
Cross Ontology Query Answering on the Semantic Web:
An Initial Evaluation

Vanessa Lopez
v.lopez@open.ac.uk

Victoria Uren
v.s.uren@open.ac.uk

Marta Sabou
r.m.sabou@open.ac.uk

Enrico Motta
e.motta@open.ac.uk

The Knowledge Media Institute. The Open University. MK76AA. Milton Keynes. United Kingdom.

ABSTRACT
PowerAqua1 is a Question Answering system, which takes as input
a natural language query and is able to return answers drawn from
relevant semantic resources found anywhere on the Semantic Web.
In this paper we provide two novel contributions: First, we detail a
new component of the system, the Triple Similarity Service, which
is able to match queries effectively to triples found in different
ontologies on the Semantic Web. Second, we provide a first
evaluation of the system, which in addition to providing data about
PowerAqua’s competence, also gives us important insights into the
issues related to using the Semantic Web as the target answer set in
Question Answering. In particular, we show that, despite the
problems related to the noisy and incomplete conceptualizations,
which can be found on the Semantic Web, good results can already
be obtained.

Categories and Subject Descriptors
I.2.7 Natural Language Processing – semantic web, multi-ontology
question answering, knowledge acquisition.

General Terms: Design

INTRODUCTION
Recent years have witnessed a resurgence of interest in
Natural Language (NL) Interfaces to knowledge bases and in
particular the rise of a new paradigm of research, which can
be termed as Ontology-Based Query Answering
[3][1][9][13][11]. These systems use an underlying ontology
to drive and/or to give meaning to the queries expressed by a
user. In general, these systems are ontology-modular, i.e.,
they can be used for different domains, even though, in
practice they differ considerably in the degree of domain
customization they require. At one end of the spectrum,
AquaLog [9] uses interactivity to learn user terminology over
time and does not necessitate any customization effort; at the
other end of the spectrum, a system such as Orakel [3]
requires significant domain-specific lexicon customization.
Unfortunately, regardless of the various fine-grained
differences between them, all the aforementioned systems
arguably suffer from an important limitation: they are in
practice only suitable for semantic intranets, where a pre-

1 An online demo of the system can be found at:

http://kmi.open.ac.uk/technologies/poweraqua.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
K-CAP’09, September 1–4, 2009, Redondo Beach, California, USA.
Copyright 2009 ACM 978-1-60558-658-8/09/09...$10.00.

defined domain ontology (or a set of them) is used to provide
a homogeneous encoding of organizational data. In such a
scenario ontology-driven interfaces have been shown to
effectively support the user in formulating complex queries,
without resorting to formal query languages. However, any
information which is either outside the semantic intranet, or
simply not integrated with the corporate ontology remains
out of bounds.
In the meantime we are also seeing a dramatic increase in the
amount of semantic markup available on the web, with
ontology search engines, such as Sindice
(http://sindice.com/), claiming to index “over 10 billion
pieces… across 100 million web pages”. As discussed in [4],
the availability of this large amount of heterogeneous
semantic markup is unprecedented in the history of Artificial
Intelligence and may provide the semantic basis for a new
generation of intelligent systems. At the same time, the
emergence of a large scale Semantic Web (SW) introduces a
new challenge: how can we support users in querying and
exploring this novel, massively heterogeneous, structured
information space? In particular, the ‘static’ ontology-based
query answering systems mentioned earlier cannot cope with
the sheer scale and heterogeneity of the SW. The keyword
interfaces provided by ontology search engines such as
Swoogle (swoogle.umbc.edu/), Watson
(watson.kmi.open.ac.uk/), or Sindice work reasonably
effectively when asked to find specific items, such as
“Enrico Motta” or “Researcher”, however, they cannot
answer more complex queries, such as “Which Russian
rivers end in the Black Sea?”.
Hence, in this paper we tackle the problem of supporting
users in locating information on the SW. Our approach, in
contrast with the keyword-based ontology search interfaces,
is based on providing a NL Interface, PowerAqua, which is
able to accept user queries expressed in NL and retrieve
answers from any semantic source on the SW2. In contrast
with the ontology-based query answering tools mentioned
earlier, PowerAqua is not restricted to a specific set of
ontologies, but can in principle retrieve answers from many
semantic sources.
The ideas behind PowerAqua were originally presented in
[8], where we introduced the vision underlying the system
and the key challenges facing the proposed research. In [10]
we provided a detailed description of the core engine of the

2 Given that PowerAqua accesses the Semantic Web through the Watson

Semantic Web Gateway [4], in practice PowerAqua will only retrieve
information if this has been crawled and indexed by Watson.

system, the PowerMap component, which dynamically finds
the potentially relevant ontologies and element mappings for
a given NL query. In this paper we report on the first
complete implementation of the system, we describe the
novel Triple Similarity Service component, and give a
comprehensive account of the way the system returns
answers to queries. In addition we also present an initial
evaluation of the system, which in addition to providing data
about PowerAqua’s competence, also gives us important
insights about the current strengths and limitations of the SW
when used for question answering. The rest of the paper is
organized as follows: we describe the system overall
architecture in Section 2, introduce the novel Triple
Similarity Service component in Section 3, and give a brief
overview of our current work in integrating and ranking
answers from different sources in Section 4. We then present
the results obtained from an initial evaluation of the system
in Section 5, while in Section 6 and 7 we discuss related
work, draw the key conclusions from this work, and outline
future research directions.

SYSTEM OVERVIEW
PowerAqua takes as input a question expressed in NL and
returns all the answers it can derive from online semantic
sources. In this section we give an overview of the system,
by means of an illustrative example.
The overall architecture of PowerAqua is shown in Figure 1.
Its Linguistic Component is invoked first; it analyzes a NL
query, and translates it into a set of linguistic triples, called
Query-Triples (QTs), by identifying associations that relate
terms together. For instance, the query “who plays in the
rock group nirvana?” is translated into the QT <person /
organization, plays, rock group nirvana>. This component is
based on GATE [16], and it is essentially the same as the one
included in AquaLog [9].
The QTs produced by the Linguistic Component are passed
on to PowerMap, which is responsible for identifying the
semantic sources that may answer the given query, and for
producing initial element-level mappings between QT terms
and entities in these sources. PowerMap has already been
presented in [10] and here we only summarize the key
aspects of its behavior, in the context of an example.

Figure 1: PowerAqua’s components

Initially, PowerMap’s Ontology Discovery sub-module
identifies all semantic sources that are likely to describe QT
terms. In this phase PowerMap maximizes recall in order to
broaden the search space and bridge the gap between the user
terminology and that of the various ontologies. This is
achieved by searching for approximate mappings (lexical
overlap) as well as exact mappings (lexical equality). These
are jointly referred to as equivalent mappings. PowerMap

uses both WordNet and the SW itself as sources of
background knowledge to perform query expansion and to
find lexically dissimilar (but semantically similar) matches –
including synonyms, hypernyms and hyponyms. The output
is a set of Entity Mapping Tables (EMTs), where each table
associates each QT term with a set of entities found on the
SW (Table 1). For instance, the fifth row in Table 1 shows a
mapping between Person (a term in the QT) and Musician (a
concept in the Music Ontology) discovered using the
hyponymy relation between Person and Musician, suggested
by the TAP Ontology. For the example query, PowerMap is
able to find a large number of candidate mappings in several
ontologies. The first row in Table 1 indicates that no
mappings were found for any of the compound terms in the
query, although we were able to for the individual
components (e.g., rock).
PowerMap uses the Watson Semantic Gateway as the entry
point to the SW. Watson crawls and indexes online SW
documents and provides an access point through its API. In
addition PowerMap also provides a plug-in mechanism,
which supports a common API to query ontologies residing
on different repositories. Currently plug-ins are available for
Sesame (www.openrdf.org) and Watson, however, it would
be relatively easy to create plug-ins for other platforms as
well.
Table 1. Partial view of the EMTs for QT <person/org, plays, rock
group nirvana>
Rock group Nirvana, rock group, group nirvana ø
Nirvana Music: Nirvana (type: group); TAP: MusicianNirvana (type: person);

SWETO: Nirvana Meratnia (type: researcher); KIM: Eden (synonym);
Spiritual: Nirvana; Magnatune: Passion of Nirvana (type: “track”), …

Rock Music: rock (as a type of genre); SWETO: Michael_Rock, Sibyl Rock,
etc; ATO: rock (as a type of substance), Ayers_Rock (as a place); …

Group Music ontology: group, …
Person Music ontology: musicians (as a hyponym of person according to TAP),

TAP: person, KIM: person, Magnatune: musicArtist (hyponym),…
Play KIM ontology: sport (as synonym of “play”)…

PowerMap’s Semantic Validation component filters out the
least promising mappings within an ontology by using a
number of heuristics (equivalent mappings are preferred over
hyper/hyponyms, redundant mappings within the same
taxonomy are removed, etc). In addition, this component also
attempts to generate WordNet synsets for all classes and
individuals in the EMTs. In our example the system fails to
find a valid synset for Nirvana, as the intended meaning is
not in WordNet. It does, however, produce valid synsets for
“rock” (e.g., synsets would be generated for all the entities
listed in row 3 of Table 1 associated with the term “rock”)
interpreted as a “music genre” in both the music and TAP
ontologies, and as a “stone (material consisting of aggregate
minerals)” in ATO. While obviously only one of these
interpretations is correct, at this stage the system is unable to
disambiguate between the two. Nevertheless, other
interpretations can already be ruled out at this stage. For
instance, the association between the query term “rock” and
class “stone”, interpreted as a measure of weight, can be
discarded because there is no intersection in WordNet
between the intended synset and its synset in the ontology
(therefore such association does not appear in Table 1).

PowerAqua’s third step, the Triple Similarity Service (TSS),
takes as input the EMTs generated by PowerMap and the
QTs, and returns a set of Triple Mapping Tables (TMTs),
which specify complete mappings between a set of Query
Triples and the appropriate Ontology Triples (OT), as shown
in Table 2.
Table 2. The TMT for OTs in ontologies that match the QTs

<person / organization, play, Nirvana>
SWETO <Nirvana Meratnia, IS_A, person>

Magnatune <MusicArtist (hyponym), maker (ad-hoc), Passion of Nirvana>
Music <Musician (hyponym), has_members (ad-hoc), Nirvana>
TAP <Person, hasMember (ad-hoc), MusicianNirvana>

<rock, ?, nirvana>; <group, ?, nirvana>
Music <Nirvana, has_genre, rock>; <nirvana, is-a, group>

Finally, the Merging and Ranking component generates the
final answers from the returned Ontology Triples. In our
example, one set of answers is produced by merging the OTs
obtained from the Music and TAP ontologies. In particular,
the instances on which both ontologies agree (“Dave Grohl”,
“Kurt Cobain”, “Chad Channing” and “Chris Novoselic”)
are ranked higher. Then, the answer is augmented with
additional instances from the music ontology (“Dan Peters”,
“Dave Foster”, “Jason Everman”, “Pat Smear”, “Dale
Crover” and “Aaron Burckhard”, all former members of the
band). The Music ontology also produces additional
mappings for the compound term “rock group nirvana”:
<nirvana, has-genre, rock> <nirvana, is-a, group>. The
answers from the SWETO and Magnatune ontologies are
ranked last.

THE TRIPLE SIMILARITY SERVICE (TSS)
In the TSS the element level matches recorded in EMT’s
(QT terms to ontology elements) are assembled to produce
triple level matches (entire QTs to OTs). The algorithm has
been optimized towards finding the most precise ontological
translations. Its design has been influenced by the following
observations:
1) An ontology with a higher coverage of a QT is likely to

lead to a better result (i.e., ontologies that cover entire
triples and not just individual terms);

2) If no OTs can be found for a QT containing a compound
term, potentially, relevant OTs may still be found for the
individual elements of the compound. Therefore, the TSS
is re-invoked with new QTs formed by splitting the
compound term.

3) We observed that often the subject (QTi1) of a QT refers
to a less specific ontological entity than its object (QTi3),
which is frequently mapped to an individual (e.g:
<Russian rivers, flow, Black Sea>). Therefore, splitting
QTi1 (e.g. into “Russian” and “rivers”) has less negative
influence on the quality of the final ontology triples than
splitting QTi3 (splitting QTi3 is more likely to introduce
noise, e.g., “Black” and “Sea”)

4) For queries translated into more than one QT, or in case
of linguistic ambiguity, the TSS requires domain
knowledge to solve modifier attachment and
disambiguate how the triples link among themselves.

The TSS algorithm contains four steps that parallel these
four observations and lead to decreasingly precise
translations (but increased recall). The TSS executes the
highest quality steps first and only uses inferior quality steps
if no answer is found.
For each QT (QTi), in step S1, the TSS inspects all
ontologies that contain mappings for at least two of the terms
in the QT. This coverage-centric criterion ensures that the
algorithm focuses first on the ontologies most likely to
address the domain of the query. The Relation Similarity
Service (RSS), which is
explained in more
detail later, is called
for each ontology in
order to find the
concrete OTs, which
match the input QT. If
any of these OTs leads
to an answer, then this
is recorded in the
TMT. After all
potentially relevant
ontologies have been
inspected, if at least
one answer has been
derived the algorithm
stops (lines 2-6).
Otherwise, in step S2,
the TSS increases
recall by splitting the
subject (QTi1) and the
TSS re-iterates for the
resulting QTs (obtained after splitting the subject). At the
end of this phase, if an answer has been obtained the
algorithm stops, otherwise it continues (lines 14-19). In step
S3 we resort to splitting the object QTi3 and re-invoking the
TSS for the resulting QTs. Finally, if none of the above
strategies leads to an answer, recall is further improved in
step S4 by inspecting ontologies that cover the original (non
split) QTi3. In this case, the RSS is only called for this term
(and for QTi2 if it has mappings) and it returns all OTs that
partially cover the QT, if any (lines 19-26).

Relation Similarity Service
The Relation Similarity Service (RSS) is core to the TSS.
The RSS inspects an ontology and identifies the OTs that are
appropriate translations for the given QT, from which an
answer can potentially be inferred. It preferentially uses
exact mappings to obtain the OTs; otherwise equivalent
mappings and synonyms are selected, leaving the use of
hypernyms and hyponyms as the last choice.
The RSS can map a QT to either one OT (direct mapping) or
to two OTs (indirect mappings). Depending on the type of
their predicate, direct mappings can be “IS-A” (a
subsumption relation) or “ad-hoc” (considering relations
inherited from the superclasses). For the QT <capitals, ?,
Europe> (“find me all capitals in Europe”), <city,

capitalCity, EuropeanNation> is an ad-hoc mapping while
<capital_city, has_capital_city, country> <country,
has_member, Europe> is an indirect mapping. “Ad-hoc”
direct relationships between the arguments of the triple are
analyzed before “IS-A”3 unless the original question contains
an IS-A relation (an indication that such a relation is
expected). For example, for the query “which animals are
reptiles” the answers are encoded as the subclasses of the
class “reptile”, which is a subclass (IS-A) of the class
“animal”. If such relations are not found then indirect
relations are inspected (with only one mediating concept). In
case the linguistic relation is mapped to an ontological
property the matching and joining of triples is controlled by
the domain and range information of the relation, if possible.

Examples
Table 3 contains a few examples of TSS outputs, which we
will use below to illustrate the ways that answers are derived
at each step of the algorithm.
Table 3: Examples of ontological translation for queries (TMTs)
Q1: Who works in the climaprediction project?
KMi ontology: <person, has-project-member, climaprediction-net (type: project)>,
<person, has-contact-person, climaprediction-net (type: project)>
Q2: Which Russian rivers flow into the Black Sea?
RussiaB: <river, flow-to, Black_Sea>
RussiaB: <river, has_major_river, country> <country, has_political_fact, russian>
KIM: <river, partOf, entity> <entity, hasAlias, Russian Soviet Federated Socialistic
Republic>
Q3: What pathologies produce hair loss?
Biomedical: <hyperthyroidism, hasSymptom, Alopecia>, <stress, hasSymptom,
Alopecia>, <iron_deficiency, hasSymptom, Alopecia>

Let’s consider query Q1 first, where the related QT is
<person/organization, work, climaprediction project>.
Because there exists a covering ontology with mappings for
both “person” and “climaprediction” (as an instance of
“project”), which contains valid ontological triples, an
answer can be inferred at step S1.
Query Q2, whose corresponding QT is <russian rivers, flow,
Black Sea>, is answered in step S2. The reason is that while
there is a mapping for “Russian Rivers” in an ontology about
restaurants, no valid OTs were produced in step S1 as there
are no covering ontologies for both arguments. Therefore,
the algorithm tries again by splitting the compound QT term,
and consequently modifying the QTs into: <Russian/rivers,
flow, black sea> <Russian, ?, rivers>. For these resultant
QTs, in this second TSS iteration, a covering ontology
containing the valid OTs that produce an answer is found by
the RSS. The RSS analyzes the ontology relations to
disambiguate which part of the compound “Russian” or
“rivers” (or both) links to “flow into the black sea” in order
to create valid OTs. If both compound parts produce valid
OTs the different interpretations will be merged or ranked at
a later stage.
Third, in the case of query Q3, with QT <pathologies,
produce, hair loss>, there are several ontologies with
mappings for both “pathologies” and “hair loss”, which do

3 The reason for this is that many ontologies misuse IS-A relations to

model other types or relations (e.g. partonomy)

not contain links between the entities. Therefore, steps S1,
S2 and S3 fail to derive an answer using the covering
ontologies, even when splitting “hair loss”. In step S4, the
only course of action left is to inspect all ontologies that
contain at least one mapping for “hair loss” (QT3). One such
ontology is the biomedical ontology that contains the term
“alopecia” (a medical term for “hair loss”) and produces a set
of potential answers (hyperthyroidism, stress, iron
deficiency, etc.).

Efficiency of the TSS
The TSS and RSS are designed to avoid expensive
computations in those scenarios where simple methods are
able to yield solutions, in particular:
(1) The algorithm can re-iterate through the two different
phases of collecting candidate ontological entities and then
identifying relevant relationships between these entities in
order to look only for the mappings needed in the first
instance. This is useful in the case of compound terms, where
the algorithm would look for mappings for terms composing
the compound only if required (step 2 and 3).
(2) The time consuming process of analyzing indirect
relationships in the RSS (i.e., relationships which require two
triples to be joined) is only carried out in those cases where
no direct relationship between candidate entities within the
same ontology is found.
(3) In some cases the TSS algorithm can use semantic
information to disambiguate how the triples link to each
other (modifier attachment) and minimize the number of
triple combinations to be analyzed in order to translate a
query. E.g., in “which cities are located in the region of
Sacramento?”, whose corresponding QT are: <cities,
located, region> <region, ?, Sacramento>, the TSS in step
S1 finds an ontology stating that “SacramentoArea IS-A
region”. Using such semantic information, it transforms the
two QTs into just one: <cities, located, Sacramento Area>.
Summing up, to avoid analyzing an unfeasibly large space of
solutions, filtering heuristics are used, and the TSS tries to
find an answer by augmenting the search space in each re-
iteration until either an answer is found, or all the compounds
(if any) are split, and all the ontologies with less coverage
have been analyzed.

Known Issues
The TSS has a couple of “blindspots” where we know it
returns noisy or incomplete answers in situations where the
correct answers exist.
Noisy answers are typically produced when the knowledge
encoded on the SW only covers part of the user query and
the algorithm has to resort to ontologies with less coverage to
generate an answer (step S4). In this case irrelevant results
may be produced, as PowerAqua cannot fill in the missing
information in order to fully understand (map) the query.
E.g., in “who are the professors in Southampton?” for which
there are no mappings for “professor” in the selected
ontologies, the algorithm returns the “persons” who were

born and died in “Southampton” from the dbpedia ontology
about people, and the “persons” who are part of the
“University of Southampton”, from the ISWC ontology. The
latter set contains “Nigel Shadbolt”, one of the answers we
were looking for, but also false answers.
Incomplete answers can sometimes be produced because, to
avoid performance problems, PowerAqua does not search for
triples among relevant entities connected by long paths. E.g.
for “find me cities in Europe,” there is an exact mapping
“Europe” in the KIM ontology, and, consequently, the non
exact mappings in the same ontology like “eastern_europe”
are discarded. As a result valid triples with more than 1
indirect relation are missed, such as: <warsaw (city),
locatedIn, Republic of Poland> <Republic of Poland,
partOf, central_europe> <central_europe, locatedIn,
Europe>.

MERGING AND RANKING COMPONENT
The Merging and Ranking component is still work in
progress, therefore we only provide a brief overview here. A
side effect of the fact that PowerMap explores multiple
knowledge sources is that, after the TSS, the query is
frequently associated to more OTs from different ontologies,
each OT generating an answer. Depending on the complexity
of the query (i.e., the number of QTs it has been translated to
by the linguistic component), as well as the way each QT
was matched to OTs, these individual answers can a) be
redundant or b) be part of a composite answer to the entire
query or c) be alternative answers derived from different
ontological interpretations of the QTs. Hence, different
merging scenarios may arise depending on how the terms are
linked across OTs. For instance, in “which Russian rivers
flow into the Black Sea?”, because each resultant OT only
leads to partial answers, they need to be merged to generate a
complete answer. This is achieved by intersecting the
answers returned by “rivers in Russia” with those returned
by “rivers that flow in the Black sea”. Among other things,
merging requires to identify similar entities across
ontologies, e.g., “Russian Soviet Federated Socialistic
Republic” and “Russia”.
Additionally, whenever a set of answers is returned, it is
important to be able to rank them. This component applies a
range of ranking measures which take into account (in this
order) a) criteria derived during merging (do the answers
from different OTs denote similar interpretations- in order to
obtain an unique set of answers?), b) criteria referring to the
quality of the mapping between QTs and their OTs (how
confident is PowerAqua about the mappings used to derive
the answer?), and c) criteria referring to the popularity
(frequency), of the answer (which answer is returned by the
most ontologies?).

EVALUATION AND DISCUSSION
In our evaluation we focus on assessing PowerAqua’s ability
to derive answers to NL queries by relying on the
information provided by multiple ontologies identified on the

fly, rather than its linguistic coverage or its merging and
ranking capabilities.

Experimental Setup
In this section we describe the evaluation criteria as well as
the data sets used for our experiments. Our goal is to build a
system that provides correct answers to a query, in a
reasonable amount of time, by making use of at least one
ontology, which provides the required information. In order
for an answer to be correct, PowerAqua has to align the
vocabularies of both the query and the answering ontologies.
PowerAqua fails to give an answer if the knowledge is in the
ontology(ies) but it can not find it. A conceptual failure (the
knowledge is not in the ontology) is not considered as a
PowerAqua failure because the ontology does not cover the
information needed to map the user query or is not populated
with the answers. Recall cannot be measured in this open
scenario, as we don’t know in advance how many ontologies
can potentially answer the user’s query. Therefore, the major
evaluation criteria are success, in terms of getting (or not) at
least one correct answer, and speed.
We tested our prototype on a collection of ontologies saved
into online repositories and indexed by PowerMap. The
collection includes high level ontologies, like ATO, TAP,
SUMO and DOLCE, and very large ontologies, like
SWETO, with around 800,000 entities and 1,600,000
relations. In total, we collected around 3GBs of data stored in
130 Sesame repositories (each repository containing one or
more semantic sources, in total more than 700 documents).
We preferred to use this big static data set rather than directly
fetching ontologies from Watson [4] because: 1) the
experiments are reproducible, 2) the question designers can
easily browse the semantic sources in the collection to
generate queries, and 3) the size and quality of ontologies is
higher than those found in Watson, which includes a large
number of small, lightweight ontologies (often not
populated) and foaf files.
The questions used during the evaluation were selected as
follows. We asked seven members of KMi, familiar with the
SW, to generate factual questions4 for the system that were
covered by at least one ontology in our collection. We
pointed out to our colleagues that the system is limited in
handling questions that required temporal reasoning (e.g.
today, last month, before 2004) and compositional semantic
constructions (quantification, comparison, negation and
number restrictions). As no ‘quality control’ was carried out
on the questions, it was admissible for them to contain some
minor grammatical errors. Also, we pointed out that
PowerAqua is not a conversational system, it can’t prompt
users for extra information. We did not provide any
additional detail to assess to what degree PowerAqua
satisfies the expectation of the users. We collected a total of

4 Factual queries formed with wh-terms (which, what, who, when, where)

or commands (give, list, show, tell,..) vary in length and
complexity:from simple queries, with adjunct structures or modifiers, to
complex queries with relative sentences and conjuctions/disjunctions

69 questions. All the questions, answers and ontologies are
accessible through the PowerAqua website5.

Analysis of Results
PowerAqua successfully answered 48 (69.5%) out of 69
questions. This is a good result given i) the open nature of
the question answering set up (hardly any constraints were
imposed on the choice of the questions), and ii) the size and
heterogeneity of the dataset. We analyzed the failures and
divided them into the following categories depending on the
component that led to the error (see Table 4):
Linguistic analysis. A failure can be due to the query being
out of the scope of the linguistic coverage (4 failures), or an
incorrect annotation on the underlying GATE platform and
grammars (e.g., annotating a verb as a noun) that leads to a
misunderstanding of the query (1 failure). In total 5 queries,
7.2%, failed because of incorrect linguistic analysis.
Extending the coverage of the linguistic grammars, currently
only focus on factual queries, to queries that require a
meaningful dependency structure of the sentence elements
might solve such errors (e.g., Q17: “Who are the people
working in the same place of Paolo Bouquet?”).
PowerMap. This component tries to maximize recall to
broaden the search space. Accuracy is not crucial at this
stage, as incorrect mappings will probably be discarded at a
later stage by using the semantics of the ontologies.
However, too many irrelevant mappings collected in this
phase inevitably affect the overall performance of the
system, therefore filtering heuristics are applied to achieve a
compromise between performance and recall. In our
evaluation 13 queries, 18.8% of the total failed either
because of relevant mappings that could not be syntactically
found (10 of them), or because they were found but later
discarded by the filtering heuristics, as they were considered
less likely to lead to the correct solution than others (3 of
them). PowerMap needs semantic sources with enough
human understandable labels to obtain high performance. In
this evaluation there were no failures due to the WordNet-
based semantic component to assess semantically sound
mappings ([6] shows an earlier evaluation of this module).
Triple Similarity Service. A TSS related failure occurs when
PowerMap correctly finds an ontology (and all mappings)
containing the answer to the query, but the TSS fails to
complete the matching process by locating the correct triples
answering the query. This can be due to several reasons, such
as incorrectly linking the terms into triples, or because of low
quality or incomplete ontologies. In our evaluation, 3 of the
queries, 4.3%, failed because of this component.
Merging component. This component worked as expected
for the two queries that required merging across ontologies.
Nevertheless, its integration with PowerAqua is still work in
progress, and will be further evaluated later.

5http://technologies.kmi.open.ac.uk/poweraqua/ok-evaluation.html

Table 4. Overview of the evaluation results
Successful queries Total

Q1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 19, 20, 21, 22, 23, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 48, 49, 52, 54,
55, 57, 58, 59, 61, 62, 64 and 65

48
(69.5%)

Failures Total
Out of coverage Wrong classification Linguistic
Q2, 9, 17, and 51 Q24

5 (7.2%)

Fail to find the mappings Filtering valid mappings PowerMap
Q5, 18, 42, 47, 50, 53, 56,
63, 66, and 69

Q25, 60, and 67
13
(18.8%)

TSS Q15, 45 and 68 3 (4.3%)
The average answering time for the successful queries was
15.39 seconds, the best time was 0.5 secs, while the worst
was 79.2 secs. This worst case was for Q35: which sea do the
Russian rivers flow to? (QT: <sea, flow, Russian rivers>)
where the keyword “sea” and its lexically related words
(“ocean”) produces more than 300 mapping hits and
“Russian rivers” produces two mappings:
"ID_russianriverPub3493” (as an instance of a restaurant in
Forestville) in an ontology about restaurants and as the literal
“Russian river tule perch” (a species name from the
Embiotocidae family) in the FAO ontology. The FAO
ontology is selected by the TSS as the only covering
ontology because it also has 40 approximate mappings for
“sea” (sea-bass, sea-cucumber, sea-pollution, sea-level, sea-
sickness, among others) and 1 for “flow” as a subclass of
“situation”. As the TSS fails to find OTs for <sea, ?, flow>
and <flow, ?, Russian rivers> the linguistic relation “flow” is
ignored and the algorithm searches for OTs by looking for
“ad-hoc”, “is-a” and indirect relationships (1 mediating
concept) between any of the FAO hits. As no results are
produced the TSS splits the compound and re-iterates to find
other relevant ontologies for the new QTs: <sea, flow,
rivers/russian> and <Russian, ?, rivers>. There are 18
covering ontologies for the former triple (considering either
“rivers” or “Russia”) and 8 for the later, from which only
one, russiaB, contains the answer encoded in the OTs: <sea,
flow_to, river> and <river, has_river, country>, <country,
has_political_fact, Russian>. For this query 2305 SeRQL
queries (the major bottleneck in the system) are needed.
In sum, we found that the tool was able to answer correctly
well more than half of the proposed queries, with most of the
failures being due to lexical level issues rather than the multi-
ontology matching mechanism. The biggest group of
PowerAqua failures are because relevant mappings could not
be found. For instance, PowerMap fails to find the
ontological entites “Spain” in Q56: “List some Spanish
islands”, “CaliforniaRegion” in Q5: “Give me all
Californian dry wines”, and “brain tumor SY NCI” in Q53:
“What kind of brain tumours are there?”. Even when the
relevant mappings were found, they were discarded by the
PowerMap filtering heuristics. In fact, many of these errors
are the consequence of poorly modeled or incomplete
ontologies (i.e., containing redundant, disconnected terms).
For example, for Q60, “Which terrorist organization
performed attacks in London?”, PowerMap correctly maps
the linguistic term “London” to the instance representing the
city, but this instance is not related to the entity “terrorist

organizations” leading to a TSS failure. PowerMap had
indeed identified the mapping which would have led to the
answer (the approximate literal “London, United Kingdom”),
however this mapping was discarded because PowerMap
considered it less likely to be correct than the exact instance
mapping "London". If the literal “London, United Kingdom”
would have had an ontological relation to the instance
“London”, or this one would have been ontologically
connected with the instance “United Kingdom”, PowerAqua
would have found the answer, as it correctly does for the
similar query Q61, “Which are the main attacks that took
place in the United Kingdom?”.
On the other hand, once the relevant mappings are found, the
TSS only failed to translate three of the queries to ontology
triples for different unexpected reasons. For example, for
Q68, “What drugs can be used for reducing fever?”, the
answers are found in the subclasses of the single class
“FeverReducingDrug”, which is not connected to the
mapped class “Fever”.

RELATED WORK
Question answering has, until now, two main branches,
depending on sources to generate an answer: closed domain
QA over structured data (databases, knowledge bases etc.)
and open domain QA over free text. With PowerAqua, we
develop a new branch: open QA over structured data. Open
domain QA over free text, stimulated since 1999 by the
TREC QA track, has developed very sophisticated, syntactic,
semantic and contextual processing. However, as stated in
[7] the pitfalls of QA over free text, with respect to modern
closed domain QA arise when a correct answer is unlikely to
be available in one document, but must be assembled by
aggregating answers from multiple ones, and when the
questions are not trivial to interpret.
Concerning query interpretation, recent work on closed
domain semantic search has addressed successfully key
issues such as portability. In [7] users can pose complex NL
queries to a large medical repository. A logical
representation is constructed using a NL interface, where,
instead of typing in text, all editing operations are defined
directly on an underlying logical representation governed by
a predefined ontology ensuring that no problem of
interpretation arises. In [11] NL queries are translated into
formal queries but the system is reliant on the use of
gazetteers initialized for the domain ontology. Other systems
with interesting approaches to query interpretation include
SPARK, SemSearch and XXPloreKnow! [15][14][12] where
keyword queries are translated into formal queries and K-
Search [2], where a hybrid search using a mix of keywords-
based and metadata-based strategies is used to recover
documents.
With respect to open scenarios, there is growing interest in
NL search engines that use semantic information to
understand and disambiguate the intended meaning of the
words in a query and how they are connected. The current
trend in semantic search is to search for web pages based on
the meaning of the words in the query, rather than just

matching keywords and ranking pages by popularity (like
Google or Yahoo). This class of systems include Powerset,
Hakia and TrueKnowledge. For instance, Powerset tries to
match the meaning of a query with the meaning of a sentence
in Wikipedia. Powerset not only works on the query side of
the search (converting the NL queries into database
understandable queries, and then highlighting, the relevant
passage of the document) but it also reads every word of
every (Wikipedia) page to extract the semantic meaning (it
also imports Freebase data). However, these systems,
although they use semantics, can not be considered as QA
systems that reuse the whole open SW because, like open
QA over free text, they just return information from web
pages, rather than constructing answers directly from
structured data. Although PowerAqua is primarily built for
QA on the SW, we have also investigated its use in
enhancing keyword search technologies on the web by
providing the semantic context to meaningfully extend an IR
query. An initial evaluation study of such an approach is
presented in [5].

CONCLUSIONS AND FUTURE WORK
 Exploiting the large heterogeneous SW is essentially about
discovering interesting connections between items in a
meaningful way. PowerAqua provides a NL front end, which
makes it possible to perform QA on the SW, hence
supporting such a discovery process across multiple
heterogeneous sources.
Our evaluation shows promising results, proving that it is
feasible to answer questions with not just one but many
ontologies selected on the fly in a reasonable time frame.
Indeed, we obtained a success rate in answering questions of
about 70% over a data set of 69 queries. The average
answering time was 15.39 seconds, with some queries being
answered within 0.5 seconds.
Our evaluation has highlighted an illustrative sample of
problems for any generic algorithm that wishes to explore
SW sources without making any a priori assumptions about
them. Firstly, such algorithms are not only challenged
because of the scale of the SW but more importantly because
of its considerable heterogeneity, as entities are modeled at
different levels of granularity and with different degrees of
richness. Under this perspective, the TSS algorithm has
performed well. Secondly, while the distinctive feature of
our system is its openness to unlimited domains, its potential
is overshadowed by the sparseness of the knowledge on the
SW. In the evaluation of semantic search systems presented
in [5], we found that the content collected by semantic search
engines such as Swoogle and Watson only covers 20% of the
query topics put forward in the TREC 9 and 2001
(http://trec.nist.gov) IR collections. To counter this
sparseness, the PowerAqua algorithms maximize recall,
which leads to a decrease in accuracy and an increase in
execution time. Thirdly, in addition to the sparseness, most
of the identified ontologies were barely populated with
instance data. This caused PowerAqua’s failure to retrieve a
concrete answer in some cases even when a correct mapping

of the query was found in an ontology. A fourth aspect that
hampered our system was the existence of many low quality
ontologies which contained redundant, unrelated terms
(causing the selection of incorrect mappings), presented
unclear labels (thus hampering the system’s ability to align
query terms and ontology labels), or lacked relevant domain
and range information (thus requiring more complex and
time-consuming SeRQL queries). Finally, we note the as yet
suboptimal performance of ontology repositories and
semantic search platforms for querying large datasets. This
limits the amount of information PowerAqua can acquire in a
reasonable amount of time and hence hampers the system
from considering all available information (especially that
which needs to be identified by combining multiple
knowledge elements).
Based on this analysis, we believe that the performance and
the accuracy of the system are likely to improve as the SW
grows and semantic search engines mature. As more
information becomes available, it will become possible for
PowerAqua to focus primarily on precision rather than recall,
thus leading in principle to better accuracy and speed.
Meanwhile, Watson is already addressing significant
scalability issues to provide PowerAqua with efficient access
to large amounts of new semantic data (e.g., the billion triple
challenge dataset: http://challenge.semanticweb.org/). This
will allow PowerAqua to find good mappings more easily,
and therefore increase the precision in efficiently filtering
noisy results thus improving accuracy and speed.
During our work we noted the lack of standard evaluation
benchmarks for semantic search tools. This evaluation gave
us an insight into PowerAqua’s mapping capabilities and the
range of questions it should be able to answer. In future work
we plan to extend this evaluation with the independent
Mooney6 data sets used to evaluate single ontology based
interfaces such as [1][13] and compare existing ontology
based QA systems over a single source. Moreover, we would
also like to evaluate the PowerAqua merging and ranking
capabilities across ontologies with queries that can only be
answered by a combination of semantic sources.
We are also experimenting with the integration of
PowerAqua with standard search engines (such as Yahoo),
by using the results from PowerAqua queries to
automatically trigger contextualized searches in these search
engines. The preliminary results have been promising (in
particular, the answers retrieved from PowerAqua appear to
improve the quality of the results returned by the search
engines).

REFERENCES
[1] Bernstein, A., Kaufmann, E. (2006). GINO- A Guided Input

Natural Language Ontology Editor. In the 5th International
Semantic Web Conference. Athens, USA.

[2] Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V. and
Petrelli, D (2008). Hybrid Search: Effectively combining

6 http://www.cs.utexas.edu/users/ml/nldata.html

keywords and semantic searches. In the 5th European
Semantic Web Conference . Tenerife.

[3] Cimiano, P., Haase, P., Heizmann, J. (2007). Porting Natural
Language Interfaces between Domains -- An Experimental
User Study with the ORAKEL System. In the International
Conference on Intelligent User Interfaces.

[4] D'Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc,
L., Lopez, V., Guidi, D. (2008) Towards a new Generation of
Semantic Web Applications. IEEE Intelligent Systems, 23
(3).

[5] Fernandez, M., Lopez, V., Motta, E., Sabou, M., Uren, V.,
Vallet, D., Castells, P. (2008) Semantic Search meets the
Web. In the International Conference on Semantic
Computing. Santa Clara, California.

[6] Gracia, J., Lopez, V., d’Aquin, M., Sabou, M., Motta, E.,
Mena, E. (2007). Solving Semantic Ambiguity to Improve
Semantic Web based Ontology Matching. In the Ontology
Matching Workshop at ISWC/ASWC. Busan, Korea.

[7] Hallett, C., Scott, D. and Power, R. (2007). Composing
Questions through Conceptual Authoring. Computational
Linguistics 33 (1)

[8] Lopez, V., Motta, E. and Uren, V. (2006). PowerAqua:
Fishing the Semantic Web. In the 3th European Semantic
Web Conference. Budva, Montenegro.

[9] Lopez, V., Motta, E., Uren, V. and Pasin, M. (2007).
AquaLog: An ontology-driven Question Answering System
for Semantic intranets, Journal of Web Semantics, 5 (2)

[10] Lopez, V., Sabou, M. and Motta, E. (2006). PowerMap:
Mapping the Semantic Web on the Fly. In the 5th International
Semantic Web Conference. Athens, USA.

[11] Tablan, V, Damljanovic, D., and Bontcheva, K. (2008). A
Natural Language Query Interface to Structured Information.
In the 5th European Semantic Web Conference.

[12] Tran, T., Cimiano, P., Rudolph, S., and Studer. R. (2007).
Ontology-based interpretation of keywords for semantic
search. In the 6th International Semantic Web Conference.

[13] Wang, C, Xiong, M., Zhou, Q., Yu, Y. (2007). PANTO: A
portable Natural Language Interface to Ontologies. In the 4th
European Semantic Web Conference. Innsbruck, Austria.

[14] Y. Lei, V. Uren, and E.Motta (2006). SemSearch: A Search
Engine for the Semantic Web. In the 15th International
Conference of Knowledge Engineering and Knowledge
Management, EKAW. Podebrady, Czech Republic.

[15] Zhou, Q., Wang, C., Xiong, M., Wang, H., and Yu, Y. (2007).
Spark: Adapting keyword query to semantic search. In the 6th
International Semantic Web Conference. Korea.

[16] Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.
(2002). GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In Proc
of the 40th Anniversary Meeting of the Association for
Computational Linguistics (2002).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

