
HePToX: Marrying XML and Heterogeneity in Your
P2P Databases

Angela Bonifati

Icar CNR, Italy

bonifati@icar.cnr.it

Elaine Qing Chang Terence Ho

Laks V.S. Lakshmanan Rachel Pottinger

University of British Columbia, Canada

{echang, terenho, laks, rap}@cs.ubc.ca

Abstract

We present HePToX, a full-fledged peer-to-
peer database system that efficiently handles
XML data heterogeneity. In a highly dynamic
P2P network, it is unrealistic for a peer enter-
ing the network to be forced to agree on a
global mediated schema, or to perform heavy-
weight operations for mapping its schema to
neighboring schemas. In our demo, we show
that to enter the HePToX network a peer user
is only asked to draw a simple set of visual
annotations to a few other schemas. We show
how the mapping rules are then automatically
generated and how efficient query translation
is performed on top of these mappings.

1 Introduction
Peer-to-peer (P2P) systems allow data sources to share
their data with other sources. These sources become
peers in a P2P network, where each peer maintains
its own data, but gains the ability to read the other
peers’ data. As in a data integration system, the pre-
existing usage of the sources’ data causes peers to wish
to maintain their own schema; this causes a problem
of schema heterogeneity . In a data integration system,
schema heterogeneity is resolved by a mediated global
schema. However, the lack of a centralized authority
and the ad-hoc membership of the P2P network ren-
ders this infeasibility in a P2P system. Instead, each
peer that enters the P2P network provides a mapping
between itself and some subset of the peers already in
the network.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

In this demo, we present HePToX (pronounced Hep
Talk), a heterogeneous XML P2P database system
which uses lightweight Datalog-like schema mappings
exhibiting a data-exchange semantics. In HePToX, we
only expect a peer user to draw a simple set of ar-
rows and boxes and the system supplies the rest. HeP-
ToX uses a novel algorithm which automatically infers
Datalog-like mappings between arbitrary XML data-
base schemas, from the correspondences.

Previous research has focused either on frameworks
which are either too lightweight to express complex
XML mappings, or require heavyweight mapping cre-
ation from the user. For example, value mappings,
such as those used in [10], are simple and lightweight,
but insufficient to express complex mappings between
XML DTDs. HePToX permits easy creation of sophis-
ticated mappings without requiring heavyweight view
definitions unlike previous works such as [1, 2, 4, 7, 11].

To give a flavor of the visual annotations, Figure 1
graphically depicts schemas of two distinct hospital
peers. This example is adapted from [9]. For the
moment, we ignore the arrows. The first DTD is
for Montreal (General) Hospital database. Every
Patient is assigned a unique hospital ID and has a
unique Medicare number (MedCr#). The Patient ele-
ments contain sub-trees corresponding to their history
of health problems (Hist) and treatments (Treat),
while Admission data is maintained separately and
is captured via the ID/IDREF link @PatRef→ @ID
(shown as a solid grey arrow in Figure 1(a)).

If a patient is transferred from Montreal to Boston,
that patient’s data must then be able to be queried
by the Boston Hospital schema. The Boston Hospi-
tal schema is organized quite differently; it is grouped
into an Admission complaint (e.g., pulmonary, or
coronary) and Progress. The usual patient details
are stored under the Admission complaints. The
Progress sub-tree records the patients’ Symptoms and
the Treatments, and is connected to the patients via
the ID/IDREF link @PatRef→ @ID.

Patients often make such transfers, which requires

Montreal Hospital

Patient

AdmissionID MedCr# Name Hist

Event

Problem Date

Treat

Desc

Doc

AdmDate DisDate PatRef

+
+

@ ? *

* @

Boston Hosptial

Pulmonary

Admission

Coronary

ID InsName Policy# Enter Leave Patient

ID/IDREF

@

@

* *

Progress

PatRef Symptom Treatment

Date Desc

*

@ *

?

*

ID/IDREF

(a) Source

Schema

(b) Target

Schema

*

Figure 1: Mapping two Heterogeneous Peer DTDs. Every unlabeled edge is labeled ‘1’ by default.

their data to travel with them. Given that the trans-
fers do not always occur between a well-defined set
of hospitals, and there is no hospital or other source
that could be relied upon to create a mediated schema,
a P2P database system for health care is a natural
choice. A P2P database system is a collection of au-
tonomous database systems connected by a P2P net-
work, and peers may enter or leave the network at will.

Any peer entering the network can establish schema
relationships with other peers. The peers chosen by
the entering peer are technically called acquaintances
[1]. Coming back to our example, the Montreal
Hospital peer may choose Boston Hospital as an
acquaintance and provide correspondences between
the concepts in its schema and those in the Boston
Hospital schema.

We require the peer database administrator or the
final user to supply only very simple correspondences.
The correspondences are specified in the form of ar-
rows and boxes, illustrated in various dashed lines, in
Figure 1, and will be explained in Section 2. We use
the correspondences as a basis for automatically in-
ferring a mapping expression, expressed in the form
of Datalog-like rules. The peer DBA can examine the
rules and make any necessary adjustments. These cor-
respondences can either be created by hand or through
some (semi-)automatic mapping discovery algorithm
(see [5] for a survey of such approaches).

There may be considerable differences in the way
the peers organize their data, including differences
in data representations (e.g., stock names instead of
ticker symbols, different units, etc.), as well as differ-
ences in underlying schemas (e.g., group treatments
under the patients receiving them as opposed to main-
taining separate lists of patients and treatments and
linking them with key-foreign key links).

Our further goal is to permit users and applications
of any peer database to access data of interest by sim-
ply posing a query to their peer, regardless of the loca-
tion of the data items or the schema under which they
are organized. In other words, the existence of numer-
ous peers and their schemas should all be transparent
to the user/application posing the query. E.g., for an-
swering the query “what are the treatments adminis-
tered to patients admitted with a coronary illness?”,
we want to manipulate data from all peers “visible”

to the original peer, containing logically relevant in-
formation. Clearly, queries posed to a peer need to be
translated appropriately so as to run on other peers.

2 A Motivating Example
We now explore the example discussed in the intro-
duction (Figure 1) in more depth. The arrows pro-
vide informal correspondences between the two hospi-
tal DTDs, and are illustrated by dashed lines to differ-
entiate them from the structure of the DTDs. Hence-
forth we refer to the Montreal Hospital DTD as Mon-
treal and the Boston Hospital DTD as Boston. The
arrows capture simple 1-1 correspondences between
terms such as “MedCr# in the first DTD to Policy#
in the second” and “Name in the first to Patient in
the second”; we do not consider 1-n or m-n correspon-
dences in this paper.

Consider the correspondence between Desc in the
two DTDs. Desc has a unique parent in first DTD
while it has two parents in the second. For disam-
biguation, we use the same line style for the edges
Treat/Desc in Montreal, Treatment/Desc in Boston,
and the arrow connecting them. Other arrows can be
understood similarly. In the only more complicated
mapping in this figure, consider the dashed box enclos-
ing the Pulmonary and Coronary nodes in (b). Boxes
are used to group together tags of nodes in a DTD
that correspond to instances of a tag in another DTD,
as part of the correspondence specification. For exam-
ple, the dashed arrow matching Admission/Problem
to this box says that ‘Pulmonary’ and ‘Coronary’ cor-
respond to values of the element Admission/Problem
in the first database. In effect, illnesses, which may be
instances of Admission/Problem in the first database,
correspond to tags in the second database. However,
this correspondence makes no assumption that the set
of illnesses occurring in the two databases are the same
or even overlap.

Arrows and boxes in and of themselves do not tell us
how a database that conforms to a DTD may be trans-
formed to one that conforms to the other DTD. This
is relevant because it is closely tied to the semantics
of query answering. HePToX lets the user perform
the whole process, from the creation of the peer-to-
peer mappings to the translating of queries. In [3] we
describe both how to infer mapping expressions from

the correspondences specified using the boxes and ar-
rows and how queries are translated over the inferred
mappings. We also show this in the demo. For space
reasons, here we just informally explain the mapping
semantics by examining the two DTDs in Figure 1.

As reasoned above, HePToX’s mapping expressions
define the data exchange semantics of heterogeneous
data transformation. Even in this simple example, the
structure of the two schemas is quite different. For ex-
ample, in the Montreal DTD, patients’ history and
treatments are both nested under the patient. All
admission information is maintained separately and
linked to the appropriate patient via the patient’s ID.
In the Boston database, treatment and history infor-
mation (symptoms) is separated out from patients and
linked to them via their ID. Additionally, patients are
represented along with the rest of the admission data,
but this data is classified based on the type of prob-
lem/illness identified at the time of admission.

In this demo, we show how to produce the mapping
expressions shown in Figure 2 given only the simple
correspondences shown in Figure 1, and then how to
translate queries from one DTD to the other. The
mappings are expressed as Datalog-like rules, (〈rule
head〉 ←− 〈rule body〉), adapted for tree structured
data and explained next.

1. Boston→ f1($Montreal)[Admission→ f2($Montreal)
[$AP/text()→ f3($AP/text(), $ID, $M, $AD, $DD, $N)

[@ID→ $ID, Policy#→ $M,
Enter→ $AD, Leave→ $DD, Patient→ $N]]]

←−—————
Montreal→ $Montreal[Patient→ $P

[@ID→ $ID, MedCr#→ $M, Name→ $N],
Admission→ $A[Problem→ $AP, AdmDate→ $AD,

DisDate→ $DD, @PatRef→ $PR]], $PR = $ID.

2. Boston→ f1($Montreal)[Progress→ f2($PR)
[Symptom→ f3($EP, $ED)[Date→ $ED, Desc→ $EP]]]

←−—————
Montreal→ $Montreal[Patient→ $P

[@ID→ $ID, MedCr#→ $M, Name→ $N, Hist→ $H
[Event→ $E[Problem→ $EP, Date→ $ED]]]

Admission→ $A[Problem→ $AP, AdmDate→ $AD,
DisDate→ $DD, @PatRef→ $PR]], $PR = $ID.

3. Boston→ f1($Montreal)[Progress→ f2($PR)
[Treatment→ f3($TDate, $TDesc)

[Date→ $TDate, Desc→ $TDesc]]]
←−—————

Montreal→ $Montreal[Patient→ $P
[@ID→ $ID, MedCr#→ $M, Name→ $N,

Treat→ $T [Date→ $TDate, Desc→ $TDesc]],
Admission→ $A[Problem→ $AP, AdmDate→ $AD,

DisDate→ $DD, @PatRef→ $PR]], $PR = $ID.

4. Boston→ f1($Montreal)[Progress→ f2($PR)[@PatRef→ $PR]]
←−—————

Montreal→ $Montreal[Admission→ $A[Problem→ $AP,
AdmDate→ $AD, DisDate→ $DD, @PatRef→ $PR]

Figure 2: Mapping Rules between schemas in Figure 1.

2.1 HePToX Mapping Expression Language
HePToX uses a mapping expression language in which
the mapping rules between peer schemas that it gen-
erates are specified. Each rule is made up of atoms of
the form Tag→ id, where Tag is a tag or a tag vari-

able and id is the id associated with a node with this
tag. Here, id may be a variable or any term of the form
f($v1, ..., $vn), for some variables $vi and some Skolem
function f . Skolem functions are used not only for
creating new node id’s (as has often been done in the
literature), but also for expressing group-bys, as we ex-
plain shortly. Atoms can be nested inside other atoms,
thus expressing nesting, while a comma-separated list
of atoms expresses the sub-elements of a given element.
Attributes are preceded with a ‘@’.

Before we explain the meaning of the rules, it’s im-
portant to bear in mind that the rules and the mapping
do not physically transform data from one source’s
schema to another. As in [1], these mapping rules
rather express the semantics of data exchange – if data
were to be exchanged from source 1 to 2, how it would
correspond to the schema of source 2.

Atoms can be nested to form tree expressions. Tree
expressions are either atoms (t→ i) or are of the form
t→ i[TE1, ..., TEk], where t→ i is an atom and TEi

are tree expressions, as shown in Figure 2.

2.2 Creating the Rules
One of the major contributions of HePToX is to auto-
matically generate the rules from the correspondences.
In this section we give an intuitive notion of how the
rules are created. In the demo, we show the actual
algorithm that HePToX uses to create these rules.

Rule 1 says corresponding to the (unique) root
of the Montreal source, there is a (unique) root in
Boston. The uniqueness of the latter follows from ap-
plying the Skolem function f1 to the node id associ-
ated with the former’s root, which is unique. Sim-
ilarly, there is a unique Admission node in Boston,
and we have used again the root of Montreal as
the argument of the Skolem function f2 for captur-
ing this uniqueness. The rule body binds the vari-
able $AP to the problem of a patient at admis-
sion time. $AP/text() extracts the text value asso-
ciated with node $AP . This value (which may have
a value from the same domain as “Pulmonary’ and
‘Coronary’1) is used to form the tag of a new node,
whose id is f3($AP/text(), $ID, $M, $AD, $DD, $N),
i.e., it is a function of the patient’s admission time
problem ($AP/text()), id ($ID), insurance policy
(or medicare) number ($M), admission and discharge
dates ($AD, $DD), and name ($N). Note that the
arguments of the Skolem function f3 are exactly
the single-valued sub-elements of the Pulmonary and
Coronary elements in Boston. HePToX does not as-
sume any knowledge of keys, and can still work cor-
rectly in the absence of such knowledge.

As expected, patient id, policy number, admission
date, discharge date, and name are all matched to their
counterparts in Boston.

Rule 2 maps the patient history consisting of

1The value need not be one of these.

Problems and their Dates of occurrence (nested in
Montreal through Hist/Event) to Symptom/Desc and
Symptom/Date in Boston. Note that in Boston, the
Symptom elements are nested inside a Progress ele-
ment, which has as its id a function of the patient
ID (via @PatRef), i.e., f2($PR), $PR = $ID. Thus,
there is one Progress element per patient. Conse-
quently, Symptoms are grouped by patient ID. The
node ID f3($EP, $ED) used for Symptom elements
shows that for each occurrence of a problem for a given
patient, a separate Symptom element is created.

Rule 3 maps treatment information from Montreal
to Boston. Progress elements are created with id
f2($PR) just as they are in rule 2. Note that the
use of the node id f3($TDate, $TDesc) for Treatment
ensures that for every treatment on any date adminis-
tered to a given patient, the corresponding Treatment
element is nested inside the Progress element associ-
ated with the patient.

A node id plays a key role: for instance, Progress
elements are created by both rules 2 and 3. HePToX
ensures that no duplicate Progress elements are cre-
ated and that both of the sub-elements created by rules
2 and 3 are included by matching up the node ids. This
is achieved as follows: whenever the id of a Progress
node created by rule 2 matches the one created by
rule 3, they refer to one and the same node. For in-
stance, suppose ′p5′ is the ID value of a patient, then
the subtree rooted at the Progress node f2(p5) cre-
ated by rule 2 and the subtree rooted at the Progress
node f2(p5) created by rule 3 are both glued at the
node f2(p5). More generally, whenever subtrees are
created by applications of the same or different rules,
conceptually all these subtrees are glued together at
nodes having a common node id. This ensures that
the pieces “computed” by rules are correctly glued to-
gether.

Finally, rule 4 maps @PatRef attribute in Montreal
to @PatRef attribute in Boston.

2.3 Translating queries
Even once the mapping has been created as shown in
2.2, translating the queries themselves can be difficult
if not impossible [8, 6]. In the demo we show how to
translate queries simply and efficiently. Rather than
using a view-based rewriting scheme, HePToX uses a
different mechanism which allows it to be very efficient
over a simple but substantial subset of XQuery.

3 HePToX Demonstration Specifics
We demonstrate how a set of heterogeneous schemas
and the corresponding data can be managed by the
HePToX system. A set of physical peers which have
variants of XML schemas of some real and synthetic
data sets are simulated by Emulab, a P2P network em-
ulation testbed. Our GUI lets a generic peer user draw
a set of annotations between its schema and any other
schema on other peers. We then enable the generation

of mapping rules from the visual annotations. In par-
ticular, we show how different variants of the schemas
above can be mapped to one another by leveraging the
convenience of the HePToX end-to-end mapping tool.

Furthermore, once correspondences are created
among these schemas, we let the peer user pose queries
against that peer’s own schema and let these queries be
translated across the correspondences. Here, we high-
light the correctness and efficiency of the translation
process for a simple yet substantial XQuery fragment.
About the Demonstration Scenarios. In order to
show the effectiveness of our system on Health Care
datasets, such as those illustrated in Figure 1, we en-
vision, among the others, the following list of users:
• a patient who moves from one hospital to an-

other willing to transmit her own data to the des-
tination hospital, whatever the latter is;

• a doctor who transmits his patient records to a
set of hospitals in the network, for instance in
order to ask suggestions to her colleagues on a
difficult surgery;

• the insurance company which is interested to
the policy of a set of patients, willing to query
heterogeneous hospital databases;

• the health care institute director, who
wants to know how many hospitals were in the
patient history before she joined her institute.

All the scenarios above require schema transformations
across a network of peers, and the latter need to be
flexible and lightweight to accomodate new users and
new schemas, representing indeed new hospitals join-
ing the network.

References
[1] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R.J.

Miller, and J. Mylopoulos. The hyperion project: From data
integration to data coordination. Sigmod Record, 32(3), 2003.

[2] A.Y.Halevy, Z.G.Ives, D.Suciu, and I.Tatarinov. Schema Me-
diation in Peer Data Management Systems . In ICDE, 2003.

[3] A. Bonifati, E.Q. Chang, T. Ho, and L.V.S. Lakshmanan.
HEPTOX: Heterogeneous Peer to Peer XML Databases. In
CoRR cs.DB/0506002, 2005.

[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
and Riccardo Rosati. Logical Foundations of Peer-To-Peer
Data Integration. In Proc. of ACM PODS, 2004.

[5] E.Rahm and P.A.Bernstein. A survey of approaches to auto-
matic schema matching. VLDB J., 10(4):334–350, 2001.

[6] R. Fagin, P.G. Kolaitis, L. Popa, and W. Tan. Composing
Schema Mappings: Second-Order Dependencies to the Rescue.
In PODS, 2004.

[7] A. Kementsietsidis, M. Arenas, and R.J. Miller. Mapping Data
in Peer-to-Peer Systems: Semantics and Algorithmic Issues. In
SIGMOD, 2003.

[8] J. Madhavan and A.Y. Halevy. Composing Mappings Among
Data Sources. In VLDB, 2003.

[9] P.Bernstein, F.Giunchiglia, A.Kementsietsidis, J.Mylopoulos,
L.Serafini, and I.Zaihrayeu. Data Management for Peer-to-Peer
Computing: A Vision. In WebDB, 2002.

[10] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating Web Data. In VLDB, 2002.

[11] I. Tatarinov and A.Y. Halevy. Efficient Query Reformulation
in Peer-Data Management Systems. In SIGMOD, 2004.

