ontology.
Mapping syntax:
mapping ::= classMapping(direction A B attributeValueCondition(P o))
Example:

classMapping(Human Female attributeValueCondition(hasGender “female”))

Table 1: Class by Attribute Mapping pattern

the mapping language can be found in (Scharffe & de Bruijn 2005) and on the
web site of the mapping language1.

Now, what do we mean with ‘natural way’? There are different patterns
which one can follow when mapping ontologies. One can map a concept to
a concept, a concept with a particular attribute value to another concept, a
relation to a relation, etc. We have identified a number of such elementary
mapping patterns which we have used as a basis for the mapping language.

Example 1. As a simple example of possible mapping which can expressed be-
tween ontologies, assume we have two ontologies O1 and O2 which both describe
humans and their gender. Ontology O1 has a concept Human with an attribute
hasGender; O2 has two concepts Woman and Man. O1 and O2 use different ways
to distinguish the gender of the human; O1 uses an attribute with two possible
values “male” and “female”, whereas O2 has two concepts Woman and Man to
distinguish the gender. Notice that these ontologies have a mismatch in the style
of modeling (see Section 2.1). If we want to map these ontologies, we need to
create two mapping rules: (1) ‘all humans with the gender “female” are women’
and (2) ‘all humans with the gender “male” are men’.

Example 1 illustrates one elementary kind of mapping, namely a mapping
between two classes, with a condition on the value of an attribute. The elemen-
tary kinds of mappings can be captured in so-called mapping patterns. Table
1 describes the mapping pattern used in Example 1. The pattern is described
in terms of its name, the problem addressed, the solution of the problem, both
in natural-language description and in terms of the actual mapping language,
and an example of the application of the pattern to ontology mapping, in this
case a mapping between the class Human in ontology O1 and the class Woman
in ontology O2, but only for all humans which have the gender “female”.

The language contains basic constructs to express mappings between the dif-
ferent entities of two ontologies: from classes to classes, attributes to attributes,
instances to instances, but also between any combination of entities like classes

1http://www.omwg.org/TR/d7/d7.2/

12



to instances, etc. The example in Table 1 illustrates the basic construct for
mapping classes to classes, classMapping.

Mappings can be refined using a number of operators and mapping condi-
tions. The operators in the language can be used to map between combinations
of entities, such as the intersection or union (conjunction, disjunction, respec-
tively) of classes or relations. For example, the mapping between Human and
the union of Man and Woman can be expressed in the following way:

classMapping(Human or(Man Woman))
The example in Table 1 illustrates a mapping condition, namely the attribute

value condition. Other mapping conditions include attribute type and attribute
occurrence.

The mapping language itself is not bound to any particular ontology lan-
guage. However, there needs to be a way for reasoners to actually use the
mapping language for certain tasks, such as querying disparate knowledge bases
and data transformation. For this, the mapping language can be grounded
in a formal language. There exists, for example, a grounding of the mapping
language to OWL DL and to WSML-Flight.

In a sense, the grounding of the mapping language to a particular language
transforms the mapping language to a language which is specific for mapping
ontologies in a specific language. All resulting mapping languages still have the
same basic vocabulary for expressing ontology mappings, but have a different
vocabulary for the more expressive expressions in the language. Unfortunately,
it is not always the case that all constructs in the mapping language can be
grounded to the logical language. For example, WSML-Flight does not allow
disjunction or negation in the target of a mapping rule and OWL DL does
not allow mapping between classes and instances. In order to allow the use of
the full expressive power offered by the formal language to which the mapping
language is grounded, there is an extension mechanism which allows to insert
arbitrary logical expressions inside each mapping rule.

The language presented in this section is suitable for the specification and
exchange of ontology mappings. In the next section we present a semi-automatic
approach to the specification of ontology mappings.

3.2 A (Semi-)Automatic Process for Ontology Alignment

Search
Step


Selection


Similarity


Assessment


Similarity


Aggregation


Iteration


2
 3
 4


6


Feature


Engineering


Inter
-


pretation


1
 5
Input
 Output

Search
Step


Selection


Similarity


Assessment


Similarity


Aggregation


Iteration


2
 3
 4


6


Feature


Engineering


Inter
-


pretation


1
 5
Input
Input
 Output
Output


Figure 3: Alignment Process

Creating mappings between ontologies is a tedious process, especially if the
ontologies are very large. We introduce a (semi-)automatic alignment process

13



implemented in the FOAM-tool (Framework for Ontology Alignment and Map-
ping),2 which relieves the user of some of the burdens in creating mappings. It
subsumes all the alignment approaches we are aware of (e.g., PROMPT (Noy
& Musen 2003), GLUE (Doan et al. 2003), QOM (Ehrig & Staab 2004, Ehrig
& Sure 2004)). The input of the process consists of two ontologies which are
to be aligned; the output is a set of correspondences between entities in the
ontologies. Figure 3 illustrates its six main steps.

1. Feature engineering selects only parts of an ontology definition in or-
der to describe a specific entity. For instance, alignment of entities may be
based only on a subset of all RDFS primitives in the ontology. A feature may
be as simple as the label of an entity, or it may include intensional structural
descriptions such as super- or sub-concepts for concepts (a sports car being a
subconcept of car), or domain and range for relations. Instance features may be
instantiated attributes. Further, we use extensional descriptions. In an exam-
ple we have fragments of two different ontologies, one describing the instance
Daimler and one describing Mercedes. Both o1:Daimler and o2:Mercedes have
a generic ontology feature called type. The values of this feature are automobile
and luxury, and automobile, respectively.

2. Selection of Next Search Steps. Next, the derivation of ontology align-
ments takes place in a search space of candidate pairs. This step may choose
to compute the similarity of a restricted subset of candidate concepts pairs of
the two ontologies and to ignore others. For the running example we simply
select every possible entity pair as an alignment candidate. In our example this
means we will continue the comparison of o1:Daimler and o2:Mercedes. The
QOM approach of Section 2.3 carries out a more efficient selection.

3. Similarity Assessment determines similarity values of candidate pairs.
We need heuristic ways for comparing objects, i.e., similarity functions such
as on strings, object sets, checks for inclusion or inequality, rather than exact
logical identity. In our example we use a similarity function based on the in-
stantiated results, i.e., we check whether the two concept sets, parent concepts
of o1:Daimler (automobile and luxury) and parent concepts of o2:Mercedes
(only automobile), are the same. In the given case this is true to a certain
degree, effectively returning a similarity value of 0.5. The corresponding fea-
ture/similarity assessment (FS2) is represented in Table 2 together with a second
feature/similarity assessment (FS1) based on the similarity of labels.

4. Similarity Aggregation. In general, there may be several similarity val-
ues for a candidate pair of entities from two ontologies, e.g., one for the sim-
ilarity of their labels and one for the similarity of their relationship to other
terms. These different similarity values for one candidate pair must be aggre-
gated into a single aggregated similarity value. This may be achieved through

2http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

14

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/


Comparing No. Feature QF Similarity QS

Entities FS1 (label,X1) string similarity(X1, X2)
Instances FS2 (parent,X1) set equality(X1, X2)

Table 2: Feature/Similarity Assessment

a simple averaging step, but also through complex aggregation functions using
weighting schemes. For the example we only have to result of the parent concept
comparison which leads to: simil(o1:Daimler,o2:Mercedes)=0.5.

5. Interpretation uses the aggregated similarity values to align entities.
Some mechanisms here are, e.g., to use thresholds for similarity (Noy &
Musen 2003), to perform relaxation labeling (Doan et al. 2003), or to com-
bine structural and similarity criteria. simil(o1:Daimler,o2:Mercedes)=0.5≥0.5
leads to align(o1:Daimler)=o2:Mercedes. This step is often also referred to as
matcher. Semi-automatic approaches may present the entities and the align-
ment confidence to the user and let the user decide.

6. Iteration. Several algorithms perform an iteration (see also similarity
flooding (Melnik, Garcia-Molina & Rahm 2002)) over the whole process in order
to bootstrap the amount of structural knowledge. Iteration may stop when
no new alignments are proposed, or if a predefined number of iterations has
been reached. Note that in a subsequent iteration one or several of steps 1
through 5 may be skipped, because all features might already be available in
the appropriate format or because some similarity computation might only be
required in the first round. We use the intermediate results of step 5 and feed
them again into the process and stop after a predefined number of iterations.

The output of the alignment process is a mapping between the two input on-
tologies. We cannot in general assume that all mappings between the ontologies
are discovered, especially in the case of more complex mappings. Therefore, the
mapping which is a result of the alignment procedure can be seen as the input
of a manual refinement process. In the next Section we describe a graphical tool
which can be used for manual editing of ontology mappings.

3.3 OntoMap: an Ontology Mapping tool

OntoMap R© (Schnurr & Angele 2005) is a plugin for the ontology-management
platform OntoStudio R© that supports the creation and management of ontol-
ogy mappings. Mappings can be specified based on graphical representation,
using a schema-view of the respective ontologies. OntoMap encapsulates the
formal statements for the declaration of mappings, users just need to under-
stand the semantics of the graphical representation (e.g., an arrow connecting
two concepts). Users of OntoMap are supported by drag-and-drop functionality
and simple consistency checks on property-mappings (automatic suggestion of

15



necessary class-mappings). For concept-to-concept mappings constraints can be
specified on the available attributes.

Figure 4: Screenshot of OntoStudio R© with the OntoMap R© plugin

OntoMap supports a number of most elementary mapping patterns: con-
cept to concept mappings, attribute to attribute mappings, relation to relation
mapings, and attribute to concept mappings.

Additionally, OntoMap allows to specify additional conditions on concept-
to-concept mappings using a form for mapping properties. A concept ‘lorry’
for example might map onto a concept ‘Car or truck’ only if the weight of the
latter exceeds a certain limit (e.g. according to the legal definition within some
countries).

Attribute to concept mappings enable users to specify one or more ‘iden-
tifiers’ for instances of a concept - similar to the primary keys in relational
databases. This way the properties of different source concepts can be ‘unified’
in one target concept, e.g., in order to join the information of different database
entries within a single instance on the ontology level. Different source instances
having the same ‘identifier values’ are then joined within a single target instance.

The focus of OntoMap is on the intuitive creation and management of map-
pings. If complex mappings are needed, which are not within the scope of a
graphical tool (possibly using complex logical expressions or built-ins), they
have to be encoded manually. OntoStudio has its own grounding of mappings,
based on F-Logic rules (Kifer & Lausen 1997). In addition to the internal storage
format OntoMap supports the import and export of mappings in the mapping-
language which we described in this section. An extension of OntoMap based
on a library for ontology alignment3 which was described in Section 3.2 provides

3http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

16



the functionality for the semi-automatic creation of mappings.
Some additional features of the OntoStudio environment support users in

typical mediation tasks. Those include the import of schemas for relational
databases (syntactic integration) and the possibility to create and execute
queries instantly. The latter gives users the possibility to test the consequence
of mappings they have created (or imported). Such usage of mappings to query
disparate knowledge bases is described in the next section.

4 Summary

Overlap and mismatches between ontologies are likely to occur when the vision
of a Semantic Web with a multitude of ontologies becomes a reality.

There exist different approaches to ontology mediation. These approaches
can be broadly categorized as: (a) Ontology Mapping (Maedche et al. 2002,
Scharffe & de Bruijn 2005), (b) Ontology Alignment (Ehrig & Staab 2004, Ehrig
& Sure 2004, Rahm & Bernstein 2001, Doan et al. 2004) and (c) Ontology
Merging ((Noy & Musen 2000b, Dou et al. 2002)). We have presented a survey
of the most prominent approaches in these areas.

Additionally, we described a practical approach to representing mappings
using a mapping language, discovering mappings using an alignment process
which can be used in combination with any ontology alignment algorithm, and
a graphical tool to edit such ontology mappings. These ontology mappings can
now be used, for example, for transforming data between different representa-
tion, as well as querying different heterogeneous knowledge bases.

Although there is some experience with ontology mediation and most ap-
proaches to ontology mediation, especially in the field of ontology alignment,
have been validated using some small test set of ontologies. The overall prob-
lem which the area of ontology mediation faces is that the number of ontologies
which is out there on the Semantic Web is currently very limited and it is hard
to really validate the approaches using real ontologies.

References

Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L. & Stucken-
schmidt, H. (2004), ‘Contextualizing ontologies’, Journal of Web Semantics
1(4), 325.

Brickley, D. & Guha, R. V. (2004), RDF vocabulary description language 1.0:
RDF schema, W3c recommendation 10 february 2004, W3C.
URL: http://www.w3.org/TR/rdf-schema/

de Bruijn, J., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher,
R., Polleres, A. & Predoiu, L. (2005), The web service modeling language
WSML, W3C member submission 3 june 2005.
URL: http://www.w3.org/Submission/WSML/

17



de Bruijn, J. & Polleres, A. (2004), Towards and ontology mapping specification
language for the semantic web, Technical Report DERI-2004-06-30, DERI.
URL: http://www.deri.at/publications/techpapers/documents/DERI-TR-
2004-06-30.pdf

Dean, M. & Schreiber, G. (2004), OWL web ontology language reference, W3C
recommendation 10 february 2004.
URL: http://www.w3.org/TR/owl-ref/

Doan, A., Domingos, P. & Halevy, A. (2003), ‘Learning to match the schemas
of data sources: A multistrategy approach’, VLDB Journal 50, 279–301.

Doan, A. & Halevy, A. (2005), ‘Semantic integration research in the database
community: A brief survey’, AI Magazine, Special Issue on Semantic In-
tegration .

Doan, A., Madhaven, J., Domingos, P. & Halevy, A. (2004), Ontology matching:
A machine learning approach, in S. Staab & R. Studer, eds, ‘Handbook on
Ontologies in Information Systems’, Springer-Verlag, pp. 397–416.

Dou, D., McDermott, D. & Qi, P. (2002), Ontology translation by ontology
merging and automated reasoning, in ‘Proc. EKAW2002 Workshop on On-
tologies for Multi-Agent Systems’, pp. 3–18.

Ehrig, M. & Staab, S. (2004), QOM - quick ontology mapping, in F. van
Harmelen, S. McIlraith & D. Plexousakis, eds, ‘Proceedings of the Third
International Semantic Web Conference (ISWC2004)’, LNCS, Springer, Hi-
roshima, Japan, pp. 683–696.

Ehrig, M. & Sure, Y. (2004), Ontology mapping - an integrated approach,
in ‘Proceedings of the First European Semantic Web Symposium, ESWS
2004’, Vol. 3053 of Lecture Notes in Computer Science, Springer Verlag,
Heraklion, Greece, pp. 76–91.

Giunchiglia, F. & Shvaiko, P. (2004), ‘Semantic matching’, The Knowledge En-
gineering Review 18(3), 265–280.

Giunchiglia, F., Shvaiko, P. & Yatskevich, M. (2004), S-match: an algorithm
and an implementation of semantic matching, in ‘Proceedings of ESWS’04’,
number 3053 in ‘LNCS’, Springer-Verlag, Heraklion, Greece, pp. 61–75.

Kalfoglou, Y. & Schorlemmer, M. (2003), ‘Ontology mapping: the state of the
art’, The Knowledge Engineering Review 18(1), 1–31.

Kifer, M. & Lausen, G. (1997), ‘F-logic: A higher-order language for reasoning
about objects’, SIGMOD Record 18(6), 134–146.

Klein, M. (2001), Combining and relating ontologies: an analysis of problems
and solutions, in A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt &
M. Uschold, eds, ‘Workshop on Ontologies and Information Sharing, IJ-
CAI’01’, Seattle, USA.

18



Maedche, A., Motik, B., no Silva, N. & Volz, R. (2002), Mafra a mapping
framework for distributed ontologies, in ‘Proceedings of the 13th Euro-
pean Conference on Knowledge Engineering and Knowledge Management
EKAW-2002’, Madrid, Spain.

Melnik, S., Garcia-Molina, H. & Rahm, E. (2002), Similarity flooding: A ver-
satile graph matching algorithm and its application to schema matching,
in ‘Proceedings of the 18th International Conference on Data Engineering
(ICDE’02)’, IEEE Computer Society, p. 117.

Noy, N. F. (2004), ‘Semantic integration: A survey of ontology-based ap-
proaches’, Sigmod Record, Special Issue on Semantic Integration 33(4), 65–
70.

Noy, N. F. & Musen, M. A. (2000a), Anchor-PROMPT: Using non-local context
for semantic matching, in ‘Proceedings of the Workshop on Ontologies and
Information Sharing at the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI-2001)’, Seattle, WA, USA.

Noy, N. F. & Musen, M. A. (2000b), PROMPT: Algorithm and tool for au-
tomated ontology merging and alignment, in ‘Proc. 17th Natl. Conf. On
Artificial Intelligence (AAAI2000)’, Austin, Texas, USA.

Noy, N. F. & Musen, M. A. (2003), ‘The PROMPT suite: interactive tools
for ontology merging and mapping’, International Journal of Human-
Computer Studies 59(6), 983–1024.

Omelayenko, B. (2002), RDFT: A mapping meta-ontology for business integra-
tion, in ‘Proceedings of the Workshop on Knowledge Transformation for
the Semantic Web (KTSW 2002) at the 15-th European Conference on
Artificial Intelligence’, Lyon, France, pp. 76–83.

Rahm, E. & Bernstein, P. A. (2001), ‘A survey of approaches to automatic
schema matching’, VLDB Journal: Very Large Data Bases 10(4), 334–
350.

Scharffe, F. & de Bruijn, J. (2005), A language to specify mappings between
ontologies, in ‘Proceedings of the Internet Based Systems IEEE Conference
(SITIS05)’, Yandoué, Cameroon.

Schnurr, H.-P. & Angele, J. (2005), Do not use this gear with a switching lever!
automotive industry experience with semantic guides, in ‘4th International
Semantic Web Conference (ISWC2005)’, pp. 1029–1040.

Shvaiko, P. & Euzenat, J. (2005), ‘A survey of schema-based matching ap-
proaches’, Journal on Data Semantics .

Uschold, M. (2000), Creating, integrating, and maintaining local and global
ontologies, in ‘Proceedings of the First Workshop on Ontology Learning
(OL-2000) in conjunction with the 14th European Conference on Artificial
Intelligence (ECAI-2000)’, Berlin, Germany.

19



Visser, P. R. S. & Cui, Z. (1998), On accepting heterogeneous ontologies in
distributed architectures, in ‘Proceedings of the ECAI98 workshop on ap-
plications of ontologies and problem-solving methods’, Brighton, UK.

20


	Introduction
	Approaches in ontology mediation
	Ontology mismatches
	Ontology Mapping
	Ontology Alignment
	Ontology merging

	Mapping and Querying disparate knowledge bases
	Mapping language
	A (Semi-)Automatic Process for Ontology Alignment
	OntoMap: an Ontology Mapping tool

	Summary
	References

