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ABSTRACT 
PowerAqua1 is a Question Answering system, which takes as input 
a natural language query and is able to return answers drawn from 
relevant semantic resources found anywhere on the Semantic Web. 
In this paper we provide two novel contributions: First, we detail a 
new component of the system, the Triple Similarity Service, which 
is able to match queries effectively to triples found in different 
ontologies on the Semantic Web. Second, we provide a first 
evaluation of the system, which in addition to providing data about 
PowerAqua’s competence, also gives us important insights into the 
issues related to using the Semantic Web as the target answer set in 
Question Answering. In particular, we show that, despite the 
problems related to the noisy and incomplete conceptualizations, 
which can be found on the Semantic Web, good results can already 
be obtained. 

Categories and Subject Descriptors 
I.2.7 Natural Language Processing – semantic web, multi-ontology 
question answering, knowledge acquisition. 

General Terms: Design 

INTRODUCTION 
Recent years have witnessed a resurgence of interest in 
Natural Language (NL) Interfaces to knowledge bases and in 
particular the rise of a new paradigm of research, which can 
be termed as Ontology-Based Query Answering 
[3][1][9][13][11]. These systems use an underlying ontology 
to drive and/or to give meaning to the queries expressed by a 
user. In general, these systems are ontology-modular, i.e., 
they can be used for different domains, even though, in 
practice they differ considerably in the degree of domain 
customization they require.  At one end of the spectrum, 
AquaLog [9] uses interactivity to learn user terminology over 
time and does not necessitate any customization effort; at the 
other end of the spectrum, a system such as Orakel [3] 
requires significant domain-specific lexicon customization.  
Unfortunately, regardless of the various fine-grained 
differences between them, all the aforementioned systems 
arguably suffer from an important limitation: they are in 
practice only suitable for semantic intranets, where a pre-
                                                                 
1 An online demo of the system can be found at: 

http://kmi.open.ac.uk/technologies/poweraqua. 
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defined domain ontology (or a set of them) is used to provide 
a homogeneous encoding of organizational data. In such a 
scenario ontology-driven interfaces have been shown to 
effectively support the user in formulating complex queries, 
without resorting to formal query languages. However, any 
information which is either outside the semantic intranet, or 
simply not integrated with the corporate ontology remains 
out of bounds.  
In the meantime we are also seeing a dramatic increase in the 
amount of semantic markup available on the web, with 
ontology search engines, such as Sindice 
(http://sindice.com/), claiming to index “over 10 billion 
pieces… across 100 million web pages”. As discussed in [4], 
the availability of this large amount of heterogeneous 
semantic markup is unprecedented in the history of Artificial 
Intelligence and may provide the semantic basis for a new 
generation of intelligent systems. At the same time, the 
emergence of a large scale Semantic Web (SW) introduces a 
new challenge: how can we support users in querying and 
exploring this novel, massively heterogeneous, structured 
information space? In particular, the ‘static’ ontology-based 
query answering systems mentioned earlier cannot cope with 
the sheer scale and heterogeneity of the SW. The keyword 
interfaces provided by ontology search engines such as 
Swoogle (swoogle.umbc.edu/), Watson 
(watson.kmi.open.ac.uk/), or Sindice work reasonably 
effectively when asked to find specific items, such as 
“Enrico Motta” or “Researcher”, however, they cannot 
answer more complex queries, such as “Which Russian 
rivers end in the Black Sea?”. 
Hence, in this paper we tackle the problem of supporting 
users in locating information on the SW. Our approach, in 
contrast with the keyword-based ontology search interfaces, 
is based on providing a NL Interface, PowerAqua, which is 
able to accept user queries expressed in NL and retrieve 
answers from any semantic source on the SW2. In contrast 
with the ontology-based query answering tools mentioned 
earlier, PowerAqua is not restricted to a specific set of 
ontologies, but can in principle retrieve answers from many 
semantic sources.  
The ideas behind PowerAqua were originally presented in 
[8], where we introduced the vision underlying the system 
and the key challenges facing the proposed research. In [10] 
we provided a detailed description of the core engine of the 

                                                                 
2 Given that PowerAqua accesses the Semantic Web through the Watson 

Semantic Web Gateway [4], in practice PowerAqua will only retrieve 
information if this has been crawled and indexed by Watson.  



system, the PowerMap component, which dynamically finds 
the potentially relevant ontologies and element mappings for 
a given NL query. In this paper we report on the first 
complete implementation of the system, we describe the 
novel Triple Similarity Service component, and give a 
comprehensive account of the way the system returns 
answers to queries. In addition we also present an initial 
evaluation of the system, which in addition to providing data 
about PowerAqua’s competence, also gives us important 
insights about the current strengths and limitations of the SW 
when used for question answering. The rest of the paper is 
organized as follows: we describe the system overall 
architecture in Section 2, introduce the novel Triple 
Similarity Service component in Section 3, and give a brief 
overview of our current work in integrating and ranking 
answers from different sources in Section 4. We then present 
the results obtained from an initial evaluation of the system 
in Section 5, while in Section 6 and 7 we discuss related 
work, draw the key conclusions from this work, and outline 
future research directions.   

SYSTEM OVERVIEW 
PowerAqua takes as input a question expressed in NL and 
returns all the answers it can derive from online semantic 
sources. In this section we give an overview of the system, 
by means of an illustrative example.  
The overall architecture of PowerAqua is shown in Figure 1. 
Its Linguistic Component is invoked first; it analyzes a NL 
query, and translates it into a set of linguistic triples, called 
Query-Triples (QTs), by identifying associations that relate 
terms together. For instance, the query “who plays in the 
rock group nirvana?” is translated into the QT <person / 
organization, plays, rock group nirvana>. This component is 
based on GATE [16], and it is essentially the same as the one 
included in AquaLog [9]. 
The QTs produced by the Linguistic Component are passed 
on to PowerMap, which is responsible for identifying the 
semantic sources that may answer the given query, and for 
producing initial element-level mappings between QT terms 
and entities in these sources. PowerMap has already been 
presented in [10] and here we only summarize the key 
aspects of its behavior, in the context of an example.  

 
Figure 1: PowerAqua’s components 

Initially, PowerMap’s Ontology Discovery sub-module 
identifies all semantic sources that are likely to describe QT 
terms. In this phase PowerMap maximizes recall in order to 
broaden the search space and bridge the gap between the user 
terminology and that of the various ontologies. This is 
achieved by searching for approximate mappings (lexical 
overlap) as well as exact mappings (lexical equality). These 
are jointly referred to as equivalent mappings. PowerMap 

uses both WordNet and the SW itself as sources of 
background knowledge to perform query expansion and to 
find lexically dissimilar (but semantically similar) matches – 
including synonyms, hypernyms and hyponyms. The output 
is a set of Entity Mapping Tables (EMTs), where each table 
associates each QT term with a set of entities found on the 
SW (Table 1). For instance, the fifth row in Table 1 shows a 
mapping between Person (a term in the QT) and Musician (a 
concept in the Music Ontology) discovered using the 
hyponymy relation between Person and Musician, suggested 
by the TAP Ontology. For the example query, PowerMap is 
able to find a large number of candidate mappings in several 
ontologies. The first row in Table 1 indicates that no 
mappings were found for any of the compound terms in the 
query, although we were able to for the individual 
components (e.g., rock). 
PowerMap uses the Watson Semantic Gateway as the entry 
point to the SW. Watson crawls and indexes online SW 
documents and provides an access point through its API. In 
addition PowerMap also provides a plug-in mechanism, 
which supports a common API to query ontologies residing 
on different repositories.  Currently plug-ins are available for 
Sesame (www.openrdf.org) and Watson, however, it would 
be relatively easy to create plug-ins for other platforms as 
well. 
Table 1. Partial view of the EMTs for QT <person/org, plays, rock 
group nirvana> 
Rock group Nirvana, rock group, group nirvana  ø 
Nirvana Music: Nirvana (type: group); TAP: MusicianNirvana (type: person); 

SWETO: Nirvana Meratnia (type: researcher); KIM: Eden (synonym); 
Spiritual: Nirvana; Magnatune: Passion of Nirvana (type: “track”), … 

Rock Music: rock (as a type of genre);  SWETO: Michael_Rock, Sibyl Rock, 
etc; ATO: rock (as a type of substance), Ayers_Rock (as a place); … 

Group Music ontology: group,  … 
Person  Music ontology: musicians (as a hyponym of person according to TAP), 

TAP: person,  KIM: person,  Magnatune: musicArtist (hyponym),… 
Play KIM ontology: sport (as synonym of “play”)… 

PowerMap’s Semantic Validation component filters out the 
least promising mappings within an ontology by using a 
number of heuristics (equivalent mappings are preferred over 
hyper/hyponyms, redundant mappings within the same 
taxonomy are removed, etc). In addition, this component also 
attempts to generate WordNet synsets for all classes and 
individuals in the EMTs. In our example the system fails to 
find a valid synset for Nirvana, as the intended meaning is 
not in WordNet. It does, however, produce valid synsets for 
“rock” (e.g., synsets would be generated for all the entities 
listed in row 3 of Table 1 associated with the term “rock”) 
interpreted as a “music genre” in both the music and TAP 
ontologies, and as a “stone (material consisting of aggregate 
minerals)” in ATO. While obviously only one of these 
interpretations is correct, at this stage the system is unable to 
disambiguate between the two. Nevertheless, other 
interpretations can already be ruled out at this stage. For 
instance, the association between the query term “rock” and 
class “stone”, interpreted as a measure of weight, can be 
discarded because there is no intersection in WordNet 
between the intended synset and its synset in the ontology 
(therefore such association does not appear in Table 1).  



PowerAqua’s third step, the Triple Similarity Service (TSS), 
takes as input the EMTs generated by PowerMap and the 
QTs, and returns a set of Triple Mapping Tables (TMTs), 
which specify complete mappings between a set of Query 
Triples and the appropriate Ontology Triples (OT), as shown 
in Table 2.  
Table 2. The TMT for OTs in ontologies that match the QTs  

<person / organization, play, Nirvana> 
SWETO <Nirvana Meratnia, IS_A, person> 

Magnatune <MusicArtist (hyponym), maker (ad-hoc), Passion of Nirvana> 
Music <Musician (hyponym), has_members (ad-hoc), Nirvana> 
TAP <Person, hasMember (ad-hoc), MusicianNirvana> 

<rock, ?, nirvana>; <group, ?, nirvana> 
Music <Nirvana, has_genre, rock>; <nirvana, is-a, group> 

Finally, the Merging and Ranking component generates the 
final answers from the returned Ontology Triples. In our 
example, one set of answers is produced by merging the OTs 
obtained from the Music and TAP ontologies. In particular, 
the instances on which both ontologies agree (“Dave Grohl”, 
“Kurt Cobain”, “Chad Channing” and “Chris Novoselic”) 
are ranked higher. Then, the answer is augmented with 
additional instances from the music ontology (“Dan Peters”, 
“Dave Foster”, “Jason Everman”, “Pat Smear”, “Dale 
Crover” and “Aaron Burckhard”, all former members of the 
band). The Music ontology also produces additional 
mappings for the compound term “rock group nirvana”: 
<nirvana, has-genre, rock> <nirvana, is-a, group>. The 
answers from the SWETO and Magnatune ontologies are 
ranked last. 

THE TRIPLE SIMILARITY SERVICE (TSS) 
In the TSS the element level matches recorded in EMT’s 
(QT terms to ontology elements) are assembled to produce 
triple level matches (entire QTs to OTs). The algorithm has 
been optimized towards finding the most precise ontological 
translations. Its design has been influenced by the following 
observations: 
1) An ontology with a higher coverage of a QT is likely to 

lead to a better result (i.e., ontologies that cover entire 
triples and not just individual terms); 

2) If no OTs can be found for a QT containing a compound 
term, potentially, relevant OTs may still be found for the 
individual elements of the compound. Therefore, the TSS 
is re-invoked with new QTs formed by splitting the 
compound term.  

3) We observed that often the subject (QTi1) of a QT refers 
to a less specific ontological entity than its object (QTi3), 
which is frequently mapped to an individual (e.g: 
<Russian rivers, flow, Black Sea>). Therefore, splitting 
QTi1 (e.g. into “Russian” and “rivers”) has less negative 
influence on the quality of the final ontology triples than 
splitting QTi3 (splitting QTi3 is more likely to introduce 
noise, e.g., “Black” and “Sea”)  

4) For queries translated into more than one QT, or in case 
of linguistic ambiguity, the TSS requires domain 
knowledge to solve modifier attachment and 
disambiguate how the triples link among themselves. 

The TSS algorithm contains four steps that parallel these 
four observations and lead to decreasingly precise 
translations (but increased recall). The TSS executes the 
highest quality steps first and only uses inferior quality steps 
if no answer is found. 
For each QT (QTi), in step S1, the TSS inspects all 
ontologies that contain mappings for at least two of the terms 
in the QT. This coverage-centric criterion ensures that the 
algorithm focuses first on the ontologies most likely to 
address the domain of the query. The Relation Similarity 
Service (RSS), which is 
explained in more 
detail later, is called 
for each ontology in 
order to find the 
concrete OTs, which 
match the input QT. If 
any of these OTs leads 
to an answer, then this 
is recorded in the 
TMT. After all 
potentially relevant 
ontologies have been 
inspected, if at least 
one answer has been 
derived the algorithm 
stops (lines 2-6). 
Otherwise, in step S2, 
the TSS increases 
recall by splitting the 
subject (QTi1) and the 
TSS re-iterates for the 
resulting QTs (obtained after splitting the subject). At the 
end of this phase, if an answer has been obtained the 
algorithm stops, otherwise it continues (lines 14-19). In step 
S3 we resort to splitting the object QTi3 and re-invoking the 
TSS for the resulting QTs. Finally, if none of the above 
strategies leads to an answer, recall is further improved in 
step S4 by inspecting ontologies that cover the original (non 
split) QTi3. In this case, the RSS is only called for this term 
(and for QTi2 if it has mappings) and it returns all OTs that 
partially cover the QT, if any (lines 19-26). 

Relation Similarity Service 
The Relation Similarity Service (RSS) is core to the TSS. 
The RSS inspects an ontology and identifies the OTs that are 
appropriate translations for the given QT, from which an 
answer can potentially be inferred. It preferentially uses 
exact mappings to obtain the OTs; otherwise equivalent 
mappings and synonyms are selected, leaving the use of 
hypernyms and hyponyms as the last choice.  
The RSS can map a QT to either one OT (direct mapping) or 
to two OTs (indirect mappings). Depending on the type of 
their predicate, direct mappings can be “IS-A” (a 
subsumption relation) or “ad-hoc” (considering relations 
inherited from the superclasses). For the QT <capitals, ?, 
Europe> (“find me all capitals in Europe”), <city, 



capitalCity, EuropeanNation> is an ad-hoc mapping while 
<capital_city, has_capital_city, country> <country, 
has_member, Europe> is an indirect mapping. “Ad-hoc” 
direct relationships between the arguments of the triple are 
analyzed before “IS-A”3 unless the original question contains 
an IS-A relation (an indication that such a relation is 
expected). For example, for the query “which animals are 
reptiles” the answers are encoded as the subclasses of the 
class “reptile”, which is a subclass (IS-A) of the class 
“animal”. If such relations are not found then indirect 
relations are inspected (with only one mediating concept). In 
case the linguistic relation is mapped to an ontological 
property the matching and joining of triples is controlled by 
the domain and range information of the relation, if possible.  

Examples 
Table 3 contains a few examples of TSS outputs, which we 
will use below to illustrate the ways that answers are derived 
at each step of the algorithm.  
Table 3:  Examples of ontological translation for queries (TMTs) 
Q1: Who works in the climaprediction project? 
KMi ontology: <person, has-project-member, climaprediction-net (type: project)>, 
<person, has-contact-person, climaprediction-net (type: project)> 
Q2: Which Russian rivers flow into the Black Sea? 
RussiaB: <river, flow-to, Black_Sea>   
RussiaB: <river, has_major_river, country> <country, has_political_fact, russian> 
KIM: <river, partOf, entity> <entity, hasAlias, Russian Soviet Federated Socialistic 
Republic> 
Q3: What pathologies produce hair loss? 
Biomedical: <hyperthyroidism, hasSymptom, Alopecia>, <stress, hasSymptom, 
Alopecia>, <iron_deficiency, hasSymptom, Alopecia> 

Let’s consider query Q1 first, where the related QT is 
<person/organization, work, climaprediction project>. 
Because there exists a covering ontology with mappings for 
both “person” and  “climaprediction” (as an instance of 
“project”), which contains valid ontological triples, an 
answer can be inferred at step S1.  
Query Q2, whose corresponding QT is <russian rivers, flow, 
Black Sea>, is answered in step S2. The reason is that while 
there is a mapping for “Russian Rivers” in an ontology about 
restaurants, no valid OTs were produced in step S1 as there 
are no covering ontologies for both arguments. Therefore, 
the algorithm tries again by splitting the compound QT term, 
and consequently modifying the QTs into: <Russian/rivers, 
flow, black sea> <Russian, ?, rivers>. For these resultant 
QTs, in this second TSS iteration, a covering ontology 
containing the valid OTs that produce an answer is found by 
the RSS. The RSS analyzes the ontology relations to 
disambiguate which part of the compound “Russian” or 
“rivers” (or both) links to “flow into the black sea” in order 
to create valid OTs. If both compound parts produce valid 
OTs the different interpretations will be merged or ranked at 
a later stage.  
Third, in the case of query Q3, with QT <pathologies, 
produce, hair loss>, there are several ontologies with 
mappings for both “pathologies” and “hair loss”, which do 
                                                                 
3 The reason for this is that many ontologies misuse IS-A relations to 

model other types or relations (e.g. partonomy) 

not contain links between the entities. Therefore, steps S1, 
S2 and S3 fail to derive an answer using the covering 
ontologies, even when splitting “hair loss”. In step S4, the 
only course of action left is to inspect all ontologies that 
contain at least one mapping for “hair loss” (QT3). One such 
ontology is the biomedical ontology that contains the term 
“alopecia” (a medical term for “hair loss”) and produces a set 
of potential answers (hyperthyroidism, stress, iron 
deficiency, etc.).  

Efficiency of the TSS 
The TSS and RSS are designed to avoid expensive 
computations in those scenarios where simple methods are 
able to yield solutions, in particular: 
(1) The algorithm can re-iterate through the two different 
phases of collecting candidate ontological entities and then 
identifying relevant relationships between these entities in 
order to look only for the mappings needed in the first 
instance. This is useful in the case of compound terms, where 
the algorithm would look for mappings for terms composing 
the compound only if required (step 2 and 3).  
(2) The time consuming process of analyzing indirect 
relationships in the RSS (i.e., relationships which require two 
triples to be joined) is only carried out in those cases where 
no direct relationship between candidate entities within the 
same ontology is found.  
(3) In some cases the TSS algorithm can use semantic 
information to disambiguate how the triples link to each 
other (modifier attachment) and minimize the number of 
triple combinations to be analyzed in order to translate a 
query. E.g., in “which cities are located in the region of 
Sacramento?”, whose corresponding QT are: <cities, 
located, region> <region, ?, Sacramento>, the TSS in step 
S1 finds an ontology stating that “SacramentoArea IS-A 
region”. Using such semantic information, it transforms the 
two QTs into just one: <cities, located, Sacramento Area>. 
Summing up, to avoid analyzing an unfeasibly large space of 
solutions, filtering heuristics are used, and the TSS tries to 
find an answer by augmenting the search space in each re-
iteration until either an answer is found, or all the compounds 
(if any) are split, and all the ontologies with less coverage 
have been analyzed.  

Known Issues 
The TSS has a couple of “blindspots” where we know it 
returns noisy or incomplete answers in situations where the 
correct answers exist.  
Noisy answers are typically produced when the knowledge 
encoded on the SW only covers part of the user query and 
the algorithm has to resort to ontologies with less coverage to 
generate an answer (step S4). In this case irrelevant results 
may be produced, as PowerAqua cannot fill in the missing 
information in order to fully understand (map) the query. 
E.g., in “who are the professors in Southampton?” for which 
there are no mappings for “professor” in the selected 
ontologies, the algorithm returns the “persons” who were 



born and died in “Southampton” from the dbpedia ontology 
about people, and the “persons” who are part of the 
“University of Southampton”, from the ISWC ontology. The 
latter set contains “Nigel Shadbolt”, one of the answers we 
were looking for, but also false answers. 
Incomplete answers can sometimes be produced because, to 
avoid performance problems, PowerAqua does not search for 
triples among relevant entities connected by long paths. E.g. 
for “find me cities in Europe,” there is an exact mapping 
“Europe” in the KIM ontology, and, consequently, the non 
exact mappings in the same ontology like “eastern_europe” 
are discarded. As a result valid triples  with more than 1 
indirect relation are missed, such as: <warsaw (city), 
locatedIn, Republic of Poland> <Republic of Poland, 
partOf, central_europe> <central_europe, locatedIn, 
Europe>. 

MERGING AND RANKING COMPONENT  
The Merging and Ranking component is still work in 
progress, therefore we only provide a brief overview here. A 
side effect of the fact that PowerMap explores multiple 
knowledge sources is that, after the TSS, the query is 
frequently associated to more OTs from different ontologies, 
each OT generating an answer. Depending on the complexity 
of the query (i.e., the number of QTs it has been translated to 
by the linguistic component), as well as the way each QT 
was matched to OTs, these individual answers can a) be 
redundant or b) be part of a composite answer to the entire 
query or c) be alternative answers derived from different 
ontological interpretations of the QTs. Hence, different 
merging scenarios may arise depending on how the terms are 
linked across OTs. For instance, in “which Russian rivers 
flow into the Black Sea?”, because each resultant OT only 
leads to partial answers, they need to be merged to generate a 
complete answer. This is achieved by intersecting the 
answers returned by “rivers in Russia” with those returned 
by “rivers that flow in the Black sea”. Among other things, 
merging requires to identify similar entities across 
ontologies, e.g., “Russian Soviet Federated Socialistic 
Republic” and “Russia”. 
Additionally, whenever a set of answers is returned, it is 
important to be able to rank them. This component applies a 
range of ranking measures which take into account (in this 
order) a) criteria derived during merging (do the answers 
from different OTs denote similar interpretations- in order to 
obtain an unique set of answers?), b) criteria referring to the 
quality of the mapping between QTs and their OTs (how 
confident is PowerAqua about the mappings used to derive 
the answer?), and c) criteria referring to the popularity 
(frequency), of the answer (which answer is returned by the 
most ontologies?).  

EVALUATION AND DISCUSSION 
In our evaluation we focus on assessing PowerAqua’s ability 
to derive answers to NL queries by relying on the 
information provided by multiple ontologies identified on the 

fly, rather than its linguistic coverage or its merging and 
ranking capabilities.  

Experimental Setup 
In this section we describe the evaluation criteria as well as 
the data sets used for our experiments. Our goal is to build a 
system that provides correct answers to a query, in a 
reasonable amount of time, by making use of at least one 
ontology, which provides the required information. In order 
for an answer to be correct, PowerAqua has to align the 
vocabularies of both the query and the answering ontologies. 
PowerAqua fails to give an answer if the knowledge is in the 
ontology(ies) but it can not find it. A conceptual failure (the 
knowledge is not in the ontology) is not considered as a 
PowerAqua failure because the ontology does not cover the 
information needed to map the user query or is not populated 
with the answers. Recall cannot be measured in this open 
scenario, as we don’t know in advance how many ontologies 
can potentially answer the user’s query. Therefore, the major 
evaluation criteria are success, in terms of getting (or not) at 
least one correct answer, and speed. 
We tested our prototype on a collection of ontologies saved 
into online repositories and indexed by PowerMap. The 
collection includes high level ontologies, like ATO, TAP, 
SUMO and DOLCE, and very large ontologies, like 
SWETO, with around 800,000 entities and 1,600,000 
relations. In total, we collected around 3GBs of data stored in 
130 Sesame repositories (each repository containing one or 
more semantic sources, in total more than 700 documents). 
We preferred to use this big static data set rather than directly 
fetching ontologies from Watson [4] because: 1) the 
experiments are reproducible, 2) the question designers can 
easily browse the semantic sources in the collection to 
generate queries, and 3) the size and quality of ontologies is 
higher than those found in Watson, which includes a large 
number of small, lightweight ontologies (often not 
populated) and foaf files. 
The questions used during the evaluation were selected as 
follows. We asked seven members of KMi, familiar with the 
SW, to generate factual questions4 for the system that were 
covered by at least one ontology in our collection. We 
pointed out to our colleagues that the system is limited in 
handling questions that required temporal reasoning (e.g. 
today, last month, before 2004) and compositional semantic 
constructions (quantification, comparison, negation and 
number restrictions). As no ‘quality control’ was carried out 
on the questions, it was admissible for them to contain some 
minor grammatical errors. Also, we pointed out that 
PowerAqua is not a conversational system, it can’t prompt 
users for extra information. We did not provide any 
additional detail to assess to what degree PowerAqua 
satisfies the expectation of the users. We collected a total of 

                                                                 
4 Factual queries formed with wh-terms (which, what, who, when, where) 

or commands (give, list, show, tell,..) vary in length and 
complexity:from simple queries, with adjunct structures or modifiers, to 
complex queries with relative sentences and conjuctions/disjunctions 



69 questions. All the questions, answers and ontologies are 
accessible through the PowerAqua website5.   

Analysis of Results 
PowerAqua successfully answered 48 (69.5%) out of 69 
questions. This is a good result given i) the open nature of 
the question answering set up (hardly any constraints were 
imposed on the choice of the questions), and ii) the size and 
heterogeneity of the dataset. We analyzed the failures and 
divided them into the following categories depending on the 
component that led to the error (see Table 4):  
Linguistic analysis. A failure can be due to the query being 
out of the scope of the linguistic coverage (4 failures), or an 
incorrect annotation on the underlying GATE platform and 
grammars (e.g., annotating a verb as a noun) that leads to a 
misunderstanding of the query (1 failure). In total 5 queries, 
7.2%, failed because of incorrect linguistic analysis. 
Extending the coverage of the linguistic grammars, currently 
only focus on factual queries, to queries that require a 
meaningful dependency structure of the sentence elements 
might solve such errors (e.g., Q17: “Who are the people 
working in the same place of Paolo Bouquet?”). 
PowerMap. This component tries to maximize recall to 
broaden the search space. Accuracy is not crucial at this 
stage, as incorrect mappings will probably be discarded at a 
later stage by using the semantics of the ontologies. 
However, too many irrelevant mappings collected in this 
phase inevitably affect the overall performance of the 
system, therefore filtering heuristics are applied to achieve a 
compromise between performance and recall. In our 
evaluation 13 queries, 18.8% of the total failed either 
because of relevant mappings that could not be syntactically 
found (10 of them), or because they were found but later 
discarded by the filtering heuristics, as they were considered 
less likely to lead to the correct solution than others (3 of 
them). PowerMap needs semantic sources with enough 
human understandable labels to obtain high performance. In 
this evaluation there were no failures due to the WordNet-
based semantic component to assess semantically sound 
mappings ([6] shows an earlier evaluation of this module).  
Triple Similarity Service. A TSS related failure occurs when 
PowerMap correctly finds an ontology (and all mappings) 
containing the answer to the query, but the TSS fails to 
complete the matching process by locating the correct triples 
answering the query. This can be due to several reasons, such 
as incorrectly linking the terms into triples, or because of low 
quality or incomplete ontologies. In our evaluation, 3 of the 
queries, 4.3%, failed because of this component.  
Merging component. This component worked as expected 
for the two queries that required merging across ontologies. 
Nevertheless, its integration with PowerAqua is still work in 
progress, and will be further evaluated later.  
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Table 4. Overview of the evaluation results 
Successful queries Total  

Q1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 19, 20, 21, 22, 23, 26, 27, 28, 29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 48, 49, 52, 54, 
55, 57, 58, 59, 61, 62, 64 and 65 

48 
(69.5%) 

Failures Total 
Out of coverage Wrong classification Linguistic  
Q2, 9, 17, and 51 Q24 

5 (7.2%) 

Fail to find the mappings Filtering valid mappings PowerMap  
Q5, 18, 42, 47, 50, 53, 56, 
63, 66, and 69 

Q25, 60, and 67 
13 
(18.8%) 

TSS  Q15, 45 and 68 3  (4.3%) 
The average answering time for the successful queries was 
15.39 seconds, the best time was 0.5 secs, while the worst 
was 79.2 secs. This worst case was for Q35: which sea do the 
Russian rivers flow to? (QT: <sea, flow, Russian rivers>) 
where the keyword “sea” and its lexically related words 
(“ocean”) produces more than 300 mapping hits and 
“Russian rivers” produces two mappings: 
"ID_russianriverPub3493” (as an instance of a restaurant in 
Forestville) in an ontology about restaurants and as the literal 
“Russian river tule perch” (a species name from the 
Embiotocidae family) in the FAO ontology. The FAO 
ontology is selected by the TSS as the only covering 
ontology because it also has 40 approximate mappings for 
“sea” (sea-bass, sea-cucumber, sea-pollution, sea-level, sea-
sickness, among others) and 1 for “flow” as a subclass of 
“situation”. As the TSS fails to find OTs for <sea, ?, flow> 
and <flow, ?, Russian rivers> the linguistic relation “flow” is 
ignored and the algorithm searches for OTs by looking for 
“ad-hoc”, “is-a” and indirect relationships (1 mediating 
concept) between any of the FAO hits. As no results are 
produced the TSS splits the compound and re-iterates to find 
other relevant ontologies for the new QTs: <sea, flow, 
rivers/russian> and <Russian, ?, rivers>. There are 18 
covering ontologies for the former triple (considering either 
“rivers” or “Russia”) and 8 for the later, from which only 
one, russiaB, contains the answer encoded in the OTs: <sea, 
flow_to, river> and <river, has_river, country>, <country, 
has_political_fact, Russian>. For this query 2305 SeRQL 
queries (the major bottleneck in the system) are needed.  
In sum, we found that the tool was able to answer correctly 
well more than half of the proposed queries, with most of the 
failures being due to lexical level issues rather than the multi-
ontology matching mechanism. The biggest group of 
PowerAqua failures are because relevant mappings could not 
be found. For instance, PowerMap fails to find the 
ontological entites “Spain” in Q56: “List some Spanish 
islands”, “CaliforniaRegion” in Q5: “Give me all 
Californian dry wines”, and “brain tumor SY NCI” in Q53: 
“What kind of brain tumours are there?”. Even when the 
relevant mappings were found, they were discarded by the 
PowerMap filtering heuristics. In fact, many of these errors 
are the consequence of poorly modeled or incomplete 
ontologies (i.e., containing redundant, disconnected terms). 
For example, for Q60, “Which terrorist organization 
performed attacks in London?”, PowerMap correctly maps 
the linguistic term “London” to the instance representing the 
city, but this instance is not related to the entity “terrorist 



organizations” leading to a TSS failure. PowerMap had 
indeed identified the mapping which would have led to the 
answer (the approximate literal “London, United Kingdom”), 
however this mapping was discarded because PowerMap 
considered it less likely to be correct than the exact instance 
mapping "London". If the literal “London, United Kingdom” 
would have had an ontological relation to the instance 
“London”, or this one would have been ontologically 
connected with the instance “United Kingdom”, PowerAqua 
would have found the answer, as it correctly does for the 
similar query Q61, “Which are the main attacks that took 
place in the United Kingdom?”.  
On the other hand, once the relevant mappings are found, the 
TSS only failed to translate three of the queries to ontology 
triples for different unexpected reasons. For example, for 
Q68, “What drugs can be used for reducing fever?”, the 
answers are found in the subclasses of the single class 
“FeverReducingDrug”, which is not connected to the 
mapped class “Fever”.  

RELATED WORK 
Question answering has, until now, two main branches, 
depending on sources to generate an answer: closed domain 
QA over structured data (databases, knowledge bases etc.) 
and open domain QA over free text. With PowerAqua, we 
develop a new branch: open QA over structured data. Open 
domain QA over free text, stimulated since 1999 by the 
TREC QA track, has developed very sophisticated, syntactic, 
semantic and contextual processing. However, as stated in 
[7] the pitfalls of QA over free text, with respect to modern 
closed domain QA arise when a correct answer is unlikely to 
be available in one document, but must be assembled by 
aggregating answers from multiple ones, and when the 
questions are not trivial to interpret.  
Concerning query interpretation, recent work on closed 
domain semantic search has addressed successfully key 
issues such as portability. In [7] users can pose complex NL 
queries to a large medical repository. A logical 
representation is constructed using a NL interface, where, 
instead of typing in text, all editing operations are defined 
directly on an underlying logical representation governed by 
a predefined ontology ensuring that no problem of 
interpretation arises. In [11] NL queries are translated into 
formal queries but the system is reliant on the use of 
gazetteers initialized for the domain ontology. Other systems 
with interesting approaches to query interpretation include 
SPARK, SemSearch and XXPloreKnow! [15][14][12] where 
keyword queries are translated into formal queries and K-
Search [2], where a hybrid search using a mix of keywords-
based and metadata-based strategies is used to recover 
documents. 
With respect to open scenarios, there is growing interest in 
NL search engines that use semantic information to 
understand and disambiguate the intended meaning of the 
words in a query and how they are connected. The current 
trend in semantic search is to search for web pages based on 
the meaning of the words in the query, rather than just 

matching keywords and ranking pages by popularity (like 
Google or Yahoo). This class of systems include Powerset, 
Hakia and TrueKnowledge. For instance, Powerset tries to 
match the meaning of a query with the meaning of a sentence 
in Wikipedia. Powerset not only works on the query side of 
the search (converting the NL queries into database 
understandable queries, and then highlighting, the relevant 
passage of the document) but it also reads every word of 
every (Wikipedia) page to extract the semantic meaning (it 
also imports Freebase data). However, these systems, 
although they use semantics, can not be considered as QA 
systems that reuse the whole open SW because, like open 
QA over free text, they just return information from web 
pages, rather than constructing answers directly from 
structured data. Although PowerAqua is primarily built for 
QA on the SW, we have also investigated its use in 
enhancing keyword search technologies on the web by 
providing the semantic context to meaningfully extend an IR 
query. An initial evaluation study of such an approach is 
presented in [5].  

CONCLUSIONS AND FUTURE WORK 
 Exploiting the large heterogeneous SW is essentially about 
discovering interesting connections between items in a 
meaningful way. PowerAqua provides a NL front end, which 
makes it possible to perform QA on the SW, hence 
supporting such a discovery process across multiple 
heterogeneous sources. 
Our evaluation shows promising results, proving that it is 
feasible to answer questions with not just one but many 
ontologies selected on the fly in a reasonable time frame. 
Indeed, we obtained a success rate in answering questions of 
about 70% over a data set of 69 queries. The average 
answering time was 15.39 seconds, with some queries being 
answered within 0.5 seconds. 
Our evaluation has highlighted an illustrative sample of 
problems for any generic algorithm that wishes to explore 
SW sources without making any a priori assumptions about 
them. Firstly, such algorithms are not only challenged 
because of the scale of the SW but more importantly because 
of its considerable heterogeneity, as entities are modeled at 
different levels of granularity and with different degrees of 
richness. Under this perspective, the TSS algorithm has 
performed well. Secondly, while the distinctive feature of 
our system is its openness to unlimited domains, its potential 
is overshadowed by the sparseness of the knowledge on the 
SW. In the evaluation of semantic search systems presented 
in [5], we found that the content collected by semantic search 
engines such as Swoogle and Watson only covers 20% of the 
query topics put forward in the TREC 9 and 2001 
(http://trec.nist.gov) IR collections. To counter this 
sparseness, the PowerAqua algorithms maximize recall, 
which leads to a decrease in accuracy and an increase in 
execution time. Thirdly, in addition to the sparseness, most 
of the identified ontologies were barely populated with 
instance data.  This caused PowerAqua’s failure to retrieve a 
concrete answer in some cases even when a correct mapping 



of the query was found in an ontology. A fourth aspect that 
hampered our system was the existence of many low quality 
ontologies which contained redundant, unrelated terms 
(causing the selection of incorrect mappings), presented 
unclear labels (thus hampering the system’s ability to align 
query terms and ontology labels), or lacked relevant domain 
and range information (thus requiring more complex and 
time-consuming SeRQL queries). Finally, we note the as yet 
suboptimal performance of ontology repositories and 
semantic search platforms for querying large datasets. This 
limits the amount of information PowerAqua can acquire in a 
reasonable amount of time and hence hampers the system 
from considering all available information (especially that 
which needs to be identified by combining multiple 
knowledge elements). 
Based on this analysis, we believe that the performance and 
the accuracy of the system are likely to improve as the SW 
grows and semantic search engines mature. As more 
information becomes available, it will become possible for 
PowerAqua to focus primarily on precision rather than recall, 
thus leading in principle to better accuracy and speed. 
Meanwhile, Watson is already addressing significant 
scalability issues to provide PowerAqua with efficient access 
to large amounts of new semantic data (e.g., the billion triple 
challenge dataset: http://challenge.semanticweb.org/). This 
will allow PowerAqua to find good mappings more easily, 
and therefore increase the precision in efficiently filtering 
noisy results thus improving accuracy and speed. 
During our work we noted the lack of standard evaluation 
benchmarks for semantic search tools. This evaluation gave 
us an insight into PowerAqua’s mapping capabilities and the 
range of questions it should be able to answer. In future work 
we plan to extend this evaluation with the independent 
Mooney6 data sets used to evaluate single ontology based 
interfaces such as [1][13] and compare existing ontology 
based QA systems over a single source. Moreover, we would 
also like to evaluate the PowerAqua merging and ranking 
capabilities across ontologies with queries that can only be 
answered by a combination of semantic sources.  
We are also experimenting with the integration of 
PowerAqua with standard search engines (such as Yahoo), 
by using the results from PowerAqua queries to 
automatically trigger contextualized searches in these search 
engines. The preliminary results have been promising (in 
particular, the answers retrieved from PowerAqua appear to 
improve the quality of the results returned by the search 
engines). 
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