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Ontology Matching (OM) which targets finding a set
of alignments across two ontologies, is a key enabler
for the success of Semantic Web. In this paper, we
introduce a new perspective on this problem. By in-
terpreting ontologies as Typed Graphs embedded in
a Metric Space, coincidence of the structures of the
two ontologies is formulated. Having such a formu-
lation, we define a mechanism to score mappings. This
scoring can then be used to extract a good alignment
among a number of candidates. To do this, this paper
introduces three approaches: The first one, straight-
forward and capable of finding the optimum align-
ment, investigates all possible alignments, but its run-
time complexity limits its use to small ontologies only.
To overcome this shortcoming, we introduce a second
solution as well which employs a Genetic Algorithm
(GA) and shows a good effectiveness for some certain
test collections. Based on approximative approaches, a
third solution is also provided which, for the same pur-
pose, measures random walks in each ontology versus
the other.

Keywords: coincidence-based, ontology matching, met-
ric spaces, genetic algorithms, graph theory

1. Introduction

In this section, first, an outline of the problem will be
explained. A discussion on the terminology of this paper
is given next. Afterward, a survey on the related works
follows. This section is closed then by an outline of this
work and its structure.

1.1. Outline of Problem
Semantic Web is said to be the next generation of Web

where information is given a well-defined semantics in
order to enable computer agents to use them in the same
way that human beings do. Unlike traditional knowledge-
based systems, as like as the web itself, Semantic Web
is by design distributed and heterogeneous. Ontologies
are aimed to play a central role in making this hetero-
geneity feasible while simultaneously making it possible
to reason about this distributed knowledge. However, in
many real cases, since they are created by diverse parties

distant from each other (and possibly with a very little
shared knowledge), the ontologies themselves also suffer
from heterogeneity. The need thus arises for a mechanism
to tackle this heterogeneity to enable computer agents to
leverage the semantic interrelationships among the enti-
ties of ontologies during reasoning processes. The set of
mechanisms for dealing with this is usually referred to as
Ontology Alignment (OA), where Ref. [1] defines it as:

... given two ontologies which describe each
a set of discrete entities (which can be classes,
properties, rules, predicates, etc.), find the re-
lationships (e.g., equivalence or subsumption)
holding between these entities.

OM, meanwhile seems to be a subtask of OA. A lot
of current OM methods calculate inter-conceptual sim-
ilarities using some predefined measures (phase 1), and
via the interpretation of results, put forward some possi-
ble set of semantic interrelationships among the entities
(phase 2). Given O1 and O2 as the ontologies we are to
align, and defining O = O1∪O2, typically a dissimilarity
(or distance) measure is formally defined as follows [2]:

A dissimilarity δ : O×O→ R is a mapping from a
pair of entity to a real number – expressing the distance
between two objects such that:
∀x,y ∈O,δ (x,y)≥ 0 (positiveness)
∀x ∈ O,δ (x,x) = 0 (minimality)
∀x,y ∈O,δ (x,y) = δ (y,x) (symmetry)

It is customary to have dis-similarity in the scale of 0
to 1 to define similarity as “1− dissimilarity”.

The many different similarity measures defined in the
literature are generally categorized into two groups: lex-
ical and structural. Lexical measures are concerned
about lexicographical similarity, while structural mea-
sures leverage hierarchical relationships among concepts
(e.g., number of common children, common parents, etc.).

It is common also to first define a set of similarity mea-
sures – lexical or structural – then apply them consecu-
tively like a compound similarity measure (Fig. 1). The
application of this set of (compound) similarities yields
an initial guess. The final decision is made afterward in
another phase. In this phase, the ultimate set of satisfac-
tory correspondences between the ontologies is defined.
In this view, mapping extraction is a process to find the
best mapping across ontologies.
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Fig. 1. A simplified alignment framework.

1.2. Terminology
It is worth mentioning that we suspect, without this

subsection, some precise readers may feel confused about
how we use the terms OA and OM. This clarifier subsec-
tion, is contrived for removal of such confusions.

Firstly, to our knowledge, there exists no consensus
on a precise definition of these two terms. We therefore
adopt the following definitions, which appear to be well-
respected in the literature:

Reference [3] defines the term Mapping as:

a formal expression that states the semantic re-
lation between two entities belonging to differ-
ent ontologies. When this relation is oriented,
this corresponds to a restriction of the usual
mathematical meaning of mapping: a function
(whose domain is a singleton1).

And, then, defines OA accordingly as:

a set of correspondences between two or more
(in case of multi-alignment) ontologies (by
analogy with DNA sequence alignment). These
correspondences are expressed as mappings.

The OA definition quoted in Section 1 from [1] appears
to agree with this. Additionally, OM is defined in [4] as:

the problem of finding the semantic mappings
between two given ontologies.

(Note that Ref. [4] is speaking about “finding the se-
mantic mappings” rather than a set of semantic ones. This
suggests that Ref. [4] assumes the existence of some par-
ticular mapping that is superior to any alternative.)

Putting all these definitions together, our understanding
is that OM is the act of finding some proper alignments
each of which, in return, is a set of mappings. This is how
hereafter we apply our terminology in this paper, which
also agrees with [5]. Note, however, that we do not assert
the existence of any consensus on the working definition
chosen for this paper. Alongside, the reader might also
note that the CFP of ESWC 2007 for example, includes
[6]:

Topics of interest to the conference include (but
are not restricted to):
...

• Ontology Alignment (mapping, matching,
merging, mediation and reconciliation)

1. Unfortunately, mathematically speaking, this is incorrect because no
such constraint exists on functions in mathematics.

which implies that OA is a set of tasks, one of which is
OM.

A final remark which, theoretically speaking, is much
more important is that the understanding of the Seman-
tic Web community of the term “matching” apparently
clashes with that of Mathematics. Given that our work
– like a bewildering number of other related ones – is
greatly engaged with Mathematics, let those readers com-
ing from a mathematical background be warned that they
will probably become confused if they adhere solely to
their prior terminology.

1.3. Related Works
Current researches in ontology mapping and its appli-

cations entails a large number of fields ranging from ma-
chine learning, concept lattices, and formal theories to
heuristics, and linguistics. Similar attempts have also
been done to match graphs, and trees [7, 8], database
schema [9] and even in clustering compound objects with
a machine learning technique [10]. Yet, works on ontolo-
gies and mapping extractions are not so many [3].

Although there are works which choose to address both
simultaneously, the works related to that of ours generally
choose to work on either:

• alignment weighting and similarity measures; This
group of works mainly focuses on the similarity mea-
sures (across the concepts of the two ontologies) and
weight functions. The purpose is to evaluate a given
alignment. Or,

• mapping extractions, in which the research tries to
address extracting alignments and proposing meth-
ods to find a (more proper) alignment.

We will have a quick review on each category in the
two following subsections.

1.3.1. Alignment Weighting and Similarity Measures
Some standards of metrics are acknowledged and de-

fined as in the CommonKADS methodology [11], or On-
toWeb EU thematic network [12], which are partly en-
dorsed by recognized bodies. Also, there have been some
works on finding similarities of entities in two ontologies
based on their structural standings: Ref. [13] computes
the dissimilarity of elements in a hierarchy based on their
distance from closest common parent. The Upward Co-
topic distance is introduced by [14] where they found dis-
similarity of entities in hierarchies of ontologies. The key
difference between those works and the current one is that
they consider the mere structural features of ontologies.

Reference [15] introduces a measure to calculate simi-
larity of WordNet2 concepts, i.e. a single hierarchy. The
similarity is computed based on the closest common par-
ent and distance of the two entities from the root. This
work gets closer to that of ours but it is very immature in
that it very simply presumes a hierarchical structure for

2. wordnet.princeton.edu
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every ontology. The authors of this paper understand that
this is an engineering assumption. Yet, we believe that
this is far away from correct in reality and that our work
has no such assumptions.

On the other hand, some methods tend toward a trade-
off between different features such as efficiency and qual-
ity, as in QOM [16], and some have used approaches to in-
tegrate various similarity methods [17]. This work, unlike
them, offers a manifesto of its desired properties. Then, it
examines a few solutions which adhere to that.

Besides, compound metrics get use of simple measures
by combining them, and hoping to improve the result of
the mapping between two ontologies. One approach has
been to define each measure as a dimension to find the
Minkowski distance of two objects [18]. As introduced in
[18], another approach for this problem has been weighted
average of features in which weight can even be defined
by a machine learning technique. Glue [19] builds the
similarity matrix by a machine learning approach too. In
APFEL [20] weights for each feature are calculated using
Decision Trees. The user only has to provide some on-
tologies with known correct alignments. The learned de-
cision tree is then used for aggregation and interpretation
of the similarities. Ref. [21] introduces a new method for
compound measure creation without any need to the map-
ping extraction phase. It estimates the similarity among
entities of two ontologies based on existing transitive re-
lationships across the ontologies.

1.3.2. Mapping Extraction
A method for mapping extraction is proposed by [22]

which examines linguistical features to compare two on-
tologies on the basis of an IS-A relationship. Staab et
al. [23] have also focused on structural and taxonomic
comparison of two trees. To extract an alignment, dissim-
ilarity of each two concept is calculated based on their su-
perclasses and subclasses. Stumme et al. [24] uses shared
instances of two ontologies that are to be mapped, how-
ever this work ignores the properties of classes. Again the
preference of our work over these ones is that it is not bi-
ased towards any special way in which the ontology (as a
graph) is shaped or how the labels are used.

Zhdanova et al. [25] expand the notion of OM to a
community-driven approach to enable web communities
to establish and reuse OM to achieve an adequate and
timely domain representation. Our work in contrast is not
targeting any special domain.

In [26], to extract a reasonable alignment, applicability
of the solutions for the Stable Marriage [27] problem is
studied. There are some other approaches, as an example,
a machine learning approach to the problem is discussed
in [4], and Ref. [28] describe a probabilistic-based model.

Johnson et al. [29] model inter-ontology relationship
detection as an information retrieval task, where relation-
ship is defined as any direct or indirect association be-
tween two ontological concepts.

Wang et al. [30] presents a specific formalization and
algorithm presented for local interpretation of shared rep-
resentations to build global semantic coherence for the

distributed actions of individual agents, known as Mutual
Online Ontology Alignment.

LOM as described in [31] is a semi-automatic lexicon-
based ontology-mapping tool that supports a human map-
ping engineer with a first-cut comparison of ontologi-
cal terms between the ontologies to be mapped (based
on their lexical similarity and simple heuristic methods).
These works, unlike that of ours, are mostly careless about
the (overall) structure of the ontology.

1.4. This Work
This paper introduces a new factor called coincidence

that combines different ideas from different realms of
science and engineering, including Ontology Matching,
Graph Homeomorphism, Metric Spaces, and Domain
Theory. In simple words, it targets scoring the mappings
based on how graphically better the coincidence of on-
tologies appears for different mappings. Therefore, it can
be used in phase 2 of an alignment framework. This work
enumerates the properties which a measure with such a
quality should have, and offers one such measure itself.
Then, to demonstrate this use in action, it gives three ap-
proaches for mapping extraction based on this measure.

In the simplest form, we generate all possible align-
ments and score each based on the measure, and finally,
select the ones having maximum scores (global maxi-
mals). However, this method suffers from exponential
runtime and, therefore, has a limited application (to small
ontologies). For attaining a more docile solution for large
ontologies and generating a nearly optimal solution, we
developed a Genetic-Based algorithm which applies the
coincidence measure during generation of new individu-
als such that new generations have better coincidence. We
also developed an approximative approach which does not
insist on generating all the alignments first and then esti-
mating their scores. Instead, it attempts to estimate the
mapping having the best coincidence score.

To introduce the coincidence measure, the basic math-
ematical background is explained in Section 2.1 and the
corresponding problem is defined formally in Section 2.2.
In Section 3, we introduce the measure in Section 3.1 by
discussing the intuitions that the solution is based upon.
Translation of the intuitions into different possible graph
structures comes in section 3.2. The formulation of a
scoring mechanism is explored in Section 3.3, in addition
to some commentary on the mechanism in Section 3.4.
Moreover, in Section 4, we show how to use the mecha-
nism in three different ways by first having a discussion
on how to reduce complexity for OWL ontologies in Sec-
tion 4.1. Explanation of a naive approach is in Section
4.2, a Genetic Based approach in Section 4.3, and an ap-
proximative one in 4.4. Finally, we present a conclusion
in Section 5.
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2. Specification of the Problem

2.1. Mathematical Background
In this section, we define necessary mathematical con-

cepts which are used throughout the paper. The first one
is the notion of a Metric Space for which we refer to what
defined in [32]:

A set X , whose elements we shall call points, is
said to be a metric space if with any two points
p and q in X there is associated a real number
d(p,q), called the distance from p to q, such
that:

d(p,q) > 0 if p �= q;d(p, p) = 0; [positiveness]
d(p,q) = d(q, p); [symmetry]
d(p,q)≤ d(p,r)+d(r,q),∀r∈ X .

[triangular inequality]
Any function with these three properties is
called a distance function, or metric.

Another piece of theory which is of help is the notion
of Typed Graphs3. In general, we call a graph G typed
if each edge of it has a type. In other words, let us for-
mally define G(V,E,T ) a typed graph if E : V ×V → T ,
where T is a set of predefined types. An edge e of type
t is written e : t. A homeomorphism from a typed graph
G(V,E,T ) to a typed graph G′(V ′,E ′,T ) is a one-to-one
correspondence m between V and V ′. We will call an edge
e(a,b) : t ∈ E preserved under m or P(e,m) iff there is an
edge e′(m(a),m(b)) : t ∈E ′. If both a and b get mapped to
some vertex in V ′, yet there is no edge of type t between
m(a) and m(b) – typelessly preserved, we write TP(e,m).
We will call a typed graph G(V,E,T ) vertices of which are
points in (X ,d) embedded in X , and write G(V,E,T,X ,d).

Reference [33] defines a Partially Ordered Set as fol-
lows:

A set P with a binary relation 
 is called a par-
tially ordered set or poset if the following holds
for all x,y,z ∈ P:

1. x
 x (Reflexivity)
2. x
 y∧ y
 z⇒ x
 z (Transitivity)
3. x
 y∧ y
 x⇒ x = y (Antisymmetry)

We add that 
 above is called a partial order.
As the last definition, let us call the set of all the di-

rected paths stemming from a vertex v the set of v-stems.
A path in this set will, analogously, be called a v-stem.
It should be noted that an implication of this definition is
that v should be in a directed graph basically to have a
stem.

2.2. Theoretical Specification of Scoring
Assume that we are given two Ontologies as well as

distance values for each pair of concepts across the on-
tologies. Such distances may have been obtained by ap-
plication of a (lexical, structural, or compound) measure.

3. There is no consensus in mathematics on this name.

The goal is to score mappings (and thereafter alignments)
so that one can select a best or near-the-best alignment
among all the available possibilities. We formulate this
problem as follows:

Input: A pair of ontologies, and a matrix, rows and
columns of which stand for concepts from one ontology,
and concepts from the other, respectively. Each cell shows
the distance between the corresponding concepts.

From our point of view, this input is interpreted as a pair
of directed acyclic graphs embedded in a metric space.
So, naming the input ontologies O and O′, we do not dis-
tinguish them from G(V,E,T,X ,d) and G′(V ′,E ′,T,X ,d)
respectively.

Output: A scoring of possible alignments which can
be a help for better extraction. From our point of view,
this is a partial order on the possible homeomorphisms
between G and G′.

To produce the above output, this paper first enumerates
a list of rationales for the above partial order, and then
presents one possible candidate for that. This leads to a
straightforward yet non-effective solution. We will then
discuss possible axes along which one can tune that and
add two related solutions that overcome the complexity of
the first one.

We should mention that – although some experts may
consider our work a method for mapping extraction – we
believe that this part offers a new criteria which helps de-
ciding better on extraction, as opposed to extraction it-
self.

3. The Partial Order

In this section, we first give an intuition for our method,
translate that intuition to various graph patterns and finally
give a precise specification of our scoring mechanism.

3.1. Intuition
We forget about OA for a few minutes, and consider

the following basic-geometry problem: When do we call
a pair of triangles the same? When they are equal in the
geometric sense? For example, do we consider the two
triangles in Fig. 2a the same? We do doubt4! Now, look-
ing at Fig. 2b; (The solid lines indicate one triangle, the
dotted ones indicate another, while the vertices of the tri-
angles coincide.) Up to our understanding, we – human-
beings – consider these two triangles the same! Now, in-
troducing the case of Figs. 2c and 2d into the comparison,
and trying to give a fuzzy interpretation to the concept of
“being the same” – or coincidence, it should be said that:
the two triangles in Fig. 2d are more the same than that of
Fig. 2c. And, the two of Fig. 2b coincide even more.

Back to the realm of OA, the authors should say that the
approaches which are concerned merely about the struc-
ture of ontologies are imprecise in that they fail to distin-
guish between the two triangles in Fig. 2a. That is to say,

4. In mathematical topology, these two triangles are the same in that there
exists a continuous bijection between them, inverse of which is also con-
tinuous.
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Fig. 2. Matching of shapes.

Fig. 3. Structure is not enough.

as Fig. 3 depicts, those approaches tend to reduce both G
and G′ to the same graph (G′′). This, obviously, is a very
magnificent loss of information because G and G′ will be
interpreted as similar ontologies while they are describing
totally different worlds.

For the next step to understand the notion of coinci-
dence and their usage in OA, we consider Fig. 4 where
all the points are considered to be in a metric space. Sup-
pose that we are about to have an estimate for how much
the two triangles of part (i), namely ABC and A′B′C′, co-
incide. One may find it trivial that this is a function of
d(A,A′) + d(B,B′) + d(C,C′), where d is the metric of
our metric space. What this means is that we tend au-
tomatically to choose A to be paired to A′, B to B′, and C
to C′. The reason why this happens is that this way, by
merely pairing each vertex to its closest counterpart from
the other triangle, the overall distance of the two triangles
will be minimized too. That is to say, naturally, human-
beings do not try to estimate the distance between the two
triangles by considering d(A, B’) + d(B, A’) + d(C,C′).
Because this latter sum will needlessly be more than the
former.

Considering the same problem for the triangle and pen-
tagon in Fig. 4(ii) will not be this trivial. One has to be
careful about how to pair the vertices up so that the over-
all sum minimizes. This is the case because each choice
affects the rest of vertices too. The problem will become
more sever when one is dealing with complicated shapes
with large number of vertices. This is where the matter of
how to pair up the vertices – i.e., mapping and alignment
– becomes a keynote. One can observe now that different
alignments can affect the way coincidence of ontologies
get interpreted. For that, Section 3.2 lists the properties
that are expected from a good interpretation from the de-

Fig. 4. The impact of the correct choice for mapping.

Fig. 5. Coincidence is not only being close.

gree of coincidence of two graphs. As it turns out, those
properties are dependent on the mappings and will there-
fore help us to identify the alignments which helps us to
have a better understanding over the coincidence of two
ontologies.

This is what we are about to inject in the world of OA.
That is, given that the phase one of OA gives us a mea-
sure for similarity of concepts across the ontologies, we
consider this measure as an estimate for the distance be-
tween each pair of points (i.e., concepts), and suite it for
estimating the extent to which the two ontologies – as the
whole graphs – coincide. Alongside, we first offer an es-
timate for the extent of coincidence between two edges,
and then accumulate all these as our final estimate for the
coincidence of the two ontologies.

It is worth mentioning that it may be tempting to for-
get about the differences between Metric and Cartesian
Spaces, and mistakenly think about coincidence as merely
being close. With that misconception, one might decide
to define coincidence in terms of a centroid. Regardless of
the technical difficulties that defining centroid in a Metric
Space has, we should mention that this approach will not
describe coincidence. In Fig. 5 for example although the
centroid of the two triangles in part (i) exactly coincide,
the two triangles themselves do not. A comparison be-
tween this part and part (ii), will reveal it that in spite of
the fact that there is a distance between the centroids of
the latter pair of triangles, they happen to be more coin-
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ciding. This observation tells us that coincidence is rather
a direct function of all the pairwise distances of the nodes
than a single representative (such as centroid).

The astute reader may wonder what technical difficul-
ties might defining centroid for ontologies have. Here is
an interesting one: First we should mention that a cen-
troid is usually defined to be the point which has equal
distance from all the points of a shape. Then, what is the
interpretation of such a point for ontologies, if any? Fur-
thermore, assuming that, for every ontology, we can find
a proper point in our Metric Space with such a property,
it carries no significantly meaningful information for the
other ontologies. For example, if O ⊂ O′ and the major-
ity of the concepts of O′ are far away from O, so will
be the centroid. In this case, considering O and O′ to be
non-coinciding is an obvious mistake – yet the distance
between the centroids will be significant. The technical
difficulties of centroids in Metric Spaces is not limited to
OA. For instance, one can refer to [34] for an excessive
list of such difficulties in capturing proximity of webpage
elements.

3.2. Properties of the Desired Partial Order
Here will be a set of properties which we believe any

partial order for our problem should convince, along with
our reasons for such beliefs. Our proposed partial order
is in fact a weight function for matchings, so hereafter we
use weight in place of it. The set of properties are divided
into 6 categories, based upon preservation of the edge (un-
der the correspondence), and upon the mutual distance be-
tween its heads.

In all categories of Fig. 6, O and O′ are the input ontolo-
gies, a and b will be concepts in O, and, a′ and b′ concepts
in O′. The closer a pair of concepts is depicted in figures,
the closer the concepts are intended to be in the (X ,d).
(That is, the closer a and a′ are shown in the figures, the
smaller d(a,a′) is.) We do not force the ontologies to be
disjoint, so, in each figure, it can be seen that the surface
of ontologies may overlap. Furthermore, in each figure,
the arrows show mappings. (That is, the source of arrow
is intended to be said is mapped to its destination.) And,
the lines – be it solid or dotted – show the edges of graphs.
(Solid lines show the edges between a and b, and dotted
edges show the edges between a′ and b′.)

Category I. Here, a and a′ are too close, like b and b′.
The fact that (a,b) is preserved is of much importance to
us because it means that the two edges coincide too much.
So, we want this preserved edge to bring a great weight.
To justify it, consider the case when a and b are “Animal”
and “Jaguar” respectively, and a′ and b′ are “Living Crea-
ture” and “Tiger”. The fact that there is an edge (of type
redfs:type) between both a and b, a′ and b′, means very
much that the two ontologies are perhaps describing the
same world.

Category II. In this category, the edge is preserved, but
only one peer of the edge is close to its image. As an ex-
ample of such cases, one can consider O be describing
a Zoo, and O′ a Museum. Furthermore, suppose that a

Fig. 6. Properties of metrics.

and b are “Elephant” and “4-legged”, and, a′ and b′ are
“Mammoth” and “Ancient Creature”. An interpretation
of this is that although O and O′ are describing two differ-
ent worlds, they are perhaps getting coincident “from the
side of a”. Therefore, we would like such cases to get a
moderate weight, i.e., smaller than the previous case.

Category III. The third category is the one where an
edge is not preserved while the relevant concepts are so
close. Consider, e.g., when O is describing the Glazing
Technology, while O′ is the ontology of a simple glasses
manufacturing studio. In this respect, a and b could be
“Glass” and “Frame”, and a′ and b′ the same respectively.
Of course d(a,a′) and d(b,b′) may both be very small
here. We consider the non-preservation of edge a negative
point, but because the vertices coincide, we do not penal-
ize this matching that much. This is logical because the
closeness of (a,a′) and (b,b′) means that the edge (a′,b′)
is perhaps mistakenly missed.

Category IV. Next, we come to the category where an
edge is not preserved, while only one side of the edge is
too close to what it is mapped to. A mapping which does
this is perhaps trying to make a mistake, but not as big
as category VI. So, we will not penalize it that much. As
an example of such a case, we consider this case: O is
describing a glasses manufacturing studio, and O′ is a car
factory. Assume that a is “Glasses” and a′ is “Glass”, b
could be “Frame”, while b′ is “Chassis”. Like category III
which is somehow dual of category I, this category can be
considered dual of category II.

Category V and VI. A preserved edge certainly in-
creases the likelihood of preservation of shape for the two
entire graphs. However, if neither endpoint of the edges
are close to what they are mapped to, the two edges do not
coincide that much. This does not to be a great success,
therefore, because it does not greatly help the coincidence
of two ontologies. In other words, although the preserva-
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Table 1. The six categories and their treatments.

Proximity⇒
⇓Type of Edge

Both
Ends
Close

One
End
Close

Neither
End

Close

Preserved High
Benefit

Modest
Benefit

Low
Benefit

Not Preserved Low
Penalty

Modest
Penalty

High
Penalty

tion of shape (as depicted in Fig. 2a) is partly important,
we do not care that much about it if the edges coincide
at neither end. For an example of when this looks ra-
tional, we consider the case when a is “Vehicle”, b is “4-
wheeled”, a′ is “Animal”, and b′ is “4-legged”. Therefore,
for the category V, we would like the mapping to receive a
low benefit. The situation is completely similar to that of
category VI, so, we do not try to justify why a mappings
of that category will be penalized to a large extent.

Table 1 summerises the above manifesto about the six
categories along with our suggested treatment for each
case.

3.3. Our Proposed Partial Order
Adding the fact that the weighting system is expected

to be symmetric in its arguments, we observed that
one possible such weighting is the following5 in which
v1,v2 ∈G: (By being symmetric in its argument, we mean
w(m(G,G′)) = w(m−1(G′,G)).)

w(m) = w0(m)−wl(m)−wr(m),

where

w0(m) = ∑
P((v1,v2),m)

f m(v1)+ f m(v2)

wl(m) = ∑
T P((v1,v2),m)

gm(v1)+gm(v2)

wr(m) = ∑
T P((m(v1),m(v2)),m−1)

gm(v1)+gm(v2)

f m(x) = 1/ f (d(x,m(x)))
gm(x) = g(d(x,m(x)))

The interpretations for w0, wl , and wr are:

• w0: This part of formula is in charge of accumulating
the score of coincidence of all the preserved edges
(under m).

• wr: This part accumulates the coincidence which is
missed because of typeless preservation of edges of
G under m. And, finally

• wl : is the accumulated loss of coincidence because
of typeless preservation of edges of G′ under m−1.

5. For a note on how to prevent this formula to approach to infinity, please
refer to Section 3.4.

Fig. 7. wr and wl are not the same.

Although w is symmetric in its arguments, wr and wl are
not the same. Fig. 7 demonstrates an example where t �=
t ′, and the typeless preservation of the edge e : t ∈ G gets
counted only in wl (and not in wr). Likewise, the typeless
preservation of the edge e′ : t ′ ∈ G′ is only counted in wr.
As a result, the respective mapping receives two penalties
for these two edges; one for e and another for e′.

We do not claim any validity for the functions f and g;
because they are meant to be experimentally tuned. That
is to say, these functions can be considered as normaliza-
tion functions. Their common property is being strictly
increasing. Otherwise, one can always find one of the
six categories above in which w will misbehave. Further-
more, f should have another property as well; its range
should be outside a certain neighborhood around origin.
For the case when this will result in a misbehavior, con-
sider a pair of ontologies across which there exists a pair
of concepts with distance 0. If f (0) is 0, then w will be-
come +∞, regardless of the rest of alignment. And, this
obviously is a significant anomaly because it will cause a
big class of alignments to look the same – while they are
not inherently the same. That is, in such a case, w does
not do much for a large class of alignments.

In presence of a vertex which does not get mapped to
anything, all the edges from that vertex – or to it – are not
preserved. In these cases, the alignment should get more
weight than one which has mapped such edges to edges
with wrong types. To tune our formula to reflect this, vir-
tually consider it being mapped to an imaginary vertex,
existence of which does not give us any information. In
this case, its distance ought to be 0 from any other con-
cept. One can easily verify it that the above weight satis-
fies all the conditions enumerated. As a further benefit of
our proposed weighting method, we would like to notify
it further that, for cases like that of Fig. 7, our weight-
ing method would penalize m twice; once because e is not
preserved, and another time for e′.

The special case where this will become more interest-
ing even is when e : subClassO f , and e′ : subClassO f .
Here, our weight will recognize the fact that an alignment
which maps e endpoints to two concepts between which
there is no edge at all, is better than when they get mapped
to a pair of edges where there is an edge between them
with an inverse type.
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3.4. Commentary

As said before, there are cases in which what the input
matrix gives us may not be a metric space. In fact, as said
in Section 2.1, a metric space is needed to have symmetry.
However, as listed in [5], there are schema-based match-
ing techniques which use linguistics resources. These
techniques may not convince this property. That is, for ex-
ample: In the Webster Collegiate Dictionary [35], “quick”
is in the 12th place in the list of synonyms of “swift”,
while “swift” is second in the list of synonyms of “quick”.
In such a case, the symmetry property may not hold.
Therefore, what we get may be a Quasi-Metric Space [36]
rather than a metric space. However, as [3] also mentions,
only few authors may consider similarity metrics which
do not have symmetry. So, the existing weighting formula
and the assumption with it will almost always be convinc-
ing. Even in case where one is faced with an application in
which there inherently exists no symmetry, a little tweak
to the formula will give rise to a symmetric weighting
formula which still convinces all the conditions listed in
section 3.3:

w′(m) = w0(m)−wl(m)−w′r(m)

where w0(m) and wl(m) remain the same, but

w′r(m) = ∑
T P((m(v1),m(v2)),m−1)

gm−1(m(v1))+gm−1(m(v2))

Furthermore, there seems no way to guarantee that the
triangular inequality holds for any output of the phase 1.
Despite that, it seems quite reasonable to assume that this
property holds for any such guess. In fact, we believe
finding a real guess in which this does not hold is unlikely.

Another question which may arise is about complexity.
It can easily be shown that naively using these formulas
needs an exhaustive search; finding the best mapping di-
rectly is not known to be P or N P . Suppose on the
contrary that it is efficient. Then, one can come to an ef-
ficient way for solving the graph isomorphism problem;
given a pair of (un-typed) graphs (not embedded in a met-
ric space), assign a fixed type t to all of the edges, embed
them in a metric space in which the distance of any pair
of points is 1, and run our algorithm on them – in an ef-
ficient time. The heaviest matchings can be efficiently
checked for being an isomorphism, because one can re-
move the types and the metric space backbone. It is easy
to verify that there is a homeomorphism between the orig-
inal graphs iff the correspondence with the biggest weight
is a isomorphism between them. This will give us an ef-
ficient way of solving the graph isomorphism problem.
This means that we now know that this latter problem is
P – which of course we do not.

So far, we assume that for considering all the possible
matchings, one iterates through alignments until making
sure that they are finished. This means the algorithm iter-
ates exponential times. Nevertheless, considering all the
possible matchings is not needed. As Papadimitriou and
Steigiltz show in [8], there exist heuristics for dealing with
this in a P time. For the moment, however, we do not

consider those heuristics. Despite that, we are not about
to leave this problem in its general form; We believe that
the OM-specific heuristics presented 4.1 can decrease the
runtime. However, for fully supporting the exponential
nature of exhaustive search, one needs more elaborated
approaches such as the ones offered in sections 4.3 and
4.4.

4. Alignment Selection

In this section, we explain about three possible ways
to use the explained solution for the alignment selection
(also referred to as mapping extraction). First, we explain
about some heuristics for decreasing the runtime. Based
on that, a trivial approach is explained. Next, trying to
come up with more elaborated solutions, a GA approach
is introduced. This section is then finalized by an approx-
imative approach.

4.1. Heuristics for Decreasing the Runtime
All the heuristics presented here are based on the types

of edges. The following list shows the whole idea: (Let
us call this list the recipes for discard and contraction.)
In this list, for the first and third item, we change the ini-
tial graph via contraction along its certain parts, then ap-
ply our refinement method to the resulting reduced graph,
and finally transform the graph back to what it has origi-
nally been. Having this done, we consider completing the
proposed mappings by moving back to consideration the
neglected parts during the period when the graph was in
its contracted form. We will call this restoration of con-
tracted vertices the expansion phase.

• IS-A (rdfs:subClassOf): Contract all the paths into a
pair of vertices between which there is an edge of
type IS-A. The source of this edge will be the source
of the original path, while the destination will be
a new vertex, similarity of which is the maximum
of the similarities of the original path excluding the
source. At the expansion phase, consider this prob-
lem as an independent matching problem, but with
the explanation after this list.

• Disjoint (owl:disjointWith): If the difference be-
tween the distances of a concept in one ontology
from a couple of disjoint concepts in another is above
a certain threshold, remove the possibility of map-
ping the first concept to the one in the couple which
is farther.

• Equivalence (owl:equivalentClass): Contract all
such vertices into one representing the whole group.
Assign the maximum similarity of group to this new
node. On expansion, there is no difference be-
tween different choices for matching between the
two graphs.

• owl:functionalProperty: Functional properties
should be mapped to functional properties, so,
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Fig. 8. Notes on expansion phase of IS-A.

discard all the alignments for which this does not
hold.

• rdfs:domain: If there are two properties across the
ontologies which domain over disjoint classes, dis-
card all the alignments which map them to each
other. Here, the ”disjoint”-ness may be understood
from several indicatives. For example, their distance
may be more than a certain threshold. As an example
of where an inference might also be involved, con-
sider the question of mapping p1 ∈ O1 and p2 ∈ O2
to each other where p1 and p2 domain over C1 and
C2 respectively, and where C1 is owl:disjointWith C′
while d(C1,C2) > M (M being a certain threshold).

• owl:intersectionOf : Discard all the alignments that
map classes which are intersections of disjoint
classes. For instance, if O1 � C1 = ∩n

1C1i and
O2 � C2 = ∩m

1 C2 j, and we know that for some i ∈
{1, . . . , n} and some j ∈ {1, . . . , m}, C1i and C2 j are
disjoint, we should be discarding all the alignments
which map C1 and C2 to each other. (“disjoint”-ness,
here, is meant to be what described for rdfs:domain.)

As far as the authors understand, all of the above heuris-
tics should immediately seem rational except the first one.
To have an intuition on the contraction, one can consider
it like Query Expansion in the Information Retrieval [37]
terminology. The expansion however is a little tricky.
There is a fine observation which should be made on an
IS-A paths:

Consider Fig. 8(I), in which after expansion, it is cho-
sen to map a to a′, and b to b′. Here, there remains no
choice for c. Now, consider Fig. 8(II), in which a is
mapped to b′. Note that because b IS-A(n) a, and b′ IS-
A(n) a′, it is not correct to map b to a′, and there remains
no choice for either of b and c. With this scheme in mind,
a solution to the expansion will become trivial, and the
complexity of which will definitely be too small – say
O(n)! However, we leave details of this until section 4.4
for a related discussion.

A question which may arise here is that “Why are there
only a few properties chosen among the set of all OWL
and RDF ones?” The reason behind this choice is a sur-
vey we have had on a set of 545 ontologies. Table 2 shows
the results of this survey (where NoU = Number of Us-
age, PI+ = Percent of usage with IS-A, PI- = Percent

Table 2. Frequency of OWL (and RDF) properties.

Property NoU PI+ PI-
owl:incompatiblewith 0 0 0

owl:alldifferent 13 0.01 0.01
owl:differentfrom 13 0.01 0.01

rdfs:datatype 11 0 0.01
owl:symmetricproperty 27 0.01 0.02

owl:sameas 43 0.02 0.03
owl:equivalentproperty 70 0.03 0.05

owl:inversefunctionalproperty 100 0.04 0.08
owl:thing 233 0.09 0.18

owl:transitiveproperty 266 0.11 0.21
owl:oneof 313 0.12 0.24

owl:maxcardinality 807 0.32 0.63
owl:inverseof 932 0.37 0.73

owl:mincardinality 1315 0.52 1.02
owl:unionof 1629 0.65 1.27

owl:cardinality 2416 0.96 1.88
owl:allvaluesfrom 2841 1.12 2.21
rdfs:subpropertyof 2893 1.15 2.25
owl:equivalentclass 4836 1.91 3.76

owl:functionalproperty 7625 3.02 5.93
owl:disjointwith 7892 3.12 6.14

rdfs:domain 8476 3.36 6.59
owl:intersectionof 9482 3.75 7.38

owl:somevaluesfrom 22874 9.06 17.79
owl:restriction 53440 21.16 41.57
rdfs:subclassof 124005 49.1 —

Sum 252552 — —
Sum without subclass of 128547 — —

of usage without IS-A). The authors believe that, accord-
ing to that table, the percents of usage for the properties
above owl:equivalentClass are not acceptable. However,
we do not provide any heuristics for owl:Resitriction and
owl:someValuesFrom either.

The reason why we do not offer any heuristics for
owl:Restirction is that it is too general; The user may
decide to use it for many reasons, yet there will be no
guaranty that those reasons imply any degree of rele-
vance for the properties they are restricting. It might be
tempting to choose to discard the mappings which map
restricted properties (the ones which are qualified with
owl:Restirction) to non-restricted ones (the ones that are
not qualified with owl:Restirction). This unfortunately
will be wrong because whether or not the ontology de-
cides to restrict a property can well be a mere matter of
area of interest. For instance, an ontology describing plant
transportation business may not be interested in the color
of the plants they transport. On the other hand, a decora-
tion company which is a customer of plant transportation
seems to have such an interest. They obviously have com-
mon objects of interest (plants), but the latter chooses to
restrict that object in their ontology while the former does
not. And, discarding the mappings which map Plant to
Plant across the ontologies is a mistake.

We also give no heuristics for owl:someValuesFrom.
This policy takes place because we believe the W3C’s
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Algorithm 1. Naive approach.

1: Input O and O′.
2: Apply a Threshold-Based Refinement on O and O′.
3: Apply the recipes for Discard and Contraction on

O, O′;
call the resulting ontologies O1 and O′1, respec-
tively.

4: Weight all remained possible mappings from O1 to
O′1.

5: Expand back the contracted parts of O1 and O′1.
6: Output the mappings along with their weights.

Fig. 9. The example, I- before, II- after contraction, III-
final mapping.

description for this property restriction specifier [38] is
rather tricky. Correctly understanding it will therefore
need a fairly good understanding of Mathematical Logic,
assumption of which for every ontology does not seem to
be very realistic. The problem becomes more sever when
one realizes that the mere phrase “some values from” does
not inherently indicate any necessity for having the class
it is describing to have the particular property that W3C
describes.

4.2. Naive Approach
Algorithm 1 is a pseudo-code for mapping extraction

based on the mapping scoring mechanism explained be-
fore. As an example of how this works, we consider
Fig. 9.

Figure 9(I) shows the two ontologies O and O′. In ac-
cordance to this, Table 3-left shows d – the distance be-
tween concepts across them. Performing the third step of
the Algorithm 1 will result in Fig. 9(II) and change of
d accordingly as shown in Table 3-right. To clarify the
values in the table we explain how the distance between
(b,d) and (p,n) is calculated. According to Table 3-left,
the distance between b and n is 0.9, similarly for b and
p is 0.4, for d and n is 0.4 and finally for d and p is 0.6.
Considering the Maximum of such values we reach to 0.9
for the distance between (b,d) and (p,n). Other values
are calculated similarly.

Choosing f (x) = x + 0.1 and g(x) = x, Table 4 will
be the outcome of step 4. We explain how the values in
row 1 are obtained. Since the edge between (b,e) and
(b,d) is of type y for the edge between (o) and (p,n) is
of type x (i.e. the edge is not preserved) therefore w0 = 0.
On the other hands wl = g((b,d),(p,n))+ g((b,e),(o))
which is equal to d((b,d),(p,n))+ d((b,e),(o)) so we
have wl = 0.9 + 0.5 = 1.4. wr is computed similarly.

Table 3. Distance of nodes before and after of contraction.

- n o p
b 0.9 0.1 0.4
c 0.6 0.7 0.1
d 0.4 0.5 0.6
e 0.4 0.5 0.4

- (p,n) (o)
(b,d) 0.9 0.5
(b,e) 0.9 0.5
(c) 0.6 0.7

Table 4. The example after contraction.

First pair Second pair w0 wl wr Score
1 (b,d), (p,n) (b,e) , (o) 0 1.4 1.4 −2.8
2 (b,e), (p,n) (b,d), (o) 0 1.4 1.4 −2.8
3 (b,d), (p,n) (c), (o) 0 1.6 1.6 −3.2
4 (c), (p,n) (b,d), (o) 1

0.6 + 1
0.7 0 0 3

5 (b,e), (p,n) (c), (o) 0 1.0 1.0 −2.0
6 (c), (p,n) (b,e),(o) 1

0.6 + 1
0.7 0 0 3

In row 4 of the table we have a case where the edge
is preserved. Therefore w0 = 1/(d((c),(p,n))+ 0.1) +
1/(d((b,d),(o))+0.1) which is equal to 1/0.6+1/0.7.

As it is resulted from the table either of mappings 4 or 6
can be chosen as an ideal. This means that the problem is
now reduced to two simpler subproblems: In the first, one
should decide on mapping either of p and n to c, and, in
the second, on choosing between b and d to be mapped to
o. Considering the individual distances between vertices,
one can easily choose to map b to o, and c to p. The
extracted mapping, therefore, will be what is depicted in
Fig. 9(III).

4.3. GA-Based Mapping Extraction
One way to overcome the complexity of the naive ap-

proach is to treat the problem as one of optimization and
then benefit from different approaches in that realm. Here,
we briefly report the result of applying a GA approach to
this problem, as detailed in [39].

As for similar GA solutions, we require a fitness func-
tion to evaluate each individual in our population, so we
choose the coincidence-based weight function (Section.
3.3). We should define normalization functions and a dis-
tance metric to get a clear solution for fitness and indi-
vidual evaluation. This distance function may either be
a string-based distance or any other one. The distance
between entities ei and e j, (i.e. δ (ei,e j)), is considered
to be the Levenshtein distance [40] of their labels. Nor-
malization functions, f and g are then defined. f should
be a positive decreasing function in for d(v,m(v)), so if
d(v,m(v)) grows, it decreases to reduce the positive point.
g should be a positive increasing function to grow with the
growth of d(v,m(v)) to increase the negative point for that
match. Normalization functions are defined by tuning the
system.

f (v) = eδ (v,m(v))

g(v) =
1

emax(5,15−δ (v,m(v)))
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Table 5. Head-to-head comparison EON 2004 tests between
the competitors and GA.

Test GA Kar UM FUJI Stan
201 0.40 0.43 0.44 0.98 1.00
202 0.38 n/a 0.38 0.95 1.00
204 0.74 0.62 0.55 0.95 0.99
205 0.48 0.47 0.49 0.79 0.95
206 0.67 0.48 0.46 0.85 1.00
221 (*) n/a 0.61 0.98 0.99
222 0.74 n/a 0.55 0.99 0.98
223 0.79 0.59 0.59 0.95 0.95
224 1.00 0.97 0.97 0.99 0.99
225 0.98 n/a 0.59 0.99 0.99
228 (*) n/a 0.38 0.91 1.00
230 0.85 0.60 0.46 0.97 0.99
301 0.85 0.85 0.49 0.89 0.93
302 0.83 1.00 0.23 0.39 0.94
303 0.68 0.85 0.31 0.51 0.85
304 0.85 0.91 0.44 0.85 0.97

These functions actually satisfy characteristics expected
from f ,g explained above. f is a decreasing function and
decreases with the growth of δ and g increases. Exponen-
tial functions are chosen for f ,g so that f ,g have close
comparable values. These functions reflect discussions
on positive and negative points for different categories of
a coincidence-based weight.
In summary, fitness function w(m) of section 3.3 is as fol-
lows:

f (x) = e−δ (x,m(x))

g(x) = e−max(5,15−δ (x,m(x)))

δ (x,m(x)) = LD(label(x), label(m(x))

(LD = Levenshtein distance.) The next step is to de-
sign a crossover function to produce offspring – a new
alignment – from two parents – two alignments. In the
crossover function, single nodes are compared based on
their weight. As described in [39], the weight of a sin-
gle node in an alignment is the sum of weights of pairs in
which that node is included. The best pairs among parents
are chosen to be present in offspring.

Our first experiment with GA resulted in precision [37]
of 0.7 when the two ontologies differ and 1 when they
are the same. We conducted an experiment on a pair of
Tourist ontologies [41] with population of 1,000 individ-
uals, and the genetic algorithm converged in 32 iterations.

For our second experiment, we chose the EON 2004
[42] dataset, which contains tests for benchmarking the
merit of OA algorithms [43]. We did not use the 1xx series
because it was overly simple. Table 5 shows the precision
of this approach compared to that of the competitors of
EON 2004 as reported in [44].

In Tables 5 and 6, Kar, UM, FUJI, and Stan stand
for karlsruhe2, umontreal, fujitsu, and stanford teams.
Cells marked with an asterisk indicate tests not applica-

Table 6. EON 2004 competitors vs GA.

Test GA Kar UM FUJI Stan
2xx 0.70 0.59 0.54 0.94 0.99
3xx 0.82 0.90 0.37 0.66 0.92

total 0.73 0.71 0.48 0.89 0.97

ble to coincidence-based approaches in general. Ref. [43]
reports that for 221, “all subclass assertions to named
classes are suppressed.” For 228, “properties and relations
between objects have been completely suppressed.” GA
outperforms karlsruhe2 and umontreal teams in 2xx tests
while karlsruhe2 outperforms GA in the 3xx tests. In these
– which according to [43] are the real ontologies – GA
outperforms fujitsu.

Table 6 summarizes the comparison. Ref. [44] summa-
rizes EON 2004 as follows:

In this test, there are clear winners it seems
that the results provided by Stanford and Fu-
jitsu/Tokyo outperform those provided by Karl-
sruhe and Montréal/INRIA.
In fact, it can be considered that these constitute
two groups of programs. The Stanford+Fujitsu
programs are very different but strongly based
on the labels attached to entities. For that rea-
son they performed especially well when labels
were preserved (i.e., most of the time). The
Karlsruhe+INRIA systems tend to rely on many
different features and thus to balance the influ-
ence of individual features, so they tend to re-
duce the fact that labels were preserved.

Given that the concern of coincidence-based ap-
proaches, is generally not the mere labels attached to the
entities, one can hardly say that they strongly rely on that.
(One may argue that the types of the graphs are defined
based upon the labels of the graphs. And, that is a cor-
rect observations. As explained throughout this paper,
however, much more than labels, the coincidence-based
approaches are mainly concerned with how typed graphs
coincide.) We thus note that GA outperforms both Kar
and UM.

GA approaches generally try to find near optimal solu-
tions and not necessarily the global optimum. Because the
run-time complexity of the naive approach limits its use to
small ontologies, we have to rely on approximations such
as those GA yields. Ref. [39] details this approach and ex-
plains how to keep the algorithm from falling into a local
optima.

4.4. Approximative Approaches
Consider the idea of forming a new graph; a bipartite

graph G(V1,V2,E) where V1 and V2 are the sets of con-
cepts of O1 and O2, respectively. An edge e ∈ E is not
typed but is weighted. This weight will show the mutual
distance between its source and target (which is calculated
in phase I). Applying a Maximum Weight Matching [27]
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for matching extraction here would be quite unwise be-
cause one would definitely lose the inherent structure and
interrelationships of both ontologies. That is, regardless
of the internal structure of the ontologies, the choice of an
edge via this method would merely help to an overall opti-
mization of the mutual distances between the concepts. In
other words, there is no estimate of how much the resulted
matching will also preserve the structure.

On the other hand, as described in Section 3.1, a
method which merely considers structure is not precise
enough either. As also explained in the same section, the
notion of coincidence as a measure for knowing how co-
incident the two ontologies – as a whole – are becomes
helpful. We explained further in Section 3.1 that the no-
tion of coincidence goes hand-in-hand with alignments.
Unfortunately, however, as discussed in Section 3.4, there
is no knowledge at the moment about the complexity of
the problem (of Typed Graph Isomorphism). We only
know that it is as complex at least as the Graph Isomor-
phism problem itself.

The Naive Approach as offered in Section 4.2 is also
already exponential. In Section 4.3, we tried to allevi-
ate this complexity by exploiting GA which is no longer
complex. However, knowing that excessive search is too
complex and impractical, this section is about to offer a
straight approach for coming up with a best-coinciding
alignment. The question will then be: “Is there any ap-
proachable way for straightly finding an alignment which
– although may not be the best coinciding – is close to
that?” This is the question which the approaches we call
Approximative will try to answer.

For finding the best-coinciding, the Naive Approach (in
Section 4.2) tried to examine all the possible choices –
which of course is an overkill. To find a close-to-best-
coinciding, however, it will be nice if we can first have
an estimate of how much pairing some arbitrary nodes
may help in coming up with a better measurement for the
degree of coincidence of the two ontologies. Once we
have these pairwise estimates, we should next apply some
minimization algorithms to minimize the overall distance
too. This, as summerised in Algorithm 2, is in fact the
sketch of our approximative approach.

In this section, only a quick discussion on how to ap-
ply the technique is presented. Especially, if the reader
is interested to know why for the sake of minimizing the
overall distance we do not use Maximum Weigh Match-
ing [27], we suggest consideration of ibid. For short,
we choose Maximum Weight Non-crossing Matching [45]
over the former algorithm because the former may pro-
duce results which are conceptually wrong. As an exam-
ple for Fig. 8, it may choose to map a to b′ and in the same
time c to a′ – which, as discussed in section 4.1, will be
wrong.

It is natural to ask here: “How is the step 2 of Algo-
rithm 2 done? And, where is the use of random walks?”
Algorithm 3 is the way the weights for edges of E get
calculated. We believe that this should answer both the
above questions. There, considering s to be a randomly
generated stem, ws(m(s)) = ws+(m(s))−ws−(m(s)), for

Algorithm 2. Sketch of the random walk approximation.

1: Input Ontologies O1(V1,E1) and O2(V2,E2) along
with the metric space (X ,d) in which they are em-
bedded.

2: Construct a bipartite graph G(V1,V2,E) with
weighted edges; each edge shows the helpfulness of
pairing the endpoints of the edge for the two ontolo-
gies O1 and O2 to look more coinciding on (X ,d).

3: Apply Maximum Non-crossing Weight Matching
to G.

4: Output the resulting heaviest matching.

Algorithm 3. Calculation of weights of E .

1: for all v ∈V1∪V2 do {Initialisation}
2: find the typical edge met along all v-stems.
3: end for
4: for all v1 ∈V1 do {Evaluation}
5: for all v2 ∈V2 do
6: Generate a random v1-stem s1; calculate

ws1(m(s1))
7: Generate a random v2-stem s2; calculate

ws2(m(s2))
8: e(v1,v2)← ws1(m(s1))+ws2(m(s2))
9: end for

10: end for

which:

ws+(m(s)) = ∑
u′∈m(s)
u′=m(u)
Pm(u,.)

( 1
1−d(u,u′)

)ds(u′,v′)−dIS−As (u′,v′)

ws−(m(s)) = ∑
u′∈m(s)
u′=m(u)
T Pm(u,.)

d(u,u′)−ds(u,v)

Here, for each v1 and v2, if s is a v1-stem, m(s) is the
v2-stem chosen to be best coinciding with s. And, finally,
explanation of the symbols:

• In each iteration over the summation, u and u′ are
the current vertices. By u′ = m(u), we mean that u is
from the pattern graph (O1), and, is matched with u′
from the target one (O2).

• d(., .) is a function returning the distance between
the concepts it is input with. Note that this distance
is the metric of our metric space in fact.

• ds(., .) is a function which takes two vertices of a
graph, and returns the number of edges to be met
along s for reaching to the second from the first. Note
that this is independent of our metric space. In fact,
this is applicable to any graph, yet, it is different from
the common method of defining distance of vertices
in graphs [46].
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• dIS−As(., .) is the number of IS-A relationships met
from the first argument toward the second when
traversing on s.

• It is worth mentioning that d(u′,v′)−dIS−A(u′,v′) is
always equal to d(u,v). However, we prefer to retain
the former because it better shows our purpose. Of
course, for efficiency purposes, in practice, one may
choose to use the latter over the former.

5. Conclusions and Future Works

We can summarize the novelty of this work as follows:
First of all, the “coincidence” factor is something intro-
duced for the first time in [47] by three authors of the cur-
rent work. Secondly, up to our knowledge, the work re-
ported in this paper is the first general formulation of the
mapping extraction problem. Thirdly, other works either
leave it completely to the user to extract the mappings, or
do it in cooperation with the user, or do simple form of
extraction.

The main contribution of this paper is to give a formal
definition of the problem and our solution to respond to
the problem. The paper also includes some experimental
results on the GA implementation. The main merit of this
approach is when it is applied for large ontologies where
the structural relations play an important role in the align-
ment selection. For the case of simple ontologies where
the decision making is mainly based on label similarities,
other lexical based approaches might perform better.

We are now extending our research to find other ap-
proaches to use the coincidence-based weighting. One di-
rection is to introduce Approximative Algorithms which
perform a more elaborate random walk. Another direc-
tion is to consider other works in which Graph Theory
and Metric Spaces are considered together, and find new
ideas for further reduction of the size of the basic mecha-
nism. One can consider [48] for example. Given that it is
common to use Domain Theory [33] for evaluating the se-
mantics of programming languages [49], we believe that
there is a vast room for injecting those ideas in the realm
of OM, especially in better adjustment of the partial order
we were speaking about in this paper.
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